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Chapter 1IntroductionMaude is a high-performance language and system supporting both equationaland rewriting logic computation for a wide range of applications. Maude hasbeen inuenced in important ways by OBJ3 [27]. In particular, Maude's equa-tional logic sublanguage essentially contains OBJ3 as a sublanguage. The maindi�erences from OBJ3 at the equational level are a much greater performance,and a richer equational logic, namely, membership equational logic [41], thatextends OBJ3's order-sorted equational logic [26].The key novelty of Maude is that|besides e�ciently supporting equationalcomputation and algebraic speci�cation in the OBJ style|it also supportsrewriting logic computation. Rewriting logic [37] is a logic of concurrent changethat can naturally deal with state and with highly nondeterministic concur-rent computations. It has good properties as a exible and general semanticframework for giving semantics to a wide range of languages and models ofconcurrency [40]. In particular, it supports very well concurrent object-orientedcomputation. This is reected in Maude's design by providing special syntax forobject-oriented modules. Since the computational and logical interpretations ofrewriting logic are like two sides of the same coin, the same reasons making it agood semantic framework at the computational level make it also a good logicalframework at the logical level, that is, a metalogic in which many other logicscan be naturally represented and implemented [33, 32]. Consequently, someof the most interesting applications of Maude are metalanguage applications,in which Maude is used to create executable environments for di�erent logics,theorem provers, languages, and models of computation.The rewriting logic research program, although still very young, has showngood signs of vitality, including two international workshops [20, 28], over ahundred research papers (see the references in [42, 28]), and three languageimplementation e�orts, namely ELAN [29, 3] in France, CafeOBJ [24, 23] inJapan, and Maude. Therefore, Maude should be seen as our contribution to thebroader collective e�ort of building good language implementations for rewritinglogic. In this regard, a key distinguishing feature of Maude is its systematic ande�cient use of reection|exploiting the fact that rewriting logic is reective[15, 10]|a feature that makes Maude remarkably extensible and powerful, andthat allows many advanced metaprogramming and metalanguage applications.The present paper documents Maude 1.0, and explains Maude's basic con-cepts in a leisurely and mostly informal style, illustrating those concepts withexamples. Early language design for Maude appeared in [35, 46, 38]. A �rst im-plementation of Maude, supporting reection, was presented and demonstratedat the First International Workshop on Rewriting Logic in September 1996 [13].3



CHAPTER 1. INTRODUCTION 4A beta version has been available since March 1998 [9].1.1 The Logical Basis of MaudeMaude's functional modules are theories in membership equational logic [41,4], a Horn logic whose atomic sentences are equalities t = t0 and membershipassertions of the form t : s, stating that a term t has sort s. Such a logicextends order-sorted equational logic [26], and supports sorts, subsort relations,subsort polymorphic overloading of operators, and de�nition of partial functionswith equationally de�ned domains. Maude's functional modules are assumedto be Church-Rosser; they are executed by the Maude engine according to therewriting techniques and operational semantics developed in [4].Membership equational logic is a sublogic of rewriting logic [37]. A rewritetheory is a pair (T;R) with T a membership equational theory, and R a col-lection of labeled and possibly conditional rewrite rules involving terms in thesignature of T . Maude's system modules are rewrite theories in exactly thissense. The rewrite rules r : t �! t0 in R are not equations. Computationally,they are interpreted as local transition rules in a possibly concurrent system.Logically, they are interpreted as inference rules in a logical system. As alreadymentioned, this makes rewriting logic both a general semantic framework tospecify concurrent systems and languages [40], and a general logical frameworkto represent and execute di�erent logics [33].Rewriting in (T;R) happens modulo the equational axioms in T . Maudesupports rewriting modulo most of the di�erent combinations of associativity,commutativity, identity, and idempotency axioms. The rules in R need not beChurch-Rosser and need not be terminating. Many di�erent rewriting pathsare then possible; therefore, the choice of appropriate strategies is crucial forexecuting rewrite theories.In Maude, such strategies are not an extra-logical part of the language.They are instead internal strategies de�ned by rewrite theories at the metalevel.This is because rewriting logic is reective [10] in the precise sense of having auniversal theory U that can represent any �nitely presented rewrite theory T(including U itself) and any terms t; t0 in T as terms T and t; t0 in U , so thatwe have the following equivalence:T ` t �! t0 , U ` hT ; ti �! hT ; t0i:Since U is representable in itself, we can then achieve a \reective tower" withan arbitrary number of levels of reection. Maude e�ciently supports this re-ective tower through its META-LEVEL module, which makes possible not onlythe declarative de�nition and execution of user-de�nable rewriting strategies,but also many other applications, including an extensible module algebra ofparameterized module operations that is de�ned and executed within the logic.This extensibility by reection is exploited in Maude's design and imple-mentation, so that the basic functionalities of the language, Core Maude, areextended by reection to Full Maude. Core Maude supports module hierarchiesconsisting of (unparameterized) functional and system modules and providesthe META-LEVEL module. Full Maude is an extension of Core Maude written inCore Maude itself that supports a module algebra of parameterized modules,views, and module expressions in the OBJ style [27] as well as object-orientedmodules with convenient syntax for object-oriented applications.



CHAPTER 1. INTRODUCTION 51.2 Core MaudeThe Maude system is built around the Core Maude interpreter, which acceptsmodule hierarchies of (unparameterized) functional and system modules withuser-de�nable mix�x syntax. It is implemented in C++ and consists of twoparts: the rewrite engine and the mix�x front end.The rewrite engine is highly modular and does not contain any Maude-speci�c code. Two key components are the \core" module and the \interface"module. The core module contains classes for objects which are not speci�cto an equational theory, such as equations, rules, sorts, and connected sortcomponents. The \interface" module contains abstract base classes for objectsthat may have a di�erent representation in di�erent equational theories, suchas symbols, term nodes, dag nodes, and matching automata. New equationaltheories can be \plugged in" by deriving from the classes in the \interface"module. To date, all combinations of associativity, commutativity, left andright identity, and idempotence have been implemented apart from those thatcontain both associativity and idempotence. New built-in symbols with specialrewriting (equation or rule) semantics may be easily added.The engine is designed to provide the look and feel of an interpreter withhooks for source level tracing/debugging and user interrupt handling. Thesegoals prevent a number of optimizations that one would normally implement ina compiler, such as transforming the user's term rewriting system, or keepingpending evaluations on a stack and only building reduced terms. The actualimplementation is a semi-compiler where the term rewriting system is compiledto a system of tables and automata, which is then interpreted. Typical perfor-mance with the current version is 800K-840K free-theory1 rewrites per secondand 27K-111K associative-commutative (AC) rewrites per second on standardhardware (300MHz Pentium II). The �gure for AC rewriting is highly dependenton the complexity of the AC patterns (AC matching is NP-complete) and thesize of the AC subjects. These results were obtained using fairly simple linearand nonlinear patterns and large (hundreds of nested AC operators) subjects.The mix�x front end consists of a bison/ex based parser for Maude's surfacesyntax, a grammar generator (which generates the context-free grammar (CFG)for the mix�x parts of Maude over the user's signature), a context-free parser,a mix�x pretty printer, a fully reentrant debugger, the built-in functions forquoted identi�ers, and the META-LEVEL module, together with a considerableamount of \glue" code holding everything together. Many of the C++ classesare derived from those in the rewrite engine. The Maude parser (MSCP) isimplemented using SCP as the formal kernel [54]. The techniques used include�-extended CFGs (that is, CFGs extended with \bubbles" (strings of identi�ers)and precedence/gathering patterns). MSCP provides a basis for exible syntaxde�nition, and an e�cient treatment of what might be called syntactic reection,which is very useful for parsing inputs in extensions of Core Maude such as FullMaude, and in other languages with user-de�nable syntax that can likewise beimplemented in Maude. The point is that we often need to parse the top levelsyntax, for example of a module, and then extract from it the grammar in whichto parse the user-de�nable expressions in that module.The functional module META-LEVEL e�ciently implements key functionalityof the universal theory U . In META-LEVEL Maude terms are rei�ed as elementsof a data type Term, and Maude modules are rei�ed as terms in a data type1We say that the rewriting is done in the free-theory when rewriting with terms whoseoperators have no equational attributes.



CHAPTER 1. INTRODUCTION 6Module. The processes of reducing a term to normal form in a functional moduleand of rewriting a term in a system module using Maude's default interpreterare respectively rei�ed by functions meta-reduce and meta-rewrite. Similarly,the process of applying a rule of a system module to a subject term is rei�edby a function meta-apply. Furthermore, parsing and pretty printing of a termin a signature, as well as key sort operations, are also rei�ed by correspondingmetalevel functions.1.3 Full MaudeUsing reection, Core Maude can be extended to a much richer language withan extensible module algebra of module operations that can make Maude mod-ules highly reusable. The basic idea is that META-LEVEL can be extended withnew data types|extending its Module sort to richer sorts for structured andparameterized modules|and with new module operations|such as instantia-tion of parameterized modules by views, attening of module hierarchies intosingle modules, desugaring of object-oriented modules into system modules, andso on. In particular, this supports an OBJ style of parameterized programming[27], with highly generic and reusable modules. All such new types and oper-ations can be de�ned in Core Maude. This, together with the explicit accessto modules as terms provided by reection, makes the corresponding modulealgebra completely open, and easily extensible by new module operations andtransformations.Using the meta-parsing and meta-pretty printing functions in META-LEVELand a simple LOOP-MODE module providing input/output, we can in additiondevelop in Core Maude a suitable user interface for Full Maude. At present,Full Maude supports all of Core Maude plus object-oriented modules, parame-terized modules, theories with loose semantics to state formal requirements inparameters, views to bind parameter theories to their instances, and moduleexpressions instantiating and composing parameterized modules.1.4 ApplicationsAll applications typical of equational programming and algebraic speci�cationcan be conveniently and e�ciently supported through Maude's sublanguage offunctional modules. In fact, the paper [41] argues that Maude's equationallogic, namely, membership equational logic, is so expressive|yet e�cientlyimplementable|as to o�er very good advantages as a logical framework fora very wide range of algebraic speci�cation languages based on both total andpartial equational logic formalisms.However, many other Maude applications go beyond equational logic. Sys-tem modules support general rewriting logic applications. The important areaof concurrent and distributed object-based system speci�cation and prototypingis supported by object-oriented modules. And reection makes possible manynovel metaprogramming and metalanguage applications. In particular, reec-tion is extremely valuable in many applications using rewriting logic as a logicaland semantic framework. Thanks to the sustained e�orts of many researchers,particularly in the ELAN, Pisa, Stanford, and Maude teams, there is by nowvery extensive evidence supporting the claim that rewriting logic is indeed a veryexible and simple semantic framework [37, 40, 42, 6], and logical framework[32, 29, 62, 30, 2, 55, 8, 16, 10, 12]. Moreover, object-oriented design languages,



CHAPTER 1. INTRODUCTION 7architectural description languages, and languages for distributed componentsalso have a natural semantics in rewriting logic [63, 34, 57, 47, 48] (see Sec-tion 2.8.2 for more discussion on the use of reection in logical and semanticframework applications, and Appendix E for an application of Maude to theinteroperation of software architectures).The largest Maude application developed so far is Full Maude itself [19](about 7,000 lines of Maude code). Two other substantial applications are aninductive theorem prover and a Church-Rosser checker for equational theories,that are part of a formal environment for Maude and for the CafeOBJ lan-guage [12]. In addition, several language interpreters and strategy languages, asupercompiler, several object-oriented speci�cations|including cryptographicprotocols and network applications|and a variety of executable translationsmapping logics, architectural description languages and models of computationinto the rewriting logic reective framework have been developed by di�erentauthors (see references in [20, 42, 28]). We hope that the present release willencourage and support many other applications.AcknowledgmentsOur previous work with Joseph Goguen and the other members of the OBJteam has inuenced the design of Maude in important ways; in fact, OBJ3 isessentially a functional sublanguage of Maude. We thank Timothy Winkler forhis valuable contributions to the development of the Maude ideas. We alsothank Carolyn Talcott for many discussions on Maude and for her valuablesuggestions on strategy aspects. We are grateful to Jean-Pierre Jouannaudand Adel Bouhoula for their collaboration on the proof theory and theoremproving techniques of membership equational logic, and to Peter Mosses forhis very detailed and helpful comments on this paper and his kind help andadvice with its LATEX and HTML versions. Ralph Wachter deserves specialthanks for encouraging us in the development of the Maude ideas from the initialstages to the present. We are grateful for very helpful discussions and exchangeswith Christiano Braga, Roberto Bruni, Grit Denker, Kokichi Futatsugi, Claudeand H�el�ene Kirchner, Alexander Knapp, Ulrike Lechner, Christian Lengauer,Ugo Montanari, Pierre-Etienne Moreau, Uri Nodelman, Peter �Olveczky, IsabelPita, Mark-Oliver Stehr, Valentin Turchin, Martin Wirsing, and many othercolleagues.



Chapter 2Core MaudeAfter introducing functional and system modules we discuss module hierarchies.Several prede�ned modules such as Booleans, machine integers, quoted identi-�ers, and so on are also described. The reective aspects of Maude, and therelated topic of internal rewriting strategies|that is, strategies that can be de-�ned with rewrite rules at the metalevel|are explained in detail. Parsing issues,as well as the input/output facilities provided by the LOOP-MODEmodule are alsotreated in detail. We �nish the section with a discussion of system issues anddebugging.2.1 Functional ModulesFunctional modules de�ne data types and functions on them by means of equa-tional theories whose equations are Church-Rosser and terminating. A mathe-matical model of the data and the functions is provided by the initial algebrade�ned by the theory, whose elements consist of equivalence classes of groundterms modulo the equations. Evaluation of any expression to its reduced formusing the equations as rewrite rules assigns to each equivalence class a uniquecanonical representative. Therefore, in a more concrete way we can equivalentlythink of the initial algebra as consisting of those canonical representatives, thatis, of the values to which the functional expressions evaluate by algebraic sim-pli�cation using the equations.As in the OBJ language [27] that Maude extends, functional modules canbe unparameterized, or they can be parameterized with functional theories astheir parameters. Core Maude only allows unparameterized modules, although,as further explained in Section 2.3 and also illustrated in some of the followingexamples, such unparameterized modules can import other modules to formmodule hierarchies. Parameterized modules are supported in Full Maude, asdiscussed in Section 3.5.The equational logic on which Maude functional modules are based is an ex-tension of order-sorted equational logic called membership equational logic [41,5]; we discuss this and give more details about the semantics of functional mod-ules in Section 4.1. For the moment, it su�ces to say that, in addition tosupporting sorts, subsort relations, and overloading of function symbols, func-tional modules also support membership axioms , a generalization of sort con-straints [43] in which a term is asserted to have a certain sort if a conditionconsisting of a conjunction of equations and of unconditional membership testsis satis�ed. Such membership axioms can be used to de�ne partial functions,8



CHAPTER 2. CORE MAUDE 9that become de�ned when their arguments satisfy certain equational and mem-bership conditions. n1
?a 6f -b

?c
n3

n2� d n4
?en5Figure 2.1: An Automaton.We can illustrate these ideas, as well as Maude's support for mix�x user-de�nable syntax, with a module PATH that forms paths over a graph. Considerthe graph in Figure 2.1. This graph describes an automaton whose states arethe nodes of the graph, and whose transitions are the labeled edges. A behaviorof the automaton is a path in the graph, that is, a concatenation of transitionssuch that the target state of one transition becomes the source state of thenext transition. Of course, not all random concatenations of edges are legalpaths, that is, not all strings of edges are behaviors of the automaton. The PATHmodule below axiomatizes the automaton and characterizes in a computable wayits paths by means of a path concatenation operation, a length function, andsource and target functions, together with appropriate axioms in membershipequational logic.fmod PATH isprotecting MACHINE-INT .sorts Edge Path Path? Node .subsorts Edge < Path < Path? .ops n1 n2 n3 n4 n5 : -> Node .ops a b c d e f : -> Edge .op _;_ : Path? Path? -> Path? [assoc] .ops source target : Path -> Node .op length : Path -> MachineInt .var E : Edge .var P : Path .cmb (E ; P) : Path if target(E) == source(P) .ceq source(E ; P) = source(E) if E ; P : Path .ceq target(P ; E) = target(E) if P ; E : Path .eq length(E) = 1 .



CHAPTER 2. CORE MAUDE 10ceq length(E ; P) = 1 + length(P) if E ; P : Path .eq source(a) = n1 .eq target(a) = n2 .eq source(b) = n1 .eq target(b) = n3 .eq source(c) = n3 .eq target(c) = n4 .eq source(d) = n4 .eq target(d) = n2 .eq source(e) = n2 .eq target(e) = n5 .eq source(f) = n2 .eq target(f) = n1 .endfmThe module is introduced with the functional module syntax fmod...endfmand has a name, PATH. It imports a prede�ned module of machine integers withthe declaration protecting MACHINE-INT (for more on prede�ned modules seeSection 2.4, and for more on module importation and module hierarchies seeSection 2.3). The sorts and subsort relations of this module are introducedby a sort declaration and a subsort declaration. Sorts|we could have calledthem types instead|are used to classify data. A subsort relation between twosorts is interpreted as a set-theoretic inclusion, that is, it means that the dataof the subsort is included in that of the supersort. For example, the subsortdeclarationsubsorts Edge < Path < Path? .declares that edges are a subsort of paths|that is, the set of edges is containedin the set of paths|and paths are a subsort of a supersort Path? of what wemight call \confused paths." This supersort is needed because in general thepath concatenation operator ; may build nonsensical concatenations that arenot paths. This operator is declared with the \in�x" syntaxop _;_ : Path? Path? -> Path? [assoc] .where the declaration indicates that it is a binary operator with Path? as thesort of its two arguments and also of its result. Before the colon, the user-de�nable \mix�x" syntactic form of the operator is given. In this case it is anin�x operator with the two underbars indicating the places where the �rst andsecond arguments should be placed, namely, on both sides of the semicolon. The\attribute declaration" assoc states that ; is associative. The Maude enginethen uses this information when matching the equations and membership axiomsin the module, that are then matched \modulo associativity," that is, regardlessof how parentheses are left- or right-associated in a concatenation expression.In general, when an operator is associative the user does not have to write suchparentheses around expressions involving several instances of such an operator.For example, b ; c ; d is a perfectly acceptable and unambiguous expressionbecause of associativity.Except for the conditional membership axiom for path concatenation, andthe use of sort tests in the conditions of some equations, that we explain below,the rest of the module should be straightforward. Some nodes and edges aredeclared, plus source, target, and length functions, all of them with standardpre�x notation, that is also allowed as a simpler choice of user-de�nable syntactic



CHAPTER 2. CORE MAUDE 11form. Then equations are given, de�ning the semantics of the operations. Eachequation is introduced by the keyword eq, or ceq for conditional equations, andhaving variables of appropriate sorts previously declared with var declarations.The equations are then used from left to right by the Maude engine to simplifyeach expression to its canonical form, that is, to evaluate each expression to itscorresponding value.In general, an operator can be declared with the keyword op1 followed by itssyntactic form, followed by a colon, followed by the list2 of sorts for its arguments(called the operator's arity), followed by ->, followed by the sort of its result(called the operator's coarity). The operator can have some attributes, suchas the assoc attribute for path concatenation, which indicate some equationalaxioms satis�ed by the operator and used for term matching, or some syntacticinformation for parsing purposes, or some other information. All such attributesare declared within a single pair of enclosing square brackets after the sort ofthe result and before the ending period.The syntactic form of the operator is a string of characters3. If no underbarcharacter occurs in the string|as in the case of the source, target, and lengthfunctions|then the operator is declared in pre�x form. If underbar charactersoccur in the string, then their number must coincide with the number of sortsdeclared as arguments of the operator. The operator is then in mix�x form, withthe n-th underbar indicating the place where arguments of the n-th sort mustbe placed in expressions formed with that operator. There may or may not beany other characters before or after any of the underbars. If no other charactersappear, we say that the operator has been declared with empty syntax. Forexample, we could have instead declared the path concatenation operator withempty syntax asop __ : Path? Path? -> Path? .and then b c d would be a Path expression (see Section 2.1.1 for more discus-sion on the mix�x syntax of operators, and Section 2.7 for a general discussionof mix�x parsing issues).The ruling out of nonsensical concatenations is achieved by the conditionalmembership axiom4cmb (E ; P) : Path if target(E) == source(P) .1It is possible to simultaneously declare several operators having the same arity and coarityby using instead the keyword ops and giving the nonempty list of their corresponding syntacticforms after the ops keyword, as done for the nodes and edges declared in our example.2If this list is empty, as for the edges and nodes declared in our example, the operator iscalled a constant.3Such a string may have blank spaces and may consist of several identi�ers in the Maudesense; see Section 2.1.1 for more details on the syntactic conventions.4Unconditional membership axioms are introduced with the keyword mb. For example, ina module NAT of natural numbers with Peano notation we can de�ne subsorts Zero (for thezero element) and 3*Nat for numbers that are multiples of three by declaringfmod NAT issorts Zero 3*Nat Nat .subsorts Zero < 3*Nat < Nat .op 0 : -> Zero .op s : Nat -> Nat .var M : 3*Nat .mb s s s M : 3*Nat .endfm



CHAPTER 2. CORE MAUDE 12stating that an edge concatenated with a path is also a path if the target nodeof the edge coincides with the source node of the path. This has the e�ect ofde�ning path concatenation as a partial function on paths, although it is totalon the supersort Path? of confused paths. In fact, the domain of de�nition ofpath concatenation as a partial function on path pairs is the set of path pairs(P,Q) satisfying the equational conditiontarget(P) == source(Q) .Note, however, that the corresponding conditional membership axiomcmb (P ; Q) : Path if target(P) == source(Q) .is not explicitly asserted in the module. It is instead an inductive consequenceof all the axioms given in the module, including the simpler membership axiomthat is indeed asserted. That is, it holds in the initial algebra speci�ed by thefunctional module, that provides the mathematical semantics for the moduleas explained in Section 4.1. Such inductive properties can be proved using aninductive theorem prover in the style of the one proposed in [12]. Of course,the above membership axiom could instead have been declared as an axiom inthe module, but we have chosen to use the more restricted membership axiombecause it has a more e�cient execution, and because it allows us to illustrate thedistinction between the axioms given explicitly in a module and their inductiveconsequences.All variables in righthand sides of equations should also appear in the cor-responding lefthand sides. The conditions in conditional membership axioms|respectively, in conditional equations|should only involve variables appearingin the corresponding membership predicate|respectively, in the correspondinglefhand side. As the above example shows, the user can use the Boolean-valued,built-in equality predicate == and sort predicates such as : Path, and in gen-eral Boolean combinations of such predicates or of other user-de�ned Boolean-valued expressions, in conditions of equations and membership axioms5. SeeSections 2.4.1 and 4.1 for more details on the built-in equality and inequalitypredicates, and for a discussion of why negations and Boolean combinations ofbuilt-in equality and membership predicates in conditions|which would seemto go beyond Horn logic|are unproblematic under appropriate Church-Rosserand terminating assumptions about the speci�cation.Note that the functions source, target, and length are only de�ned on legalpaths, so that on nonsensical paths they will return an unevaluated expression inan error supersort. For the �rst two functions the error supersort is Error(Node)above the sort of nodes, and for the third it is Error(MachineInt) above thesort of machine integers. Such expressions are very informative error messages.5It is possible to give instead a single equation of the form exp = exp' as the condition. Infact, giving just a Boolean expression exp as the condition is equivalent to giving the equationexp = true. Note that there is no real loss of generality in restricting conditions to be either asingle equation or a Boolean expression, since we can for example express a condition involvinga conjunction of equations and membership axioms of the formt1 = t01 ^ : : : ^ tn = t0n ^ u1 : s1 ^ : : : ^ um : smby the single equation(t1 == t01 and : : : and tn == t0n and u1 : s1 and : : : and um : sm) = true;or just by the Boolean expressiont1 == t01 and : : : and tn == t0n and u1 : s1 and : : : and um : sm:



CHAPTER 2. CORE MAUDE 13The Maude system automatically adds these error supersorts above each of theconnected components of the poset of sorts declared by the user, using the set ofmaximal sorts in each connected component to qualify the corresponding errorsort; such error sorts are called kinds in the theory of membership algebras(see Section 4). In this example there is a third connected component in thesubsort ordering poset, namely, the connected component involving the sortsEdge, Path, and Path?, and therefore a third error supersort, Error(Path?), isalso added. Note that, even though Path? was introduced by the user with thepurpose of catching errors, Maude always adds a new error supersort above eachconnected component. This is because, conceptually, an error supersort is reallynot a sort, but a kind. The point is that sorts are user-de�ned, while kinds areimplicitly associated with connected components of sorts and are automaticallyadded by Maude in the form of \error supersorts". The Maude system alsolifts automatically to the error supersorts all the operators involving sorts ofthe corresponding connected components to form error expressions. Such errorexpressions allow us to give expressions to be evaluated the bene�t of the doubt:if when they are simpli�ed they have a legal sort, then they are ok; otherwise,the fully simpli�ed error expression is returned as an error message.As illustrated by a few sample evaluations and their results, expressionsformed with the operators declared in the module can be evaluated with thereduce command|red in abbreviated form. In the reduction process the equa-tions are used from left to right as rules of simpli�cation, and the membershipaxioms are also used to lower the sort of each expression as much as possible.When the expression has the lowest possible sort and cannot be simpli�ed any-more using the equations, it is returned together with its lowest sort as theresult.Maude> red (b ; c ; d) .result Path: (b ; c ; d)Maude> red length(b ; c ; d) .result NzMachineInt: 3Maude> red (a ; b ; c) .result Path?: (a ; b ; c)Maude> red source(a ; b ; c) .result Error(Node): source(a ; b ; c)Maude> red target(a ; b ; c) .result Error(Node): target(a ; b ; c)Maude> red length(a ; b ; c) .result Error(MachineInt): length(a ; b ; c)2.1.1 Identi�ers, Order-Sorted Signatures, and Overload-ingWe �rst explain the syntactic conventions about Maude identi�ers, which mustbe followed when declaring module, sort, and operator names. Then we explainthe notions of order-sorted signature and overloading that are key for under-standing the syntax of expressions in functional and system modules.



CHAPTER 2. CORE MAUDE 14In Core Maude, the name of a module or a sort must be an identi�er. Forexample, PATH, Edge, and Path are identi�ers. In general, an identi�er in Maudeis any �nite string of ASCII characters such that:� It does not contain any white space. For example, the sequence `abc def'is not one identi�er, but two.� The characters `f', `g', `(', `)', `[', `]' and `,' are special, in that theybreak a sequence of characters into several identi�ers. For example, thesequence `abfc,dgef' counts as seven identi�ers, namely, `ab', `f', `c', `,',`d', `g', and `ef'.� The backquote character ``' is only used as an escape character to in-dicate that a blank space or the special characters do not break the se-quence. Consequently, backquotes can only appear immediately before anyof the special characters, or between two nonempty strings of characters|with neither the ending of the �rst string nor the beginning of the secondstring being another backquote|for exactly these purposes. For example,1`ab`fc`,d`gef is a single identi�er. Maude's pretty printer will displaysuch an identi�er in the form `1 abfc,dgef'.The conventions for the syntactic form of operators allow great exibility intheir user-de�nable syntax. An operator declared using a single identi�er hasautomatically a pre�x form, in which it can be displayed before its argumentsenclosed in parentheses; but if such an operator contains underscore characters` ' then it must contain exactly as many underscores as the number of sortsin its arity, and in that case it has also a mix�x form. For example, + (2,3)and 2 + 3 are the pre�x and mix�x ways of displaying the same arithmeticexpression6.An operator can also be declared using several identi�ers. This can be dueto the presence of special characters, or to blank spaces, or both. Consider forexample the operator declarationop [_] and then [_] : Command Command -> Command .that may allow a natural language style in the syntax of a programming lan-guage. It uses eight identi�ers in the Maude sense, but declares a single binaryoperator, with the underscores indicating the place of the arguments in the mix-�x notation. Internally, Maude also associates to this operator a correspondingsingle identi�er variant by using backquotes. This is the form in which we couldhave equivalently de�ned the operator using a single identi�er, namely,op `[_`]and`then`[_`] : Command Command -> Command .Of course, both variants are equivalent and have the same mix�x display, butthe version without backquotes is obviously more convenient.The declaraton of an operator requires an extra pair of parentheses if wealready use parentheses as part of the syntax of the operator. Suppose we hadin a programming language another binary operator ( only after ). Wehave to declare it as follows.op ((_ only after _)) : Command Command -> Command .6By default, Maude's pretty printer will display operators in mix�x form whenever possible,but it can be turned to pre�x mode by the set print mixfix off command (see Appendix A).



CHAPTER 2. CORE MAUDE 15Since an operator may be declared using several identi�ers, in an ops decla-ration involving several operators each operator declaration can be enclosed inparentheses if necessary, to indicate where the syntax of each operator beginsand ends. Then, we could have declared both operators together as follows.op ([_] and then [_]) ((_ only after _)) :Command Command -> Command .We now turn to order-sorted signatures. As the GRAPH example shows, thesorts declared in a functional module (and the same will hold for system mod-ules) can be related by a subsort inclusion ordering. At the level of the corre-sponding algebras this subsort ordering is interpreted as set-theoretic inclusionof the data in a subsort into the data in a supersort. For example, every Edgeis a Path, and every Path is a Path?. In general, we can declare arbitrary longchains of subsort inclusions, not only between individual sorts, but between setsof sorts. For example, if sorts A, B, and C are each of them subsorts of sorts Dand E, and these in turn are subsorts of sorts F, G, and H, we can specify allthese inclusions with a single declarationsubsorts A B C < D E < F G H .Another feature of order-sorted signatures is that the function symbols de-clared in the signature can be overloaded, that is, we can have several operatordeclarations for the same operator with di�erent arities and coarities. Considerfor example the modulefmod NUMBERS issorts Nat NzNat Nat3 .subsort NzNat < Nat .op zero : -> Nat .op s_ : Nat -> NzNat .op p_ : NzNat -> Nat .op _+_ : Nat Nat -> Nat .op _+_ : NzNat NzNat -> NzNat .ops 0 1 2 : -> Nat3 .op _+_ : Nat3 Nat3 -> Nat3 [comm] .vars N M : Nat .var N3 : Nat3 .eq p s N = N .eq N + zero = N .eq N + s M = s (N + M) .eq (N3 + 0) = N3 .eq 1 + 1 = 2 .eq 1 + 2 = 0 .eq 2 + 2 = 1 .endfmdeclaring the natural numbers in Peano notation with a subsort NzNat of nonzeronatural numbers and with successor, predecessor and addition functions, anddeclaring also the integers modulo 3 with their addition as a commutative (comm)operator.



CHAPTER 2. CORE MAUDE 16The addition operator has three declarations and is therefore overloaded.However, there are two di�erent kinds of overloading present in the example.The signature of the example is an order-sorted signature [26] in which over-loaded operators related in the subsort ordering, such as the two additions fornatural numbers and for nonzero natural numbers, are supposed to have the ex-act same behavior, in the sense that the bigger operator restricts to the smallerone on the subsorts; such operators are called subsort overloaded. Addition inthe number hierarchy of naturals, integers, rationals, and so on, provides a veryfamiliar example of subsort overloading, of which the present overloading ofnatural number addition is a special case (see Section 2.3).By contrast, the sorts Nat and NzNat on the one hand, and the sort Nat3on the other form two di�erent connected components in the subsort orderingand therefore natural number addition and addition modulo-3 are semanticallyunrelated. This form of overloading is called ad-hoc overloading. Both subsortand ad-hoc overloading of operators are allowed in Maude. However, to avoidambiguous expressions we require that if the sorts in the arities of two operatorswith the same syntactic form are pairwise in the same connected components,then the sorts in the coarities must likewise be in the same connected component.In particular, this rules out ad-hoc overloaded constants. Therefore, wehave declared two di�erent constants zero and 0 for the corresponding zeroelements. However, this requirement can be relaxed, and it is often natural todo so. For example, the constants of a parameterized module can appear inmany di�erent connected components for di�erent instances of the module, andit may be cumbersome to qualify them all. To allow this relaxation, constants|and, more generally, terms|can be quali�ed by their sort, by enclosing themin parentheses followed by a dot and the sort name. In this way, we could haveinstead declared 0 as an ad-hoc overloaded constant for naturals and for integersmodulo-3, and could then disambiguate the expression 0 + 0 by writing, forexample, 0 + (0).Nat and 0 + (0).Nat3, or (0 + 0).Nat and (0 + 0).Nat3.Note that in an order-sorted signature a term can have several sorts. Forexample, the term s s 0 in the NUMBERS module has sorts NzNat and Nat. Anorder-sorted signature is called preregular [26] when the set of sorts that canbe assigned to a term according to the signature has always a least element.The order-sorted signatures in functional and system modules are assumed tobe preregular.Note that, as already mentioned, Maude will extend the signature givenby the user in a module by adding the error supersorts above each connectedcomponent of sorts, and by adding an additional subsort overloaded operatorwith all its arities and coarities in the corresponding error supersorts for eachfamily of subsort overloaded operators in the original signature for the purposeof dealing with error terms. Other operators such as equality predicates, sortpredicates, and if-then-else, as well as the above-mentioned sort quali�cationoperators are also added. See Section 2.7.2 for more details about this extendedsignature.2.1.2 A Set Hierarchy ExampleAnother functional module example is provided by the following SET-HIERARCHYfunctional module, that de�nes the set hierarchy of all �nite sets whose mostbasic elements are machine integers. Comments on the meaning of operationsand equations are included in the text. Such comments must begin with *** or---.



