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Abstract

Belief-logic deductions are used in the analysis of cryp-
tographic protocols. We show a new method to decide such
logics. In addition to the familiar BAN logic, it is also ap-
plicable to the more advanced versions of protocol security
logics, and GNY in particular; and it employs an efficient
forward-chaining algorithm the completeness and termina-
tion of which are proved. Theoretic proofs, implementation
decisions and results are discussed.

1 Introduction

Cryptographic protocols are specifications for sequences
of messages to be exchanged by machines on a possibly in-
secure network, such as the Internet, to establish private or
authenticated communication. These protocols can be used
to distribute sensitive information, such as classified mate-
rial, credit card numbers or trade secrets, or to authenticate
information.

Many cryptographic protocols have been found to be
flawed; that is, there exists a way for an intruder that has
gained partial or total control over the communication net-
work and is able to read, suppress and forge messages to
trick the communicating machines into revealing some sen-
sitive information or believing they have an authenticated
communication, whereas they are actually communicating
with the intruder. Several tools and techniques have there-
fore been devised for analyzing and verifying the security
of cryptographic protocols.

A common feature of these techniques, including ours, is
that they address the design of the protocol rather than the
strength of the underlying cryptographic algorithms, such as
message digests or encryption primitives. For instance, it is
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assumed that one may decrypt a message encrypted with a
public key only when possessing the corresponding private
key.

Three main categories of approaches have been pro-
posed:

Belief logics represent reasoning such as “if a message ar-
rives encrypted with a key known only to me and ma-
chineM , and I did not send it originally, then it must
have been sent byM ”. The first of these was the so-
called BAN logic from Burrows, Abadi and Needham
[3], which was followed by more expressive and elab-
orate extensions such as GNY (Gong, Needham and
Yahalom [6,5]) and SVO (Syverson and van Oorschot
[17, 18]). One limitation of these logics is the need
to annotate the protocols with logical assertions that
are assumed to represent the intent of the sender of the
message, as well as logical assumptions on the secrecy
or freshness of certain pieces of information. Also,
they cannot verify secrecy.

Partial model checking of a semantic model is a stronger
method. Here a limited but wide set of possible attacks
is generated and systematically tried against the proto-
col. The hope is that this set is wide enough so that
any attack will be detected. Efficient implementations
have been devised [10,13,9].

Theorem proving of properties of a semantic model is the
strongest method. Formal proofs are sought for safety
theorems on the protocols (in a certain model of what
a protocol is). There are two approaches:

• using a generic proof assistant with specific pro-
cedures [14];

• using a specific analyzer like the NRL Protocol
Analyzer [11].

Of course, a clear definition of the model that is con-
sidered is needed, and subtle points can have dramatic



A / ? {Na}−Kb (2) A 3 +Kb (a) A |≡ +Kb7→ Kb (b) A |≡φ(Na) (c)

A |≡B |∼Na
I4

A |≡ ](Na) (d)
A |≡B 3 Na

I6

Figure 1. A derivation in GNY logic.

effects on whether some methods are suitable or not,
as shown in [7]. More specifically, the rewriting sys-
tems that very often quotient the space of messages
have to be taken into account in the design of the proof
method [7, 12]. Rewriting systems also have to be
taken into account in analyses by GNY logic and will
be dealt with in this paper.

The three approaches have increasing strength, but also
roughly increasing cost, human-directed theorem proving
being very costly in human time and model checking in
computation times. All approaches can be effectively used
in combination, starting with belief logics, which, although
the weakest, are simple to use and can be very effective in
detecting certain flaws. Their simplicity and low cost would
be enhanced if their analysis could be automated with com-
plete reliability; this is such a complete, provably reliable
automation that we are presenting in this paper.

The purpose of this paper is to present a new method
for automating belief-logic deductions. It is applicable to
the more advanced versions of protocol security logics, and
GNY in particular; and it employs an efficient forward-
chaining algorithm the completeness and termination of
which are proved.