CHAPTER 2. CORE MAUDE 17fmod SET-HIERARCHY isprotecting MACHINE-INT .sorts Set Elt Magma .subsorts Set < Elt < Magma .subsorts MachineInt < Elt .op mt : -> Set . *** empty setop _,_ : Magma Magma -> Magma [assoc comm] .op {_} : Magma -> Set . *** set constructorops _U_ _I_ : Set Set -> Set [assoc comm] .*** union, intersectionop _\_ : Set Set -> Set . *** differenceop _in_ : Elt Set -> Bool .op P : Set -> Set . *** power setop augment : Set Set -> Set .op |_| : Set -> MachineInt . *** cardinalityvars L M : Magma .vars E F : Elt .vars S T : Set .*** equations between constructors to eliminate*** duplicate elementseq { L , L , M } = { L , M } .eq { L , L } = { L } .*** set unioneq S U mt = S .eq { L } U { M } = { L , M } .*** set membershipeq E in mt = false .eq E in { F } = (E == F) .eq E in { F , L }= if E == F then true else E in { L } fi .*** set intersectioneq mt I S = mt .eq { E } I S = if E in S then { E } else mt fi .eq { E , L } I S = ({ E } I S) U ({ L } I S) .*** set differenceeq mt \ S = mt .eq { E } \ S = if E in S then mt else { E } fi .eq { E , L } \ S = ({ E } \ S) U ({ L } \ S) .*** power set (defined using auxiliary function "augment")eq P(mt) = { mt } .eq P({ E }) = { mt , { E } } .eq P({ E , L }) = P({ L }) U augment(P({ L }), { E }) .



CHAPTER 2. CORE MAUDE 18eq augment(mt, T) = mt .eq augment({ S } , T) = { S U T } .eq augment({ S , L } , T)= { S U T } U augment({ L }, T) .*** cardinalityeq | mt | = 0 .eq | { E } | = 1 .eq | { E , L } |= | { L } | + if E in { L } then 0 else 1 fi .endfmA �nite set is represented using the standard notation fE1,...,Eng as an(associative and commutative) collection of elements E1,...,En (here calleda Magma) that is then enclosed in curly brackets by applying the constructorf g , that builds a set out of a magma. Since Set is a subsort of Magma, setscan contain other sets as elements, and therefore we get the entire hierarchyof �nite sets. The meaning of each operation symbol is explained either in itsdeclaration or in the comments that precede the equations for that symbol. No-tice that now several operators such as element concatenation, set union, andset intersection are declared to be associative and commutative with the assocand comm attributes. The Maude engine then performs multiset matching andrewriting on those symbols; that is, neither association of parentheses nor theorder of elements matter at all when �nding a match. In general, the Maudeengine can rewrite modulo most of the di�erent combinations of associativity,commutativity, identity (left-, right-, or two-sided) and idempotency for dif-ferent operators in the given speci�cation. This of course gives the e�ect ofrewriting the equivalence classes modulo such axioms of the terms in question,instead or rewriting just the terms themselves.Note that the equational axioms declared as attributes of operators shouldnot be written explicitly as equations in the speci�cation. There are two reasonsfor this. Firstly, this is redundant, since they have already been declared asattributes. Secondly, although declaring such equations either only explicitly asequations, or twice|one time as attributes, and another as explicit equations|does not a�ect the mathematical semantics of the speci�cation, that is, theinitial algebra that the speci�cation denotes (see Section 4.1) it does howeverdrastically alter the speci�cation's operational semantics. Indeed, Maude usesthe equations from left to right as simpli�cation rules, matching the equationsmodulo the axioms declared as attributes in operators. The equations in aMaude speci�cation are assumed to be Church-Rosser and terminating modulosuch axioms. But they may fail to have such properties if the axioms are insteadadded as ordinary equations. For example, a commutativity equation for setunion such aseq S U T = T U S .would make the above speci�cation nonterminating.Here are several sample reductions of set expressions.Maude> red P({ 1 , 2 , 3 }) \ P({ 1 , 2 }) .result Set: {{3}, {1, 3}, {2, 3}, {1, 2, 3}}Maude> red | P(P({ 1 , 2 , 3 })) | .



CHAPTER 2. CORE MAUDE 19result NzMachineInt: 256Maude> red | (P(P({1 , 2 , 3 })) \ P(P({ 1 , 2 }))) | .result NzMachineInt: 2402.1.3 Operator Evaluation StrategiesIf a collection of equations is Church-Rosser and terminating, given an expres-sion, no matter how the equations are used from left to right as simpli�cationrules we will always reach the same �nal result. However, even though the �nalresult may be the same, some orders of evaluation can be considerably moree�cient than others. It may therefore be useful to have some way of controlingthe way in which equations are applied by means of strategies.In general, given an expression f(t1; : : : ; tn) we can try to evaluate it to itsreduced form in di�erent ways, such as:� �rst obtaining the reduced form of all the tis and then applying equationsfor f at the top of the term, what is called a bottom-up, or eager strategy;� evaluating only some of the arguments, and then trying to evaluate at thetop with equations for f ; for example, an if then else fi operator willtypically be evaluated by evaluating �rst the �rst argument, and then theif then else fi operator at the top;� trying to evaluate the top of the term �rst, and then, if this fails, either notevaluating the subterms at all, or trying to evaluate only some of them,that is, some kind of lazy evaluation strategy.Typically, a functional language is either eager, or lazy with some strictnessanalysis added for e�ciency, and the user has to live with whatever the languageprovides. Maude adopts OBJ3's [27] exible method of user-speci�ed evaluationstrategies on an operator-by-operator basis, adding some improvements to theOBJ3 approach to ensure a correct implementation [21]. For an n-ary operatorf such strategies can be speci�ed as a list of numbers from 0 to n ending with0. For example, the default eager strategy given in Maude to all operators,unless another strategy is explicitly declared by the user, is (1 : : : n 0), andthe one given to the if then else fi is (1 0 2 3 0), whereas a lazy \cons" listconstructor may have strategy (0).The syntax to declare an operator f with strategy (i1 : : : ik 0) isop f : S1 ... Sn -> S [strat (i1 ... ik 0)] .Of course, if some of the argument positions are never mentioned in some ofthe operator strategies, the notion of reduced expression becomes now relativeto the given strategies and may not coincide with the standard notion. Thismay be just what we want, since we may be able to achieve termination to areduced expression relative to some strategies in cases when the equations maybe nonterminating in the standard sense. For example, the factorial equationfact(N) = if N == 0 then 1 else N * fact(N - 1) fi .is nonterminating in the standard sense, but it is terminating up to the abovestrategy for if then else fi. More generally, strategies may allow us to com-pute with in�nite data structures which are evaluated on demand, such as thefollowing slight reformulation of the Sieve of Eratosthenes example|which �ndsall prime numbers using lazy lists|in Appendix C.5 of [27].



CHAPTER 2. CORE MAUDE 20fmod SIEVE isprotecting MACHINE-INT .sort IntList .subsort MachineInt < IntList .op nil : -> IntList .op _._ : IntList IntList -> IntList[assoc id: nil strat (0)] .op force : IntList IntList -> IntList [strat (1 2 0)] .op show_upto_ : IntList MachineInt -> IntList .op filter_with_ : IntList MachineInt -> IntList .op ints-from_ : MachineInt -> IntList .op sieve_ : IntList -> IntList .op primes : -> IntList .var P I E : MachineInt .var S L : IntList .eq force(L, S) = L . S .eq show nil upto I = nil .eq show E . S upto I= if I == 0 then nilelse force(E, show S upto (I - 1))fi .eq filter nil with P = nil .eq filter I . S with P= if (I % P) == 0 then filter S with Pelse I . filter S with Pfi .eq ints-from I = I . ints-from (I + 1) .eq sieve nil = nil .eq sieve (I . S) = I . sieve (filter S with I) .eq primes = sieve ints-from 2 .endfmMaude> reduce show primes upto 10 .result IntList: 2 . 3 . 5 . 7 . 11 . 13 . 17 . 19 . 23 . 29The paper [21] documents in much more detail the operational semanticsand the implementation techniques for Maude's operator evaluation strategies.In particular, it analyzes carefully a number of subtle anomalies in the OBJ3implementation that are avoided in Maude, and uses a Maude speci�cation ofa rewrite theory (a system module, see Section 2.2) to formally specify the termgraph rewriting done by the implementation to execute such strategies.Of course, operator evaluation strategies, while quite useful, are by designrestricted in their scope of applicability to functional modules7. As we shallsee in Section 2.2, system modules, specifying rewrite theories|that are notfunctional, and need not be Church-Rosser or terminating|require much moregeneral notions of strategy. Such general strategies are provided by Maude usingreection by means of internal strategy languages, in which strategies are de�nedby rewrite rules at the metalevel (see Section 2.6).7More precisely, the scope of applicability of operator evaluation strategies are restrictedto functional modules and to the equational part of system modules.



CHAPTER 2. CORE MAUDE 212.2 Rewriting Logic and System ModulesThe type of rewriting typical of functional modules terminates with a singlevalue as its outcome. In such modules, each step of rewriting is a step ofreplacement of equals by equals , until we �nd the equivalent, fully evaluatedvalue. In general, however, a set of rewrite rules need not be terminating, andneed not be Church-Rosser. That is, not only can we have in�nite chains ofrewriting, but we may also have highly divergent rewriting paths, that couldnever cross each other by further rewriting.The essential idea of rewriting logic [37] is that the semantics of rewritingcan be drastically changed in a very fruitful way. We no longer interpret aterm t as a functional expression, but as a state of a system; we no longerinterpret a rewrite rule t �! t0 as an equality, but as a local state transition,stating that if a portion of a system's state exhibits the pattern described by t,then that portion of the system can change to the corresponding instance of t0.Furthermore, such a local state change can take place independently from, andtherefore concurrently with, any other nonoverlapping local state changes.Of course, rewriting will happen modulo whatever equational structural ax-ioms the state of the system satis�es. For example, the top level of a distributedsystem's state does often have the structure of a multiset , so that we can re-gard the system as composed together by an associative and commutative stateconstructor.We can represent a rewrite theory as a four-tuple R = (
; E; L;R), where(
; E) is a theory in membership equational logic, that speci�es states of thesystem as an abstract data type, L is a set of labels, to label the rules, and Ris the set of labeled rewrite rules axiomatizing the local state transitions of thesystem. Some of the rules in R may be conditional [37].Rewriting logic is therefore a logic of concurrent state change. The logic'sfour rules of deduction|namely, reexivity, transitivity, congruence, and re-placement (see Section 4.2.1)|allow us to infer all the complex concurrent statechanges that a system may exhibit, given a set of rewrite rules that describe itselementary local changes. It then becomes natural to realize that many reactivesystems so speci�ed should never terminate, and that a system may evolve inhighly nondeterministic ways through paths that will never cross each other.The most general Maude modules are system modules. They specify the ini-tial model TR of a rewrite theoryR [37]. This initial model is a transition systemwhose states are equivalence classes [t] of ground terms modulo the equations Ein R, and whose transitions are proofs � : [t] �! [t0] in rewriting logic|that is,concurrent computations in the system so described. Such proofs are equatedmodulo a natural notion of proof equivalence that computationally correspondsto the \true concurrency" of the computations (for a detailed construction ofTR see Section 4.2.2).As a �rst example of a systemmodule, we specify a simple concurrent system,namely a vending machine, as a Petri net. Petri nets have a straightforwardrewriting logic semantics as initial models of their associated rewrite theories[37]; therefore, this example illustrates a general method to give executableformal speci�cations in Maude to Petri nets, a method that can also be naturallyextended to high-level algebraic Petri nets [56]. Our Petri net represents avending machine to buy cakes and apples; a cake costs a dollar and an applethree quarters. Due to an unfortunate design, the machine only accepts dollars,and it returns a quarter when the user buys an apple; to alleviate in part thisproblem, the machine can change four quarters into a dollar. We can representgraphically such a machine in the conventional way as follows.
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$
a qThe so-called places of this net are cakes, apples, quarters, and dollars,denoted in the picture by circles labeled, respectively, by c, a, q, and $. Ineach of these places several tokens can be placed. We can therefore think ofthe places as slots of our machine, in which units of a certain kind appear ordisappear. Tokens in one or several of these places can then be consumed bytransitions, denoted by rectangular boxes labeled by the transition's name, withincoming and outgoing arcs indicating which tokens are consumed and producedby the transition; we can think of such transitions as the buttons of our vendingmachine. Such transitions consume tokens from the places in their incoming arcsand produce new tokens in the places of the outgoing arcs. If several tokens mustbe either consumed or produced in a place, then the corresponding arc indicatesthe exact number. For example, the change transition requires four quarters toproduce a dollar. The vending machine is concurrent because, provided enoughtokens are available, we can simultaneously push several buttons and then cansimultaneously get the combined results. For example, if we place a dollar andfour quarters in the corresponding slots and push the change and buy-c buttonsat once, we can simultaneously get a dollar changed and a cake as the result.The distributed states of the machine, namely the collections of tokens avail-able in the di�erent places, are called markings. They can be naturally regardedas a multiset of places. Using juxtaposition notation, we can for example regardthe state with one dollar and four quarters as the multiset $ q q q q. Meseguerand Montanari [44] observed that we can then view the Petri net as an ordinarygraph, in which the transitions are the edges, and the nodes are multisets ofplaces. Therefore, as a graph, this net has the following arcs:buy-c : $ �! cbuy-a : $ �! a qchange : q q q q �! $The expression of this Petri net in rewriting logic is now obvious. We canview each of the labeled arcs of the Petri net as a rewrite rule in a rewrite theoryhaving a binary associative and commutative operator (multiset union), sothat rewriting happens modulo such axioms, that is, it is multiset rewriting. Wecan gather together the \places" $; q; a; c into a sort Place and view the statesof the net, that is, the markings, as elements of a supersort Marking containingPlace and endowed with a multiset union operator with empty syntax. Thecorresponding Maude module then becomesmod PETRI-NET issorts Place Marking .subsort Place < Marking .op __ : Marking Marking -> Marking [assoc comm] .ops $ q a c : -> Place .rl [buy-c] : $ => c .



CHAPTER 2. CORE MAUDE 23rl [buy-a] : $ => a q .rl [change] : q q q q => $ .endmThe rewrite theory (
; E; L;R) corresponding to a system module has asignature 
 given by the sorts, subsort relations, and operator declarations, aset E of equations, that is assumed to be decomposed as a union E = A [ E0,with A a set of axioms to rewrite modulo among those supported by Maude,and E0 a set of Church-Rosser and terminating equations modulo A. In theabove example A consists of the associativity and commutativity axioms, E0 isempty, the label set L contains the labels of the three transitions, and the setof rules R contains the above three rules, each introduced by the keyword rl.One can also de�ne conditional rules8, introduced by the crl keyword.A key result about the representation of Petri nets as rewrite theories isthat, given two markings M and M 0 on a net, the second is reachable fromthe �rst by a concurrent net computation if and only if the sequent M �!M 0 is provable in rewriting logic using the rewrite theory associated to thenet [37]. Of course, net computations need not be conuent|therefore, theycan be highly nondeterministic|and need not be terminating (they just happento be terminating in this example). Therefore, the issue of executing rewritinglogic speci�cations, such as those for Petri nets, or for system modules in general,is considerably more subtle than executing expressions in a functional module,for which the termination and Church-Rosser properties guarantee a unique �nalresult regardless of the order in which equations are applied as simpli�cationrules.As we explain in Section 2.6, using reection the rewriting inference processcan be controlled with great exibility in Maude by means of strategies that canbe de�ned by rewrite rules at the metalevel. However, the Maude interpreterprovides a default strategy for executing expressions in system modules. Thedefault strategy applies the rules in a top-down fair way, and is provided by therewrite command, with keyword rewrite or, in abbreviated form, rew. Sincewe assume that the equations E in a system module are decomposed as a unionE = A [ E0 with A a set of equational axioms declared as attributes of someoperators to rewrite modulo, and E0 a set of Church-Rosser and terminatingequations modulo A, before the application of each rewrite rule the expressionis simpli�ed to its canonical form using the equations9; that is, it is simpli�ed by8Rules or conditional rules can have extra variables in their righthand sides that do notoccur in their lefthand sides. For example, the identity rule in the one-sided sequent calculusfor linear logic [25] as presented in [32] is of the formrl [id] : empty => P not P .where P is a variable of sort Atom, , is the constructor for multisets of propositions and notis the negation operator. However, since for applying such rules we need extra informationabout how the extra variables should be instantiated, rules with extra variables cannot beapplied when using the default rewrite command (explained later in this section) to rewriteterms with Maude's default interpreter. They must be executed at the metalevel, using themeta-apply operator in the META-LEVEL module (see Section 2.5.5). In the present version ofMaude, the condition of a conditional rule must satisfy the same requirements as those forthe condition of a conditional equation explained in Section 2.1, including the requirementthat all variables in the condition must appear in the rule's lefthand side. In a future versionwe plan to support more general conditions, involving extra variables and containing not onlyequalities and membership axiomss, but also rewrite conditions requiring that a term canrewrite to another term.9By always reducing a term to canonical form using the equations before applying a rule,we could potentially miss some rewrites, in the sense that a rule could have been appliedbefore simplifying a term, but cannot be applied after simpli�cation. The property ensuring



CHAPTER 2. CORE MAUDE 24applying the equations E0 modulo A. Then, a rule is applied to such a simpli�edexpression modulo the axioms A according to the default strategy. Since in ourPetri net example E0 is empty, this equational simpli�cation process before eachrule application becomes in this case the identity.An expression given to Maude with the rew command will be rewrittenwith the default strategy until no more rules can be applied. Since such acomputation in general may not terminate, Maude allows the user to specifythe maximum number, enclosed in brackets, of rule applications allowed whenexecuting the rew command. We give below several sample executions for ourPetri net module with and without a bound for the rew command.Maude> rew $ $ $ $ $ q q q q q .result Marking: a a a c c c cMaude> rew [1] $ $ $ $ $ q q q q q .result Marking: $ $ $ $ $ $ qMaude> rew [2] $ $ $ $ $ q q q q q .result Marking: $ $ $ $ $ q q aMaude> rew [3] $ $ $ $ $ q q q q q .result Marking: $ $ $ $ q q a cMaude> rew [4] $ $ $ $ $ q q q q q .result Marking: $ $ $ q q a c cAnother simple, yet interesting, system module is the following ND-INTmodule, that provides nondeterministic machine integers and nondeterminis-tic choice.mod ND-INT isprotecting MACHINE-INT .sort NdInt .subsort MachineInt < NdInt .op _?_ : NdInt NdInt -> NdInt [assoc comm] .var N : MachineInt .var ND : NdInt .eq N ? N = N .rl [choice]: N ? ND => N .endmIn this example we regard a �nite set of integers as a nondeterministic inte-ger of sort NdInt, that is, as an integer that could be any of those in the set. Ofcourse, as indicated by the subsort declaration MachineInt < NdInt, singletonsets are just machine integers, that is, they can be viewed as those nondeter-ministic integers from which any nondeterminism has already been eliminated.Union of nondeterministic integers, denoted ? is associative and commuta-tive and obeys also an idempotency equation. Nondeterministic choice is thenprovided by the choice rule.Note that, since in membership equational logic the operators in the moduleare lifted to the kinds, that is, to the error supersorts, we can give expressionsthat we do not miss such rewrites is called coherence (see [61] and Section 4.3). Coherence (orat least \weak coherence") is assumed to hold for system modules. It plays a role analogousto that played by the Church-Rosser property for functional modules.



CHAPTER 2. CORE MAUDE 25the bene�t of the doubt and therefore we can perform arithmetic operations onsuch nondeterministic integers as exempli�ed by the following Maude executionsMaude> rew (1 ? 5 ? 2 ? 1 ? 5) + (3 ? 11 ? 7 ? 3 ? 11) .result NzMachineInt: 4Maude> rew (1 ? 5 ? 2 ? 1 ? 5) * (3 ? 11 ? 7 ? 3 ? 11) .result NzMachineInt: 3Maude> rew [1] (1 ? 5 ? 2 ? 1 ? 5) * (3 ? 11 ? 7 ? 3 ? 11) .result Error(NdInt): 1 * (3 ? 7 ? 11)Maude> rew [2] (1 ? 5 ? 2 ? 1 ? 5) * (3 ? 11 ? 7 ? 3 ? 11) .result NzMachineInt: 3Note that the idempotency equation is applied before and after applying thechoice rule. Note also that this example shows very clearly why equational logiccannot be used as the semantics of the choice rule, that is, why we absolutelyneed a rewriting logic interpretation. Indeed, if we were to consider choice asan equation, we would for instance have2 = 2 ? 5 = 5an obvious absurdity.As yet another example of a system module we introduce below the mod-ule SORTING for sorting vectors of integers. In this module, such vectors arerepresented as sets of pairs of integers, with the �rst component of each paircorresponding to the vector position and the second to the number in thatposition.mod SORTING isprotecting MACHINE-INT .sorts Pair PairSet .subsort Pair < PairSet .op <_;_> : MachineInt MachineInt -> Pair .op empty : -> PairSet .op __ : PairSet PairSet -> PairSet [assoc comm id: empty] .vars I J X Y : MachineInt .crl [sort] : < J ; X > < I ; Y > => < J ; Y > < I ; X >if (J < I) and (X > Y) .endmNote that, by default, Maude automatically imports the prede�ned BOOLmoduleinto any other module. Therefore, the and function is available and can beused in the condition of the sort rule.The top level of the state is in fact a set, namely, an element of sort PairSetbuilt up by the associative and commutative operator . That is, the statesare sets P of pairs of integers. For the sake of the example, let us suppose thatfor any pair < i ; x > in an input set P , i < card(P ), and we cannot havetwo di�erent pairs < i ; x > and < j ; y > in P such that i = j. That is,any input set P is indeed a vector of integers; of course, these requirements



CHAPTER 2. CORE MAUDE 26on P could have been explicitly speci�ed by declaring a subsort and givingmembership axioms imposing the above conditions, but this is inessential forour present purposes.There is just one conditional rule, labeled sort, that modi�es a vector ofintegers in order to put it into sorted order. The system thus described is highlyconcurrent, because the sort rule can be applied concurrently to many couplesof pairs in the set representing the vector. Any complex concurrent rewritingof the set of pairs will then correspond to a proof in rewriting logic.Using the rew command, we can use Maude's default interpreter for execut-ing expressions in system modules. The Maude engine then applies the rules ina fair top-down fashion to sort a vector of integers, e.g.,Maude> rew < 1 ; 3 > < 2 ; 2 > < 3 ; 1 > .result PairSet: < 1 ; 1 > < 2 ; 2 > < 3 ; 3 >Using the default interpreter we have virtually no control over the applicationof the rules in the module. In particular, in this example we have virtually nocontrol over the way in which the rule sort is applied. Although not a problemin this case, because this speci�cation happens to be conuent and terminating,in general we may want to control the way in which the rules are applied. Ofcourse, if the speci�cation is nonconuent or nonterminating it is not only thatwe might want to have this control but that we need it. As already mentioned,this can be done with strategies. Section 2.6 explains how, using strategies,the rewriting inference process can be controlled in Maude for this exampleand for a highly nondeterministic example specifying the rules of a game. Forthis example such strategies correspond to specifying di�erent sorting algorithmsguiding where the sort rule should be applied at each point in the computation.Among the many concurrent systems that we can specify as system modulesin Maude, concurrent object-oriented systems are an important subclass. Maudehas special syntactic conventions for speci�cations in this subclass, called object-oriented modules [38]. However, object-oriented modules are entirely reducibleto ordinary system modules by a desugaring process that strips away the, veryconvenient, syntactic sugar. Object-oriented modules are not supported in CoreMaude; they are instead supported in Full Maude, the extension of Maudewritten in Maude itself in which we also support parameterized modules andmodule expressions. They are discussed in detail in Section 3.2.2.3 Module HierarchiesSpeci�cations and code should be structured inmodules of relatively small size tofacilitate understandability of large systems, increase reusability of components,and localize the e�ects of system changes. In Maude, the fullest support ofthese goals is achieved in Full Maude, which has a rich and extensible modulealgebra supporting, in particular, parameterized programming techniques in theOBJ3 style [27]. However, Core Maude provides already some useful basicsupport for modularity by allowing the de�nition of module hierarchies, thatis, acyclic graphs of module importations. Mathematically, we can think ofsuch hierarchies as partial orders of theory inclusions, that is, the theory of theimporting module contains the theories of its submodules as subtheories.Recall that a rewrite theory is a four-tuple R = (
; E; L;R), where (
; E) isa theory in membership equational logic. As already mentioned, and further ex-plained in Section 4, a system module is a rewrite theory with initial semantics.



CHAPTER 2. CORE MAUDE 27Note that we can use the inclusion of membership equational logic into rewritinglogic to view a functional module specifying an equational theory (
; E) as adegenerate case of a rewrite theory, namely the rewrite theory (
; E; ;; ;). Infact the initial algebra of (
; E) and the initial model of (
; E; ;; ;) coincide [37].Therefore, in essence we can view all modules as rewrite theories.The most general form of module inclusion is provided by the includingkeyword, followed by the nonempty list of imported modules and �nished bya period. The protecting keyword is a more restricted form of inclusion, inthe sense that it makes a semantic assertion about the relationship between theinitial models of the two theories. Let R = (
; E; L;R) be the rewrite theoryspeci�ed by a system module, and let R0 = (
0; E0; L0; R0) be the theory of asupermodule, so that we have a theory inclusion R � R0. Then, we can vieweach modelM0 of R0 as a modelM0jR of R, simply by disregarding the extrasorts, operations, equations, membership axioms, and rules in R0 � R. Since,as further explained in Section 4, the rewrite theories R and R0 have respectiveinitial models TR and TR0 , by initiality of TR we always have a unique R-homomorphims h : TR �! TR0 jR:The protecting importation asserts that for each sort s in the signature 
 ofR0the function hs is an isomorphism of categories10. Intuitively, this means thatthe initial model of the supermodule does not add any \junk" or any \confusion"to the initial model of the submodule.Of course, the protecting assertion cannot be checked byMaude at runtime.It requires inductive theorem proving. Using the proof techniques in [4] togetherwith an inductive theorem prover for membership equational logic and a Church-Rosser checker such as those described in [12], this can be done for functionalmodules; and it seems natural to expect that these techniques and tools willextend to similar ones for rewrite theories.By contrast, the including assertion does not make such requirements onh. It does, however, make some requirements. Namely, if the subtheory R doesitself contain a proper subtheory R0 that it imports in protecting mode, thenthe inclusion R0 � R0 does still have to be protecting. If we do not want it tobe, we have to say so by explicitly listing the module de�ning R0 in the list ofmodules imported in including mode.We give below an example of a module hierarchy, namely, the number hi-erarchy from the naturals to the rationals in a somewhat di�erent form thanin Appendix C.7 of [27]. This hierarchy happens to be a linear order of theoryinclusions, with BOOL implicitly at the bottom. In general, any partial orderof inclusions can be de�ned in the same way. Note that all the importationsare protecting importations. The including importation, although possiblein Core Maude, is more natural in the context of a module renaming operation.Indeed, if the semantics of a module is going to be modi�ed by a supermoduleit is better to make a copy of such a module and import the copy. At present,Core Maude does not support renaming; it is supported by Full Maude (seeSection 3.5.4). Renaming will probably be added to Core Maude in a futureversion.10In the models of a rewrite theory the sorts are interpreted as categories, thus the require-ment; for functional theories the requirement becomes that each such hs is bijective. Notethat the expected condition would have been to require h to be an R-isomorphism. However,due to the presence of error elements at the kind level, the isomorphism condition would betoo strong, since in general, when enlarging a signature, there will be new error terms thatcannot be proved equal to old ones. See [4] for a detailed discussion of, and proof techniquesfor, protecting extensions in membership equational logic.



CHAPTER 2. CORE MAUDE 28fmod NAT issorts Nat NzNat Zero .subsorts Zero NzNat < Nat .op 0 : -> Zero .op s_ : Nat -> NzNat .op p_ : NzNat -> Nat .op _+_ : Nat Nat -> Nat [comm] .op _*_ : Nat Nat -> Nat [comm] .op _*_ : NzNat NzNat -> NzNat [comm] .op _>_ : Nat Nat -> Bool .op d : Nat Nat -> Nat [comm] .op quot : Nat NzNat -> Nat .op gcd : NzNat NzNat -> NzNat [comm] .vars N M : Nat .vars N' M' : NzNat .eq p s N = N .eq N + 0 = N .eq (s N) + (s M) = s s (N + M) .eq N * 0 = 0 .eq (s N) * (s M) = s (N + (M + (N * M))) .eq 0 > M = false .eq N' > 0 = true .eq s N > s M = N > M .eq d(0, N) = N .eq d(s N, s M) = d(N, M) .ceq quot(N, M') = s quot(d(N, M'), M') if N > M' .eq quot(M', M') = s 0 .ceq quot(N, M') = 0 if M' > N .eq gcd(N', N') = N' .ceq gcd(N', M') = gcd(d(N', M'), M') if N' > M' .endfmfmod INT issorts Int NzInt .protecting NAT .subsort Nat < Int .subsorts NzNat < NzInt < Int .op -_ : Int -> Int .op -_ : NzInt -> NzInt .op _+_ : Int Int -> Int [comm] .op _*_ : Int Int -> Int [comm] .op _*_ : NzInt NzInt -> NzInt [comm] .op quot : Int NzInt -> Int .op gcd : NzInt NzInt -> NzNat [comm] .vars I J : Int .vars I' J' : NzInt .vars N' M' : NzNat .eq - - I = I .eq - 0 = 0 .eq I + 0 = I .eq M' + (- M') = 0 .ceq M' + (- N') = - d(N', M') if N' > M' .



CHAPTER 2. CORE MAUDE 29ceq M' + (- N') = d(N', M') if M' > N' .eq (- I) + (- J) = - (I + J) .eq I * 0 = 0 .eq I * (- J) = - (I * J) .eq quot(0, I') = 0 .eq quot(- I', J') = - quot(I', J') .eq quot(I', - J') = - quot(I', J') .eq gcd(- I', J') = gcd(I', J') .endfmfmod RAT issorts Rat NzRat .protecting INT .subsort Int < Rat .subsorts NzInt < NzRat < Rat .op _/_ : Rat NzRat -> Rat .op _/_ : NzRat NzRat -> NzRat .op -_ : Rat -> Rat .op -_ : NzRat -> NzRat .op _+_ : Rat Rat -> Rat [comm] .op _*_ : Rat Rat -> Rat [comm] .op _*_ : NzRat NzRat -> NzRat [comm] .vars I' J' : NzInt . vars R S : Rat .vars R' S' : NzRat .eq R / (R' / S') = (R * S') / R' .eq (R / R') / S' = R / (R' * S') .ceq J' / I'= quot(J', gcd(J', I')) / quot(I', gcd(J', I'))if gcd(J', I') > s 0 .eq R / s 0 = R .eq 0 / R' = 0 .eq R / (- R') = (- R) / R' .eq - (R / R') = (- R) / R' .eq R + (S / R') = ((R * R') + S) / R' .eq R * (S / R') = (R * S) / R' .endfm2.4 Some Prede�ned ModulesMaude has a standard library of prede�ned modules that, by default, are en-tered into the system at the beginning of each session, so that any of theseprede�ned modules can be imported by any other module de�ned by the user.Also, by default the prede�ned functional module BOOL is automatically im-ported as a submodule of any user-de�ned module, unless such importation isexplicitly disabled. We discuss below some of the basic prede�ned modules inthe standard library; some of them have a syntax similar to that of their coun-terparts in OBJ3's standard prelude [27]. The META-LEVEL module is discussedin Section 2.5, and the LOOP-MODE module in Section 2.8. The entire standardlibrary of prede�ned modules is included as Appendix D.