There have been other efforts to automate belief-logic
security analyses [15, 8, 1, 2]. Their approaches have been
less satisfactory since they were either incomplete or non-
terminating [15] or limited to BAN logic [8]; completeness
and nontermination have sometimes not been explicitly ad-
dressed [1, 2]. Our method is complete, meaning that if
a formula is provable from a set of hypotheses in a logic
where our method is applicable, our method will find a suit-
able derivation (proof tree); and it is terminating, meaning
that when the formula is not provable, our method will stop
and give a negative answer. Also, our method yields results
in a matter of seconds, comparable to the times of the in-
complete procedure of [15].

1.1 A simple example of belief-logic analysis

1 A→B Na
2 B→A {Na}−Kb
3 A→B {Kab}+Kb

This is to be understood as: in step 1,A sends a newly
generated numberNa toB; B answers with the encryption

of Na by its private key−Kb; A answers with the encryp-
tion of a newly generated session keyKab with B’s public
key+Kb.

To illustrate how belief-logic deductions work, we first
show the “idealized” version of the protocol in GNY:

1 B / Na
2 A / ? {Na}−Kb
3 B / ?

(
{Kab}+Kb ;A

Kab←−→ B
)

The star means that the following term was not origi-
nated by the party who receives it. The statement after the
wavy arrow in 3 is an annotation meaning thatKab is in-
tended to be a shared secret key for use betweenA andB.

We also need some assumptions, written as follows in
GNY:

(a) A 3 +Kb (A possesses+Kb)

(b) A |≡ +B7→ B (A believes that+Kb isB’s public key)

(c) A |≡φ(Na) (A believesNa to be recognizable; that is,
if A sees a message field that is supposed to beNa, A
can check whether it is or not)

(d) A |≡ ](Na) (A believesNa to be fresh; that is, to have
been used for the first time in this run of the protocol)

Using GNY logic, we can derive the conclusionA |≡B
3 Na (see fig. 1). This means that from the fact, coming
from protocol step 2, thatA sees the message consisting
of the encryption ofNa by the private key for the pub-
lic/private couple of keysKb, from assumptiona (A pos-
sesses the corresponding public key), from assumptionb (B
uses the private key of the coupleKb) and from assumption
c (A believes that it can recognizeNa), we deduce using
rule I4 thatA is entitled to believe thatB once saidNa.
Then, using assumptiond, which is thatNa is fresh (has
never been used in another session before), we deduce that
A is entitled to believe thatB possessesNa. See [6] for a
complete list of the GNY inference rules and their designa-
tions.

The final goal of the protocol might be to causeB to
believe thatA believes thatKab is the shared key (A |≡A
Kab←−→ B). However, message 3 could have been forged by

any intruder possessing+Kb, which is realistic since it is
a public key, replacingKab by any key of his choice. The
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logic (correctly) fails to conclude that the protocol accom-
plishes this goal: this goal has no derivation in GNY logic
from the above set of hypotheses.

2 Our method

The purpose of our method is, given a set of hypothe-
sesΓ and a would-be conclusiont, to decide whethert is
derivable fromΓ in GNY logic. Additionally, if it is deriv-
able, a derivation is output; if it is not, an attempt is made
to suggest some additional hypotheses to the user.

2.1 Vocabulary

We place ourselves in a free algebra of terms. By
a “rule”, we mean a finite set of terms with variables
{H1, . . . ,Hn} called the premisses and a term with vari-
ablesC call the conclusion, traditionally represented as

H1 · · · Hn
C

Applying that rule to hypothesesH1, . . . ,Hn to yield
the conclusionC means finding a common unifier for
{(H1,H1), . . . , (Hn,Hn), (C, C)}. A derivation is a tree
whose nodes are such applications, with its root the conclu-
sion and its leaves the hypotheses.

There are two traditional methods to test whether a for-
mula t admits a derivation from a set of hypothesesΓ in a
system of rules̀ (which we note byΓ ` t):

Forward chaining, that is starting from the hypothesesΓ,
apply all the possible deduction rules to deduce new
formulas, then start again with the union of the hy-
potheses and the new formulas, until the formulat is
discovered;

Backward chaining, that is, starting from the purported
conclusion, find all the rules and all the instantiations
of the variables in them that yield that conclusion, then
try recursively to prove the hypotheses of each of these
rules with each of the instantiations; it is a kind of
search with backtracking.

Both these methods suffer from the following problems:

• Both methods may never terminate ifΓ 0 t.

• Some rules maybe unsuitable for a given method: for
a forward (resp. backward) chaining method, if some
variables in the conclusion (resp. premisses) are not
found in the premisses (resp. conclusion), then the sys-
tem has to instantiate them with all possible terms. In
the opposite case, we say that the rule issuitable for
forward (resp. backward) chaining.

There are two problems with the systems of rules like
GNY:

• There exist infinite derivations;

• There are rules that are unsuitable for forward-
chaining and rules that are unsuitable for forward-
chaining.

Nevertheless, we will give a characterization of a class of
systems of rules, to which GNY belongs, that are equiva-
lent to systems suitable for forward-chaining; moreover, we
have a convenient criterion ensuring termination.

2.2 The transformation

If we straightforwardly (and naively) implement the
rules of BAN or GNY logic in a general-purpose automatic
theorem prover, as it has been done [15], the prover is likely
to search an infinite space of possible proofs, which means
that the system doesn’t terminate when the conclusion is
not provable. Furthermore, even in cases of termination,
the computation time might be prohibitive, due to lots of
unfruitful search.

Our idea is that, given a logic of belief for authentica-
tion (abiding by certain restrictions given in the definitions
below), we can construct another logic in which for anyΓ
andt the search space in which to look for a derivation oft
from the set of hypothesesΓ is finite. The implementation
just has to enumerate exhaustively this search space and test
whether it contains such a derivation.

2.2.1 Classes of rules and normal derivations

We deal with two classes of rules1:

• composition rules, in which all the variables of the
premisses are found in the conclusion (these rules are
suitable for backward-chaining);

• decomposition rules, in which all the variables of the
conclusion are found in the premisses (these rules are
suitable for forward-chaining); for these rules, we dis-
tinguish theprincipal premisses(which can be one or
more) and the optionalauxiliary premisses; the vari-
ables in the auxiliary premisses are a subset of these in
the principal premisses.

We consider a partition of the rules between these two
classes. The intuition is that composition rules introduce

1This partition of the set of rules into two classes is very similar to that
of [8], where they are called respectivelygrowingandshrinking rules. This
is also similar to the introduction and elimination rules of intuitionistic
logic; see [4, p. 75]. Our theorem on normal derivations is thus similar to
the normalization theorem of intuitionistic logic or Gentzen’s Hauptsatz [4,
p. 105].
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constructors, like a pair, and decomposition rules break
these constructors, as in taking the first projection of a pair.

Of course, several partitions abiding by the above cri-
teria can exist; the choice for the partition that is imple-
mented has to take into account issues like termination and
complexity. For termination purposes, one may use a well-
founded ordering so that for any decomposition rule, there
exists at least one premiss so that the conclusion is strictly
less than that premiss.

Informally, a decision procedure would have to
backward-chain on the composition rules and to forward-
chain on the decomposition rules.

We define the following criterion (called thenormal
derivation criterion ) on systems of rules: we require that if
there exists a derivation ofΓ ` t then there must also exist
a normal derivation of Γ ` t. A derivation∆ of a conclu-
sionΓ ` t is said to benormal if there is no composition
rule to be used as the root rule of the sub-derivation for a
principal premise of a decomposition rule: for any decom-
position rule used in∆:

...
P1

r1 · · ·

...
Pn

rn

....
A1 · · ·

....
Am

C
r

where thePi are the principal hypotheses and theAj the
auxiliary hypotheses, none of the rulesr1, . . . , rn is a com-
position rule. In the opposite case, we say that there is acut
at r.