CHAPTER 2. CORE MAUDE 302.4.1 Truth and BooleansThere are three prede�ned modules involving truth values, namely, TRUTH-VALUE,TRUTH, and BOOL. The most basic one is TRUTH-VALUE, which has the followingde�nition.fmod TRUTH-VALUE issort Bool .op true : -> Bool [special (id-hook SystemTrue)] .op false : -> Bool [special (id-hook SystemFalse)] .endfmThat is, the module just declares two constants, true and false. The key thingto note is the special attribute associated to each of the operator declarationsfor these constants. This states that the constants are treated as built-in op-erators, so that instead of having the standard treatment of any user-de�nedoperator they are instead associated to appropriate C++ code by \hooks" asstated next to the special attribute. This is important, because certain basicconstructs of the language such as conditions in a conditional equation, member-ship axiom, or rule, and also sort predicates associated to membership assertionsevaluate to these built-in truth values.In general, many operators in prede�ned modules are special operators. Inwhat follows, to lighten the exposition, we will omit the details about such hooksin special operators writing [special ( ...)] instead. The full de�nitions canbe found in Appendix D.The module TRUTH adds a number of important operators to TRUTH-VALUE.fmod TRUTH isprotecting TRUTH-VALUE .op if_then_else_fi : Bool Universal Universal -> Universal[special ( ... )] .op _==_ : Universal Universal -> Bool[prec 51 special ( ... )] .op _=/=_ : Universal Universal -> Bool[prec 51 special ( ... )] .endfmThe prec attribute in the last two operators gives a precedence to the oper-ator for parsing purposes (see Section 2.7.4). The operators are, respectively,if then else fi, and the built-in equality and inequality predicates. Theseoperators are special in a number of ways. Firstly, they are automatically addedto every module. Secondly, they are polymorphic, so that, for each module, theycan be considered to be normal operators that are ad-hoc overloaded for eachconnected component in the module. In fact, Universal is not a normal sort,but should instead be understood as a polymorphic sort whose concrete e�ect isthe instantiation of the corresponding operators in each connected component.These operators have the same semantics as their OBJ3 counterparts exceptthat if if then else fi fails to rewrite at the top, it then evaluates its thenand else arguments. In particular, the equality and inequality predicates areevaluated by reducing two ground terms to their normal form and comparingthe results for equality, modulo the equational axioms in the attributes of theoperators in the module.Note that the equality and inequality predicates that the module TRUTHadds to each connected component of a user-de�ned module in a built-in and



CHAPTER 2. CORE MAUDE 31e�cient way could in principle have been de�ned in a more cumbersome andine�cient way by the user. In fact, assuming as we usually do that the equationsand membership axioms in the user module are Church-Rosser and terminatingmodulo the axioms in operator attributes, the corresponding initial algebra isa computable algebraic data type, for which equality and inequality are alsocomputable functions. Therefore, by a well-known metaresult of Bergstra andTucker [1], such equality and inequality predicates can themselves be equation-ally de�ned by Church-Rosser and terminating equations. It is of course veryconvenient, and much more e�cient, to unburden the user from having to givethose explicit equational de�nitions of equality and inequality, by providingthem in a built-in way.Note also that, by the above metaargument, the use of inequality predicatesin equations, membership axioms, or conditions, does not involve any real in-troduction of negation in the underlying membership equational logic, whichremains a Horn logic. What we are really doing is adding more Boolean-valuedfunctions to the module, but such functions, although provided in a built-in wayfor convenience and e�ciency, could have been equationally de�ned without anyuse of negation.The module BOOL imports TRUTH and adds the usual conjunction, disjunction,exclusive or, negation, and implication operators. Such operators are de�nedentirely equationally.fmod BOOL isprotecting TRUTH .op _and_ : Bool Bool -> Bool [assoc comm prec 55] .op _or_ : Bool Bool -> Bool [assoc comm prec 59] .op _xor_ : Bool Bool -> Bool [assoc comm prec 57] .op not_ : Bool -> Bool [prec 53] .op _implies_ : Bool Bool -> Bool [gather (e E) prec 61] .vars A B C : Bool .eq true and A = A .eq false and A = false .eq A and A = A .eq false xor A = A .eq A xor A = false .eq A and (B xor C) = (A and B) xor (A and C) .eq not A = A xor true .eq A or B = (A and B) xor A xor B .eq A implies B = not (A xor (A and B)) .endfmBy default, the BOOLmodule is included as a submodule of any other modulede�ned by the user. This is accomplished by the commandset include BOOL on .which can mention any module we wish to include|in this case BOOL|and isset when the standard library is entered. However, this default inclusion canbe disabled. For example, if the user wished to have the polymorphic equalityand if then else fi operators automatically added to modules, but wantedto exclude the usual Boolean connectives for the built-in truth values, he/shecould write



CHAPTER 2. CORE MAUDE 32set include BOOL off .set include TRUTH on .The last module involving truth values is the IDENTICAL module. It is notincluded by default in other modules. That is, it has to be imported explicitly ifit is needed. When imported into a module, it adds to each of its connected com-ponents polymorphic operators for syntactic equality and inequality. That is,two ground terms are compared for syntactic equality|modulo the equationalaxioms in the attributes of the operators in the module|without performingany reduction of the terms by the equations in the module.Note that what this module provides in a built-in way would require a con-siderably more cumbersome, and subtle, explicit de�nition at the user level. Infact, given that equality in a functional module is always semantic equality usingthe equations, to explicitly de�ne the above operators the entire signature of themodule would have to be duplicated in a disjoint copy, for which no equationswould be given, except for the equational axioms in operator attributes. Then,the above syntactic operators would reduce to the standard semantic equalityand inequality operators on that equationless disjoint copy of the signature.fmod IDENTICAL isop _===_ : Universal Universal -> Bool[prec 51 strat (0) special ( ... )] .op _=/==_ : Universal Universal -> Bool[prec 51 strat (0) special ( ... )] .endfm2.4.2 The Machine IntegersThe machine integers are de�ned below. The constants in this module repre-sent the C++ data type int, as elements of a sort MachineInt, with a subsortNzMachineInt of nonzero machine integers. The �rst two operator declara-tions illustrate the way of linking the built-in integer constants to the sortsMachineInt and NzMachineInt. The other operations declared in the modulerepresent their C++ counterparts with the same notation; their meaning is in-dicated in the associated comments. The division and remainder operationsproduce an unreduced error term if their second argument is zero. The machineintegers provide a fast arithmetic data type for general purpose programmingand for metalevel hooks into the rewriting engine.fmod MACHINE-INT issorts MachineInt NzMachineInt .subsort NzMachineInt < MachineInt .op <MachineInts> : -> NzMachineInt [special ( ... )] .op <MachineInts> : -> MachineInt [special ( ... )] .op -_ : MachineInt -> MachineInt[prec 15 special ( ... )] . *** minusop -_ : NzMachineInt -> NzMachineInt[prec 15 special ( ... )] . *** minusop ~_ : MachineInt -> MachineInt[prec 15 special ( ... )] . *** bitwise complementop _+_ : MachineInt MachineInt -> MachineInt[prec 33 gather (E e) special ( ... )] . *** additionop _-_ : MachineInt MachineInt -> MachineInt



CHAPTER 2. CORE MAUDE 33[prec 33 gather (E e) special ( ... )] . *** differenceop _*_ : MachineInt MachineInt -> MachineInt[prec 31 gather (E e) special ( ... )] . *** multiplicationop _*_ : NzMachineInt NzMachineInt -> NzMachineInt[prec 31 gather (E e) special ( ... )] . *** multiplicationop _/_ : MachineInt NzMachineInt -> MachineInt[prec 31 gather (E e) special ( ... )] . *** divisionop _%_ : MachineInt NzMachineInt -> MachineInt[prec 31 gather (E e) special ( ... )] . *** remainderop _&_ : MachineInt MachineInt -> MachineInt[prec 53 gather (E e) special ( ... )] . *** bitwise andop _|_ : MachineInt MachineInt -> MachineInt[prec 57 gather (E e) special ( ... )] . *** bitwise orop _|_ : NzMachineInt NzMachineInt -> NzMachineInt[prec 57 gather (E e) special ( ... )] . *** bitwise orop _^_ : MachineInt MachineInt -> MachineInt[prec 55 gather (E e) special ( ... )] . *** bitwise xorop _>>_ : MachineInt MachineInt -> MachineInt[prec 35 gather (E e) special ( ... )] . *** left shiftop _<<_ : MachineInt MachineInt -> MachineInt[prec 35 gather (E e) special ( ... )] . *** right shiftop _<_ : MachineInt MachineInt -> Bool[prec 37 special ( ... )] . *** less thanop _<=_ : MachineInt MachineInt -> Bool[prec 37 special ( ... )] . *** less or equal thanop _>_ : MachineInt MachineInt -> Bool[prec 37 special ( ... )] . *** greater thanop _>=_ : MachineInt MachineInt -> Bool[prec 37 special ( ... )] . *** greater or equal thanendfm2.4.3 Quoted Identi�ersQuoted identi�ers have the following signature:fmod QID isprotecting MACHINE-INT .sort Qid .op <Qids> : -> Qid [special ( ... )] .op conc : Qid Qid -> Qid [special ( ... )] .op index : Qid MachineInt -> Qid [special ( ... )] .op strip : Qid -> Qid [special ( ... )] .endfmTypical constants of sort Qid are quoted identi�ers such as 'a, 'aa, 'f`(x`),'-1, ''123abc, and 'A quoted identifier . Every quoted identi�er is a legalMaude identi�er. That is, it satis�es the conventions for Maude identi�ersexplained in Section 2.1.1 and, in addition, it begins with the quote character.Of course, in syntax declarations for sorts, variables, etc., of a module thatincludes QID we should avoid using quoted names, since they are now used forconstants of sort Qid. In fact, that is the whole point of using a module ofquoted identi�ers instead of a module of general identi�ers, since that couldcreate massive ambiguities.



CHAPTER 2. CORE MAUDE 34Quoted identi�ers are de�ned in a built-in way by the �rst operator decla-ration. The operation conc concatenates two quoted identi�ers, omitting thequote of the second. The operation index appends the result of the machine in-teger expression at the end of the quoted identi�er. The operation strip stripso� the �rst character after the quote. Their semantics can be inferred from thefollowing examples:conc('a, 'b) = 'abconc('a, '42) = 'a42index('a, 2 * 21) = 'a42conc('a, index(' , 1 - 43)) = 'a-42strip('abcd) = 'bcdFor di�erent purposes it is useful to have not only quoted identi�ers, but alsoa data type of lists of quoted identi�ers. In particular, the remaining two pre-de�ned modules in the standard library, namely META-LEVEL and LOOP-MODE|discussed in Sections 2.5 and 2.8, respectively|both import the following QID-LISTmodule.fmod QID-LIST isprotecting QID .sort QidList .subsort Qid < QidList .op nil : -> QidList .op __ : QidList QidList -> QidList [assoc id: nil] .endfm2.5 Reection and the META-LEVELInformally, a reective logic is a logic in which important aspects of its metathe-ory can be represented at the object level in a consistent way, so that the object-level representation correctly simulates the relevant metatheoretic aspects. Inother words, a reective logic is a logic which can be faithfully interpreted initself. Maude's language design and implementation make systematic use of thefact that rewriting logic is reective [14, 15, 10]. This makes the metatheory ofrewriting logic accessible to the user in a clear and principled way.A naive implementation of reection can be very expensive both in time andmemory use. Therefore, a good implementation must provide e�cient ways ofperforming reective computations. This section explains how this is achievedin Maude through its prede�ned META-LEVEL module. We �rst discuss the se-mantics of metalevel computations, and how their e�ciency can be dramaticallyincreased by conservatively extending the universal theory U to a metalevel the-oryM with descent functions and rules that allow lowering deductions at higherlevels of reection to much more e�cient deductions at lower levels. Then,we explain how terms and modules are meta-represented in META-LEVEL, andhow these semantic principles are supported in important special cases by theMETA-LEVEL module in a built-in way.The important topic of internal strategy languages, that use reection inan essential way, is discussed separately, in Section 2.6. Besides strategies, re-ection makes possible many advanced metaprogramming applications. Oneimportant such application is Full Maude which, as discussed later in this docu-ment, makes essential use of reection to provide Maude with a rich and exten-sible module algebra; this is a special instance of a general class of applications



CHAPTER 2. CORE MAUDE 35in which, using reection, we can use Maude as a metalanguage to reify otherlanguages and logics within rewriting logic (see Section 2.8.2). The paper [11]summarizes, and gives references for, a number of other important applications,including uses of rewriting logic as a logical framework and the development oftheorem proving tools.2.5.1 Reection and Metalevel ComputationRewriting logic is reective [14, 10] in a precise mathematical way, namely, thereis a �nitely presented rewrite theory U that is universal in the sense that wecan represent in U any �nitely presented rewrite theory R (including U itself)as a term R, any terms t; t0 in R as terms t; t0, and any pair (R; t) as a termhR; ti, in such a way that we have the following equivalence(y) R ` t �! t0 , U ` hR; ti �! hR; t0i:Since U is representable in itself, we can achieve a \reective tower" with anarbitrary number of levels of reection, since we haveR ` t! t0 , U ` hR; ti ! hR; t0i , U ` hU ; hR; tii ! hU ; hR; t0ii : : :In this chain of equivalences we say that the �rst rewriting computation takesplace at level 0, the second at level 1, and so on. In a naive implementation, eachstep up the reective tower comes at considerable computational cost, becausesimulating a single step of rewriting at one level involves many rewriting stepsone level up. It is therefore important to have systematic ways of loweringthe levels of reective computations as much as possible|so that a rewritingsubcomputation happens at a higher level in the tower only when this is strictlynecessary.To achieve a systematic descent into equivalent rewriting computations atlower levels, the key idea is to exploit the equivalence (y). A detailed proofof this equivalence has been given for the case of unconditional and unsortedtheories [10]. The extension to the case of interest for Maude|namely to con-ditional rewrite theories with membership equational logic [41, 5] as the under-lying equational logic|although nontrivial, is essentially unproblematic. Wetherefore assume a universal theory U for this more general class of �nitelypresented rewrite theories. In particular, the signature �U of U has sortsTerm, Module, and Kind, whose respective elements t : Term , R : Module , andK : Kind represent terms, rewrite theories, and kinds11 in a signature, respec-tively. We assume that there is also an equationally de�ned Boolean predicateparse : Module �Kind �Term �! Bool so that parse(R;K; t) = true if t is anR-term of kind K, and parse(R;K; t) = false otherwise.We can exploit the equivalence (y) by introducing the notion of descent func-tion, that is, a function that, given metalevel representations for a rewrite theoryR and a term t in it, rewrites such a term in R according to a given strategyand returns the meta-representation of the resulting term. Such functions canbe simply expressed in terms of a general sequential interpreter function I forrewriting logic. This is a partial function that takes three arguments: a �nitelypresented rewrite theory R, a term t, and a deterministic strategy S. In caseof termination it returns either the term t0 to which t was rewritten according11In a membership equational logic signature, terms always have a kind; they may or maynot have a sort of that kind. As already mentioned, in Maude kinds are represented as errorsorts, that are added by the system at the top of each connected component of sorts de�nedby the user.



CHAPTER 2. CORE MAUDE 36to S, or an error message that is not a term in R. The function is unde�ned incase the strategy does not terminate. For any �nitely presented rewrite theoryR, terms t; t0 in it, and admissible deterministic strategy S, any such interpreterfunction must of course satisfy the correctness requirement([) I(R; t; S) = t0 ) R ` t �! t0:The point is that, regardless of the particular details of I , we can always equa-tionally axiomatize any such e�ective interpreter function by means of a Church-Rosser, but in general nonterminating, �nitary equational theory I. This canbe done in a signature that we can assume contains �U as a subsignature. Byextending our universal theory U with the new sorts, operations, and equationsof I, we obtain an extended rewrite theory U [ I. A descent function is then afunction d : Module � Term � Parameters �! Termsuch that there is a deterministic strategy expression Sd with a single free vari-able of sort Parameters satisfying the equalityd(R; t; p) = I(R; t; Sd(p)):Such descent functions are of course easily de�nable equationally as de�nitionalextensions of the theory U [ I. Note that, since we have only added some newequations, the only rewrite rules in U [ I are exactly those in U . But, given adescent function d, we can now exploit the equivalence (y) by adding to U [ Ia descent ruled : hM;xi �! hM; yiif parse(M;K; x) = true ^ parse(M;K; y) = true ^ d(M;x; p) = y:where M : Module , x; y : Term, K : Kind , and p : Parameters . The equivalence(y) can be exploited for e�ciency reasons with such a rule, because the sequentialinterpreter I can be a built-in function such as the Maude interpreter; therefore,instantiating M with R, we can use e�cient deduction in R to perform deduc-tion in U . LetM denote a rewrite theory of the formM = U [ I [D, where Dis the addition of several descent functions and of their associated descent rules.We shall callM a metalevel theory.The addition of descent rules to U is of course conservative, in the sense ofnot adding any rewrites that could not be performed, albeit less e�ciently, inU itself, since for any descent rule d we have12,M ` hR; ti d�! hR; t0i ) I(R; t; Sd(p)) = t0[) R ` t �! t0y, U ` hR; ti �! hR; t0i:Note that, by applying several descent functions, we can descend several levelsin the reective tower. Assume thatM includes descent functions d and d0, and12Of course, to ensure conservativity we also should assume that the new equations in Mdo not disturb the equality of terms or the rewriting relation in U . Since the equations areassumed to be Church-Rosser, conservativity of equality can be easily achieved by assumingthat the tops of lefthand sides of new equations are new function symbols. Preservation of therewriting relation can be achieved by forbidding nonvariable overlaps between lefthand sidesof new equations and of rules, as done in [10].



CHAPTER 2. CORE MAUDE 37let R and t be an arbitrary rewrite theory and a term in it; then we have, forexample, d(M; d0(R; t; p0); p) = I(M; d0(R; t; p0); Sd(p))= I(M; I(R; t; Sd0(p0)); Sd(p)):That is, a meta-metalevel computation can be e�ciently carried out at the ob-ject level. An example of this kind of combined descent is given in Section 3.3.More generally, we should view descent functions as basic strategies, that canbe used as fundamental building blocks to de�ne internal strategy languages[16, 10], in which they can be combined with each other and with more com-plex strategies at several levels of reection to perform e�ciently sophisticatedmetalevel computations (see section 2.6).2.5.2 The Module META-LEVELIn Maude, key functionality of a metalevel theoryM with several descent func-tions has been e�ciently implemented in a functional module META-LEVEL, byusing as the interpreter function I Maude's own interpreter. Furthermore, sev-eral other useful functions of the universal theory U are also built-in for e�ciencyreasons.We summarize below the key functionality provided by META-LEVEL. We re-call that Maude's functional modules are equational theories that are assumedto be Church-Rosser and terminating modulo some axioms for which match-ing algorithms are available in the implementation, and that system modulesare rewrite theories whose equational part satis�es the same requirements as afunctional module, and where the equations and the rules are assumed to beweakly coherent [61, 60] modulo the axioms (see Section 4.3). In META-LEVEL:� Maude terms are rei�ed as elements of a data type Term of terms;� Maude modules are rei�ed as terms in a data type Module of modules;� the processes of reducing a term to normal form in a functional moduleand of �nding whether such a normal form has a given sort are rei�ed bya descent function meta-reduce;� the process of applying a rule of a system module to a subject term isrei�ed by a descent function meta-apply;� the process of rewriting a term in a system module using Maude's defaultinterpreter is rei�ed by a descent function meta-rewrite; and� parsing and pretty printing of a term in a module, as well as key sortoperations such as comparing sorts in the subsort ordering of a signature,are also rei�ed by corresponding metalevel functions.META-LEVEL imports the module QID-LIST (lists of quoted identi�ers) fromthe standard library of prede�ned modules, which contains in turn the modulesQID, MACHINE-INT, and BOOL. We �rst introduce the syntax used in META-LEVELfor representing terms; then we explain how modules are represented; and �nallywe discuss the di�erent built-in functions, namely, the descent functions, andthe parsing and sort functions.



CHAPTER 2. CORE MAUDE 382.5.3 Representing TermsTerms are rei�ed as elements of the data type Term of terms, with the followingsignaturesubsort Qid < Term .subsort Term < TermList .op {_}_ : Qid Qid -> Term .op _[_] : Qid TermList -> Term .op _,_ : TermList TermList -> TermList [assoc] .op _:_ : Term Qid -> Term .op _::_ : Term Qid -> Term .op error* : -> Term .The �rst declaration, making Qid a subsort of Term, is used to represent variablesby the corresponding quoted identi�ers. Thus, the variable N is represented by'N. The operator f g is used for representing constants essentially as pairs,with the �rst argument the constant, in quoted form, and the second argumentthe sort of the constant, also in quoted form. For example, the constant 0 in themodule NAT in Section 2.5.4 below is represented as f'0g'Nat. The operator[ ] corresponds to the recursive construction of terms out of subterms, withthe �rst argument the top operator in quoted form, and the second argumentthe list of its subterms, where list concatenation is denoted , . For example,the term s s 0 + s 0 of sort Nat in module NAT is meta-represented as' + ['s ['s [f'0g'Nat]], 's [f'0g'Nat]].Since terms in the module META-LEVEL can be meta-represented just as termsin any other module, as already mentioned when discussing the universal the-ory, the representation of terms can be iterated. For example, the meta-meta-representation s 0 of the term s 0 in NAT is the term' [ ][f''sg'Qid,'f g [f''0g'Qid,f''Natg'Qid]].For the most part, the meta-representation of terms involving built-in op-erators proceeds as for any other term. For example, the application of theequality predicate == in the term s s 0 == s 0 is represented as the term' == ['s ['s [f'0g'Nat]], 's [f'0g'Nat]].But since we can think of membership predicates t : s not as unary predicates,one for each sort s, but as a binary predicate with the second argument varyingover sorts, it is natural to meta-represent them in a uniform way by meansof a binary constructor : with the �rst argument the representation of theterm, and the second the representation of the sort as a quoted identi�er. Forexample, the membership predicate s 0 : Nat is represented as the term's [f'0g'Nat] : 'Nat.Similarly, there is also a binary constructor :: for meta-representing the\lazy" membership predicate that does not evaluate the term in question at all,but uses only the syntactic declarations in the module's order-sorted signatureand the membership axioms to decide whether the least sort (see, e.g., [26]) ofthe unreduced term is smaller or equal to a given sort. The last declaration forthe data type of terms is a constant error* to be used as an error element.



CHAPTER 2. CORE MAUDE 392.5.4 Representing ModulesFunctional and system modules are meta-represented in a syntax very similar totheir original user syntax. The main di�erences are that: (1) terms in equations,membership axioms, and rules are now meta-represented as we have already ex-plained; (2) in the meta-representation of modules we follow a �xed order inintroducing the di�erent kinds of declarations for sorts, subsort relations, vari-ables, equations, etc., whereas in the user syntax there is considerable exibilityfor introducing such di�erent declarations in an interleaved and piecemeal way;and (3) sets of identi�ers|used in declarations of sorts|are represented as setsof quoted identi�ers built with an associative and commutative operator ; .To motivate the general syntax for representing modules, we illustrate itwith a simple example|namely, a module NAT for natural numbers with zeroand successor and with commutative addition and multiplication operators.fmod NAT issorts Zero Nat .subsort Zero < Nat .op 0 : -> Zero .op s_ : Nat -> Nat .op _+_ : Nat Nat -> Nat [comm] .op _*_ : Nat Nat -> Nat [comm] .vars N M : Nat .eq 0 + N = N .eq s N + M = s (N + M) .eq 0 * N = 0 .eq s N * M = M + (N * M) .endfmThe syntax for the top-level operators representing functional and system mod-ules is as followssorts FModule Module .subsort FModule < Module .op fmod_is_______endfm : Qid ImportList SortDeclSubsortDeclSet OpDeclSetVarDeclSet MembAxSet EquationSet -> FModule .op mod_is________endm : Qid ImportList SortDeclSubsortDeclSet OpDeclSetVarDeclSet MembAxSet EquationSet RuleSet -> Module .The representation NAT of NAT in META-LEVEL is the termfmod 'NAT isnilsorts 'Zero ; 'Nat .subsort 'Zero < 'Nat .op '0 : nil -> 'Zero [none] .op 's_ : 'Nat -> 'Nat [none] .op '_+_ : 'Nat 'Nat -> 'Nat [comm] .op '_*_ : 'Nat 'Nat -> 'Nat [comm] .var 'N : 'Nat .var 'M : 'Nat .



CHAPTER 2. CORE MAUDE 40noneeq '_+_[{'0}'Nat, 'N] = 'N .eq '_+_['s_['N], 'M] = 's_['_+_['N, 'M]] .eq '_*_[{'0}'Nat, 'N] = {'0}'Nat .eq '_*_['s_['N], 'M] = '_+_['N, '_*_['N, 'M]] .endfmof sort FModule. Since NAT has no list of imported submodules and no mem-bership axioms, those �elds are �lled respectively by the constants nil of sortImportList, and none of sort MembAxSet. Similarly, since the zero and successoroperators have no attributes, they have the empty set of attributes none.The full de�nition of META-LEVEL is given in Appendix D. Part of the syntaxfor functional and system modules is listed below. It extends in a naturalway the fragment illustrated in the above example and should, for the mostpart, be self-explanatory by comparison with the Core Maude syntax, whichis mirrored quite closely. Note that we have to represent the set of attributesof an operator. For this, sorts Attr and AttrSet are used. Such attributesmay be equational axioms to rewrite modulo, syntactic attributes for parsingpurposes, or attributes to link operators to built-in functions (see Sections 2.4.1and 2.4.2).sorts FModule Module ModuleExpression Import ImportListMachineIntList QidSet Sort SortDecl SubsortDeclSubsortDeclSet Attr AttrSet OpDecl OpDeclSet VarDeclVarDeclSet Term TermList Equation EquationSet RuleRuleSet MembAx MembAxSet Hook HookList .subsort FModule < Module .subsort Import < ImportList .subsort Qid < ModuleExpression .subsort Qid < QidList .subsort Qid < QidSet .subsort Qid < Sort .subsort MachineInt < MachineIntList .subsort SubsortDecl < SubsortDeclSet .subsort Attr < AttrSet .subsort OpDecl < OpDeclSet .subsort VarDecl < VarDeclSet .subsort Equation < EquationSet .subsort Rule < RuleSet .subsort MembAx < MembAxSet .subsort Hook < HookList .op none : -> QidSet .op _;_ : QidSet QidSet -> QidSet [assoc comm id: none] .op nil : -> MachineIntList .op __ : MachineIntList MachineIntList -> MachineIntList[assoc id: nil] .op nil : -> ImportList .op __ : ImportList ImportList -> ImportList [assoc id: nil] .op including_. : ModuleExpression -> Import .op sorts_. : QidSet -> SortDecl .



CHAPTER 2. CORE MAUDE 41op subsort_<_. : Qid Qid -> SubsortDecl .op none : -> SubsortDeclSet .op __ : SubsortDeclSet SubsortDeclSet -> SubsortDeclSet[assoc comm id: none] .op op_:_->_[_]. : Qid QidList Qid AttrSet -> OpDecl .op none : -> OpDeclSet .op __ : OpDeclSet OpDeclSet -> OpDeclSet[assoc comm id: none] .op none : -> AttrSet .op __ : AttrSet AttrSet -> AttrSet [assoc comm id: none] .ops assoc comm idem : -> Attr .ops id left-id right-id : Term -> Attr .op strat : MachineIntList -> Attr .op prec : MachineInt -> Attr .op gather : QidList -> Attr .op special : HookList -> Attr .op __ : HookList HookList -> HookList [assoc] .op id-hook : Qid QidList -> Hook .op op-hook : Qid Qid QidList Qid -> Hook .op term-hook : Qid Term -> Hook .op var_:_. : Qid Qid -> VarDecl .op none : -> VarDeclSet .op __ : VarDeclSet VarDeclSet -> VarDeclSet[assoc comm id: none] .op mb_:_. : Term Qid -> MembAx .op cmb_:_if_=_. : Term Qid Term Term -> MembAx .op none : -> MembAxSet .op __ : MembAxSet MembAxSet -> MembAxSet[assoc comm id: none] .op eq_=_. : Term Term -> Equation .op ceq_=_if_=_. : Term Term Term Term -> Equation .op none : -> EquationSet .op __ : EquationSet EquationSet -> EquationSet[assoc comm id: none] .op rl[_]:_=>_. : Qid Term Term -> Rule .op crl[_]:_=>_if_=_. : Qid Term Term Term Term -> Rule .op none : -> RuleSet .op __ : RuleSet RuleSet -> RuleSet [assoc comm id: none] .Note that|just as in the case of terms|terms of sort Module can be meta-represented again, yielding then a term of sort Term, and this can be iterated anarbitrary number of times. This is in fact necessary when a metalevel compu-tation has to operate at higher levels. A good example is the inductive theoremprover described in [12], where modules are meta-represented as terms in the in-ference rules for induction, but they have to be meta-meta-represented as termsof sort Term when used in strategies that control the application of the inductive



CHAPTER 2. CORE MAUDE 42inference rules. We illustrate the meta-meta-representation of modules with asimple example, namely a module TRUTH-VALUES of truth valuesfmod TRUTH-VALUES issorts Truth .ops t f : -> Truth .endfmwhose meta-meta-representation TRUTH-VALUES is the following term of sortTerm'fmod_is_______endfm[f''TRUTH-VALUESg'Qid,f'nilg'ImportList,'sorts_.[f''Truthg'Qid],f'noneg'SubsortDeclSet,'__['op_:_->_`[_`].[f''tg'Qid, f'nilg'QidList, f''Truthg'Qid,f'noneg'AttrSet],'op_:_->_`[_`].[f''fg'Qid, f'nilg'QidList, f''Truthg'Qid,f'noneg'AttrSet]],f'noneg'VarDeclSet,f'noneg'MembAxSet,f'noneg'EquationSet]2.5.5 Descent FunctionsMETA-LEVEL has three built-in descent functions, meta-reduce, meta-apply,and meta-rewrite, that provide three useful and e�cient ways of reducingmetalevel computations to object-level ones.The operation meta-reduce takes as arguments the representation of a mod-ule R and the representation of a term t, of a membership predicate t : s, or ofa lazy membership predicate t :: s, in that module. It has syntaxop meta-reduce : Module Term -> Term [special ( ... )] .When the second argument is the representation t of a term t in R, the functionmeta-reduce returns the representation of the fully reduced form of the term tusing the equations in R, e.g.,Maude> red meta-reduce(NAT, s 0 + 0) .result Term: s 0Note that in order to simplify the presentation we use the meta-notations t andId for t a term and Id the name of a module. As explained in Section 3.4, inFull Maude we can use the up command to get the meta-representation denotedby the overline notation. In Core Maude, however, such a meta-representationhas to be explicitly given, that is, the example above must be written as follows.Maude> red meta-reduce(fmod 'NAT isnilsorts 'Zero ; 'Nat .subsort 'Zero < 'Nat .op '0 : nil -> 'Zero [none] .



CHAPTER 2. CORE MAUDE 43op 's_ : 'Nat -> 'Nat [none] .op '_+_ : 'Nat 'Nat -> 'Nat [comm] .op '_*_ : 'Nat 'Nat -> 'Nat [comm] .var 'N : 'Nat .var 'M : 'Nat .noneeq '_+_[{'0}'Nat, 'N] = 'N .eq '_+_['s_['N], 'M] = 's_['_+_['N, 'M]] .eq '_*_[{'0}'Nat, 'N] = {'0}'Nat .eq '_*_['s_['N], 'M] = '_+_['N, '_*_['N, 'M]] .endfm,'_+_['s_[{'0}'Nat], {'0}'Nat]) .result Term: 's_[{'0}'Zero]This is particularly cumbersome for the meta-representation of modules, whichcan be quite big. However, as illustrated by the examples in Section 2.6, one easysolution is to de�ne a new module importing META-LEVEL in which we introducea new constant of sort Module or FModule to name the module in question|inthis example, the constant NAT|and then give an equation identifying such aconstant with the meta-representation of the given module.Similarly, when the second argument of meta-reduce is the representationof a membership predicate t : s (or a lazy membership predicate t :: s) the termt is fully reduced using the equations in R and the least sort of the reduced termis computed (respectively, the least sort of the term t according to the order-sorted signature and the membership axioms of the module R is computed) andthen the representation of the Boolean value of the corresponding predicate isreturned.The interpreter function for meta-reduce(R; t) rewrites the term t to normalform using only the equations in R, and does so according to the operatorevaluation strategies (see Section 2.1.3 and [21]) declared for each operator inthe signature of R|which by default is bottom-up for operators with no suchstrategies declared. In other words, the interpreter strategy for this functioncoincides with that of the red command in Maude, that is,meta-reduce(R; t) = IMaude(R; t; red):The operation meta-rewrite has syntaxop meta-rewrite : Module Term MachineInt -> Term[special ( ... )] .It is entirely analogous to meta-reduce, but instead of using only the equationalpart of a module it now uses both the equations and the rules to rewrite the termusing Maude's default strategy. Its �rst two arguments are the representationsof a module R and of a term t, and its third argument is a positive machineinteger n. Its result is the representation of the term obtained from t afterat most n applications of the rules in R using the strategy of Maude's defaultinterpreter, which applies the rules in a fair, top-down fashion. When the value 0is given as the third argument, no bound is given to the number of rewrites, andrewriting proceeds to the bitter end. Again, meta-rewrite is a paradigmaticexample of a descent function; its corresponding interpreter strategy is that ofthe rewrite command in Maude [9], that is,meta-rewrite(R; t; n) = IMaude(R; t; rewrite [n]):The operation meta-apply has syntax:



CHAPTER 2. CORE MAUDE 44op meta-apply :Module Term Qid Substitution MachineInt -> ResultPair[special ( ... )] .The �rst four arguments are representations in META-LEVEL of a module R, aterm t in R, a label l of some rules in R, and a set of assignments (possiblyempty) de�ning a partial substitution � for the variables in those rules. Thelast argument is a natural number n. meta-apply then returns a pair of sortResultPair consisting of a term and a substitution. The syntax for substitu-tions and for results issorts Assignment Substitution ResultPair .subsort Assignment < Substitution .op _<-_ : Qid Term -> Assignment .op none : -> Substitution .op _;_ : Substitution Substitution -> Substitution[assoc comm id: none] .op f_,_g : Term Substitution -> ResultPair .The operation meta-apply is evaluated as follows:1. the term t is �rst fully reduced using the equations in R;2. the resulting term is matched against all rules with label l partially in-stantiated with �, with matches that fail to satisfy the condition of theirrule discarded;3. the �rst n successful matches are discarded; if there is an (n+1)th match,its rule is applied using that match and the steps 4 and 5 below are taken;otherwise ferror*, noneg is returned;4. the term resulting from applying the given rule with the (n+ 1)th matchis fully reduced using the equations in R;5. the pair formed using the constructor f , g whose �rst element is the rep-resentation of the resulting fully reduced term and whose second elementis the representation of the match used in the reduction is returned.The interpreter strategy associated to meta-apply(R; t; l; �; n) is not that ofa user-level command in the Maude interpreter. It is instead a built-in strategyinternal to the interpreter that attempts one rewrite at the top as explainedabove.2.5.6 Parsing, Pretty Printing, and Sort FunctionsBesides the descent functions already discussed, META-LEVEL provides severalother functions that naturally belong to the universal theory and could havebeen equationally axiomatized in such a theory. However, for e�ciency rea-sons they are provided as built-in functions. These functions allow parsing andpretty printing a term in a module at the metalevel, and performing e�cientlya number of useful operations on the sorts declared in a module's signature.The function meta-parse has syntaxop meta-parse : Module QidList -> Term [special ( ... )] .



CHAPTER 2. CORE MAUDE 45It takes as arguments the representation of a module and the representation ofa list of tokens as a list of quoted identi�ers. It returns the meta-representationof the parsed term of that list of tokens for the signature of the module, whichis assumed to be unambiguous. If such a parsed term does not exist, the er-ror constant error* is returned instead. For example, given the module NATpresented in Section 2.5.4 and the input 's '0 '+ '0, we getMaude> red meta-parse(NAT, ('s '0 '+ '0)) .result Term: '_+_['s_['0'Zero],'0'Zero]The function meta-pretty-print has syntaxop meta-pretty-print : Module Term -> QidList[special ( ... )] .It takes as arguments the representation of a module M and the representationof a term t. It returns a list of quoted identi�ers that encode the string oftokens produced by pretty printing t in the syntax given by M . In the eventof an error an empty list is returned. Thus, given the module NAT presented inSection 2.5.4, we have, e.g.,Maude> red meta-pretty-print(NAT,'_*_['_+_['s_['0'Zero], '0'Zero], 's_['0'Zero]]) .result QidList: '`( 's '0 '+ '0 '`) '* 's '0Pretty printing a term involves more than just naively using the mix�xsyntax for operators. Precedence and gathering information (see Section 2.7.4)and the relative positions of underscores in an operator and its parent in the termmust be considered to determine whether parentheses need to be inserted aroundany given subterm to avoid ambiguity. Also, if there is ad-hoc overloading inthe module, additional checks must be done to determine if and where sortdisambiguation syntax is needed.The operations on sorts include sameComponent, leastSort, lesserSorts,sortLeq, and glbSorts. They provide commonly needed functions on the posetof sorts of a module in a built-in way at the metalevel. Their syntax is as followssubsort Qid < Sort .op leastSort : Module Term -> Sort [special ( ... )] .op sortLeq : Module Sort Sort -> Bool [special ( ... )] .op sameComponent : Module Sort Sort -> Bool [special ( ... )] .op lesserSorts : Module Sort -> QidSet [special ( ... )] .op glbSorts : Module Sort Qid -> QidSet [special ( ... )] .At the metalevel, the sorts given by the user in his/her module are represented asquoted identi�ers, that is, terms of sort Qid. However, the module META-LEVELhas also a sort Sort de�ned to be a supersort of Qid. Sorts not de�ned by theuser, as for example the \error supersorts" added by the system to complete eachconnected component, are in this sort Sort. The syntax of an error supersortuses the set of maximal sorts of its connected component and is as followsop errorSort : QidSet -> Sort .The function leastSort takes as arguments the representations of a moduleand a term and computes the (representation of the) least sort of that term inthe module. This function can return an error sort not de�ned by the user. Forexample, we can compute the least sort of the term N + s M in the previousmodule NAT as follows.



CHAPTER 2. CORE MAUDE 46Maude> red least-sort(NAT, N + s M) .result Qid: NatGiven a module M with subsort relation �M , and sorts s; s0 2 S, where Sis the set of sorts in M , the Boolean function sortLeq(M,s,s0) is true if andonly if s �M s0. Note that the sorts passed to the function are of sort Sort.Maude> red sortLeq(NAT, Nat, NzNat) .result Bool: falseGiven a module M with subsort relation �M , and sorts s; s0 2 S, where S isthe set of sorts in M , the Boolean function sameComponent(M, s,s0) is trueif and only if s and s0 belong to the same connected component in the subsortordering �M . Note that the sorts passed to the function are of sort Sort.Maude> red sortLeq(NAT, Nat, Bool) .result Bool: falsewhere it should be noted the sort Bool, although not explicitly present in thesignature of NAT, is nevertheless present in its extended signature, as explainedin Sections 2.1.1 and 2.7.2.Given a module M and a sort s, the function lesserSorts takes their met-alevel representations as arguments, and returns (the representation of the) setof sorts strictly smaller than s in M . For example:Maude> red lesserSorts(NAT, Nat) .result Qid: NzNatNote that in this case it returns only one sort (of sort Qid), but in general itreturns a set of sorts. Since no error sorts can appear in such a set, that is,the sorts are all in fact quoted identi�ers, the function lesserSorts returns aQidSet.Finally, the function glbSorts takes the representations of two sorts and amodule as input and computes the representation of the set of maximal lowerbounds of the two sorts13. Note the asymmetry in the declaration of this func-tion, having as arguments, together with the module, a sort of sort Sort andanother of sort Qid. This asymmetry might be eliminated in a future versionof the system. As an example for the use of this function, let us see how tocompute the greatest lower bound for sorts Nat and NzNat in the module NATpresented above.Maude> red glbSorts(NAT, Nat, NzNat) .result Qid: NzNatAs for lesserSorts, in general glbSorts returns a set of sorts.2.6 Internal StrategiesSystem modules in Maude are rewrite theories that do not need to be Church-Rosser and terminating. We need to have good ways of controlling the rewritinginference process|which in principle could go in many undesired directions|by means of adequate strategies. In Maude, thanks to its reective capabilities,13Of course, when the set of maximal lower bounds of two sorts is a singleton fsg, then swill be the greatest lower bound of the two sorts, thus the notation glbSorts. In subsequentdiscussions, when we speak of the \greatest lower bound" we will always in fact mean themore general notion of the set of maximal lower bounds.



CHAPTER 2. CORE MAUDE 47strategies can be made internal to the system. That is, they can be de�ned byrewrite rules in a normal module in Maude, and can be reasoned about as withrules in any other module.In fact, there is great freedom for de�ning many di�erent strategy languagesinside Maude. This can be done in a completely user-de�nable way, so thatusers are not limited by a �xed and closed strategy language. The idea is to usethe operations meta-reduce, meta-apply, and meta-rewrite as basic strategyexpressions, and then to extend the module META-LEVEL by additional strategyexpressions and corresponding semantic rules. Here we follow the methodologyfor de�ning and proving correct internal strategy languages for reective logicsintroduced in [15, 10].To illustrate this idea, let us reconsider the module SORTING for sortingvectors of integers introduced in Section 2.2. We will use this module as arunning example to explain the way in which the application of rules can becontrolled.As mentioned before, strategy languages can be de�ned within Maude inuser-de�nable extensions of the module META-LEVEL. As an example, we intro-duce the following module STRATEGY. We �rst introduce the basic syntax; themodule's equations are then discussed and illustrated with examples in the restof the section.fmod STRATEGY isprotecting META-LEVEL .sorts MetaVar Binding BindingListStrategy StrategyExpression .subsort MetaVar < Term .ops I J : -> MetaVar .op binding : MetaVar Term -> Binding .op nilBindingList : -> BindingList .op bindingList : Binding BindingList -> BindingList .op rewInWith :Module Term BindingList Strategy -> StrategyExpression .op set : MetaVar Term -> Strategy .op rewInWithAux :StrategyExpression Strategy -> StrategyExpression .op idle : -> Strategy .op failure : -> StrategyExpression .op and : Strategy Strategy -> Strategy .op apply : Qid -> Strategy .op applyWithSubst : Qid Substitution -> Strategy .op iterate : Strategy -> Strategy .op while : Term Strategy -> Strategy .op orelse : Strategy Strategy -> Strategy .op extTerm : ResultPair -> Term .op extSubst : ResultPair -> Substitution .op update : BindingList Binding -> BindingList .op applyBindingListSubst :Module Substitution BindingList -> Substitution .op substituteMetaVars : TermList BindingList -> TermList .



CHAPTER 2. CORE MAUDE 48op SORTING : -> Module .var M : Module .vars V V' F G L : Qid .vars T T' : Term .var TL : TermList .var SB : Substitution .vars B B' : Binding .vars BL BL' : BindingList .var MV MV' : MetaVar .vars ST ST' : Strategy .eq SORTING= (mod 'SORTING isincluding 'MACHINE-INT .sorts 'Pair ; 'PairSet .subsort 'Pair < 'PairSet .op '<_;_> : 'MachineInt 'MachineInt -> 'Pair[none] .op 'empty : nil -> 'PairSet [none] .op '__ : 'PairSet 'PairSet -> 'PairSet[assoc comm id(f'emptyg'PairSet)] .var 'I : 'MachineInt .var 'J : 'MachineInt .var 'X : 'MachineInt .var 'Y : 'MachineInt .nonenonecrl ['sort]: '__['<_;_>['J, 'X], '<_;_>['I, 'Y]]=> '__['<_;_>['J, 'Y], '<_;_>['I, 'X]]if '_and_['_<_['J, 'I], '_>_['X, 'Y]]= f'trueg'Bool .endm) .Before we explain some of the strategies that can be de�ned using the strat-egy language introduced in STRATEGY, note that the default strategy of theMaude interpreter for system modules can be easily (and e�ciently) called us-ing the built-in function meta-rewrite introduced in Section 2.5.5.Maude> rew meta-rewrite(SORTING,'__['<_;_>[f'1g'MachineInt, f'3g'MachineInt],'<_;_>[f'2g'MachineInt, f'2g'MachineInt],'<_;_>[f'3g'MachineInt, f'1g'MachineInt]],0) .result Term: '__['<_;_>[f'1g'NzMachineInt,f'1g'NzMachineInt],'<_;_>[f'2g'NzMachineInt,f'2g'NzMachineInt],'<_;_>[f'3g'NzMachineInt,f'3g'NzMachineInt]]In this example, the third argument of meta-rewrite is 0. As explained inSection 2.5.5 this indicates that no bound on the number of rewrites is imposed.We can use this argument to see intermediate steps, or to stop at some pointnonterminating rewrites. For example, we can see the resulting term after theapplication of two rules (twice the same rule in this case) as follows.



CHAPTER 2. CORE MAUDE 49Maude> rew meta-rewrite(SORTING,'__['<_;_>[f'1g'MachineInt, f'3g'MachineInt],'<_;_>[f'2g'MachineInt, f'2g'MachineInt],'<_;_>[f'3g'MachineInt, f'1g'MachineInt]],2) .result Term: '__['<_;_>[f'1g'NzMachineInt,f'1g'NzMachineInt],'<_;_>[f'2g'NzMachineInt,f'3g'NzMachineInt],'<_;_>[f'3g'NzMachineInt,f'2g'NzMachineInt]]In the module STRATEGY the function rewInWith computes strategy expres-sions. The �rst two arguments of rewInWith are the metarepresentations of amodule T and a term t in META-LEVEL. The fourth argument is the strategyS we want to compute, and the third argument is used to store informationthat may be relevant for S. Our de�nition of rewInWith is such that, as thecomputation of a given strategy expression proceeds, t gets rewritten by con-trolled application of rules in T , the information stored in the third argumentmay be updated, and the strategy S is rewritten into the remaining strategy tobe computed. In case of termination, this is the idle strategy and we are done.The strategy expression failure is returned when a requested strategy cannotbe carried out.A basic strategy we can express is the application of a rule once at thetop of a term (if the top operator has attributes containing axioms such asassociativity or associativity and commutativity, matching is done modulo thoseaxioms) with the �rst possible match found when no constraints are placed onthe matching substitution. For this basic strategy, we introduce in our signaturethe constructor apply, whose only argument is an identi�er corresponding to therule label to be applied, and we de�ne the value of rewInWith for this strategy,using the built-in operation meta-apply, as follows:eq rewInWith(M, T, BL, apply(L))= if meta-apply(M, T, L, none, 0)== ferror*, nonegthen failureelse rewInWith(M,extTerm(meta-apply(M, T, L, none, 0)),BL, idle)fi .The operations extTerm and extSubst are selectors extracting the �rst andsecond component, respectively, from a pair constructed with f , g.eq extSubst(fT, SBg) = SB .eq extTerm(fT, SBg) = T .We can see the computation of an apply-strategy expression with the followingexample:Maude> rew rewInWith(SORTING,'__['<_;_>[f'1g'MachineInt, f'3g'MachineInt],'<_;_>[f'2g'MachineInt, f'2g'MachineInt],'<_;_>[f'3g'MachineInt, f'1g'MachineInt]],nilBindingList,apply('sort)).result StrategyExpression:rewInWith(SORTING14,



CHAPTER 2. CORE MAUDE 50'__['<_;_>[f'1g'NzMachineInt,f'2g'NzMachineInt],'<_;_>[f'2g'NzMachineInt,f'3g'NzMachineInt],'<_;_>[f'3g'NzMachineInt,f'1g'NzMachineInt]],nilBindingList,idle)The information relevant for the computation of a strategy expression isrecorded as a list of bindings of values to metavariables, where the values are ofsort Term (that is, they are representations of terms) and metavariables are in-troduced by the user as constants of sort MetaVar. The sort MetaVar is declaredas a subsort of the sort Term, so that in any expression in which the represen-tation of a term t can appear, a metavariable|to which the representation of tmay be bound|can appear as well.The computation of the strategy set updates the recorded information. Thisis done by the function update. Notice that the terms whose representationsare bound to metavariables are kept in fully reduced form, using the built-inoperation meta-reduce. The representation of the term set to a metavariablemay itself contain metavariables, which must be substituted by the represen-tations of the terms they are bound to in the list of bindings present beforethe updating. This is done by the function substituteMetaVars. Recall thatthe default operational semantics for functional modules, and therefore for thefunction meta-reduce, is eager (i.e., bottom up or call-by-value).eq rewInWith(M, T, BL, set(MV, T'))= rewInWith(M, T,update(BL,binding(MV, meta-reduce(M,substituteMetaVars(T', BL)))),idle) .eq substituteMetaVars(T, nilBindingList)= T .eq substituteMetaVars(MV, bindingList(binding(MV', T'), BL))= if MV == MV' then T'else substituteMetaVars(MV, BL) fi .eq substituteMetaVars(F, BL)= F .eq substituteMetaVars(fFgS, BL) = fFgS .eq substituteMetaVars(F[TL], BL)= F[substituteMetaVars(TL, BL)] .eq substituteMetaVars((T, TL), BL)= (substituteMetaVars(T, BL), substituteMetaVars(TL, BL)).eq update(bindingList(binding(MV, T), BL), binding(MV', T'))= if MV == MV'then bindingList(binding(MV, T'), BL)else bindingList(binding(MV, T),update(BL, binding(MV', T')))fi .eq update(nilBindingList, B)= bindingList(B, nilBindingList) .14Of course, the constant SORTING gets also rewritten (in this case, to the meta-representation of the module SORTING); however, to ease readability we have \hidden" thisrewrite in all the examples of this Section.



CHAPTER 2. CORE MAUDE 51We can see the computation of a set-strategy expression with the followingexample:Maude> rew rewInWith(SORTING,'__['<_;_>[f'1g'MachineInt, f'3g'MachineInt],'<_;_>[f'2g'MachineInt, f'2g'MachineInt],'<_;_>[f'3g'MachineInt, f'1g'MachineInt]],nilBindingList,set(I, f'1g'MachineInt)).result StrategyExpression:rewInWith(SORTING,'__['<_;_>[f'1g'MachineInt,f'3g'MachineInt],'<_;_>[f'2g'MachineInt,f'2g'MachineInt],'<_;_>[f'3g'MachineInt,f'1g'MachineInt]],bindingList(binding(I, f'1g'NzMachineInt),nilBindingList),idle)The computation of the strategy applyWithSubst applies a rule partiallyinstantiated with a set of assignments once at the top of a term (if the top oper-ator has attributes containing axioms such as associativity or associativity andcommutativity, matching is done modulo those axioms) using the �rst successfulmatch consistent with the given partial substitution. The representations of theterms assigned to variables may contain metavariables that must be substitutedby the representations of the terms they are bound to in the current list ofbindings. This is done by the function applyBindingListSubst.eq rewInWith(M, T, BL, applyWithSubst(L, SB))= if meta-apply(M, T, L,applyBindingListSubst(M, SB, BL), 0)== ferror*, nonegthen failureelse rewInWith(M, extTerm(meta-apply(M, T, L,applyBindingListSubst(M, SB, BL), 0)),BL, idle)fi .eq applyBindingListSubst(M, none, BL)= none .eq applyBindingListSubst(M, ((V <- T); SB), BL)= ((V <- meta-reduce(M, substituteMetaVars(T, BL)));applyBindingListSubst(M, SB, BL)) .Many interesting strategies are de�ned as concatenations of more basicstrategies, or iterations of a given strategy. Frequently, the strategies mustconsider possible branchings in their computations, or establish conditions forfurther computations. To represent these cases, we extend our basic strategylanguage with the constructors and, orelse, iterate, and while.The equations for the strategies and, orelse, and iterate are de�ned asfollows.eq rewInWith(M, T, BL, and(ST, ST'))= if rewInWith(M, T, BL, ST) == failurethen failure



CHAPTER 2. CORE MAUDE 52else rewInWithAux(rewInWith(M, T, BL, ST), ST')fi .eq rewInWith(M, T, BL, orelse(ST, ST'))= if rewInWith(M, T, BL, ST) == failurethen rewInWith(M, T, BL, ST')else rewInWith(M, T, BL, ST)fi .eq rewInWith(M, T, BL, iterate(ST))= if rewInWith(M, T, BL, ST) == failurethen rewInWith(M, T, BL, idle)else rewInWithAux(rewInWith(M, T, BL, ST), iterate(ST))fi .where the function rewInWithAux is de�ned by the equationeq rewInWithAux(rewInWith(M, T, BL, idle), ST)= rewInWith(M, T, BL, ST) .which forces the computation of a sequence of strategies to proceed step-by-step,in the sense that a strategy will only be considered after the previous one hasbeen fully computed. We can illustrate the computation of the above strategieswith the following examples:Maude> rew rewInWith(SORTING,'__['<_;_>[f'1g'MachineInt, f'3g'MachineInt],'<_;_>[f'2g'MachineInt, f'2g'MachineInt],'<_;_>[f'3g'MachineInt, f'1g'MachineInt]],nilBindingList,and(set(I, f'3g'MachineInt),applyWithSubst('sort, ('I <- I)))) .result StrategyExpression:rewInWith(SORTING,'__['<_;_>[f'1g'NzMachineInt,f'1g'NzMachineInt],'<_;_>[f'2g'NzMachineInt,f'2g'NzMachineInt],'<_;_>[f'3g'NzMachineInt,f'3g'NzMachineInt]],bindingList(binding(I, f'3g'NzMachineInt),nilBindingList),idle)Maude> rew rewInWith(SORTING,'__['<_;_>[f'1g'MachineInt, f'3g'MachineInt],'<_;_>[f'2g'MachineInt, f'2g'MachineInt],'<_;_>[f'3g'MachineInt, f'1g'MachineInt]],bindingList(binding(J, f'2g'MachineInt),nilBindingList),orelse(applyWithSubst('sort, ('J <- f'4g'MachineInt)),applyWithSubst('sort, ('J <- J)))).result StrategyExpression:rewInWith(SORTING,'__['<_;_>[f'1g'NzMachineInt,f'3g'NzMachineInt],'<_;_>[f'2g'NzMachineInt,f'1g'NzMachineInt],



CHAPTER 2. CORE MAUDE 53'<_;_>[f'3g'NzMachineInt,f'2g'NzMachineInt]],bindingList(binding(J, f'2g'MachineInt),nilBindingList),idle)Maude> rew rewInWith(SORTING,'__['<_;_>[f'1g'MachineInt, f'3g'MachineInt],'<_;_>[f'2g'MachineInt, f'2g'MachineInt],'<_;_>[f'3g'MachineInt, f'1g'MachineInt]],nilBindingList,iterate(apply('sort))).result StrategyExpression:rewInWith(SORTING,'__['<_;_>[f'1g'NzMachineInt,f'1g'NzMachineInt],'<_;_>[f'2g'NzMachineInt,f'2g'NzMachineInt],'<_;_>[f'3g'NzMachineInt,f'3g'NzMachineInt]],nilBindingList, idle)Finally, the strategy while makes the computation of a given strategy con-ditional to the satisfaction of a condition. This condition should be the repre-sentation in META-LEVEL of a term of sort Bool. As usual, the condition maycontain metavariables that must be substituted by the representations of termsthey are bound to in the current list of bindings. Notice that the de�nition ofthe value of rewInWith for the constructor while makes the iterative computa-tion of the strategy contained in the second argument of while depend on thesatisfaction (at the metalevel) of the condition represented in the �rst argumentof while.eq rewInWith(M, T, BL, while(T', ST))= if meta-reduce(M, substituteMetaVars(T', BL))== f'trueg'Boolthen (if rewInWith(M, T, BL, ST) == failurethen rewInWith(M, T, BL, idle)else rewInWithAux(rewInWith(M, T, BL, ST),while(T', ST))fi)else rewInWith(M, T, BL, idle)fi .Now we can extend our basic strategy language to de�ne, as an example, thealgorithm for insertion sorting. The strategy insert(n) below can be used tosort a vector of integers of length n. The main loop in insertion sorting looks ateach element of the vector of integers from the second to the n-th, and insertsit in the appropriate place among its predecessors in the vector.We introduce two new metavariables X and Y.op insert : MachineInt -> Strategy .ops X Y : -> MetaVar .var N : MachineInt .eq insert(N)= and(set(Y, f'2g'MachineInt),while(' <= [Y, findex(', N)g'MachineInt],and(set(X, Y),and(while(' > [X, f'1g'MachineInt],



CHAPTER 2. CORE MAUDE 54and(applyWithSubst('sort,(('I <- X);('J <- ' - [X, f'1g'MachineInt]))),set(X, ' - [X, f'1g'MachineInt]))),set(Y, ' + [Y, f'1g'MachineInt]))))) .For example, we can use the strategy insert to sort a vector of integers oflength 10:Maude> rew rewInWith(SORTING,'__['<_;_>[f'1g'MachineInt, f'10g'MachineInt],'<_;_>[f'2g'MachineInt, f'9g'MachineInt],'<_;_>[f'3g'MachineInt, f'8g'MachineInt],'<_;_>[f'4g'MachineInt, f'7g'MachineInt],'<_;_>[f'5g'MachineInt, f'6g'MachineInt],'<_;_>[f'6g'MachineInt, f'5g'MachineInt],'<_;_>[f'7g'MachineInt, f'4g'MachineInt],'<_;_>[f'8g'MachineInt, f'3g'MachineInt],'<_;_>[f'9g'MachineInt, f'2g'MachineInt],'<_;_>[f'10g'MachineInt, f'1g'MachineInt]],nilBindingList,insert(10)) .result StrategyExpression:rewInWith(SORTING,'__['<_;_>[f'1g'NzMachineInt,f'1g'NzMachineInt],'<_;_>[f'2g'NzMachineInt,f'2g'NzMachineInt],'<_;_>[f'3g'NzMachineInt,f'3g'NzMachineInt],'<_;_>[f'4g'NzMachineInt,f'4g'NzMachineInt],'<_;_>[f'5g'NzMachineInt,f'5g'NzMachineInt],'<_;_>[f'6g'NzMachineInt,f'6g'NzMachineInt],'<_;_>[f'7g'NzMachineInt,f'7g'NzMachineInt],'<_;_>[f'8g'NzMachineInt,f'8g'NzMachineInt],'<_;_>[f'9g'NzMachineInt,f'9g'NzMachineInt],'<_;_>[f'10g'NzMachineInt,f'10g'NzMachineInt]],bindingList(binding(Y, f'11g'NzMachineInt),bindingList(binding(X, f'1g'NzMachineInt),nilBindingList)),idle)2.6.1 The Game of NimTo illustrate the great exibility we have in de�ning strategies to control theprocess of execution of rules, we discuss a second example, namely, a systemmodule NIM specifying a version of the game of Nim. There are two players andtwo bags of pebbles: a \draw" bag to remove pebbles from, and a \limit" bagto limit the number of pebbles that can be removed. We represent each stateof the game as a pair of bags, where the �rst one represents the draw bag andthe second one the limit bag. The two players take turns making moves in thegame. At each move a player draws a nonempty set of pebbles not exceedingthose in the limit bag. The limit bag is then readjusted to contain the leastnumber of pebbles in either the double of what the player just drew, or whatwas left in the draw bag. The game then continues with the two bags in thisnew state. This move is axiomatized by the rule mv. The player who emptiesthe draw bag wins.



CHAPTER 2. CORE MAUDE 55mod NIM isprotecting MACHINE-INT .sorts Pebble Bag State .subsorts Pebble < Bag .op o : -> Pebble .op emptyBag : -> Bag .op __ : Bag Bag -> Bag [assoc id: emptyBag] .op <_;_> : Bag Bag -> State .op size : Bag -> MachineInt .op readjust : Bag Bag -> Bag .vars X Y Z : Bag .eq size((o X))= size(X) + 1 .eq size(emptyBag)= 0 .eq readjust(X, Y)= if size((X X)) <= size(Y)then (X X)else Yfi .crl [mv] : < (X Y) ; Z >=> < Y ; readjust(X, Y) >if size(X) <= size(Z) and (X =/= emptyBag) .endmThe initial model described by this module is the transition system con-taining exactly all the possible game moves allowed by the game. But thereare many bad moves that would allow the other player to win. A good playershould avoid such bad moves by trying to have a winning strategy. With such astrategy, each move made by the player inexorably leads to success, no matterwhat moves the other player attempts.As we have already said, there is great freedom for de�ning many di�erentstrategy languages inside Maude. Even if some users decide to adopt a particularstrategy language because of its good features, such a language remains fullyextensible, so that new features and new strategies can be de�ned on top ofthem.We de�ne a winning strategy for the Nim game in the following extensionof the module STRATEGY.fmod NIM-STRATEGY isprotecting STRATEGY .op moveToWin : -> Strategy .op findWinMove : Term Term -> Term .op noWinMove : -> Term .op NIM : -> Module .var T X Y Z : Term .



CHAPTER 2. CORE MAUDE 56var M : Module .eq NIM= (mod 'NIM isincluding 'BOOL .including 'MACHINE-INT .sorts 'Pebble ; 'Bag ; 'State .subsort 'Pebble < 'Bag .op 'o : nil -> 'Pebble [none] .op 'emptyBag : nil -> 'Bag [none] .op '__ : ('Bag 'Bag) -> 'Bag[assoc id(f'emptyBagg'Bag)] .op '<_;_> : ('Bag 'Bag) -> 'State [none] .op 'size : 'Bag -> 'MachineInt [none].op 'readjust : ('Bag 'Bag) -> 'Bag [none] .var 'X : 'Bag .var 'Y : 'Bag .var 'Z : 'Bag .noneeq 'size['__[f'og'Pebble, 'X]]= '_+_['size['X], f'1g'MachineInt] .eq 'size[f'emptyBagg'Bag] = f'0g'MachineInt .eq 'readjust['X, 'Y]= 'if_then_else_fi['_<=_['size['__['X, 'X]], 'size['Y]],'__['X, 'X],'Y] .crl['mv]: '<_;_>['__['X, 'Y], 'Z]=> '<_;_>['Y, 'readjust['X, 'Y]]if '_and_['_<=_['size['X], 'size['Z]],'_=/=_['X, f'emptyBagg'Bag]]= f'trueg'Bool .endm) .eq rewInWin(M, T, nilBindingList, moveToWin)= if findWinMove(T, f'og'Pebble) == noWinMovethen failureelse rewInWin(M, findWinMove(T, f'og'Pebble),nilBindingList, idle)fi .eq findWinMove('<_;_>[X, Y], Z)= if meta-reduce(NIM, '_>=_['size[Y], 'size[Z]])== f'trueg'Boolthen (if findWinMove(extTerm(meta-apply(NIM, '<_;_>[X, Y],'mv, ('X <- Z), 0)), f'og'Pebble)== noWinMovethen extTerm(meta-apply(NIM, '<_;_>[X, Y],'mv, ('X <- Z), 0))



CHAPTER 2. CORE MAUDE 57else findWinMove('<_;_>[X, Y], '__[Z, f'og'Pebble])fi)else noWinMovefi .endfmGiven a state < X ; Y > in the game, the strategy moveToWin �nds a win-ning move < X 0 ; Y 0 > if there is one, in the sense that either < X 0 ; Y 0 >is equal to < emptyBag ; emptyBag > or < X 0 ; Y 0 > is a move that even-tually will lead to success, no matter which moves the other players attempts,assuming that in the following moves the player that makes the winning moveuses the same winning strategy.The strategy moveToWin calls the function findWinMove with the represen-tation of a bag with only one pebble as its second argument. This argument isused as a tentative move. If the tentative bag Z is valid (the number of pebblesin it is smaller than the number of pebbles in the limit bag) then we tentativelymake that move; if it is the case that from the new state of the game there isno winning move for the other player, then we make that move; but, if thereis a winning move for our opponent, then findWinMove is called again withthe tentative number of pebbles to remove increased by one. If the size of thetentative bag is greater than the size of the limit bag, then there is no possiblewinning move and failure is returned.For example, to make a winning move from a state with a draw bag withseven pebbles and a limit bag with three pebbles we use the following strategyexpression:Maude> rew rewInWith(NIM,'<_;_>['__[f'og'Pebble, f'og'Pebble, f'og'Pebble,f'og'Pebble, f'og'Pebble, f'og'Pebble,f'og'Pebble],'__[f'og'Pebble, f'og'Pebble, f'og'Pebble]],nilBindingList, moveToWin) .result StrategyExpression:rewInWith(NIM,'<_;_>['__[f'og'Pebble,f'og'Pebble,f'og'Pebble,f'og'Pebble,f'og'Pebble],'__[f'og'Pebble,f'og'Pebble,f'og'Pebble,f'og'Pebble]], nilBindingList, idle)There are, of course, states of the game from which no winning move can bemade. In these cases, the strategy moveToWinwill return failure. For example:Maude> rew rewInWith(NIM,'<_;_>['__[f'og'Pebble, f'og'Pebble, f'og'Pebble],f'og'Pebble], nilBindingList, moveToWin) .result StrategyExpression: failure2.6.2 A Meta-InterpreterAs yet another example of user-de�ned strategies in Maude, we specify in anextension of the module STRATEGY a meta-interpreter for modules that onlycontain rules that are Church-Rosser and terminating (no equations are declaredand none of the operators have attributes). For the sake of simplicity, we assumethat all the rules are labeled any.