Informally, that means that it must be possible to derive
anything that is derivable without having to compose some-
thing and decompose it afterwards; for instance, in

.... α
P 3 X

.... β
P 3 Y

P 3 (X,Y ) P2

P 3 X P3

we compose a pair just to decompose it afterwards. This is
a like a cut in logic and poses difficulty for automatic proof
search because it requires invention (in the above example,
the system would have had to guess a suitable value forY ).2

Of course, the above derivation can be replaced by the fol-

2A stronger constraint is that when a composition rule is used to pro-
duce a principal premise of a decomposition rule, both rules can be re-
moved (i.e., it is never necessary to compose some object to split it up af-
terwards); doing so until impossible yields anormal derivation. This is the
case for BAN logic and the simple system of rules expressing the knowl-
edge that is derivable from some piece of data by pairing, projection, en-
cryption and decryption. However, this constraint is unnecessarily strong,
and for instance fails to capture logics where this condition is not true for
all composition-decomposition pairs, but where the remaining pairs can be
transformed into a decomposition rule, such as GNY logic (see part 3.2).
We call that last condition thestrong normal derivation criterion .

lowing one:
.... α

P 3 X

The possibility of such replacements is what we express in
our criterion.

We will only deal with systems matching the normal
derivation criterion. GNY logic doesn’t match the crite-
rion, that’s why we’ll have to supplement it with a few rules,
yielding an equivalent system that matches the criterion.

2.2.2 The “goal” symbol

We introduce a special symbol,goal. �X means that “we
would like to composeX”. We use it to internalize our
decision strategy, which is that composition rules will only
be applied when their conclusion is to be composed.

Our transformation turns the composition rule

H1 · · ·Hn
C

into a pair

�C H1 · · ·Hn
C

�C
�H1 · · ·�Hn

and adds to the decomposition rule

D1 · · · Dm K1 · · · Kn
C

,

where the one or moreDi are principal premisses and the
zero or moreKi are auxiliary premisses, the triggering rule

D1 · · · Dm
�K1 · · ·�Kn

.

Theorem 1 For all system of rules̀ matching the condi-
tions for the above transformation, calling̀′ the system of
rules resulting from the transformation of̀, we have: for
all set of hypothesesΓ and formulat,

Γ ` t ⇐⇒ Γ,�t `′ t;

furthermore, in that case a derivation ofΓ,�t `′ t can be
obtained by forward-chaining.

The second claim is evident, given the structure of the
rules in `′ (all the rules in`′ are suitable for forward-
chaing). The right-to-left direction of the first claim comes
from the fact that the rules whose conclusions are non-goal
formulas are rules from the original system, weakened by
adding extra hypotheses. The other direction is a conse-
quence of the following lemma:
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Lemma 2 If Γ ` t then�t,Γ `′ t; we then havet `′ t
if there exists a normal derivationΓ ` t that does not end
with a composition rule.

The proof is by induction on the structure of a normal
derivation ofΓ ` t:

• for axioms, it is evident;

• if the bottom rule is a composition rule

H1 · · ·Hn
t

,

because we have�t we can apply the corresponding
rule

�t H1 · · ·Hn
t

at the bottom of the derivations of�Hi,Γ `′ Hi of the
induction hypothesis; the�Hi are derived using

�C
�H1 · · ·�Hn

;

• if the bottom rule is a decomposition rule

D1 · · · Dm K1 · · · Kn
t

then for anyi the sub-derivation ofDi is normal and
does not end with a composition rule (we act on a nor-
mal derivation); then we haveΓ `′ Di; we then use the
triggering rule

D1 · · · Dm
�K1 · · ·�Kn

and the induction hypothesis to get the�Ki,Γ `′ Ki;
we apply the original decomposition rule at the bottom
of these.

3 Application to GNY logic

As the treatment of BAN logic by our method is very
similar to that of GNY logic, and BAN is simpler, we deal
here with GNY logic.

3.1 Definitions

The GNY logic [6], named after its authors, Li Gong [5],
Roger Needham and Raphael Yahalom is a logic of belief
similar to BAN, but which addresses some deficiencies in
that latter one; among other things, it addresses unencrypted
message parts and includes a notion of recognizability.

We use the rules from [6], plus the following rule, which
was forgotten in the original paper

P / (X;Y )
P / X

TZ

that is, if a principal is told a message meaning something, it
is told that message. This rule is necessary to do the analysis
of the Needham-Shroeder protocol found in [6].