CHAPTER 2. CORE MAUDE 58fmod META-INTERPRETER isprotecting STRATEGY .sorts Position .subsorts MachineInt < Position .op emptyPos : -> Position .op pos : Position Position -> Position [assoc] .op nullPos : -> Position .op getSubterm : Term Position -> Term .op getSubtermAux : TermList Position -> Term .op replace : Term Term Position -> Term .op replaceAux : TermList Term Position -> Term .op nextPosition : Term Position -> Position .op nextPositionUp : Term Position -> Position .var P : Position .var N : MachineInt .var F G X Y L S : Qid .var T T' T1 T1' : Term .var TL TL' : TermList .eq pos(emptyPos, P) = P .We �rst de�ne some auxiliary functions needed to �nd the positions in aterm. Positions are represented at the metalevel as pos-lists of natural numbers,and emptyPos is the empty position. We denote by p the representation of aposition p in the module META-INTERPRETER.The function getSubterm(t, p) returns the term tjp, if p is a valid positionin t; otherwise, it returns error*.eq getSubterm(F, N) = error* .eq getSubterm({F}S, N) = error* .eq getSubterm(F[TL], N) = getSubtermAux(TL, N) .eq getSubterm(F, pos(N, P)) = error* .eq getSubterm({F}S, pos(N, P)) = error* .eq getSubterm(F[TL], pos(N, P))= getSubterm(getSubtermAux(TL, N), P) .eq getSubtermAux((T, TL), N)= if N == 1 then T else getSubtermAux(TL, (N - 1)) fi .eq getSubtermAux(T, N)= if N == 1 then T else error* fi .The function nextPosition(t, p) returns the next position in the tree de-�ned by the term t, according to a top-down leftmost-innermost strategy. Ifall positions have already been considered, the function nextPosition returnsnullPos.eq nextPosition(T, P)= if getSubterm(T, pos(P, 1)) == error*then nextPositionUp(T, P)else pos(P, 1)fi .



CHAPTER 2. CORE MAUDE 59eq nextPositionUp(T, emptyPos) = nullPos .eq nextPositionUp(T, N)= if getSubterm(T, (N + 1)) == error*then nullPoselse (N + 1)fi .eq nextPositionUp(T, pos(P, N))= if getSubterm(T, pos(P, (N + 1))) == error*then nextPositionUp(T, P)else pos(P, (N + 1))fi .The function replace(t, t0, p) returns the term t[t0]p.eq replace(T, T', emptyPos) = T' .eq replace(F, T', N) = error* .eq replace({F}S, T', N) = error* .eq replace(F[TL], T', N) = F[replaceAux(TL, T', N)] .eq replace(F, T', pos(N, P)) = error* .eq replace({F}S, T', pos(N, P)) = error* .eq replace(F[TL], T', pos(N, P))= F[replaceAux(TL, T', pos(N, P))] .eq replaceAux((T, TL), T', N)= if N == 1then (T', TL)else (T, replaceAux(TL, T', (N - 1)))fi .eq replaceAux(T, T', N)= if N == 1 then T' else error* fi .eq replaceAux((T, TL), T', pos(N, P))= if N == 1then (replace(T, T', P), TL)else (T, replaceAux(TL, T', pos((N - 1), P)))fi .eq replaceAux(T, T', pos(N, P))= if N == 1then replace(T, T', P)else error*fi .Finally, we introduce the strategy metaInterpreter that speci�es the Maudeinterpreter for functional modules15, that is, for any valid module M and any15We talk about an interpreter for Maude functional modules in the sense of reducing the(meta-representation of) a term to its canonical form using the Church-Rosser and termi-nating equations just as the Maude interpreter would do it. Note, however, that, as alreadymentioned, the functional module|whose operators cannot have any attributes|is repre-sented here as a system module in which the Church-Rosser equations are represented as ruleslabeled any.



CHAPTER 2. CORE MAUDE 60term t in that module, rewInWith(M, t, nilBindingList, metaInterpreter)returns rewInWith(M, t0, nilBindingList, idle), where t0 is the canonicalform of t with respect to M .op metaInterpreter : -> Strategy .op applyInPRedex : Position -> Strategy .var M : Module .eq rewInWith(M, T, nilBindingList, metaInterpreter)= rewInWith(M, T, nilBindingList,orelse(and(applyInPRedex(emptyPos),metaInterpreter),idle)) .The auxiliary strategy applyInPRedex(p) speci�es an interpreter that onlyapplies once a rule to a term t at position p or at any position \after" p in t(traversing the tree de�ned by t with a top-down leftmost-innermost strategy).eq rewInWith(M, T, nilBindingList, applyInPRedex(P))= if P =/= nullPosthen (if meta-apply(M, getSubterm(T, P), 'any, none, 0)== {error*, none}then rewInWith(M, T, nilBindingList,applyInPRedex(nextPosition(T, P)))else rewInWith(M,replace(T,extTerm(meta-apply(M, getSubterm(T, P),'any, none, 0)),P),nilBindingList, idle)fi)else failurefi .As an example, consider the following module NAT-TREE:mod NAT-TREE issorts Nat Tree .subsort Nat < Tree .op 0 : -> Nat .op s_ : Nat -> Nat .op _+_ : Nat Nat -> Nat .vars N M : Nat .rl [any]: (N + 0) => N .rl [any]: (0 + N) => N .rl [any]: (s N + s M) => s s (N + M) .op _^_ : Tree Tree -> Tree .op rev : Tree -> Tree .



CHAPTER 2. CORE MAUDE 61vars T T' : Tree .rl [any]: rev(N) => N .rl [any]: rev(T ^ T') => (rev(T') ^ rev(T)) .endmThus, in the module NAT-TREE, the tree
iiiiiiii

R R R R R R Rs 0 + s s 0 lllll s 0D D D 0 ��� s 0 + s 0P P P P Pis represented by the term(((s 0 + s s 0) ^ s 0) ^ (0 ^ (s 0 + s 0))).We extend the modulo META-INTERPRETER with the equationop NAT-TREE : -> Module .eq NAT-TREE= (mod 'NAT-TREE isincluding 'BOOL .sorts ('Nat ; 'Tree) .subsort 'Nat < 'Tree .op '0 : nil -> 'Nat [none] .op 's_ : 'Nat -> 'Nat [none] .op '_+_ : ('Nat 'Nat) -> 'Nat [none] .op '_^_ : ('Tree 'Tree) -> 'Tree [none] .op 'rev : 'Tree -> 'Tree [none] .var 'N : 'Nat .var 'M : 'Nat .var 'T : 'Tree .var 'T' : 'Tree .nonenonerl ['any]: '_+_['N, {'0}'Nat] => 'N .rl ['any]: '_+_[{'0}'Nat, 'N] => 'N .rl ['any]: '_+_['s_['N], 's_['M]]=> 's_['s_['_+_['N, 'M]]] .rl ['any]: 'rev['N] => 'N .rl ['any]: 'rev['_^_['T, 'T']]=> '_^_['rev['T'], 'rev['T]] .endm) .The result of computing the strategy metaInterpreter on the metarep-resentation of the operation of reversing the above tree is the followingMaude> rew rewInWith(NAT-TREE,'rev['_^_['_^_['_+_['s_[{'0}'Nat],'s_['s_[{'0}'Nat]]],'s_[{'0}'Nat]],'_^_[{'0}'Nat,'_+_['s_[{'0}'Nat],'s_[{'0}'Nat]]]]],



CHAPTER 2. CORE MAUDE 62nilBindingList,metaInterpreter) .result StrategyExpression:rewInWith(NAT-TREE,'_^_['_^_['s_['s_[{'0}'Nat]],{'0}'Nat],'_^_['s_[{'0}'Nat],'s_['s_['s_[{'0}'Nat]]]]],nilBindingList, idle)Thus, the result is the meta-representation of the tree
lllllll

U U U U U U U Us s 0 uuuu 0= = = s 0 yyy s s s 0M M M Mthat is, the meta-representation of the original tree reversed after all its leaveshave been evaluated.2.7 Parsing, Bubbles and Meta-ParsingThis section explains the parsing and meta-parsing functionalities of Maude.Section 2.7.1 presents a general overview of the design of the Maude Parser(MSCP). Section 2.7.2 explains how terms with user-de�nable mix�x syntaxare parsed in a module and illustrates the basic functionalities of the parserwith several examples. For convenience and expressiveness the signature ofeach module is extended with parentheses, Boolean connectives, some built-inpolymorphic operators, sort test operators, and so on. Section 2.7.3 explainsthis extended signature of a module and how terms are parsed in it. Sec-tion 2.7.4 concentrates on the strategies for the speci�cation of user-de�nedmodels of precedence/gathering patterns. Since a module's user-de�ned syntaxcan specify a general context-free grammar that can be ambiguous, parenthesesmay in general be needed to resolve such ambiguities. By means of the def-inition of precedence/gathering patterns, the user can control the precedenceand the syntactic order of evaluation of operators to remove such ambiguitieswithout recourse to unnecessary parentheses, while keeping the same syntax.Section 2.7.5 describes the rules used by Maude to assign default precedencevalues and gathering patterns. Finally, Section 2.7.6 explains what we mightcall linguistic reection, that is, the possibility of parsing a term from which wethen extract a grammar to parse some unanalyzed portions of that term|forexample, parsing the top-level syntax of a module in a language allowing user-de�nable syntax, to obtain the grammar in which to parse expressions in thatmodule|, is supported by means of \bubbles" and the metaparsing facility ofMETA-LEVEL.2.7.1 MSCP Parser Design: An OverviewFrom a computational point of view, the semantic and logical framework pro-vided by rewriting logic has to be complemented with a reective syntacticframework. Syntactic, or linguistic, reection allows the e�ective speci�cation,implementation, and semantic de�nition of a very wide range of logics andlanguages|including languages such as Core Maude and Full Maude, whosemodules can have user-de�nable syntax|for which rewriting logic acts as ametalanguage.



CHAPTER 2. CORE MAUDE 63The intrinsic characteristics of Maude|mainly, its metalanguage functional-ity, its reective nature, and its logical and semantic framework applications|pose very strong requirements on the design of a parsing algorithm for thelanguage, since it has to ful�ll the following constraints [52]:� Interpreted parsing: languages are user-de�nable.� Full Context-Free Grammars (CFG), and not only LALR models.� With precedence/gathering patterns that modify the grammatical powerof nonterminal symbols.� Grammars are extended to incorporate bubbles. Bubbles are the key notionto implement syntactic reection. Furthermore, bubble sorts are user-de�nable.� Techniques for error detection and error recovery must be supported.� E�ciency is a main goal, as the parser is the surface of the rest of thesystem, especially in META-LEVEL computations.The logical kernel of the current version of the parser is based on the SCPparsing algorithm [54, 53]. SCP is a bidirectional, bottom-up and event-drivenparser for unrestricted context-free grammars. From an algorithmic point ofview, we have proved the soundness and completeness of SCP. From a com-putational perspective, SCP avoids overparsing [51], allowing an elegant andvery e�cient manipulation of a wide set of CFGs. The use of multi-virtualtrees [50] at the level of representation and the relations of coverage, partialderivability and adjacency as top-down predictions over the basic bottom-upstrategy, obtain a high level of e�ciency without diminishing the generality ofthe algorithm.The logically proved soundness and completeness of SCP guarantees thatthe Maude version of SCP (MSCP) will generate all the possible grammaticalanalyses for each term in a given signature. This avoids some completenessproblems detected in the OBJ3 parser.MSCP is able to analyze �-extended CFGs (CFGs extended with bubbles andprecedence/gathering patterns) [52]. The MSCP parsing algorithm incorporatesvery sophisticated error detection and error recovery mechanisms based on thenotions of partial derivability and adjacency, originally developed in SCP.Finally, the overall architecture of the MSCP algorithm allows an e�cienttreatment of syntactic reection. Besides, this reective power of the parsersupports the parsing and meta-parsing functionality of the META-LEVEL mod-ule (Section 2.5) as well as a exible and natural syntax de�nition model (seeSection 2.7.6).A detailed description of the SCP Parsing Algorithm may be found in [53].The notion of overparsing is described in [51], while other internal strategies ofSCP such as the use of multi-virtual trees and the formal kernel of the algorithmmay be found in [50]. The techniques used in the computational layer of SCP,responsible of the e�ciency of the algorithm, are described in [54]. Finally, thetechnical report [52] describes the Maude version (MSCP) of the parser.2.7.2 Mix�x Parsing of Terms in a ModuleWe can illustrate the notion of term and the idea of parsing terms in the sig-nature of a module by means of the following BINARY-NAT module supporting



CHAPTER 2. CORE MAUDE 64natural number arithmetic in binary notation. The module includes the usualarithmetic operators + , * , and ^ of sum, product, and exponentiation onnatural numbers in binary notation plus:� Constants 0 and 1 as constructors of the sort Bit.� The operator to represent elements of the sort Bits as sequences of 0'sand 1's.� The operator | |, to obtain the length of a binary number.� The operator normalize, to compress the representation of a binary num-ber by suppressing the 0's on the left of a number, if any.� The \greater-than" Boolean predicate > .� The not operator, that performs the logical negation of a string of bits.fmod BINARY-NAT isprotecting MACHINE-INT .sorts Bit Bits .subsort Bit < Bits .ops 0 1 : -> Bit .op __ : Bits Bits -> Bits [assoc] .op |_| : Bits -> MachineInt .op not_ : Bits -> Bits .op normalize : Bits -> Bits .ops _+_ _*_ : Bits Bits -> Bits [assoc comm] .op _^_ : Bits Bits -> Bits .op _>_ : Bits Bits -> Bool .op _?_:_ : Bool Bits Bits -> Bits .vars S T : Bits .vars B C : Bit .var L : Bool .*** Lengtheq | B | = 1 .eq | S B | = | S | + 1 .*** Noteq not (S T) = (not S) (not T) .eq not 0 = 1 .eq not 1 = 0 .*** Normalize suppresses zeros at the left of a binary numbereq normalize(0 S) = normalize(S) .eq normalize(1 S) = 1 S .*** Greater thaneq 0 > S = false .eq 1 > (0).Bit = true .eq 1 > (1).Bit = false .



CHAPTER 2. CORE MAUDE 65eq B > (0 S) = B > S .eq B > (1 S) = false .eq (1 S) > B = true .eq (B S) > (C T)= if | normalize(B S) | > | normalize(C T) |then trueelse if | normalize(B S) | < | normalize(C T) |then falseelse (S > T)fifi .*** Binary additioneq 0 + S = S .eq 1 + 1 = 1 0 .eq 1 + (T 0) = T 1 .eq 1 + (T 1) = (T + 1) 0 .eq (S B) + (T 0) = (S + T) B .eq (S 1) + (T 1) = (S + T + 1) 0 .*** Binary multiplicationeq 0 * T = 0 .eq 1 * T = T .eq (S B) * T = ((S * T) 0) + (B * T) .*** Binary exponentiationeq T ^ 0 = 1 .eq T ^ 1 = T .eq T ^ (S B) = (T ^ S) * (T ^ S) * (T ^ B) .*** Mixfix ?: operatoreq L ? S : T = if L then S else T fi .endfmNote the use of the sort Bool. This sort is not a proper sort of the signatureof BINARY-NAT. However, Bool, together with other information about polymor-phic operators, parentheses, subsort-overloaded operators, and so on, belongsto the extended signature of a module, which Maude generates automaticallyfor each module (see Section 2.7.3).This module illustrates several important aspects of the grammatical powerof Maude.� Empty Syntax: With the following declarations we can write natural num-bers in binary notation such as 1 0 0 1 or 1 1.sorts Bit Bits .subsort Bit < Bits .ops 0 1 : -> Bit .op nil : -> Bits .op __ : Bits Bits -> Bits [assoc id: nil] .



CHAPTER 2. CORE MAUDE 66� Out�x Syntax: The length operator | | is an example of out�x syntaxspeci�cation for operators.Maude> red | 1 0 1 1 0 | .result NzMachineInt: 5� Pre�x and Post�x Syntax: BINARY-NAT includes the not operator, de�nedwith pre�x syntax.Maude> red 0 (not 1) 0 .result Bits: 0 0 0Maude> red not (1 0 1) .result Bits: 0 1 0� In�x Syntax: The operators + , * and > illustrate the model for thespeci�cation of in�x operators in Maude.Maude> red (1 0 0) + (1 1 1) .result Bits: 1 0 1 1Maude> red (1 1 1) * (1 1 0) .result Bits: 1 0 1 0 1 0Maude> red (0 1 0 1) > (1 1) .result Bool: true� Mix�x Syntax: The operator ? : is an example of mix�x notation inMaude. In fact, this operator combines both out�x and in�x notation.Maude> red ((1 0) > (0 1 1)) ? ((1 0) * 1) : ((1 0) + 1) .result Bits: 1 1The previous discussion on the user-de�nable notational power of Maudeis a good basis for discussing the process of parsing terms in the context of asignature. This process is divided in two phases. In a �rst step, Maude collectsall the information pertinent to the parsing problem included in a module: setof sorts, subsort relations, operators (paying special attention to the notationalpattern of each operator) and variables. All this information is translated into acontext-free grammar. In a second step, each time Maude detects a term in thecorresponding signature, the MSCP algorithm is used to obtain the grammaticalstructure of the term according to the context-free grammar previously obtainedfrom the module.2.7.3 Parsing Terms in the Extended Signature of a Mod-uleIn BINARY-NAT it is possible to reduce the following terms.Maude> red ((1 0) + (1 0)) * (1 1) .result Bits: 1 1 0 0



CHAPTER 2. CORE MAUDE 67Maude> red ((1 0) > 1) and ((1 1) > (1 0)) .result Bool: trueMaude> red (1).Bit * 0 .result Bit: 0Maude> red (1 0) + (1 0) + (1 0) .result Bits: 1 1 0But, parentheses, logical operators such as and, sort tests, and quali�cationoperators are not a proper part of the module. These structures belong tothe so-called extended signature of a module. That is, the process of grammargeneration from the user-de�ned signature adds automatically more informationthan that strictly contained in the signature. From the user's viewpoint, themain structures added in the extended signature of a module are:� Sort Disambiguation: For each sort S in the signature of the module,Maude generates the operatorop (_).S : S -> S .This helps in the disambiguation of ad-hoc overloaded constants andterms. For example, in the module BINARY-NAT, because of the presenceof machine integers, the constants 0 and 1 and the operator + are adhoc overloaded (see Section 2.1.1). Thus, terms such as 0, 1 or 1 + 1 areambiguous. We can eliminate this ambiguity by using sort disambiguationoperators, that is, by qualifying the ambiguous terms with their sorts.Maude> red (1).Bit .result Bit: 1Maude> red (1 + 1).Bits .result Bits: 1 0Maude> red 1 + (1).MachineInt .result NzMachineInt: 2� Parentheses: For each sort S in the signature of a module, the extendedsignature of that module contains the following operator.op (_) : S -> S .These operators allow the use of parentheses without having to declare aparentheses operator for each sort.Maude> red not (1 0 1 1) .result Bits: 0 1 0 0� Pre�x Form of Mix�x Operators or Simple Identi�er Form: Each operatordeclared in mix�x form, may also be used in its single identi�er pre�xform. For example:



CHAPTER 2. CORE MAUDE 68Maude> red _>_(1 0, 1) .result Bool: trueMaude> red _?_:_(1 > 1 0, 1, 0) .result Bit: 0� Flattened Associative Argument Lists: Operators with the attribute assocmay be used in Maude in a nonparenthesized form.Maude> red (1 1) + (1 1) + (1 1) + (1 1) .result Bits: 1 1 0 0Furthermore, if the associative operator is given in pre�x notation, it cantake not only two, but arbitrarily many more arguments.Maude> red _+_(1 1, 1 1, 1 1, 1 1) .result Bits: 1 1 0 0� Polymorphic Operators and the BOOL Module: All the information con-tained in the prede�ned modules TRUTH-VALUE, TRUTH and BOOL (see Sec-tion 2.4) is included in the extended signature of each module. In par-ticular, appropriate instances of the polymorphic operators contained inTRUTH (that is, if then else fi, == and =/= ) are generated for eachsort in the module. In addition, for each sort S sort predicates : S and:: S are also added.Note that this extension of the signature has allowed the speci�cation ofoperators, variables, and equations such as the following ones in BINARY-NAT.op _?_:_ : Bool Bits Bits -> Bits .var L : Bool .eq B S > C T= if | normalize(B S) | > | normalize(C T) |then trueelse if | normalize(B S) | < | normalize(C T) |then falseelse (S > T)fifi .� The extended signature includes also the error supersorts, and the over-loaded lifting to those supersorts of all operators to support error terms.2.7.4 Precedence and GatheringBINARY-NAT contains a rich set of notational models for the speci�cation of op-erators, and illustrates clearly the idea of an extended signature for a module.Nevertheless, the operators in this module will generate, in most cases, com-plex and subtle inconsistencies, ambiguities and unintuitive results, as shownin the following examples. The concepts of precedence and gathering provide aexible way of avoiding these ambiguities without having to write unnecessaryparentheses.



CHAPTER 2. CORE MAUDE 69� Let us consider the following reduction.Maude> red 1 0 + 1 0 .result Bits: 1 1 0The expected result is 1 0 0. The reason for getting the unexpected resultis that Maude is really processing the term 1 (0 + 1) 0, which generates1 1 0.� The following example shows a problematic interaction between the op-erators not and . Intuitively, we expect that the result of not 0 1 0will be 1 0 1. But Maude parses the term not 0 1 0 as (not 0) 1 0.Therefore, the result is 1 1 0.Maude> red not 0 1 0 .result Bits: 1 1 0� One might expect that the two terms reduced in the following example,namely, (1 0) + (1 0) * (1 0) and (1 0) * (1 0) + (1 0) yield thesame result (1 1 0). However, the second term is parsed in a form thatapplies the operators in an unexpected way, yielding a possibly confusingresult.Maude> red (1 0) + (1 0) * (1 0) .result Bits: 1 1 0Maude> red (1 0) * (1 0) + (1 0) .result Bits: 1 0 0 0� The term 1 1 > 1 ? 1 : 0 seems unambiguous. Nevertheless, followingstrictly the signature of BINARY-NAT, there are two possible parses:{ ((1 1) > 1) ? 1 : 0, with result 1, and{ 1 ((1 > 1) ? 1 : 0), with result 1 0.Maude detects this ambiguity, and selects randomly one of the parses,which may lead to unexpected results in more complex terms.Maude> red 1 1 > 1 ? 1 : 0 .WARNING: <standard input>, line 894:Ambiguous term, two parses are:(1 1) > 1 ? 1 : 0-versus-1 (1 > 1) ? 1 : 0Arbitrarily taking the first as correct.result Bit: 1At this point we may say a few words about the treatment of ambiguitiesin Maude. The MSCP parser obtains all parses of a term. However, sincethe number of ambiguous parses can sometimes be quite large, Maudepresents only two of them to show the ambiguity, and lets the user solve theproblem. For example, the following expression in fact has three di�erentparses, but only two are given.



CHAPTER 2. CORE MAUDE 70Maude> red 1 1 1 > 1 ? 1 : 0 .WARNING: <standard input>, line 895:Ambiguous term, two parses are:(1 1 1) > 1 ? 1 : 0-versus-1 ((1 1) > 1) ? 1 : 0Arbitrarily taking the first as correct.result Bit: 1The third parse is 1 1 (1 > 1) ? 1 : 0.� The following examples illustrate problems which appear as a consequenceof an unde�ned model of precedence between operators. In this case,Maude applies automatically the algorithm for default precedence valuesand gathering patterns assignment according to the rules presented inSection 2.7.5. But there is an additional source of ambiguity, in this caserelated to the notion of syntactic order of evaluation of operators.The precedence of in�x operators determines the order in which the oper-ators are to be applied. For example, given two operators �1 and �2, if �1takes precedence over �2, this means that an expression like E1�2E2�1E3will be evaluated as E1�2(E2�1E3). The operator * takes precedenceover (has a higher precedence than) the operator + , and this is thereason why we expect that (1 0) + (1 0) * (1 0) should be parsed as(1 0) + ((1 0) * (1 0)).Let us now consider expressions with the same operator appearing severalconsecutive times. For associative operators, this is not a problem, as ithappens in:Maude> red (1 1) + (1 1) + (1 1) + (1 1) .result Bits: 1 1 0 0But for nonassociative operators, the so-called syntactic order of evalu-ation16, that is, the order in which the operator should be associated inseveral contiguous occurrences, may modify the result. In other words,expressions with nonassociative operators appearing consecutively are infact grammatically ambiguous:Maude> red (1 1) ^ (1 1) ^ (1 1) .WARNING: <standard input>, line 896:Ambiguous term, two parses are:(1 1) ^ ((1 1) ^ 1 1)-versus-((1 1) ^ 1 1) ^ 1 1Arbitrarily taking the first as correct.result Bits: 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 00 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 116The syntactic order of evaluation is a syntactic notion, having to do with how parenthesesare associated. It is di�erent from the semantic notion of order of evaluation of the argumentsof an operator speci�ed by a strategy explained in Section 2.1.3.



CHAPTER 2. CORE MAUDE 71We can distinguish two types of operators from the point of view of theirsyntactic order of evaluation:{ Left Associative: operators grouped and analyzed from left to right.This is the case of the arithmetic operators + and * .{ Right Associative: operators grouped and analyzed from right to left.For example, we shall see how we can make the exponentiation op-erator ^ right associative.Although all the di�erent parenthesized associations of an associative op-erator are guaranteed to yield the same result, nevertheless, as far as theirsyntactic order of evaluation is concerned such operators are grammat-ically ambiguous. In the extended signature of a module Maude incor-porates rules to solve this ambiguity (Section 2.7.3). For nonassociativein�x operators this source of ambiguity is solved by de�ning an order ofevaluation.These syntactic problems (grammatical scope, precedence and syntactic or-der of evaluation of operators) are solved in OBJ3 [27] and in Maude by meansof precedence and gathering patterns.In Maude, each operator has associated to it a precedence value and a gath-ering pattern. They can be speci�ed by the user by means of the precedence(abbreviated prec) and gather attributes. If not speci�ed, Maude assigns de-fault values as explained in Section 2.7.5.A precedence value is an integer greater than or equal to 0, which may beunderstood as an output value associated to terms having the correspondingoperator as their top symbol.On the other hand, gathering patterns are associated to the arguments of anoperator. Gathering patterns are given as nonempty sequences of the followingpossible pattern:� E: The argument must have a precedence value equal to or lower than theprecedence value of the operator.� e: The argument must have a precedence value strictly lower that theprecedence value of the operator.� &: The operator allows any precedence value for the corresponding argu-ment.We can illustrate the notions of precedence and gathering by considering avariant BINARY-NAT-PREC of the module BINARY-NAT whose only di�erence isthat we have now speci�ed precedence values and gathering patterns for theoperators as follows.op __ : Bits Bits -> Bits [assoc prec 1 gather (e E)] .op |_| : Bits -> MachineInt . *** Lengthop not_ : Bits -> Bits [prec 2 gather (E)] .op normalize : Bits -> Bits .op _+_ : Bits Bits -> Bits [assoc comm prec 5 gather (E e)] .op _*_ : Bits Bits -> Bits [assoc comm prec 4 gather (E e)] .op _^_ : Bits Bits -> Bits [prec 3 gather (e E)] .op _>_ : Bits Bits -> Bool [prec 6 gather (E E)] .op _?_:_ : Bool Bits Bits -> Bits [prec 7 gather (& E E)] .



CHAPTER 2. CORE MAUDE 72Constants have precedence 0. In our example, this rule is applied to 0,1 and nil. The precedence value of an operator is associated to the termsgenerated by this operator. In our example, the term 1 has precedence 0, theterm 1 0 1 has precedence 1, the term 1 0 + 1 has precedence 5, and 1 0 * 1has precedence 4.To illustrate the behavior of the gathering patterns, let us focus on thedeclaration of the * operator. From it we can infer the following consequences:� Every term with this operator as top symbol will have precedence 4 (bythe attribute prec 4).� The �rst argument of a binary multiplication (an E in the gathering pat-tern) must be a term with a precedence value smaller than or equal tothe precedence of the operator, that is, the �rst argument of a binarymultiplication must be a term with precedence 4 or less, for example, aconstant (precedence 0), an exponentiation (precedence 3) or another mul-tiplication (precedence 4), but not an addition (precedence 5) unless it isenclosed in parentheses.� The second argument of a binary multiplication (an e in the gatheringpattern) must have a precedence strictly lower than 4. That is, the prece-dence of the second argument of a binary multiplication may range from 0to 3. This means that an expression where its top operator is a multiplica-tion (precedence 4) cannot be the second argument of another expressionwhose top symbol is the multiplication operator, unless it is enclosed inparentheses. We elegantly solve in this way the problem of order of eval-uation of this operator.The simultaneous use of precedence and gathering attributes allows speci-fying any kind of precedence relations between operators and di�erent types ofsyntactic order of evaluation.To show in practice how this strategy works, we analyze some of the problemsdetected in BINARY-NAT using the signature of BINARY-NAT-PREC.The �rst problem appeared with the term 1 0 + 1 0. Without any infor-mation about precedence values and gathering patterns, we can think of twodi�erent analyses for this term: (1 0) + (1 0) and 1 (0 + 1) 0. This ambi-guity can be solved by the use of di�erent precedence values for the operatorsinvolved, namely, and + . In the module BINARY-NAT-PREC these operatorshave been de�ned as follows:op __ : Bits Bits -> Bits [assoc id: nil prec 1 gather (e E)] .op _+_ : Bits Bits -> Bits [assoc comm prec 5 gather (E e)] .Let us consider the two previous analyses proposed for the term 1 0 + 1 0:� First analysis: (1 0) + (1 0). The top symbol of this term is + . The�rst argument of the addition is (1 0). According to the de�nition of theoperator , the term (1 0) will have precedence 1. The second argu-ment of the addition is the same and will have also the same precedence:1. Now the gathering pattern of + constrains the precedence of the�rst argument E to a value 5 or smaller (the precedence of the operator+ ), and the second argument e must have a precedence value in therange 0 to 4. Since these conditions are ful�lled by the arguments of theaddition, this analysis is taken as correct by the parser. Figure 2.2 shows
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@@R0 1������ PPPPPq��	 @@R1f0g 0f0g ��	+ 41f0g 0f0gf1g f1g+ f5g0 1 5

Figure 2.2: Correct parse tree of 1 0 + 1 0.�������� QQQs ����� BBBBBNXXXXXXzZZZZZ~1f0g 0f0g ���+
Prec/Gather Error

1f0g 0f0g+ f5g5 4 f1g0 1
Figure 2.3: Incorrect parse tree of 1 0 + 1 0.graphically the situation just described. In the �gure, each constant andeach function symbol of a term has its corresponding precedence value inbraces, and the maximum gathering value of each argument is associatedto the corresponding arrow.� Second analysis: 1 (0 + 1) 0. This term is a sequence of bits, that is, themain or top operator of this term is . The �rst argument of this operatoris the term 1, while the second argument is the subterm (0 + 1) 0, whose�rst argument is the addition (0 + 1) and whose second argument is theconstant 0. Since the precedence value of the addition is 5, and the �rstargument of the operator must have a precedence value less than 1, theexpression 1 (0 + 1) 0 is not a valid parse in BINARY-NAT-PREC. Graphi-cally, the situation is shown in Figure 2.3: the parse error appears becausethe precedence value of an argument is higher than allowed by the gath-ering pattern of the corresponding argument in the operator declaration.Of course, using parentheses is always a way of resolving ambiguities. Infact, it is worth noting that the parentheses operator automatically includedin the extended signature of a module has precedence 0. Therefore, the term1 (0 + 1) 0 is grammatically correct in BINARY-NAT-PREC.Maude> red 1 0 + 1 0 .result Bits: 1 0 0Maude> red 1 (0 + 1) 0 .result Bits: 1 1 0Another subtle problem in the BINARY-NAT module was the di�erent behav-iors of the terms (1 0) + (1 0) * (1 0) and (1 0) * (1 0) + (1 0). Inthat module, both operators + and * had no precedence attribute explic-itly given. As both had the assoc attribute, the gathering patterns generatedby default for both of them was (e E), so the operators were associated fromright to left.
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@@Rf1g10 ��	 @@Rf1g10��	 @@R ������ HHHHHj�����	 XXXXXXXXXz��	1f0g
4

0f0g + 1f0g 0f0g * 1f0g 0f0gf1g10 * f4g4 3+ f5g5
Figure 2.4: Correct interpretation of 1 0 + 1 0 * 1 0.In BINARY-NAT-PREC these two operators have di�erent precedence values,and the gathering patterns have also been speci�ed:op _+_ : Bits Bits -> Bits [assoc comm prec 5 gather (E e)] .op _*_ : Bits Bits -> Bits [assoc comm prec 4 gather (E e)] .op _^_ : Bits Bits -> Bits [prec 3 gather (e E)] .The main consequence of this de�nition is that, as already explained, anaddition cannot be an argument of a multiplication unless it is enclosed inparentheses. Thus, we have the following reductions.Maude> red (1 0) + (1 0) * (1 0) .result Bits: 1 1 0Maude> red (1 0) * (1 0) + (1 0) .result Bits: 1 1 0The following examples illustrate how the precedence and gathering modelof the operators of BINARY-NAT-PREC solves the problems of precedence andorder of evaluation of operators.� Precedence: Let us consider the term 1 0 + 1 0 * 1 0, in which the twooperators + and * are involved.op _+_ : Bits Bits -> Bits [assoc comm prec 5 gather (E e)] .op _*_ : Bits Bits -> Bits [assoc comm prec 4 gather (E e)] .Taking into account the precedences of these operators, the expression willbe evaluated by Maude as an addition of a number and a multiplication.Maude> red 1 0 + 1 0 * 1 0 .result Bits: 1 1 0Figure 2.4 shows the correct interpretation of this term in the signatureof BINARY-NAT-PREC, that is, 1 0 + (1 0 * 1 0), while Figure 2.5 rep-resents the incorrect interpretation (1 0 + 1 0) * 1 0 and the prece-dence/gathering error that avoids such an interpretation.� Right Associativity: We will illustrate the de�nition of a right associa-tive operator by means of the exponentiation operator in the moduleBINARY-NAT-PREC. Left associativity is entirely analogous.
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@@Rf1g10 ��	 @@Rf1g10��������	 @@R ������ HHHHHj ��������9 @@@@@RZZZZZ~ ��	

XXXXXXXXzPrec/Gather Error
1f0g 0f0g + 1f0g 0f0g * 1f0g 0f0gf1g10 + f5g5 4 * f4g4 3

Figure 2.5: Incorrect interpretation of 1 0 + 1 0 * 1 0.
@@Rf1g10 ��	 @@Rf1g10��	 @@R ������ HHHHHj�����/ XXXXXXXXXz��	1f0g
3

0f0g ^ 1f0g 1f0g ^ 1f0g 0f0gf1g10 ^ f3g2 3^ f3g2
Figure 2.6: Correct interpretation of 1 0 ^ 1 1 ^ 1 0.op _^_ : Bits Bits -> Bits [prec 3 gather (e E)] .Without parentheses, which modify the precedence and order of evaluationof the operators, the term 1 0 ^ 1 1 ^ 1 0 is evaluated using the rightto left gathering pattern of the operator ^ . Figures 2.6 and 2.7 drawgraphically the correct and incorrect interpretation of this term.Maude> red 1 0 ^ 1 1 ^ 1 0 .result Bits: 1 0 0 0 0 0 0 0 0 0Maude> red (1 0 ^ 1 1) ^ 1 0 .result Bits: 1 0 0 0 0 0 0

@@Rf1g10 ��	 @@Rf1g10��������	 @@R ������ HHHHHj ��������9 @@@@@RZZZZZ~ ��	
XXXXXXXXzPrec/Gather Error

1f0g 0f0g ^ 1f0g 1f0g ^ 1f0g 0f0gf1g10 ^ f3g2 3 ^ f3g2 3
Figure 2.7: Incorrect interpretation of 1 0 ^ 1 1 ^ 1 0.



CHAPTER 2. CORE MAUDE 762.7.5 Default Precedence and GatheringThis section sketches the rules used by Maude to generate the default precedencevalues and gathering patterns for operators; they are entirely similar to thoseused by OBJ3 [27]. These values will be associated to those operators for whichthe user does not specify this information as part of the operator declaration.The rules for the assignment of default precedence values are:� Pre�x operators always have precedence 0, regardless of user settings. Thisrule is applied, for example, to the operator normalize in the moduleBINARY-NAT.� Out�x operators have precedence 0. This is the case, for example, for theoperator | |.� Unary mix�x operators have precedence 15. In the module BINARY-NATthis rule is applied to the operator not .� Multi-ary mix�x operators (with arity greater than 1) have precedence 41.In BINARY-NAT this rule is applied to the operators , + , * , ^ , > ,and ? : .The rules for the generation of the default gathering patterns are:� All arguments of pre�x operators have a gathering pattern & , regardlessof the user speci�cation.� For operators with mix�x notation, the gathering patterns are by default& for each argument. There are three exceptions to this rule (with ex-ceptions 2 and 3 mutually exclusive, and with either of them overrulingexception 1):{ Exception 1: The gathering pattern of an argument will be E if theargument position (the corresponding underscore ` ' in the operatorname) is:i. the leftmost token in the operator name, orii. the rightmost token in the operator name, oriii. it is adjacent to another underscore in the operator name.In BINARY-NAT, this exception changes to E the gathering pattern ofthe unique argument of the operator not , and of the �rst and lastarguments of the operators ? : , - , , ^ , < and <= .{ Exception 2: An operator will have gathering pattern (e E) if:i. starts with an underscore ` ', andii. ends with an underscore ` ', andiii. has precedence (if supplied by the user) greater than 0, andiv. has the assoc attribute.These conditions are ful�lled by the operators + , * and ofthe BINARY-NAT module.{ Exception 3: If an operatori. starts with an underscore ` ', andii. ends with an underscore ` ', andiii. has precedence (if supplied by the user) greater than 0, and



CHAPTER 2. CORE MAUDE 77iv. has the �rst and last arguments and its coarity in the same sortconnected component, andv. does not have the assoc attribute.then:a. the �rst argument's gathering pattern will change to e if andonly if the subsort relations allow it to right associate but notleft-associate, andb. the last argument's gathering pattern will change to e if andonly if the subsort relations allow it to left associate but notright-associate.This exception will apply, for example, to the operator ; in thefollowing module.fmod LIST isincluding MACHINE-INT .sorts Elt List .subsort MachineInt < Elt < List .op _;_ : Elt List -> List .endfmAccording to the general rule, the gathering pattern should be gather(& &). Since exception 1 may be applied to the two arguments ofthe operator, this exception would change the gathering pattern togather (E E). But exception 3 prevails over exception 1 and shouldbe applied to the �rst argument, so that the real gathering patternof this operator is: gather (e E).To illustrate these rules, we show below the default precedence and gath-ering patterns generated by Maude for the module BINARY-NAT presented inSection 2.7.2.op 0 : -> Bit .op 1 : -> Bit .op nil : -> Bits .op __ : Bits Bits -> Bits [assoc id: nil prec 41 gather (e E)] .op |_| : Bits -> MachineInt [prec 0 gather (&)] .op normalize : Bits -> Bits .op _+_ : Bits Bits -> Bits [assoc comm prec 41 gather (e E)] .op _*_ : Bits Bits -> Bits [assoc comm prec 41 gather (e E)] .op _^_ : Bits Bits -> Bits [prec 41 gather (E E)] .op _>_ : Bits Bits -> Bool [prec 41 gather (E E)] .op _?_:_ : Bool Bits Bits -> Bits [prec 41 gather (E & E)] .op not_ : Bits -> Bits [prec 15 gather (E)] .2.7.6 Tokens, Bubbles and MetaparsingIn order to generate in Maude an environment for a language L, includingthe case of a language with user-de�nable syntax, the �rst thing we need todo is to de�ne the syntax for L-modules. This can be done by extending themodule META-LEVEL with a data type ModuleL for L-modules, and with otherauxiliary data types for commands and other constructs. Maude provides great



CHAPTER 2. CORE MAUDE 78exibility to do this thanks to its mix�x front-end and to the use of bubbles17(any nonempty string of Maude identi�ers). The intuition behind bubbles is thatthey correspond to pieces of a module in a language that can only be parsedonce the grammar introduced by the signature of the module is available.The idea is that for a language that allows modules with user-de�nablesyntax|as it is the case for Maude|it is natural to see its syntax as a combinedsyntax, at two di�erent levels: what we may call the top level syntax of thelanguage, and the user-de�nable syntax introduced in each module. The datatype bubble allows us to reect this duality of levels in the syntax de�nition.Similar ideas have been exploited using ASF+SDF [59].To illustrate this concept, suppose that we want to de�ne the syntax ofMaude in Maude. Consider the following Maude module:fmod NAT3 issort Nat3 .op s : Nat3 -> Nat3 .op 0 : -> Nat3 .eq s s s 0 = 0 .endfmNotice that the strings of characters inside the boxes are not part of thetop level syntax of Maude. In fact, they can only be parsed with the grammarassociated to the signature of the module NAT3. In this sense, we say thatthe syntax for Maude modules is a combination of two levels of syntax. Theterm s s s 0, for example, has to be parsed in the grammar associated to thesignature of NAT3. The de�nition of the syntax of Maude in Maude must reectthis duality of syntax levels.So far, we have talked about bubbles in a generic way. In fact, there canbe many di�erent kinds of bubbles. In Maude we can de�ne di�erent typesof bubbles as built-in data types by parameterizing their de�nition. Thus, forexample, a bubble of length one, which we call a token, can be de�ned as follows.sort Token .op token : Qid -> Token[special(id-hook Bubble (1 1)op-hook qidBaseSymbol (<Qids> : -> Qid))] .Any name can be used to de�ne a bubble sort. It is the special attributeid-hook Bubble (1 1)that makes the sort Token a bubble sort. The second argument of the id-hookspecial attribute indicates the minimum and maximum length of such bubblesas strings of identi�ers. Therefore, Token has only bubbles of size 1. To specifya bubble of any length we would use the pair of values 1 and -1. The operatorused in the declaration of the bubble, in this case the operator token, is a bubbleconstructor that represents tokens in terms of their quoted form. For example,the token abc123 is represented as token('abc123).We can de�ne bubbles of any length, that is, nonempty sequences of Maudeidenti�ers, with the following declarations.17In the current version bubbles can only be used in modules passed to the functionmeta-parse as arguments. The way of using and de�ning bubbles will change in future releases.



CHAPTER 2. CORE MAUDE 79sort Bubble .op bubble : QidList -> Bubble[special(id-hook Bubble (1 -1)op-hook qidListSymbol(__ : QidList QidList -> QidList)op-hook qidBaseSymbol (<Qids> : -> Qid))] .In this case, the system will represent the bubble as a list of quoted identi�ersunder the constructor bubble. For example, the bubble ab cd ef is repre-sented as bubble('ab 'cd 'ef).Di�erent types of bubbles can be de�ned using the id-hook special attributeExclude, which takes as parameter a list of identi�ers to be excluded from thegiven bubble, that is, the bubble being de�ned cannot contain such identi�ers.Suppose that instead of the declarations given in the module MINI-MAUDE-SYNTAX below, we had instead given the following two declarations to specifythe syntax of an operator declaration in a module.op op_: ->_. : Token Token -> Decl .op op_:_->_. : Token Bubble Token -> Decl .With these declarations, bubbles could be bigger than expected. In particular,the following parse would be possible.op s : Nat3 -> Nat3 . op 0 : -> Nat3 .We can use the id-hook special attribute Exclude to avoid this situation.We can declare the sort NeTokenList with constructor neTokenList as a listof identi�ers, of any length greater than one, excluding18 the identi�er `.' withthe following declarations.sort NeTokenList .op neTokenList : QidList -> NeTokenList[special(id-hook Bubble (1 -1)op-hook qidListSymbol(__ : QidList QidList -> QidList)op-hook qidBaseSymbol (<Qids> : -> Qid)id-hook Exclude (.))] .We are now ready to give the signature to parse modules such as NAT3above. The following module MINI-MAUDE-SYNTAX uses the above de�nitions ofsorts Token, Bubble and NeTokenList to de�ne the syntax of a sublanguage ofMaude, namely, many sorted, unconditional, functional modules, in which thedeclarations of sorts, variables and operators have to be done one at a time, andin which no attributes are supported for operators.fmod MINI-MAUDE-SYNTAX isincluding QID-LIST .sorts Bubble Token NeTokenListPreModule PreCommandDecl DeclList .18In general, to exclude identi�ers I1; I2; : : : ; Ik, we use the syntax Exclude (I1 I2 : : : Ik).



CHAPTER 2. CORE MAUDE 80subsort Decl < DeclList .op token : Qid -> Token[special(id-hook Bubble (1 1)op-hook qidBaseSymbol (<Qids> : -> Qid))] .op bubble : QidList -> Bubble[special(id-hook Bubble (1 -1)op-hook qidListSymbol(__ : QidList QidList -> QidList)op-hook qidBaseSymbol (<Qids> : -> Qid))] .op neTokenList : QidList -> NeTokenList[special(id-hook Bubble (1 -1)op-hook qidListSymbol(__ : QidList QidList -> QidList)op-hook qidBaseSymbol (<Qids> : -> Qid)id-hook Exclude (.))] .*** sort declarationop sort_. : Token -> Decl .*** operator declarationop op_: ->_. : Token Token -> Decl .op op_:_->_. : Token NeTokenList Token -> Decl .*** variable declarationop var_:_. : Token Token -> Decl .*** equation declarationop eq_=_. : Bubble Bubble -> Decl .*** functional moduleop fmod_is_endfm : Token DeclList -> PreModule .op __ : DeclList DeclList -> DeclList [assoc gather(e E)] .endfmNotice how we explicitly declare operators that correspond to the top levelsyntax of Maude, and how we represent as terms of sort Bubble those piecesof the module|namely, terms in equations|that can only be parsed with theuser-de�ned syntax.Then, the functional module NAT3 above can be parsed as a term of sortPreModule in MINI-MAUDE-SYNTAX. The name of this sort reects the fact thatnot all terms of sort PreModule do actually represent Maude modules. In partic-ular, for a term of sort PreModule to represent a Maude module all the bubblesmust be correctly parsed as terms in the module's user-de�ned syntax.When calling the function meta-parse with the meta-representation of themodule MINI-MAUDE-SYNTAX19 and the previous module transformed into a list19As pointed out in Section 2.5.5, in Core Maude the meta-representation of the moduleMINI-MAUDE-SYNTAX has to be explicitly given. In Full Maude we can refer to the representationof a module using its name by any of the techniques explained in Section 3.3.



CHAPTER 2. CORE MAUDE 81of quoted identi�ers20, that is,Maude> red meta-parse(MINI-MAUDE-SYNTAX,'fmod 'NAT3 'is'sort 'Nat3 '.'op 's ': 'Nat3 '-> 'Nat3 '.'op '0 ': '-> 'Nat3 '.'eq 's 's 's '0 '= '0 '.'endfm) .we get the following metaterm as a result.result Term:'fmod is endfm['NAT3 ,' ['sort .[ 'Nat3 ],' ['op : -> .[ 's , 'Nat3 , 'Nat3 ],' ['op :`-> .[ '0 , 'Nat3 ],'eq = .[ 's 's 's '0 , '0 ]]]]]Of course, Maude does not return these boxes. Instead, the system returnsthe bubbles using their constructor form as speci�ed in their corresponding dec-larations. For example, the bubbles 'Nat3 and 's 's 's '0 are represented,respectively, as token('Nat3) and bubble('s 's 's '0). Maude returns themmeta-represented. The result given by Maude is therefore the following.result Term:'fmod_is_endfm['token[{''NAT3}'Qid],'__['sort_.['token[{''Nat3}'Qid]],'__['op_:_->_.['token[{''s_}'Qid],'neTokenList[{''Nat3}'Qid],'token[{''Nat3}'Qid]],'__['op_:`->_.['token[{''0}'Qid],'token[{''Nat3}'Qid]],'eq_=_.['bubble['__[{''s}'Qid, {''s}'Qid,{''s}'Qid, {''0}'Qid]],'bubble[{''0}'Qid]]]]]]This result is a metaterm of sort Term. To convert this term into a term ofsort FModule is now straightforward. As already mentioned, we �rst have to ex-tract from the term the module's signature. For this, we can use an equationallyde�ned functionop extractSignature : Term -> FModule? .Notice that extractSignature is a partial function that is not well de�ned formetaterms of sort Term that do not meta-represent terms of sort PreModulein MINI-MAUDE-SYNTAX. Therefore, the result is in general an element of anerror supersort FModule? of FModule. Once we have the signature of themodule|expressed as a functional module with no equations and no member-ship axioms|we can then build terms of sort FModule in the same way with20We shall see in Section 2.8 that this representation of the input as a list of quoted identi�ersis given automatically by the read-eval-print loop supported by the built-in module LOOP-MODE.



CHAPTER 2. CORE MAUDE 82the equationally de�ned function solveBubbles, that recursively replaces eachbubble in an equation by the result of calling meta-parse with the alreadyextracted signature and with the quoted identi�er form of the bubble.op solveBubbles : Term FModule -> FModule? .The partial function processPreModuleTerm takes a term and, if it has theappropriate form|that is, if it is a term meta-representing a term of sortPreModule in MINI-MAUDE-SYNTAX, and, furthermore, the solveBubbles func-tion succeeds in parsing the bubbles in equations as terms|then it returns aterm of sort FModule.op processPreModuleTerm : Term -> FModule? .eq processPreModuleTerm(T)= solveBubbles(T, extractSignature(T)) .We have then the following reduction.red processPreModuleTerm(meta-parse(MINI-MAUDE-SYNTAX,'fmod 'NAT3 'is'sort 'Nat3 '.'op 's ': 'Nat3 '-> 'Nat3 '.'op '0 ': '-> 'Nat3 '.'eq 's 's 's '0 '= '0 '.'endfm)) .Result FModule : fmod 'NAT3 isnilsorts 'Nat3 .noneop '0 : nil -> 'Nat3 [none] .op 's_ : 'Nat3 -> 'Nat3 [none] .nonenoneeq 's_['s_['s_[{'0}'Nat3]]] = {'0}'Nat3 .endfm2.8 LOOP-MODE and Metalanguage UsesUsing object-oriented concepts, we can specify in Maude a general input/outputfacility provided by the LOOP-MODEmodule shown below, that extends the mod-ule QID-LIST, into a generic read-eval-print loop.mod LOOP-MODE isprotecting QID-LIST .sorts State System .op [_,_,_] : QidList State QidList -> System[special ( ... )] .endmThe operator [ , , ] can be seen as a persistent object with an input chan-nel (the �rst argument), an output channel (the third argument), and a state



CHAPTER 2. CORE MAUDE 83(given by its second argument). This read-eval-print loop that LOOP-MODE pro-vides is a simple mechanism developed for this release that may not be main-tained in future versions. We plan to endowMaude with general built-in supportfor objects; this will make possible more general and exible solutions for dealingwith input/output and persistent objects.Besides having input and output channels, terms of sort System give us thepossibility of maintaining a persistent state in their second component. Thisstate has been declared in a completely generic way. In fact, the sort State inLOOP-MODE does not have any constructor. This gives complete exibility forde�ning the terms we want to have for representing the persistent state of theloop in each particular application. In this way we can use this input/outputfacility not only for extensions of Maude like Full Maude, but also for other usesof Maude as a metalanguage, where the object language being implemented maybe completely di�erent from Maude. For each such language or tool the natureof the state of the system may be completely di�erent. We can tailor the Statesort to any such application by importing LOOP-MODE in a module in which wede�ne the structure of the persitent state and the rewrite rules for changing thatstate and interacting with the loop.2.8.1 The Use of the LoopWe can illustrate the basic ideas with a toy example, namely a system in whichthe loop is used to echo each input twice. In this case there is no need tomaintain any state, so we can just declare a constant null to represent theempty state.mod DUPLICATE isincluding LOOP-MODE .op null : -> State .vars Input Output : QidList .crl [duplicate] :[Input, null, Output]=> [nil, null, Output Input Input]if Input =/= nil .endmOnce this module has been entered, we must �rst initialize the loop bysetting its initial state using the loop command. That is, we must give to theloop command the term of sort State that we desire as initial state. For thisexample, we can start a loop with empty input and output channels by typingMaude> loop [nil, null, nil] .Since in the current release only one input channel is supported (the currentterminal), the way to distinguish the input passed to the loop from the input tothe Maude system|modules or commands|is by enclosing them in parentheses.When something is written in the Maude prompt enclosed in parentheses it isconverted into a list of quoted identi�ers. This is done by �rst breaking the inputstream into a sequence of tokens|that is, into a sequence of Maude identi�ers|and then converting each of these tokens into a quoted identi�er by putting aquote in front of it, and appending the results into a list of quoted identi�ers,which is then placed in the �rst slot of the loop object. The output is handledin the reverse way, that is, the list of quoted identi�ers placed in the thirdslot of the loop is printed on the terminal after applying the inverse process of



CHAPTER 2. CORE MAUDE 84\unquoting" each of the tokens in the list. However, the output channel is notcleared at the time when the output is printed; it is instead cleared when thenext input is entered. We can think of the input and output events as implicitrewrites that transfer|in a slightly modi�ed, quoted or unquoted form|theinput and output data between two objects, namely the loop object and the\user" or \terminal" object.Once the loop has been initialized we can input any data by writing it afterthe prompt enclosed in parentheses. For example, we can writeMaude> (a s d )and then we get the outputa s d a s dA somewhat more interesting example is a loop that echoes the input, butonly after every ten tokens, that is, it keeps the input until the number oftokens stored in the state is ten. In this case the input introduced so far has tobe stored. Therefore we now really need a persistent state, albeit a simple one.We can represent the state as a pair consisting of a list of quoted identi�ers|thetokens seen so far since the last printing|and a counter measuring the lengthof such a list.mod DUPLICATE-TEN isincluding LOOP-MODE .protecting MACHINE-INT .op <_;_> : QidList MachineInt -> State .op init : -> System .vars Input StoredInput Output : QidList .vars QI QI0 QI1 QI2 QI3 QI4 QI5 QI6 QI7 QI8 QI9 : Qid .var Counter : MachineInt .rl [init] :init => [nil, < nil ; 0 >, nil] .rl [in] :[QI Input, < StoredInput ; Counter >, Output]=> [Input, < StoredInput QI ; Counter + 1 >, Output] .rl [out] :[Input,< QI0 QI1 QI2 QI3 QI4 QI5 QI6 QI7 QI8 QI9 StoredInput ;Counter >,Output]=> [Input,< StoredInput ; Counter - 10 >,Output QI0 QI1 QI2 QI3 QI4 QI5 QI6 QI7 QI8 QI9] .endmMaude> loop init .Maude> (a b)Maude> (c d e f g h i)Maude> (j k l)a b c d e f g h i j



CHAPTER 2. CORE MAUDE 85We can see the state of the loop with the continue command as follows.Maude> cont .result System: [nil,< 'k 'l ; 2 >,'a 'b 'c 'd 'e 'f 'g 'h 'i 'j]Note that, as already mentioned, the data in the output channel remains thereafter being printed; it is removed at the time of the next input event.2.8.2 Metalanguage Uses of MaudeThe above examples are toy examples to illustrate the basic features of LOOP--MODE. However, the most interesting applications of this module are metalan-guage applications, in which Maude is used to de�ne the syntax, parse, execute,and pretty print the execution results of a given object language or tool. Insuch applications, most of the hard work is done by the META-LEVEL module,but handling the input/output and maintaining the persistent state of the objectlanguage interpreter or tool is done by LOOP-MODE.The metalanguage uses of Maude are a natural consequence of the goodproperties of rewriting logic as a logical and semantic framework. Indeed, one ofthe key goals of rewriting logic from its beginning has been to provide a semanticframework in which many models of computation|particularly concurrent anddistributed ones|and languages can be naturally represented. Because of theintrinsic duality between logic and computation that rewriting logic supports,the very same reasons making rewriting logic a suitable semantic framework,make it also an attractive logical framework [32] to represent many di�erentlogics.What is common to all these logical and semantic framework applications isthat the models of computation, logics, or languages are represented in rewritinglogic by mappings of the form(y) � : L �! RWLogic:The representations are typically very simple and natural. They map theoriesor modules in L to rewrite theories.For language prototyping purposes, the obvious question to ask is: how cana rewriting logic language best support representation maps of the form (y), sothat it becomes a metalanguage in which a very wide variety of programming,speci�cation, and design languages, and of computational and logical systemscan be both semantically de�ned, and implemented in it?Our answer is: by being reective. As already explained in Section 2.5,Maude's language design and implementation make systematic use of the factthat rewriting logic is reective and provide e�cient support of reective com-putation by means of the META-LEVEL module.Indeed, using META-LEVELwe can both make the above representation map �executable, and we can execute the resulting rewrite theory representing a theoryor module in L, thus getting an implementation of L in Maude. Speci�cally,we can reify a representation map � of the form (y) by de�ning an abstractdata type ModuleL representing modules in the logic or language L. Since inMETA-LEVEL we also have a data type Module whose terms represent rewritetheories, we can then internalize the representation map � as an equationallyde�ned function � : ModuleL �! Module:In fact, thanks to the general meta-result of Bergstra and Tucker [1], any com-putable representation map � can be speci�ed in this way by a �nite numberof Church-Rosser and terminating equations.



CHAPTER 2. CORE MAUDE 86Having this representation map de�ned in Maude, we can then execute inMaude the rewrite theory �(M) associated to a theory or module M in L. Thishas been done, for example, for linear logic in [33, 10], and for structured Maudemodules in Full Maude. But it could also be done for a very wide range of otherlanguages and logics using the same method.By de�ning the data type ModuleL in an extension of META-LEVEL we canindeed de�ne the syntax of L within Maude. However, to provide a satisfactoryexecution environment for L in Maude, we also have to support input/outputand a persistent state for interacting with the interpreter for L that we wantto de�ne. That is, we want to be able to enter module de�nitions, executecommands, and get results of executions. This is precisely what LOOP-MODEmakes possible. As a consequence, an environment for L in Maude will typi-cally be realized by a module containing both META-LEVEL and LOOP-MODE assubmodules.To illustrate the way in which LOOP-MODE can be used in conjunction withMETA-LEVEL for metalanguage purposes, we discuss in some detail the way inwhich we make use of it in the implementation of Full Maude. The completespeci�cation can be found in [19]. In Full Maude, the state of the system isgiven by a single object of class database. This object has attributes db, tokeep the actual database in which all the modules being entered are stored, anattribute default, to keep the identi�er of the current module by default, andattributes input and output to simplify the communication of the loop withthe database. Using the notation for classes in object-oriented modules (seeSection 3.2) we can declare the class database as follows21.class database | db : Database, input : TermList,output : QidList, default : ModId .Since we assume that database is the only object class that has beende�ned|so that the only objects of sort Object will belong to the databaseclass|to specify the admissible states in the persistent state of LOOP-MODE forFull Maude, it is enough to give the subsort declarationsubsort Object < State .We now give the rules to initialize the loop, and to specify the communi-cation between the loop|the input/output of the system|and the database.Depending on the kind of input that the database receives, its state will bechanged or some output will be generated. Before giving the rules we needsome declarations. We start declaring a constant o of sort Oid to identify thepersistent database object, and a constant init to name the initial value ofthe loop.op o : -> Oid .op init : -> System .The rule specifying the initial value of the loop is given below. In it,initialDatabase is a constant naming the initial database22.rl [init] :init21Note that since the module FULL-MAUDE is a system module in Core Maude, object-orienteddeclarations such as this one cannot be given directly. Instead, the equivalent declarationsdesugaring the desired object-oriented module have to be speci�ed.22Possibly containing the library of prede�ned modules and some other prede�ned modules,such as CONFIGURATION.



CHAPTER 2. CORE MAUDE 87=> [nil,< o : database |db : initialDatabase, input : nilTermList,output : nil, default : nullModId >,nil] .To initialize the loop we have to writeMaude> loop init .When some text has been introduced in the loop, the �rst argument of theoperator [ , , ] is di�erent from nil, and we can use this fact to activate thefollowing rule, that enters an input such as a module or a command from theuser into the database. The constant grammar names the module containing thesignature de�ning the top level syntax of Full Maude (see Appendix C). Thisgrammar is used by the meta-parse function in META-LEVEL to parse the input.In case of being a syntactically valid input, the parsed input is placed in theinput attribute of the database object; otherwise, an error message is placed inthe output channel of the loop.crl [in] :[QIL,< o : database | db : DB,input : nilTermList,output : nil,default : MI >,QIL']=> if meta-parse(grammar, QIL) == error*then [nil,< o : database | db : DB,input : nilTermList,output : ('ERROR: 'incorrect 'input '.),default : MI >,QIL']else [nil,< o : database | db : DB,input : meta-parse(grammar, QIL),output : nil,default : MI >,QIL']fiif QIL =/= nil .When the output attribute of the persistent object contains a nonempty listof quoted identi�ers, the out rule moves it to the third argument of the loop.Then the Core Maude system displays it in the terminal.crl [out] :[QIL,< o : database | db : DB, input : TL,output : QIL', default : MI >,QIL'']=> [QIL,< o : database | db : DB, input : TL,output : nil, default : MI >,



CHAPTER 2. CORE MAUDE 88(QIL' QIL'')]if QIL' =/= nil .For each particular language, the rewrite rules de�ning the system behaviorfor di�erent language commands are speci�ed according to the speci�c detailsof the language in question. We illustrate below the case of Full Maude. InFull Maude there is a function processUnit that takes as arguments the resultof the call to meta-parse, an empty module of the kind of the module beingintroduced|named by the constant emptyStrFModule in the rule below|andthe current database. It returns a modi�ed copy of the database after processingthe new module. Thus, for example, for the case of the constructor of functionalmodules in the module grammarop fmod_is_endfm : Token DeclList -> PreModule .the processing of a functional PreModule once it has been entered into thesystem is done by the rulerl [functional-module] :< o : database | db : DB,input : ('fmod_is_endfm[T, T']),output : nil,default : MI >=> < o : database |db : processUnit(T, T', emptyStrFModule, DB),input : nilTermList,output : ('Introduced 'module:modIdToQid(parseModName(T))),default : parseModName(T) > .Note the message placed in the output channel, and the change in the currentmodule by default, which is now the new module just processed. Since the nameT of the module can be complex|a module expression|, some extra parsinghas to be performed by the auxiliary function parseModName.User-de�ned commands are handled by rules as well. For example, the showmodule command, which prints the speci�ed module, or the current one if nomodule name is speci�ed, is handled by the following rules.rl [show-module-1] :< o : database | db : DB,input : ({'show`module`.}'PreCommand),output : nil, default : MI >=> < o : database |db : DB, input : nilTermList,output : meta-pretty-print(getFlatModule(MI, DB),getTopModule(MI, DB)),default : MI > .rl [show-module-2] :< o : database | db : DB, input : ('show`module_.[T]),output : nil, default : MI >=> < o : database |db : DB, input : nilTermList,output : meta-pretty-print(getFlatModule(parseModExp(T), DB),



CHAPTER 2. CORE MAUDE 89getTopModule(parseModExp(T), DB)),default : MI > .The functions getTopModule and getFlatModule return, respectively, themodule as introduced by the user and its attened version23 as stored in thedatabase.2.9 System Issues and Debugging2.9.1 Command Line OptionsThe interpreter is started by the commandmaude ag* �le*where maude is the name of the executable (it might be called something likemaude.linux on a linux box). The �le prelude.maude should normally be inthe same directory as the maude executable. If any �les are speci�ed, theywill be read in after prelude.maude, but before the interpreter reads from thestandard input. Currently understood ags are:-no-mix�xStart the interpreter in pre�x mode. This is intended for noninteractiveuse with a post processor.-no-preludeDo not attempt to read in prelude.maude on start up.-batchDo not handle control-C.2.9.2 Debugging Core Maude Speci�cationsThere are two approaches to debugging Core Maude speci�cations. The mostgeneral technique is to turn tracing on with the commandset trace on .and capture a log of the trace using script or xterm logging. This can then bestudied using a text editor. Since the trace is usually voluminous, there are anumber of trace options to control just what is traced. One of the more usefulis selective tracing:set trace select on .trace select foo bar ([_,_]) .This will cause only rewrites where the redex is headed by operators with theselected names to be traced. Note that these operators need not be in existenceat the time the trace select command is executed; thus it is possible to selectoperators that will only be created at runtime via the metalevel.The other approach is to use the Core Maude debugger. When reductions arehappening and a control-C interrupt is received, the debugger is automaticallyentered. The prompt changes to Debug(n)> where n is the debug level; or thenumber of times the debugger has been re-entered (it is fully re-entrant). All toplevel commands can be executed from the debugger, along with four commandsthat are special to the debugger:23We call attened module to the version of the module in which the module and all itssubmodules have been collapsed to a single module.