GNY logic has two peculiar features that need special
treatment:

The rationality rule All the rules of the logic may be ap-
plied with any preceding chain of belief modality. That
is, for all rule

H1 . . . Hn
C

and new principal variable nameP , we have a rule

P |≡H1 . . . P |≡Hn
P |≡ C

We consider the closure of the rules by this meta-rule.

Rewrites The set of formulas is quotiented by the follow-
ing rewrites (or simplifications):

• {{X}K}
−1
K
−→ X

•
{
{X}+K

}
−K −→ X

This systemR is confluent and terminating, and we’ll
call the normal forms of formulas under these rewrites
theircanonical forms.

We will show in the next subsection that these features
can be accommodated within our framework.

3.2 The set of rules and our additions

We first divide the rules of GNY logic into three cate-
gories:

Decomposition rules such as ruleT3

P / {X}K P 3 K

P / X

The principal premiss is shown within a frame.

Composition rules such as ruleP6

P 3 X P 3 K
P 3 {X}K P 3 {X}−1

K

These rules make a syntactically defined measure (see
tab. 1) decrease.

Equivalence rules Equivalence rules such asF5

P |≡ ](+K)

P |≡ ](−K)

are handled like composition rules.
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t M(t)

Beliefs and conveyance
P |≡X M(X)
P / X 20 +M(X)
P 3 X M(X)
P |∼X 3 +M(X)

Properties of formulas
](X) 2 +M(X)
φ(X) M(X)

Keys and secrets

P
S←→ Q 0

+P7→ P 0
+K 0
−K 0

Message constructors
{X}K 3 +M(X) +M(K)

{X}−1
K 3 +M(X) +M(K)

(X,Y ) 1 +M(X) +M(Y )
F (X,Y ) 2 +M(X) +M(Y )
H(X) 2 +M(X)

Jurisdiction
P |⇒X 1 +M(X)
P |⇒P |≡ ? 0
(X;C) M(X) +M(C)

Detection of replays
?X 1 +M(X)

Proof direction
�X 1 +M(X)

Table 1. The measure M used, defined induc-
tively on the formulas.

We then have to deal with the rewrites. These are prob-
lematic; for instance, we have

P 3 K P 3 {X}K
P 3 {{X}K}

−1
K

P6

P 3 X simplification

That is, we sometimes have to construct the decryption of a
piece of data just to apply a simplification rule. We add a
ruleP6’ standing for the former derivation:

P 3 {X}K P 3 K

P 3 X

We add similar rules in similar other cases, making up the
`+ derivation system.̀ + does not include rewrites.̀+ is
therefore made up of the rules found in [6], plus the follow-
ing decomposition rules:

P 3 {X}K P 3 K

P 3 X P6’

P 3 {X}+K P 3 −K

P 3 X P8’

P |≡ ]({X}K) P 3 K

P |≡ ](X) F2’

P |≡ ]({X}+K) P 3 −K

P |≡ ](X) F4’

P |≡φ({X}K) P 3 K

P |≡φ(X) R2’

P |≡φ({X}+K) P 3 −K

P |≡φ(X) R4’

If ` is GNY logic, consisting of the rules and the
rewrites, we then state the following:

Property 3 For all set of formulasΓ and formulat, Γ ` t if
and only ifC(Γ) ` C(t) whereC(f) denotes the canonical
form under the rewrites of a formula or set of formulas.

The proof is by induction on the structure of a derivation of
Γ ` t. All pairs of rewrites and rules are considered; the
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only annoying cases are rulesP6, P8, F2, F4, R2, R4; in
these cases the sequence

.... ∆1

H1 · · ·

.... ∆m

Hm

C ′
R

C
rewrite

gets collapsed into

.... ∆1

H1 · · ·

.... ∆m

Hm

C
R′
.

We also have the following important property

Property 4 `+ matches the normal derivation criterion.