CHAPTER 2. CORE MAUDE 90where .Prints out the stack of pending rewrites, explaining how each one arose.step .Executes the next rewrite with tracing turned on.resume .Exits the debugger and continues with the current rewriting task.abort .Exits the debugger and abandons the current rewriting task.Since it is sometimes useful to enter the debugger just before the �rst rewritetakes place, the reduce, rewrite and continue commands can be pre�xed bythe debug keyword to accomplish this. For example:debug rewrite [8] in MY-SPEC : init-symbol .2.9.3 User Facilities Not Yet ImplementedThere are a number of important features that have not yet been implementedin Core Maude in this release. Here is a list of the most important omissions.1. Module renamings24.2. Garbage collection for top level modules.3. Special strategy for the rewrite command in the case of object-orientedmodules, and built-in objects and messages.4. Various built-in data types.5. Error handling and recovery for certain situations.6. Rules whose conditions can contain not only equations and membershipaxioms, but other rewrites.7. Memoization.8. Operators that have both assoc and idem attributes.2.9.4 Miscellaneous Di�erences from OBJ31. True rewriting modulo identity is implemented rather than the restrictedversion done by OBJ3; this leads to nontermination more often.2. The attribute idr: is not recognized.3. Maude allows arbitrary forward references to sorts, variables and operatorswithin a module. The order of statements in a module is irrelevant, except,possibly, on error messages, importations, and nonconuent systems.4. Identities are not restricted to being constants; an identity may be anyground term that does not have the parent operator on top. Cyclic depen-dencies between two or more identity elements is explicitly allowed and iscorrectly resolved by the matching algorithms.24Renamings and, more generally, module expressions are of course supported in Full Maude.



CHAPTER 2. CORE MAUDE 915. The attribute idem means rewriting modulo idempotence, rather thanadding the equation for idempotence.6. The lefthand side of an equation can be a single variable; this often (butnot always) leads to nontermination.7. Error supersorts are used instead of retracts; this is due to the use of mem-bership equational logic, so that the error supersorts exactly correspondto kinds.8. Operator strategies available with the strat attribute do not supportnegative integers (evaluate on demand) and are restricted to a subsetof \sensible" strategies that depend on the operator's other attributes.Various OBJ3 strategy bugs are not emulated [21].9. Operators which have the assoc attribute may be used in \attened"form, e.g., f(a, b, c) instead of f(a, f(b, c)) or f(f(a, b), c).10. Operators may always be used in pre�x form, e.g., if then else fi(b, t, e)instead of if b then t else e fi.11. Labeled equations are not supported (use labeled rules).12. Sort declarations of operators with assoc, comm, id: and idem attributesmust respect those attributes: rearrangement or permutation by associa-tivity or commutativity must not change the sort of a term, while collapsedue to identity or idempotence must either lower the sort of a term orleave it unchanged.13. There is no support for Lisp|the Maude interpreter is written in C++.2.9.5 Traps for the UnwaryBare Variable Lefthand SidesThe use of a bare variable lefthand side for an equation, rule, or membershipaxiom may lead to unexpected nontermination. The recommended place to usethem is in rules which are only going to be applied via a strategy language.Using them in membership axioms is seductive, but very tricky. For example:subsort Prime < Nat .var N : Nat .cmb N : Prime if favoritePrimeTest(N) .will end up with the membership axiom and favoritePrimeTest being appliedto every reduced term of sort Nat, including those that arise during evaluationof favoritePrimeTest(N) with likely nontermination.Collapse TheoriesUsing id: or idem attributes means that you are (notionally) working within�nite congruence classes and that many lefthand side patterns will matchin unexpected ways. Unlike OBJ3, Maude has true collapse matching algo-rithms, rather than identity completion, and it does not try to omit problematicmatches. Consider for example the module



CHAPTER 2. CORE MAUDE 92fmod FOO issort Foo .ops a e : -> Foo .op f : Foo Foo -> Foo [left id: e] .var X : Foo .eq f(X, a) = ...endfmThen we havea = f(e, a) = f(e, f(e, a)) = f(f(e, e), a) = : : :In particular, the pattern f(X, a) matches a with X  e leading to possiblenontermination. You should be wary of having an operator with an identityelement as the top symbol for a lefthand side. One useful trick when you needa pattern like f(X, a) is to use a pattern f(Y, a) where Y has a sort lowerthan that of the identity element. For example:fmod NAT issorts Nat NzNat .subsort NzNat < Nat .op 0 : -> Nat .op s : Nat -> NzNat .op + : Nat Nat -> Nat [assoc comm id: 0] .op + : Nat NzNat -> Nat [assoc comm id: 0] .var X : Nat .var Y : NzNat .eq +(s(X), Y) = s(+(X, Y)) .endfmHere +(s(X), Y) cannot match s(0) because, although s(0) = +(s(0), 0)by the identity attribute, Y cannot match 0.Rewriting with the idem attribute is even riskier. For example:fmod FOO2 issort Foo .ops a b : -> Foo .op f : Foo Foo -> Foo [idem] .var X : Foo .eq a = b .endfmWe then havea = f(a, a) = f(f(a, a), a) = f(a, f(a, a)) = : : :And thus, if a can be rewritten by an equation, then any number of rewritescan be done by using the idem axiom to create new copies of a. In fact, thecurrent implementation would choose the obvious rewrite and just produce b,but this should not be relied on; FOO2 is a nonterminating system. The onlysafe way to use idem is as follows. Whenever a connected component is thedomain and range of an operator having the idem attribute, then its sorts arepoisoned. Terms of poisoned sorts must never rewrite other than by rules underthe control of a strategy. They must be built out of free (other than attributes)constructors. Of course it is ok to have de�ned functions that work on suchconstructor terms; it is just that the terms themselves may not rewrite.



CHAPTER 2. CORE MAUDE 93One-sided Identities and AssociativityWhen the associativity axiom is combined with a one-sided identity axiom someunexpected matching properties result. Consider the module:fmod BAR issort Foo .ops a b 1f : -> Foo .op f : Foo Foo -> Foo [assoc left id: 1f] .var X Y : Foo .endfmThenmatch f(X, Y) <=? f(a, b) .yields three solutions:Solution 1X:Foo --> 1fY:Foo --> f(a, b)Solution 2X:Foo --> aY:Foo --> bSolution 3X:Foo --> f(a, 1f)Y:Foo --> bwhereas the naive user may not have expected the last solution. Matching withextension can be even more surprising:xmatch f(X, Y) <=? f(a, b) .yields �ve solutions:Solution 1Matched portion = f(a, 1f)X:Foo --> aY:Foo --> 1fSolution 2Matched portion = f(a, 1f)X:Foo --> f(a, 1f)Y:Foo --> 1fSolution 3Matched portion = (whole)X:Foo --> 1fY:Foo --> f(a, b)Solution 4Matched portion = (whole)X:Foo --> aY:Foo --> b



CHAPTER 2. CORE MAUDE 94Solution 5Matched portion = (whole)X:Foo --> f(a, 1f)Y:Foo --> bHere the �rst two solutions match a portion f(a, 1f) of the subject that was notapparent from the original problem. However, if one considers the congruenceclass of f(a, b) they are valid solutions that are necessary for correct simulationof congruence class (conditional) rewriting.2.9.6 Known Problems1. The user input is not checked very rigorously, and some kinds of unde-tected errors can cause core dumps while other kinds of errors are fatal.This problem will gradually go away as error handling and recovery isimproved.2. The interpreter can be very stack hungry when working on deep terms.This is an unfortunate consequence of the highly modular design of therewrite engine. Stack overow usually manifests itself as a segmentationfault with a corrupted core dump; try the UNIX command unlimit stacksize before running the interpreter. Stack overow is also characteristic ofnonterminating computations.3. Heap usage for storing and processing large modules can be quite large.In particular, the memory required for parsing can be quadratic in thesize of the (attened) signature. This problem is magni�ed because toplevel modules are not yet garbage collected.4. Response to control-C can be delayed a very long time when the interpreteris reading in modules or printing results.



Chapter 3Full MaudeDuring the development of the Maude system we have put special emphasison the creation of metaprogramming facilities to allow the generation of exe-cution environments for a wide variety of languages and logics. The �rst mostobvious area where Maude can be used as a metalanguage is in building lan-guage extensions for Maude itself. Our experience in this regard|�rst reportedin [18], and further documented here and in [19]|is very encouraging. Wehave been able to de�ne in Core Maude a language extension with notationfor object-oriented programming, parameterized modules, views (for module in-stantiation) and module expressions [18]. Furthermore, using the META-LEVELand LOOP-MODE modules, we have also been able to de�ne in Core Maude allthe additional functionality required for parsing, evaluating, and pretty print-ing modules in the extended language, and also for input/output interaction, asalready discussed in Sections 2.5.6 and 2.8.Thanks to the e�cient implementation of the rewrite engine, the parser, andthe module META-LEVEL, such a language extension executes with reasonable ef-�ciency. In the future, however, we may support in Core Maude a signi�cantpart of the functionality currently supported by Full Maude. Full Maude con-tains Core Maude as a sublanguage, so that Core Maude modules can also beentered at the Full Maude level. However, at present there are a few syntac-tic restrictions that have to be satis�ed by modules and commands in order tobe acceptable inputs at the Full Maude level. These syntactic restrictions areexplained in Section 3.6; they will be removed in the future.Since the execution environment for Full Maude has been implemented inCore Maude, to initialize the system so that we can start using it, the �rstthing we have to do is to load the FULL-MAUDEmodule in the system. Assumingthat the �le full-maude.maude, containing such speci�cation, is located in thecurrent directory, we just need to type the corresponding in command in theMaude prompt.Maude> in full-maude.maudeThe Full Maude system is then loaded and we can use it as any other module.Before entering any module or executing any command in Full Maude we need toinitialize the system. Full Maude uses the LOOP-MODE module in order to allowthe entering of modules into the system and to maintain a persistent databasein which to store all the modules, theories and views being introduced. To startthe loop we need to typeMaude> loop init . 95



CHAPTER 3. FULL MAUDE 96where init is a constant of sort System giving the initial state of the Full Maudedatabase.We are now ready. Let us recall from Section 2.8 that to get somethinginto the LOOP-MODE system, the text has to be enclosed in parentheses. Thismeans that any module or command intended for Full Maude has to be writtenenclosed in parentheses. Notice that, since Core Maude is still active|indeed, itnow provides what might be called the system programming level|it will handleany input not enclosed in parentheses. This allows the possibility of using bothsystems at the same time.3.1 Functional and System ModulesA Core Maude module, such as those presented in previous sections, can beentered in Full Maude by enclosing it in parentheses. For example, the modulePATH given in Section 2.1 can be entered to Full Maude as follows.Maude> (fmod PATH isprotecting MACHINE-INT .sorts Edge Path Path? Node .subsorts Edge < Path < Path? .ops n1 n2 n3 n4 n5 : -> Node .ops a b c d e : -> Edge .op _;_ : Path? Path? -> Path? [assoc] .ops source target : Path -> Node .op length : Path -> MachineInt .var E : Edge .var P : Path .cmb E ; P : Path if target(E) == source(P) .ceq source(E ; P) = source(E) if E ; P : Path .ceq target(P ; E) = target(E) if P ; E : Path .eq length(E) = 1 .ceq length(E ; P) = 1 + length(P) if E ; P : Path .eq source(a) = n1 .eq target(a) = n2 .eq source(b) = n1 .eq target(b) = n3 .eq source(c) = n3 .eq target(c) = n4 .eq source(d) = n4 .eq target(d) = n2 .eq source(e) = n2 .eq target(e) = n5 .endfm)As in Core Maude, we can enter any module or command by writing itdirectly after the prompt, or by having it in a �le and then using the in commandof Core Maude. Also as in Core Maude, we can write several Full Maude modules



CHAPTER 3. FULL MAUDE 97or commands in a �le and then enter all of them with a single in command;but each of the modules or commands has to be enclosed in parentheses. InFull Maude, in addition to functional and system modules and some of theCore Maude commands, we can enter object-oriented modules, parameterizedmodules, theories, views and some additional commands. We discuss all theseconcepts in the coming sections.As we will discuss in Section 3.4, we can do some reduction or rewritingusing a syntax for commands such as that of Core Maude, although with someminor di�erences that will be explained in Section 3.4.Maude> (red b ; c ; d .)Result Path? : b ; c ; dMaude> (red length(b ; c ; d) .)Result NzMachineInt : 3Maude> (red a ; b ; c .)Result Path? : a ; b ; cMaude> (red source(a ; b ; c) .)Result errorSort(Node) : source(a ; b ; c)Maude> (red target(a ; b ; c) .)Result errorSort(Node) : target(a ; b ; c)Maude> (red length(a ; b ; c) .)Result errorSort(MachineInt) : length(a ; b ; c)In the rest of this chapter we describe the syntax of Full Maude giving thedeclarations of sorts, subsort relations, and operators included in the actualmodule used in the parsing of the inputs to Full Maude. We use the techniquesdescribed in Section 2.7.6 to parse these inputs. In addition to the declarationsfor Token, Bubble, and NeTokenList introduced in Section 2.7.6, we need to adddeclarations for two new kinds of tokens, namely ViewToken and SortToken.These two sorts are just particular cases of tokens which exclude several identi-�ers.op viewToken : Qid -> ViewToken[special(id-hook Bubble (1 1)op-hook qidBaseSymbol (<Qids> : -> Qid)id-hook Exclude (assoc associativecomm commutativeidem idempotent))] .op sortToken : Qid -> SortToken[special(id-hook Bubble (1 1)op-hook qidBaseSymbol (<Qids> : -> Qid)id-hook Exclude ([ ] < to : , . ( )))] .The basic syntax for the declarations of sorts, subsort relations, and opera-tions in Full Maude modules is given by the following declarations1.1We do not give all the declarations in this chapter. The complete set of declarations canbe found in Appendix C.



CHAPTER 3. FULL MAUDE 98subsorts SortToken < Sort < SortList .subsort Attr < AttrList .op __ : SortList SortList -> SortList [assoc] .op sort_. : SortList -> SortDecl .op sorts_. : SortList -> SortDecl .op _<_ : SortList SortList -> SubsortRel .op _<_ : SortList SubsortRel -> SubsortRel .op subsort_. : SubsortRel -> SubsortDecl .op subsorts_. : SubsortRel -> SubsortDecl .op assoc : -> Attr .op comm : -> Attr .op id:_ : Bubble -> Attr .op left id:_ : Bubble -> Attr .op right id:_ : Bubble -> Attr .op strat(_) : NeTokenList -> AttrList .op prec_ : Token -> Attr .op gather(_) : NeTokenList -> Attr .op idem : -> Attr .op __ : AttrList AttrList -> AttrList [assoc] .op op_: ->_. : Token Sort -> OpDecl .op op_: ->_[_]. : Token Sort AttrList -> OpDecl .op op_:_->_. : Token SortList Sort -> OpDecl .op op_:_->_[_]. : Token SortList Sort AttrList -> OpDecl .op ops_: ->_. : NeTokenList Sort -> OpDecl .op ops_: ->_[_]. : NeTokenList Sort AttrList -> OpDecl .op ops_:_->_. : NeTokenList SortList Sort -> OpDecl .op ops_:_->_[_]. : NeTokenList SortList Sort AttrList -> OpDecl .Full Maude supports, not only module hierachies, that is, acyclic graphsof module importations, as discussed in Section 2.3 for Core Maude, but alsoparameterized programming techniques in the OBJ3 style. In particular, FullMaude supports importations in including and protecting modes, not onlyfor user-de�ned modules, but, as we will see in Section 3.5.4, for module expres-sions as well. The syntax for importation declarations is as follows.subsort Token < ModExp .op including_. : ModExp -> ImportDecl .op protecting_. : ModExp -> ImportDecl .The syntax for the declaration of variables, membership axioms, equations, andrules is the following.op vars_:_. : NeTokenList Sort -> VarDecl .op var_:_. : NeTokenList Sort -> VarDecl .op mb_:_. : Bubble Sort -> MembAxDecl .op cmb_:_if_. : Bubble Sort Bubble -> MembAxDecl .op eq_=_. : Bubble Bubble -> EquationDecl .



CHAPTER 3. FULL MAUDE 99op ceq_=_if_. : Bubble Bubble Bubble -> EquationDecl .op rl[_]:_=>_. : Token Bubble Bubble -> RuleDecl .op crl[_]:_=>_if_. : Token Bubble Bubble Bubble -> RuleDecl .Finally, the top syntax for functional and system modules is given by the fol-lowing declarations.subsort VarDecl < VarDeclList .op __ : VarDeclList VarDeclList -> VarDeclList [assoc] .subsorts ImportDecl SortDecl SubsortDecl OpDeclMembAxDecl EquationDecl VarDeclList < FDeclList .op __ : FDeclList FDeclList -> FDeclList [assoc] .subsorts RuleDecl FDeclList < SDeclList .op __ : SDeclList SDeclList -> SDeclList [assoc] .subsort Token < ModuleName .op fmod_is_endfm : ModuleName FDeclList -> PreModule .op mod_is_endm : ModuleName SDeclList -> PreModule .3.2 Object-Oriented ModulesIn a concurrent object-oriented system the concurrent state, which is usuallycalled a con�guration, has typically the structure of a multiset made up ofobjects and messages that evolves by concurrent ACU -rewriting2 using rulesthat describe the e�ects of communication events between some objects andmessages. Intuitively, we can think of messages as \traveling" to come intocontact with the objects to which they are sent, and then causing \communica-tion events" by application of rewrite rules. Therefore, we can view concurrentobject-oriented computation as deduction in rewriting logic; in this way, thecon�gurations S that are reachable from a given initial con�guration S0 are ex-actly those such that the sequent S0 �! S is provable in rewriting logic usingthe rewrite rules that specify the behavior of the given object-oriented system.An object in a given state is represented as a term< O : C | a1: v1, : : :, an: vn >where O is the object's name or identi�er, C is its class identi�er, the ai's arethe names of the object's attribute identi�ers, and the vi's are the correspondingvalues. An object with no attributes can be represented as< O : C | >Messages do not have a �xed syntactic form. Such syntactic form can be de�nedby the user for each application. The concurrent state of an object-orientedsystem is then a multiset of objects and messages, called a Configuration,with multiset union described with empty syntax .The following module CONFIGURATION de�nes the basic concepts of concur-rent object systems. Note that the sorts Message and Attribute|as well asthe sorts Oid and Cid of object and class identi�ers|are for the moment left2We call rewriting modulo associativity, commutativity and identity ACU -rewriting.



CHAPTER 3. FULL MAUDE 100unspeci�ed. They will become fully de�ned when the CONFIGURATION mod-ule is extended by speci�c object-oriented de�nitions in a given object-orientedmodule.fmod CONFIGURATION issorts Oid Cid Attribute AttributeSetObject Msg Configuration .subsorts Object Msg < Configuration .subsort Attribute < AttributeSet .op none : -> AttributeSet .op _,_ : AttributeSet AttributeSet -> AttributeSet[assoc comm id: none] .op <_:_| > : Oid Cid -> Object .op <_:_|_> : Oid Cid AttributeSet -> Object .op none : -> Configuration .op __ : Configuration Configuration -> Configuration[assoc comm id: none] .endfmIn Full Maude, concurrent object-oriented systems can be de�ned by meansof object-oriented modules|introduced by the keyword omod|using a syntaxmore convenient than that of system modules because it assumes acquaintancewith the basic entities, such as objects, messages and con�gurations, and sup-ports linguistic distinctions appropriate for the object-oriented case. In partic-ular, all object-oriented modules implicitly include the above CONFIGURATIONmodule and assume its syntax. For example, the ACCNT object-oriented modulebelow speci�es the concurrent behavior of objects in a very simple class Accntof bank accounts, each having a bal(ance) attribute, which may receive mes-sages for crediting or debiting the account, or for transferring funds betweentwo accounts.(omod ACCNT isprotecting QID .protecting MACHINE-INT .subsort Qid < Oid .class Accnt | bal : MachineInt .msgs credit debit : Oid MachineInt -> Msg .msg transfer_from_to_ : MachineInt Oid Oid -> Msg .vars A B : Oid .vars M N N' : MachineInt .rl [credit] : credit(A, M) < A : Accnt | bal : N >=> < A : Accnt | bal : (N + M) > .crl [debit] : debit(A, M) < A : Accnt | bal : N >=> < A : Accnt | bal : (N - M) >if N > M .crl [transfer] : (transfer M from A to B)



CHAPTER 3. FULL MAUDE 101< A : Accnt | bal : N > < B : Accnt | bal : N' >=> < A : Accnt | bal : (N - M) >< B : Accnt | bal : (N' + M) >if N > M .endom)3.2.1 The Syntax of Object-Oriented ModulesClasses are de�ned with the keyword class, followed by the name of the classC, and by a list of attribute declarations separated by commas. Each attributedeclaration has the form a : S, where a is an attribute identi�er and S is the sortin which the values of the attribute identi�er range. That is, class declarationshave the form class C | a1: S1, : : : , an: Sn .We can declare classes without attributes using syntaxclass C .The basic syntax for class declarations is given by the following operatorsand subsort relationship.subsort AttrDecl < AttrDeclList .op _:_ : Token Sort -> AttrDecl [prec 40] .op _,_ : AttrDeclList AttrDeclList -> AttrDeclList [assoc] .op class_|_. : Sort AttrDeclList -> ClassDecl .op class_. : Sort -> ClassDecl .In this example, the only attribute of an account is its bal(ance), which is de-clared to be a value in MachineInt, a sort declared in the module MACHINE-INT.The three kinds of messages involving accounts are credit, debit, and transfermessages, whose user-de�nable syntax is introduced by the keyword msg. No-tice the use of msgs to de�ne multiple messages with the same arity in a singledeclaration.The syntax for message declarations is given by the following operators.op msg_:_->_. : Token SortList Sort -> MsgDecl .op msgs_:_->_. : NeTokenList SortList Sort -> MsgDecl .The rewrite rules in the module specify in a declarative way the behaviorassociated with the messages. The multiset structure of the con�guration pro-vides the top-level distributed structure of the system and allows concurrentapplication of the rules [38]. For example, we can rewrite a simple con�gurationconsisting of an account and a message as follows.Maude> (rew < 'Peter : Accnt | bal : 2000 >debit('Peter, 1000) .)Result Object : < 'Peter : Accnt | bal : 1000 >Class inheritance is directly supported by Maude's order-sorted type struc-ture. A subclass declaration C < C' in an object-oriented module is just aparticular case of a subsort declaration C < C'. The e�ect of a subclass decla-ration is that the attributes, messages, and rules of all the superclasses as well



CHAPTER 3. FULL MAUDE 102as the newly de�ned attributes, messages, and rules of the subclass characterizethe structure and behavior of the objects in the subclass.For example, we can de�ne an object-oriented module SAV-ACCNT of savingaccounts introducing a subclass SavAccnt of Accnt with a new attribute raterecording the interest rate of the account. We leave unspeci�ed the rules forcomputing and crediting the interest of an account according to its rate whoseproper expression should introduce a real-time3 attribute in account objects.(omod SAV-ACCNT isincluding ACCNT .class SavAccnt | rate : MachineInt .subclass SavAccnt < Accnt .endom)In this example, there is only one class immediately above SavAccnt, namely,Accnt. In general, however, a class C may be de�ned as a subclass of severalclasses D1; : : : ; Dk, i.e., multiple inheritance is supported. If an attribute andits sort have already been declared in a superclass, they should not be declaredagain in the subclass. Indeed, all such attributes are inherited . In the case ofmultiple inheritance, the only requirement that is made is that if an attributeoccurs in two di�erent superclasses, then the sort attributed to it in each of thosesuperclasses must be the same. In summary, a class inherits all the attributes,messages, and rules from all its superclasses. An object in the subclass behavesexactly as any object in any of the superclasses, but it may exhibit additionalbehavior due to the introduction of new attributes, messages, and rules in thesubclass.As for subsort relationships, we can declare multiple subclass relationshipsin the same declaration. Thus, given, for example, classes A, ..., H, we can havea declaration such assubclasses A B C < D E < F G H .Since class names have the same form as sorts, in the signature used to parseFull Maude given in Appendix C, we use the sort Sort to parse them, and thesort SortList for lists of names of classes. The syntax for subclass declarationsis given by the following operators.op subclass_. : SubsortRel -> SubclassDecl .op subclasses_. : SubsortRel -> SubclassDecl .Objects in the class SavAccnt will have an attribute bal and can receivemessages debiting, crediting and transferring funds exactly as any other objectin the class Accnt. We can now rewrite a con�guration, obtaining the followingresult.Maude> (rew < 'Paul : SavAccnt | bal : 5000, rate : 3 >< 'Peter : Accnt | bal : 2000 >< 'Mary : SavAccnt | bal : 9000, rate : 3 >debit('Peter, 1000)credit('Paul, 1300)credit('Mary, 200) .)Result Configuration :< 'Peter : Accnt | bal : 1000 >3See [49] for a general method to specify real-time systems in rewriting logic.



CHAPTER 3. FULL MAUDE 103< 'Paul : SavAccnt | bal : 6300 , rate : 3 >< 'Mary : SavAccnt | bal : 9200 , rate : 3 >The top level syntax for object-oriented modules is given by the followingdeclarations.subsorts SDeclList MsgDecl SubclassDecl ClassDecl < ODeclList .op omod_is_endom : ModuleName ODeclList -> PreModule .3.2.2 Transforming Object-Oriented Modules into SystemModulesThe best way to understand classes and class inheritance in Maude is by mak-ing explicit the full structure of an object-oriented module, which is left some-what implicit in the syntactic conventions adopted for them. Indeed, althoughMaude's object-oriented modules provide convenient syntax for programmingobject-oriented systems, their semantics can be reduced to that of system mod-ules. We can regard the special syntax reserved for object-oriented modulesas syntactic sugar. In fact, each object-oriented module can be translated intoa corresponding system module whose semantics is by de�nition that of theoriginal object-oriented module.However, although Maude's object-oriented modules can in this way be re-duced to system modules, there are of course important conceptual advantagesprovided by the syntax of object-oriented modules, because it allows the userto think and express his or her thoughts in object-oriented terms wheneversuch a viewpoint seems best suited for the problem at hand. Those conceptualadvantages would be lost if only system modules were provided.In the translation process, the most basic structure shared by all object-oriented modules is made explicit by the CONFIGURATION functional modulede�ned at the beginning of this section. The translation of a given object-oriented module extends this structure with the classes, messages and rulesintroduced by the module. For example, the following system module is thetranslation of the ACCNT module introduced earlier. Note that a subsort Accntof Cid is introduced. The purpose of this subsort is to range over the classidenti�ers of the subclasses of Accnt. For the moment, no such subclasses havebeen introduced; therefore, at present the only constant of sort Accnt is theclass identi�er Accnt.mod ACCNT isincluding MACHINE-INT .including QID .including CONFIGURATION .sorts Accnt .subsort Qid < Oid .subsort Accnt < Cid .op Accnt : -> Accnt .op credit : Oid MachineInt -> Msg .op debit : Oid MachineInt -> Msg .op transfer_from_to_ : MachineInt Oid Oid -> Msg .op bal :_ : MachineInt -> Attribute .var A : Oid .var B : Oid .var M : MachineInt .



CHAPTER 3. FULL MAUDE 104var N : MachineInt .var N' : MachineInt .var V@Accnt : Accnt .var ATTS@0 : AttributeSet .var V@Accnt1 : Accnt .var ATTS@2 : AttributeSet .rl [credit] : credit(A, M)< A : V@Accnt | bal : N, none, ATTS@0 >=> < A : V@Accnt | bal : (N + M), ATTS@0 > .crl [debit] : debit(A, M)< A : V@Accnt | bal : N, none, ATTS@0 >=> < A : V@Accnt | bal : (N - M), ATTS@0 >if N > M = true .crl [transfer] : (transfer M from A to B)< A : V@Accnt | bal : N, none, ATTS@0 >< B : V@Accnt1 | bal : N', none, ATTS@2 >=> < A : V@Accnt | bal : (N - M), ATTS@0 >< B : V@Accnt1 | bal : (N' + M), ATTS@2 >if N > M = true .endmWe can describe the desired transformation from an object-oriented moduleto a system module as follows4:� The module CONFIGURATION is imported.� For each class declaration of the form class C | a1:S1, : : : ,an:Sn, thefollowing has to be introduced: a subsort C of sort Cid, a constant C ofsort C, and declarations of operations ai : : Si -> Attribute for eachattribute ai.� For each subclass relation C < C 0 a subsort declarationsubsort C < C 0 .is introduced, and the set of attributes for objects of class C are completedwith those of C 0.� The rewrite rules are modi�ed to make them applicable to all objectsof the given classes and of their subclasses, that is, not only to objectswhose class identi�ers are those explicitly given. The rules are then \in-herited" by all objects in their subclasses by replacing the class identi�ersin the objects in the rules by variables of the corresponding class sort.Variables of sort AttributeSet are also introduced to range over the ad-ditional attributes that may appear in objects of a subclass. That is,each object < O : C | : : : > appearing in a rule, is translated into< O : X | : : : , Atts > where the new variable X is declared of sortC, and the new variable Atts has sort AttributeSet.� As described in [38], we simplify the notation used in object-oriented mod-ules by giving the user the possibility of not mentioning in a given rulethose attributes of an object that are not relevant for that rule. To explainthis convention, let a : v denote the attribute-value pairs a1 : v1; : : : ; an : vn,4Notice that we have simpli�ed the transformation of object-oriented modules into systemmodules that originally appeared in [38].



CHAPTER 3. FULL MAUDE 105where the a are the attribute identi�ers of a given class C (after completingit with all the attributes in its superclasses) having S as the correspondingsorts of values prescribed for those attributes. Then, in object-orientedmodules we allow rules where the attributes for an object O, mentionedin the lefthand and righthand sides of a rule, need not exhaust all theobject's attributes, but can instead be in any two arbitrary subsets of theobject's attributes. We can picture this as follows: : : hO : C j al : vl; ab : vbi : : : �! : : : hO : C j ab : vb0; ar : vri : : :where al are the attributes appearing only on the left, ab are the attributesappearing on both sides, and ar are the attributes appearing only on theright. In the transformation into a system module, this rule is translatedinto : : : hO : X j al : vl; ab : vb; ar : x; ac : x0; Attsi : : :�! : : : hO : X j al : vl; ab : vb0; ar : vr; ac : x0; Attsi : : :where X is a variable of sort C, ac are the attributes de�ned in the classC that do not appear in al, ab, or ar, the x and x0 are new variables of theappropriate sorts, and Atts matches the remaining attribute-value pairs.Although the form of the rule obtained is slightly di�erent from the onegiven in [38], the convention is similar to the convention presented there:The attributes mentioned only on the left are preserved unchanged, theoriginal values of attributes mentioned only on the right do not matter,and all attributes not explicitly mentioned are left unchanged.The rewrite rules given in the original ACCNT module are interpreted here|according to the conventions already explained|in a form that can be inheritedby subclasses of Accnt that could be de�ned later. Thus, SavAccnt inherits therewrite rules for crediting and debiting accounts, and for transferring fundsbetween accounts that had been de�ned for Accnt.Let us illustrate the treatment of class inheritance with the system moduleresulting from the transformation of the module SAV-ACCNT introduced previ-ously.mod SAV-ACCNT isincluding CONFIGURATION .including ACCNT .sorts SavAccnt .subsort SavAccnt < Cid .subsort SavAccnt < Accnt .op SavAccnt : -> SavAccnt .op rate :_ : MachineInt -> Attribute .endm3.3 Structured Speci�cations and Extensions ofMETA-LEVELAs explained for Core Maude in Section 2.3, in Full Maude we can use keywordsprotecting and including, or pr and inc in abbreviated form, to de�ne struc-tured speci�cations. All the prede�ned modules introduced in Section 2.4, plus



CHAPTER 3. FULL MAUDE 106the module META-LEVEL, are also available in Full Maude5. As we will explainin Section 3.5, Full Maude supports not only the importation of modules, butthe importation of module expressions as well.In metalevel computations it is very convenient to be able to refer by nameto the meta-representations of modules already entered into the system. Tomake this possible, Full Maude allows importation declarations of the formprotecting META-LEVEL[Id1; : : : ; Idn] .where Id1; : : : ; Idn is a list of names of user-de�ned modules. With this decla-ration, new constants Id1; : : : ; Idn of sort Module are declared, and equationsmaking each constant Idi equal to the metalevel representation of the modulewith name Idi declared previously by the user, for i = 1 : : : n, are added. Thus,we can �rst enter the module.(fmod NAT issort Nat .op 0 : -> Nat .op s_ : Nat -> Nat .op _+_ : Nat Nat -> Nat [assoc comm id: 0] .var N M : Nat .eq s N + s M = s s (N + M) .endfm)and then we can declare a module that protects META-LEVEL[NAT] and de�nesa function to extract the set of operator declarations of a functional module asfollows.(fmod META-NAT isprotecting META-LEVEL[NAT] .op getOpDeclSet : FModule -> OpDeclSet .var QI : Qid .var IL : ImportList .var SD : SortDecl .var SSDS : SubsortDeclSet .var ODS : OpDeclSet .var VDS : VarDeclSet .var MAS : MembAxSet .var EqS : EquationSet .eq getOpDeclSet(fmod QI is IL SD SSDS ODS VDS MAS EqS endfm)= ODS .endfm)Then we can apply this function to the constant NAT, which in META-NAT hasbeen declared to be equal to the meta-representation of the above module NAT,as follows.Maude> (red getOpDeclSet(NAT) .)Result OpDeclSet :op '0 : nil -> 'Nat [none] .op '_+_ : 'Nat 'Nat -> 'Nat [assoc comm id({'0}'Nat)] .op 's_ : 'Nat -> 'Nat [none] .5The built-in module LOOP-MODE presented in Section 2.8 is not supported in Full Maude.