Again, the proof is by induction on the structure of the
derivation, by considering all pairs of composition rules and
decomposition rules. All pairs of composition and decom-
position rules that constitute a cut (as defined in 2.2.1) can
be collapsed. For instance

.... ∆1

P 3 X

.... ∆2

P 3 K
P 3 {X}K

P6

.... ∆3

P 3 K
P 3 X P6’

is collapsed into
.... ∆1

P 3 X

3.3 Transformation into a forward-chaining sys-
tem

We apply our transformation (section 2.2) to the`+ sys-
tem of rules, getting thè′+ system of rules.

The measureM we’ve defined (see tab. 1) over the for-
mulas of this logic, then satisfies the following strict de-
creasing property:

Property 5 For each rule

H1 · · ·Hn
C

of `′+, except the equivalence rules, we have:

M(C) ≤ max{M(H1), . . . ,M(Hn)} − 1.

This property is very important, since it ensures the
finiteness of the search space, as it is explained below, and
thus the termination of the method. We chose the measure
ad hocfor this.

At first sight, it would seem that because of the “ratio-
nality rule”, an infinite number of rules exist in GNY; that
is, for any rule

H1 . . .Hn

C
there exists the infinity of rules

S.H1 . . . S.Hn

S.C

whereS is a sequence of “believes” modalitiesPi |≡ . . . .
But in a given problem, only a finite number of these rules
needs to be considered. This is a consequence of the above
property: since the belief modalities weigh in the measure
of the formulas, and the measure of the formulas always
decreases in the derivation, then we can bound the length of
the chains of belief modalities to be taken into account.

Theorem 6 The following strategy:

• rewrite (by the rewriting systemR) until normalization
all formulas inΓ∪{t}; we will assume in the next step
that these formulas are normalized;

• initialize the system with a setΓ ∪ {�t};

• iteratively, apply all the possible rules to the formulas
in the set and add the consequences to the set, until a
fixpoint is reached;

• test whethert is in the set

decides whetherΓ ` t.

• It terminates, since the set of generated formulas is
finitely bounded and we stop once we don’t add any
new formula. This set is finite because we only build a
bounded number of derivations:

– there exists a finite number of rules that can be
applied, since there is a finite number of rules in
the logic without the rationality rule and there is a
upper bound on the depth of the modality chains
generated by the rationality rule;

– the number of steps (that is, applied rules) in such
a derivation is bounded because:

∗ the number of non-equivalence steps is
bounded, because of property 5;
∗ the number of equivalence steps is bounded

too, because equivalence classes are finite
and our system cannot derive already de-
rived formulas;

• It is completeandcorrect, following from property 3
and theorem 1 (which applies because of property 4).

The reader should not be confused by the fact that no
computation of measure happens in our algorithm. The
measure is solely a construct for the proof of termination
of the algorithm.
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4 A practical implementation

We implemented the aforementioned algorithm as a pro-
gram in ML3. As we achieved adequate performance using
relatively simple optimizations, discussed below, we didn’t
feel the need for more ambitious and complex implementa-
tion techniques, like BBDs.

4.1 Our algorithm

Our algorithm proceeds by iterations up to a fixpoint
(see Fig. 2). The iterated procedure takes a current setS
and outputs a setS′ ⊃ S. How to implement the ratio-
nality rule ? We could of course compute the aforemen-
tioned (section 3.3) bound on the length of the belief modal-
ity chains to be considered. A more clever tactic, which
is used in our implementation, is the following: consider
P = {p ∈ S | ∃X p |≡X ∈ S}; for eachp ∈ P , consider
Sp = {X | p |≡X ∈ S} and applyZ recursively, yielding
S′p; thenS′ = S ∪W (S) ∪ {p |≡X | p ∈ P ∧ X ∈ S′p}
whereW (S) is the set of all conclusions that one may get
by applying each rule to elements ofS.

A side-effect of this transformation from̀ to `+ is that
in the case of failure, the system may give some crude clues
as what extra assumptions would have been needed: just
collect the formulasf so thatf 6= t and�f but notf have
been derived; some further filtering may be necessary to
produce a reasonably small number of hints for the user.

Extracting`+ proofs from the`′+ proofs (which con-
tain “goal” operators) yielded by that techniques is simple,
and our implementation does so before pretty-printing the
proofs. It is easy to see that, given a proof ofΓ,�t `′+ t,
one can extract a proof ofΓ `+ t by pruning out all
branches whose root is a “goal” formula. One can get`
proofs, that is, pure GNY proofs, by simply expanding the
rules we added to GNY to form̀+ into GNY proof trees.

4.2 Avoiding combinatorial explosion

In this subsection, we do not consider the rationality
rule, which is discussed in the previous subsection.

Implementing a working forward-chaining strategy for
this problem is not as trivial as it seems. For instance, trying

3More precisely, it is written inObjective CAML, on which more in-
formation is available fromhttp://pauillac.inria.fr/ocaml .
A first ML program reads the set of GNY rules and outputs some other ML
code expressing them, using the ML pattern matching facility. The result-
ing code, along with some parsing and control modules, is then compiled,
resulting in an executablegnytool. gnytool takes an input of the protocol,
the assumptions, and the purported conclusions, expressed in an ASCII
syntax for GNY formulas, and outputs some pretty-printed LATEX version
of it, along with a pretty-printed version of the derivations produced for the
proved conclusions. The total source code length is approximately 2700
lines long.

do
for all ruleR havingd principal premisses

k auxiliary premisses
do

for all d-tupleD of “old” formulas
do

if D matches the principal premisses pattern
then

if the auxiliary premisses are in
the “old” formulas

then put the conclusions into
the “new” formulas

add the “new” formulas that were not already in
the “old” formulas to the “old” formulas

until no more formulas are added

Figure 2. Practical GNY logic decision proce-
dure.

all possible rules in the fashion that to try an-ary rule you
match it against all then-tuples of already derived formulas,
until it ends, leads to prohibitive costs (in our case,n = 6,
which makes the number of matchings grow inD7, where
D is the number of derivable formulas).

A first optimization we tried was based on the fact that
one need not test all possiblen-tuples, but only ones con-
taining at least one “new” formula; that is, a formula made
during the last application of the rules. This is not sufficient,
since it reduces only toD6; experimentally, this is far too
slow.

Our implementation is based on the fact that to instan-
tiate all the variables in a rule, you need not consider all
the hypotheses; especially, in the modified versions of the
composition rules, only one “goal” hypothesis suffices; in
the decomposition and trigger rules, only the principal pre-
misses are needed. Expensive exhaustive searches for the
fully instantiated hypotheses are replaced by a much faster
binary search.

Our algorithm is in Fig. 2.
To refine that algorithm even more, the pattern matching

overd-tuples is replaced byd successive pattern matchings,
and any failure of one thek searches ends the search process
with a negative answer.

Such an algorithm is at most inDd+1(logD)k, where
d = 2 andk = 4 in the case of GNY logic.

Another obvious improvement is to consider only tuples
of premisses where at least one is new, that is, has been
added at the last iteration.

Obviously, more clever implementation techniques us-
ing, for instance, BDD-like data structures, could be more
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efficient. We didn’t investigate these, since our implemen-
tation achieved good performances on realistic problems.

4.3 Example

We ran our automatic analyzer on, among other things, a
version of the Needham-Shroeder protocol (tab. 2). This
analysis took 0.3 second on a 400 Mhz Pentium-II ma-
chine4, taking only 1.6 megabytes of memory, including the
runtime system.

4.3.1 Assumptions

A P 3 Kps

B P 3 Np

C P |≡P Kps←−→ S

D P |≡ ](Np)
E P |≡φ(Q)

F Q 3 Kqs

G Q 3 Nq

H Q |≡Q Kqs←−→ S

I Q |≡ ](Nq)
J Q |≡φ(Nq)

K P |≡S |⇒P
K←→ Q

L P |≡S |⇒S |≡ ?
M P |≡Q |⇒Q |≡ ?

N Q |≡S |⇒P
K←→ Q

O Q |≡S |⇒S |≡ ?
P Q |≡P |⇒P |≡ ?
Q S 3 Kps

R S 3 Kqs

S S 3 K

T S |≡P Kps←−→ S

U S |≡Q Kqs←−→ S

V S |≡P K←→ Q

4.3.2 Goals

• P |≡P K←→ Q

• P 3 Nq
4Using ocamlopt -inline 2 for compilation, withOCaml ver-

sion 2.00

4.3.3 Derivation

obtained automatically

P |≡P K←→ Q,
applying ruleJ1 to:

P |≡S |⇒P
K←→ Q,

from hypothesisK .

P |≡S |≡P K←→ Q,
applying ruleJ3 to:

P |≡S |≡S |≡P K←→ Q,
applying ruleJ2 to:

P |≡S |∼
(
? {(K,P )}Kqs ;S |≡P K←→ Q

)
,

...
...

...
...

...
This is an excerpt from the 100-line pretty-printed out-

put5 of the analysis.

4.4 Other examples

Following [3, part 4], we analyzed some properties of the
Otway-Rees protocol; the analysis, on the same hardware,
took 0.08 s.

A previous implementation using the same method, this
time of BAN logic [3] inside the PVS theorem prover [16],
using its forward-chaining capability, allowed us to check
mechanically the results of [3], on:

• the Otway-Rees protocol,

• the Needham-Shroeder shared-keys protocol,

• the wide-mouthed frog protocol,

• the Kerberos protocol (let’s note that there’s a slight
error in [3]: one has to add the reasonable hypothesis

A |≡ ](Na) to getA |≡B |≡A |≡A Kab←−→ B),

• the Needham-Shroeder public-key protocol (the rule

P |≡ 〈X〉Y P |≡ ](Y )
P |≡ ](〈X〉Y )

which is consistent with the informal semantics of the
logic, has to be added to reach the conclusions given
in [3]).

This implementation, being made in a general system, was
of course significantly slower than the one we wrote for
GNY, and the implementation of some of the GNY capa-
bilities looked difficult in that context.

5The LATEX macros used in the outputs of our implementation
and in this paper are available fromhttp://www.csl.sri.com/
˜monniaux/download/ban-gny.sty.tar.gz .
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1 P→S (?P, ?Q, ?Np)

2 S→P
(
?
{(
Np, Q, ?K,

(
? {(K,P )}Kqs ;S |≡P K←→ Q

))}
Kps

;S |≡P K←→ Q

)
3 P→Q

(
? {(?K, ?P )}Kqs ;S |≡P K←→ Q

)
4 Q→P ? {?Nq}K
5 P→Q

(
? {?F (Nq)}K ;P |≡P K←→ Q

)
Table 2. The Needham-Shroeder protocol steps, in GNY logic

4.5 Generalization

How are the above techniques generalizable to other sim-
ilar logics? The general method we’ve given: test whether
Γ ` t by generating all̀ ′-conclusions fromΓ ∪ {�t} and
testing whethert belongs to them, works as long as:

• ` fulfills the normal derivation criterion;

• for any Λ, the set of formulas that arè′-derivable
from Λ is finite.

This second condition is ensured by the existence of a well-
founded preorder4 so that

• for any formulaX,X ≺ �X;

• for any decomposition rule

D1 · · · Dm K1 · · · Kn
C

,

whose set of variables isΞ, and any instanciationξ, for
any F ∈ {C[ξ/Ξ],�K1[ξ/Ξ], . . . ,�Kn[ξ/Ξ]} there
existsH ∈ {D1[ξ/Ξ], . . . ,Dm[ξ/Ξ]} so thatF ≺ H.

For GNY logic, we chosex 4 y ⇐⇒ M(x) ≤M(y).

5 Conclusions

We have a general framework for deciding authentication
logics, encompassing BAN and GNY logics. This frame-
work is flexible and likely to handle other similar logics.

Particularizing our method on well-known authentica-
tion logics, we implemented a decision procedure for BAN
logic in a general-purpose forward-chaining system, which
we used to mechanically check the results in the reference
paper on this logic, and we implemented a special-purpose
decision procedure for GNY logic. This latter system de-
cided GNY problems found in related papers using little
time (a fraction of a second) and memory space.

In our opinion, this tool can be integrated in a general
environment for the analysis of cryptographic protocols, as
a fast analysis that, applied first, before more expensive
methods, can help detecting some bugs in protocol speci-
fications, particularly unwanted assumptions.
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