CHAPTER 3. FULL MAUDE 107We can also use the descent functions as discussed in Section 2.5.5.Maude> (red meta-reduce(NAT, '_+_[{'0}'Nat, 's_[{'0}'Nat]]) .)Result Term : 's_[{'0}'Nat]Note that we have written the actual meta-representation of the term 0 + s 0instead of using the more intuitive notation 0 + s 0 used in Section 2.5.5. How-ever, in Full Maude, we can use the up function to avoid the cumbersome task ofexplicitly writing the meta-representation of a term or the meta-representationof a module. For example, to obtain the meta-representation of a term as s 0in the module NAT, which we denote by s 0, we can writeMaude> (red up(NAT, s 0) .)Result Term : 's_[{'0}'Nat]Thus, instead of explicitly writing the meta-representation 0 + s 0 in the abovereduction we can writeMaude> (red meta-reduce(NAT, up(NAT, 0 + s 0)) .)Result Term : 's_[{'0}'Nat]Note that the module name is the �rst argument of the up function, with theterm of that module to be meta-represented as the second argument. Since thesame term can be parsed in di�erent ways in di�erent modules, and thereforecan have di�erent meta-representations depending on the module in which itis considered, the module to which the term belongs has to be used to obtainthe correct meta-representation. Note also that the above reduction only makessense at the metalevel, that is, in a module importing the module META-LEVEL.The up function also gives us a second way of accessing the meta-represen-tation of any module in the database. Evaluating in any module importingthe module META-LEVEL the up function with the name of any module in thedatabase as argument we obtain the meta-representation of such a module.Thus, assuming that the previous module NAT has been entered in Full Maude,and therefore is in the database, we can get its meta-representation, which wedenote by NAT, as follows.Maude> (red up(NAT) .)Result FModule :fmod 'NAT isnilsorts 'Nat .noneop '0 : nil -> 'Nat [none] .op '_+_ : 'Nat 'Nat -> 'Nat [assoc comm id({'0}'Nat)] .op 's_ : 'Nat -> 'Nat [none] .var 'M : 'Nat .var 'N : 'Nat .noneeq '_+_['s_['N], 's_['M]] = 's_['s_['_+_['N, 'M]]].endfmThis facility can be used to write reductions of terms as those presented inSection 2.5.5, for example of meta-reduce(NAT, s s 0 + s s s 0), as follows.Maude> (red meta-reduce(up(NAT), up(NAT, s s 0 + s s s 0)) .)Result Term : 's_['s_['s_['s_['s_[{'0}'Nat]]]]]



CHAPTER 3. FULL MAUDE 108The result of a metalevel computation that may use several levels of reectioncan be a term or module meta-represented one or more times, which may behard to read. Therefore, to display the output in a more readable form wecan use the down command, which is in a sense inverse to up, since it givesus back the term from its meta-representation. The down command takes twoarguments. The �rst argument is the name of the module to which the termto be returned belongs. The meta-representation of the desired output termshould be the result of the command given as second argument. The syntax ofthe down command is as follows.op down_:_ : ModExp PreCommand -> PreCommand .Thus, we can give the following command.Maude> (down NAT :red-in META-NAT :meta-reduce(NAT, up(NAT, 0 + s 0)) .)Result Nat : s 0Notice that this is equivalent to what we wrote in section 2.5.5 asMaude> red meta-reduce(NAT, s 0 + 0) .result Term: s 0The use of up and down can be iterated with as many levels of reection aswe wish. For example, in a module(fmod META-META-NAT isprotecting META-LEVEL[META-NAT] .endfm)we can give the commandMaude> (down NAT :down META-NAT :red meta-reduce(META-NAT,up(META-NAT,meta-reduce(NAT,up(NAT, 0 + s 0)))) .)Result Nat : s 0This is equivalent to what we would have written using the overline notation asMaude> red meta-reduce(META-NAT, meta-reduce(NAT, s 0 + 0)) .result Term: s 03.4 Commands and the Module DatabaseAs with modules, all commands at the Full Maude level should be enteredenclosed in parentheses. In this way the system can distinguish between com-mands at the Core Maude level|that in this context are \system programming"commands in the module FULL-MAUDE|and commands to be handled by FullMaude.The reduce and rewrite commands have the same e�ect in Full Maudespeci�cations as their homonymous commands in Core Maude.



CHAPTER 3. FULL MAUDE 109The syntax for the reduce commands is given by the following declarations.Notice that, as in Core Maude, red is used as an abbreviation for reduce.However, the command to reduce a term in a given module has a somewhatdi�erent syntax than the one used in Core Maude6.op red_. : Bubble -> PreCommand .op red-in_:_. : ModExp Bubble -> PreCommand .Similarly, the following are the declarations de�ning the syntax of the rewritecommands.op rew_. : Bubble -> PreCommand .op rew[_]_. : Token Bubble -> PreCommand .op rew-in_:_. : ModExp Bubble -> PreCommand .op rew-in[_]_:_. : Token ModExp Bubble -> PreCommand .Full Maude maintains a database with all the modules that have been in-troduced since the begining of the session. Notice that a Full Maude sessiondoes not start automatically when we start the system. The Maude speci�-cation of Full Maude has to be loaded �rst, and the loop has to be initialized.Apart from the built-in modules, Core Maude and Full Maude keep independentmodule stores.As in Core Maude, when a module is not explicitly speci�ed the system usesa module by default, that in general is the last module introduced, althoughone can select another module from the database with the select command.op select_. : ModExp -> PreCommand .There are also several show commands as in Core Maude. There are com-mands to show a module or theory7 as introduced by the user, to show theattened version of any module in the database, and to show some of the com-ponents in a module in the same way as the commands for Core Maude, asexplained in Section A. For any of these commands the name of a module canbe given. If no name is speci�ed, the default current module is used. The syntaxof these commands is as follows.op show module . : -> PreCommand .op show module_. : ModExp -> PreCommand .op show all . : -> PreCommand .op show all_. : ModExp -> PreCommand .op show sorts . : -> PreCommand .op show sorts_. : ModExp -> PreCommand .op show ops . : -> PreCommand .op show ops_. : ModExp -> PreCommand .op show vars . : -> PreCommand .op show vars_. : ModExp -> PreCommand .op show mbs . : -> PreCommand .6To have, for example, the command red in : . we would need the operator declarationop red in : . : ModExp Bubble -> PreCommand .However, given a command like red in NAT : s 0 . there would be two possible parses:red in NAT : s 0 . and red in NAT : s 0 .. Both of them are correct parses, but themeta-parse function returns only one of them. In case of ambiguity, one of the possible parsesis arbitrarily chosen, preventing us from the possibility of taking the right one. This syntacticlimitation as well as those discussed in Section 3.6 will be overcome in a future version.7Theories are discussed in Section 3.5.1.



CHAPTER 3. FULL MAUDE 110op show mbs_. : ModExp -> PreCommand .op show eqns . : -> PreCommand .op show eqns_. : ModExp -> PreCommand .op show rls . : -> PreCommand .op show rls_. : ModExp -> PreCommand .The show view command prints the view8 with the speci�ed name.op show view_. : ViewExp -> PreCommand .The show modules and show views commands print, respectively, the listof the names of all modules, and the list of the names of all views, present inthe database.op show modules . : -> PreCommand .op show views . : -> PreCommand .3.5 Parameterized ProgrammingParameterized modules, theories and views are the basic building blocks of pa-rameterized programming [7, 27]. As in OBJ, a theory de�nes the interface ofa parameterized module, that is, the structure and properties required of anactual parameter. The instantiation of the formal parameters of a parameter-ized module with actual parameter modules requires a view from the formalinterface theory to the corresponding actual module. That is, views provide theinterpretation of the actual parameters.3.5.1 TheoriesTheories are used to declare module interfaces, namely the syntactic and se-mantic properties to be satis�ed by the actual parameter modules used in aninstantiation. As for modules, Full Maude supports three di�erent types of the-ories: functional theories, system theories, and object-oriented theories. Theirstructure is the same as that of their module counterparts. All of them canhave sorts, subsort relationships, operators, variables, membership assertionsand equations, and can import other theories or modules. System theories canhave rules as well, and object-oriented theories can have classes, subclass rela-tionships and messages.Theories are rewriting logic theories with a loose interpretation. Theories arethen allowed to contain rules and equations with variables in their righthandsides or conditions that may not appear in their corresponding lefthand sides.Similarly, conditional membership axioms may have variables in their conditionsthat do not appear in their membership assertions. Also, the lefthand side maybe a single variable. In the current version, theories are not executed and cannotbe parameterized.Functional theories are declared with the keywords fth ... endfth, systemtheories with the keywords th ... endth, and object-oriented theories withthe keywords oth ... endoth. The syntax for the declaration of theories is asfollows.op fth_is_endfth : ModuleName FDeclList -> PreModule .op th_is_endth : ModuleName SDeclList -> PreModule .op oth_is_endoth : ModuleName ODeclList -> PreModule .8Views are discussed in Section 3.5.3.



CHAPTER 3. FULL MAUDE 111Let us begin by introducing the functional theory TRIV, which requires justa sort.(fth TRIV issort Elt .endfth)The theory of partially ordered sets with an anti-reexive and transitivebinary operator can be expressed in the following way.(fth POSET isprotecting BOOL .sort Elt .op _<_ : Elt Elt -> Bool .vars X Y Z : Elt .eq X < X = false .ceq X < Z = true if X < Y and Y < Z .endfth)The theory of totally ordered sets, that is, posets in which all pairs of distinctelements have to be related, can be given as follows.(fth TOSET isincluding POSET .vars X Y : Elt .eq X < Y or Y < X or X == Y = true .endfth)The including importation of a theory into another theory keeps its loosesemantics. However, if the imported theory contains a module, which thereforemust be interpreted with an initial semantics9, then that initial semantics ismaintained by the importation. For example, in the de�nition of the POSETtheory, the declaration protecting BOOL ensures that the initial semantics ofthe functional module for the Booleans is preserved, which is in fact a crucialrequirement10. This requirement is then preserved by TOSET when POSET isincluded. In fact, we are dealing with a structure in which part of it, not onlythe top theory, has a loose semantics, while other parts contain modules withan initial semantics. The kind of semantics of a module or theory is determinedby the keyword used in its de�nition and the importation mode.As an example of a system theory, let us consider the theory CHOICE ofmultisets of elements with a choice operator de�ned on the multisets by a rewriterule that nondeterministically picks up one of the elements in the multiset. Wecan express this theory as indicated below, where we have a sort MSet declaredas a supersort of the sort Elt.(th CHOICE issort MSet Elt .subsort Elt < MSet .op __ : Elt Elt -> Elt [assoc comm] .var E : Elt .var L : MSet .9In Full Maude, the importation of a module into a theory is supported only in protectingmode.10Note that a declaration importing BOOL is added to all modules and theories. There is noway in the current version of Full Maude of setting o� this inclusion. In Core Maude it canbe done with the set include command.



CHAPTER 3. FULL MAUDE 112rl [choice] : E L => E .endth)Our last example is an object-oriented theory, namely, the theory of classeswith at least one attribute of any sort. It is de�ned as follows.(oth CELL issort Elt .class Cell | contents : Elt .endoth)This last theory could have been more naturally expressed as a parameterizedtheory. We could have de�ned CELLwith a parameter TRIV to capture the idea ofde�ning cells in a generic way. However, the present Full Maude implementationdoes not support parameterized theories. We plan to extend the language tosupport not only parameterized theories, but also parameterized views.3.5.2 Parameterized ModulesTheories can be used to declare the interface requirements for parameterizedmodules. Modules can be parameterized by one or more theories. All theoriesappearing in the interface have to be labeled in such a way that their sorts can beuniquely identi�ed. The general form for the interface of a parameterized mod-ule is [X1 ::T1, : : : ,Xn ::Tn], where X1 : : :Xn are the labels and T1 : : : Tnare the names of the parameter theories. Thus, the syntax of the interface ofparameterized modules is given by the following declarations.op _::_ : Token ModExp -> Parameter [prec 40 gather (e &)] .subsort Parameter < ParameterList .op _,_ : ParameterList ParameterList -> ParameterList [assoc] .op _[_] : Token ParameterList -> ModuleName .In the current version of Full Maude all the sorts coming from theories in theinterface must be quali�ed by their labels, even if there is no ambiguity. If Z isthe label of a parameter theory T , then each sort S in T has to be quali�ed asS.Z. Since, as we will see in Section 3.5.3, operator maps a�ect entire familiesof subsort-overloaded operators, there cannot be subsort overloading betweenan operator declared in a theory being used as parameter of a parameterizedmodule and an operator declared in the body of the parameterized module,or between operators declared in two parameter theories of the same module.Thus, the parameterized module SIMPLE-SET, with TRIV as interface can bede�ned as follows.(fmod SIMPLE-SET[X :: TRIV] issorts Set NeSet .subsorts Elt.X < NeSet < Set .op mt : -> Set .op __ : Set Set -> Set [assoc comm id: mt] .op __ : NeSet NeSet -> NeSet [assoc comm id: mt] .var E : Elt.X .eq E E = E .endfm)



CHAPTER 3. FULL MAUDE 113Note that, as discussed in Section 3.3, in Maude|unlike OBJ3|sorts are notsystematically quali�ed by their module name. In the case of OBJ3, importing,for example, sets or lists of di�erent elements introduces repeated sorts Set orList and operators that must be quali�ed by the names of the submodulesthey come from, that is, by module expressions often of considerable length. Ofcourse, in OBJ3 it is possible to rename all these items. But this means that,to avoid the burden of long quali�cations by module expressions, we have toinclude explicitly many more renamings than we would like.The convention of not qualifying sorts may be particularly weak when deal-ing with parameterized modules. However, given that Maude supports ad-hoc overloading and that constants can be quali�ed in order to be disam-biguated, the problem of ambiguity in a signature is reduced to collisions ofsorts. Our proposal consists in qualifying parameterized sorts, not with themodule expression they belong to, but with the name of the view or views usedin the instantiation of the parameterized module. In the current version ofFull Maude, we assume that all views are named, and that these names arethe ones used in the quali�cation. Speci�cally, in the body of a parameterizedmodule M[X1 ::T1, : : :,Xn ::Tn], any sort S can be written in the formS[X1, : : : ,Xn]. When the module is instantiated with views V1; : : : ; Vn thenthis sort becomes S[V1, : : : ,Vn]. Note that the parameterization of sorts isoptional. The above speci�cation, for example, is perfectly valid.The declarations needed to allow parameterized sorts are the following.subsort ViewToken < ViewExp .op _,_ : ViewExp ViewExp -> ViewExp [assoc] .op _[_] : Sort ViewExp -> Sort [prec 40] .Thus, the previous module to de�ne sets could instead have been de�ned asfollows.(fmod SET[X :: TRIV] issorts Set[X] NeSet[X] .subsorts Elt.X < NeSet[X] < Set[X] .op mt : -> Set[X] .op __ : Set[X] Set[X] -> Set[X] [assoc comm id: mt] .op __ : NeSet[X] NeSet[X] -> NeSet[X] [assoc comm id: mt] .var E : Elt.X .eq E E = E .endfm)In the coming sections we will see how this quali�cation convention forthe sorts of a parameterized module avoids many unintended collisions of sortnames, thus making renaming practically unnecessary.The module SET has only one parameter. In general, however, parameterizedmodules can have several parameters. It can furthermore happen that severalparameters are declared with the same parameter theory, that is, we can havean interface of the form [X :: TRIV, Y :: TRIV] involving the theory TRIV.Therefore, parameters cannot be treated as normal submodules, since we donot want them to be shared when their labels are di�erent. We regard therelationship between the body of a parameterized module and the interface of itsparameters not as an inclusion, but as a module constructor which is evaluatedgenerating renamed copies of the parameters, which are then included. Forthe above interface, two copies of the theory TRIV are generated, with names



CHAPTER 3. FULL MAUDE 114X :: TRIV and Y :: TRIV. In such copies of parameter theories sorts are renamedas follows: If Z is the label of a parameter theory T , then each sort S in T (forTRIV just the sort Elt) is renamed to S.Z. This is the reason why all occurrencesof these sorts in the parameterized module must mention their correspondingrenaming. In a future version of the system, this quali�cation will be necessaryonly in case of ambiguity.Let us consider as an example the following module PAIR. Notice the use ofthe quali�cations for the sorts coming from each of the parameters, and noticealso the quali�cation of the sort Pair[X, Y].(fmod PAIR[X :: TRIV, Y :: TRIV] issort Pair[X, Y] .op <_;_> : Elt.X Elt.Y -> Pair[X, Y] .op 1st : Pair[X, Y] -> Elt.X .op 2nd : Pair[X, Y] -> Elt.Y .var A : Elt.X .var B : Elt.Y .eq 1st(< A ; B >) = A .eq 2nd(< A ; B >) = B .endfm)If a parameter theory is structured, this renaming process for parametertheories is carried out not only at the top level, but for the whole \theorypart," that is, not renaming modules. Consider, for example, the followingparameterized module de�ning a lexicographical ordering on pairs of elementsof a totally ordered set.(fmod TOSET-PAIR[X :: TOSET, Y :: TOSET] issort Pair[X, Y] .op <_;_> : Elt.X Elt.Y -> Pair[X, Y] .op _<_ : Pair[X, Y] Pair[X, Y] -> Bool .op 1st : Pair[X, Y] -> Elt.X .op 2nd : Pair[X, Y] -> Elt.Y .var A A' : Elt.X .var B B' : Elt.Y .eq 1st(< A ; B >) = A .eq 2nd(< A ; B >) = B .eq < A ; B > < < A' ; B' >= (A < A') or (A == A' and B < B') .endfm)Representing by ,! the inclusion relations between modules and theories,and by ) the initiality constraints, we can depict the resulting structure as



CHAPTER 3. FULL MAUDE 115follows. TOSET-PAIRX::TOSET + Y::TOSETKS

X::TOSET( � 66lllllllllllll Y::TOSET6 V
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OO Y::POSET� ?

OO

BOOL( � 66lllllllllllllll6 V

iiR R R R R R R R R R R R R R R ;KSwhere we have two copies not only of TOSET but also of the POSET subtheory.An object-oriented parameterized module de�ning a stack of elements canbe de�ned as follows. We de�ne a class Stack[X]11 as a linked sequence of nodeobjects. Objects of class Stack[X] only have an attribute first, containing theidenti�er of the �rst node in the stack. If the stack is empty the value of thefirst attribute is null. Each object of class Node[X] has an attribute nextholding the identi�er of the next node|which will be null if there is no nextnode|and an attribute contents to store a value of sort Elt.X. Notice thatthe identi�ers of the nodes are of the form o(S,N), where S is the identi�er ofthe stack object to which the node belongs, and N is a natural number. Themessages push, pop and top have as their �rst argument the identi�er of theobject to which they are addressed, and will cause, respectively, the insertionat the top of the stack of a new element, the deletion of the top element, andthe sending of a response message elt containing the element at the top of thestack to the object making the request.(omod STACK[X :: TRIV] isprotecting MACHINE-INT .protecting QID .subsort Qid < Oid .class Node[X] | next : Oid, contents : Elt.X .class Stack[X] | first : Oid .msg _push_ : Oid Elt.X -> Msg .msg _pop : Oid -> Msg .msg _top_ : Oid Oid -> Msg .msg _elt_ : Oid Elt.X -> Msg .op null : -> Oid .op o : Oid MachineInt -> Oid .11Notice that naming of parameterized classes follows the same conventions discussed abovefor parameterized sorts.



CHAPTER 3. FULL MAUDE 116vars O O' O'' : Oid .var E : Elt.X .var N : MachineInt .rl [top] : *** top on a nonempty stack< O : Stack[X] | first : O' >< O' : Node[X] | contents : E >(O top O'')=> < O : Stack[X] | >< O' : Node[X] | >(O'' elt E) .rl [push1] : *** push on a nonempty stack< O : Stack[X] | first : o(O, N) >(O push E)=> < O : Stack[X] | first : o(O, N + 1) >< o(O, N + 1) : Node[X] |contents : E, next : o(O, N) > .rl [push2] : *** push on an empty stack< O : Stack[X] | first : null >(O push E)=> < O : Stack[X] | first : o(O, 0) >< o(O, 0) : Node[X] | contents : E, next : null > .rl [pop] : *** pop on a nonempty stack< O : Stack[X] | first : O' >< O' : Node[X] | next : O'' >(O pop)=> < O : Stack[X] | first : O'' > .endom)We may want to de�ne stacks not storing data elements of a particular sort,but actually objects in a particular class. We can de�ne an object-oriented mod-ule with the intended behavior as a parameterized module STACK2 parameterizedby the object-oriented theory CELL, presented in Section 3.5.1, as follows.(omod STACK2[X :: CELL] isprotecting MACHINE-INT .protecting QID .subsort Qid < Oid .class Node[X] | next : Oid, node : Oid .class Stack[X] | first : Oid .msg _push_ : Oid Oid -> Msg .msg _pop : Oid -> Msg .msg _top_ : Oid Oid -> Msg .msg _elt_ : Oid Elt.X -> Msg .op null : -> Oid .op o : Oid MachineInt -> Oid .vars O O' O'' O''' : Oid .var E : Elt.X .var N : MachineInt .



CHAPTER 3. FULL MAUDE 117rl [top] : *** top on a nonempty stack< O : Stack[X] | first : O' >< O' : Node[X] | node : O'' >< O'' : Cell.X | contents : E >(O top O''')=> < O : Stack[X] | >< O' : Node[X] | >< O'' : Cell.X | >(O'' elt E) .rl [push1] : *** push on a nonempty stack< O : Stack[X] | first : o(O, N) >(O push O')=> < O : Stack[X] | first : o(O, N + 1) >< o(O, N + 1) : Node[X] |next : o(O, N), node : O' > .rl [push2] : *** push on an empty stack< O : Stack[X] | first : null >(O push O')=> < O : Stack[X] | first : o(O, 0) >< o(O, 0) : Node[X] | next : null, node : O' > .rl [pop] : *** pop on a nonempty stack< O : Stack[X] | first : O' >< O' : Node[X] | next : O'' >(O pop)=> < O : Stack[X] | first : O'' > .endom)3.5.3 ViewsWe use views to assert how a particular target module or theory is claimed tosatisfy12 a source theory. In general, there may be several ways in which suchrequirements might be satis�ed, if at all, by the target module or theory; thatis, there can be many di�erent views, each specifying a particular interpretationof the source theory in the target.In the current version of Full Maude, default views are not supported. There-fore, all views have to be de�ned explicitly, and all of them must have a name.As any theory or module, views should have been de�ned before they are used.In the de�nition of a view we have to indicate its name, the source theory,the target module or theory, and the mapping of each sort, function, class, andmessage in the source theory. Although the current version does not supportdefault views in the style of OBJ3, \obvious" parts of a mapping do not needto be explicitly given, namely, any identical mapping of a function, message,or attribute f to itself such that its arity and coarity are mapped to those ofan operator, message, or attribute with the same name in the target can beomitted. However, maps for all sorts in the source theory have to be given, evenwhen they are identity maps.12Each view declaration has an associated set of proof obligations, namely, for each axiomin the source theory it should be the case that the axiom's translation by the view holds in thetarget. Since the target can be a module interpreted initially, verifying such proof obligationsmay in general require inductive proof techniques of the style supported for Maude's logicin [12].



CHAPTER 3. FULL MAUDE 118The mapping of a sort S in the source theory to a sort S0 in the target isexpressed with syntax sort S to S0 .The mapping of operators is expressed with syntaxop O to O0 .where O is an operator identi�er or an operator identi�er together with itsarity and value sort. An operator map in which explicit arity and coarity aregiven a�ects, not only the operators with such arity and coarity, but the entirefamily of subsort-overloaded operators (see Section 2.1.1) associated to the givenoperator. The target operators can be derived operators, that is, they can beterms with variables. Therefore, we can map a function symbol, not only toanother function symbol, but also to an expression. Consider, for example, thecase in which we want to de�ne a view from a theory in which we have a \lessor equal" operator <= , de�ned with reexivity, symmetry and transitivityequations, to a module in which such an operator does not exist but we havean operator \less than" < . Then, we can de�ne a view with a mapop X <= Y to term X < Y or X == Y .The mapping of a class C in the source theory to a class C 0 in the target isexpressed with syntax class C to C 0 .Attribute maps have the formattr A . C to A0 .where A is the name of an attribute of class C in the source theory and A0 isan attribute of the image class of C under the view. The mapping of messagesis expressed with syntax msg M to M 0 .whereM is a message identi�er or a message identi�er together with its arity andvalue sort. As for operators, a message map in which explicit arity and coarityare given a�ects the entire family of subsort-overloaded message declarationsassociated to the declaration of the given message.The syntax for views is given by the following declarations.op op_to term_. : Bubble Bubble -> ViewDecl .op op_to_. : Token Token -> ViewDecl .op op_:_->_to_. : Token SortList Sort Token -> ViewDecl .op op_: ->_to_. : Token Sort Token -> ViewDecl .op sort_to_. : Sort Sort -> ViewDecl .op class_to_. : Sort Sort -> ViewDecl .op attr_._to_. : Token Sort Token -> ViewDecl .op msg_to_. : Token Token -> ViewDecl .op msg_:_->_to_. : Token SortList Sort Token -> ViewDecl .op msg_: ->_to_. : Token Sort Token -> ViewDecl .subsorts VarDecl < ViewDecl < ViewDeclList .subsort VarDeclList < ViewDeclList .op __ : ViewDeclList ViewDeclList -> ViewDeclList [assoc] .



CHAPTER 3. FULL MAUDE 119op view_from_to_is_endv :ViewToken ModExp ModExp ViewDeclList -> PreView .Thus, we can have a view(view MachineInt from TRIV to MACHINE-INT issort Elt to MachineInt .endv)which de�nes a view from the theory TRIV to the module MACHINE-INT. In viewsfrom TRIV we encourage the convention of naming such views by the name ofthe sort to which Elt is mapped. Although it is not necessary to follow thisconvention, it can add understandability to the speci�cations. What has to beavoided is using the labels in interfaces of parameterized modules as names ofviews, since this can sometimes generate ambiguities.We can have views between theories, which is particularly useful to composeinstantiations of views to link the formal parameter of some parameterized mod-ule to some actual parameter via some intermediate formal parameter of anotherparameterized module. We will give some examples in the coming sections. Anexample of a view whose target is a theory is the following.(view Toset from TRIV to TOSET issort Elt to Elt .endv)As already mentioned, in some cases it is useful to be able to express map-pings of functions, not to other functions but to expressions. For example, the< relation of a toset can be mapped to an expression using the \less than orequal" operator <= and the inequality operator =/= as follows.(view MachIntAsToset from TOSET to MACHINE-INT issort Elt to MachineInt .vars X Y : Elt .op X < Y to term X <= Y and X =/= Y .endv)Notice that, when dealing with parameterized modules with structured the-ories as parameters, as in the TOSET-PAIR example discussed in Section 3.5.1,we have to give a view not only for the top theory but for the entire \loose part,"that is, for all other subtheories imported by the theory. In the near future weplan to handle parameterized theories and views as well, as a way to give morestructure to both theories and views.3.5.4 Module ExpressionsAs in Clear [7], OBJ [27], and other speci�cation languages in that tradition,the abstract syntax for writing speci�cations in Maude can be seen as givenby module expressions, where the notion of module expression is understood asan expression that de�nes a new module out of previously de�ned modules bycombining and/or modifying them according to a speci�c set of operations, thatis, according to a speci�c module algebra. In fact, structuring is essential in allspeci�cation languages, not only to facilitate the construction of speci�cationsfrom already existing ones|with more or less exible reusability mechanisms|but also for managing the complexity of understanding and analyzing largespeci�cations.



CHAPTER 3. FULL MAUDE 120A module importing some combination of modules, given by module expres-sions, can be seen as a structured module with more or less complex relationshipsamong its component submodules. For execution purposes, however, we typ-ically want to convert this structured module into an equivalent unstructuredmodule, that is, into a \attened" module without submodules. In the caseof Maude, this attened module will then be compiled into the rewrite engine.By systematically using the metaprogramming capabilities of Maude we canboth evaluate module expressions into structured module hierarchies, and at-ten such hierarchies into unstructured modules for execution. All such moduleoperations are de�ned by rewrite rules that operate on the metalevel term rep-resentations of modules. This is essentially the idea behind the implementationof Full Maude in Maude.The current version of Full Maude supports two types of module expression:instantiation of a module expression with a view expression, and renaming of amodule expression with a set of mappings. The syntax used for both of them isthe same one as in OBJ3, namelyop _[_] : ModExp ViewExp -> ModExp .for instantiation of parameterized modules, andop _*(_) : ModExp MapList -> ModExp .for renamings. As we saw in Section 3.5.2, a view expression can be a single viewname, or a sequence of view names separated by commas in case the modulebeing instantiated has several parameters.Module InstantiationInstantiation is the process by which actual parameters are bound to the param-eters of a parameterized module and a new module is created as a result. Thiscan be seen in fact as the evaluation of a module expression. The instantiationrequires a view from each formal parameter to its corresponding actual param-eter. Each such view is then used to bind the names of sorts, operators, etc.in the actual parameters to the corresponding sorts, operators (or expressions),etc. in the target.The instantiation of a parameterized module has to be made with viewsexplicitly de�ned previously. Thus, we can have a set of machine integers withthe module expression SET[MachineInt], or a pair of machine integers as tosetswith TOSET-PAIR[MachIntAsToset, MachIntAsToset].As mentioned in Section 3.5.3, we can de�ne views from theories to theories.Using such views we can, for example, instantiate the module SET with theview Toset given in the previous section. The result is a module SET[Toset]which is still parameterized, but now by the theory TOSET. We can instantiateit again with a view from TOSET to some other theory or module, for example,MachIntAsToset, obtaining the module SET[Toset][MachIntAsToset], whichis just a set of machine integers. For example, we can give a more concisede�nition of the parameterized module TOSET-PAIR[X :: TOSET, Y :: TOSET]using these ideas as follows.(fmod TOSET-PAIR[X :: TOSET, Y :: TOSET] isprotecting PAIR[Toset, Toset][X, Y] .op _<_ : Pair[Toset, Toset][X, Y] Pair[Toset, Toset][X, Y]-> Bool .var A A' : Elt.X .



CHAPTER 3. FULL MAUDE 121var B B' : Elt.Y .eq < A ; B > < < A' ; B' >= (A < A') or (A == A' and B < B') .endfm)Let us consider now the following module MAX, parameterized by the the-ory TOSET. Given a set of elements in this toset, the function max returns themaximum element in the set.(fmod MAX[T :: TOSET] isprotecting SET[Toset][T] .op max : NeSet[Toset][T] -> Elt.T .var E : Elt.T .var S : NeSet[Toset][T] .eq max(E) = E .ceq max(E S) = E if max(S) < E .ceq max(E S) = max(S) if not (max(S) < E) .endfm)Module expressions can be arguments of a protecting or including im-portation, or can be used as the module in which to reduce or rewrite by a redor rew command. In general we can use module expressions in any place wherethe name of a module is expected. In fact, in Full Maude the name of a moduleis given by a module expression, and each time a new module expression is en-tered, the module expression is evaluated, and a module is generated with thismodule expression as its name. It is this module which is passed to the engineto get the intended result.Let us see how module expressions can be used in red commands using theinstantiation of MAX with the view MachIntAsToset presented in Section 3.5.3.Maude> (red-in MAX[MachIntAsToset] : max(5 4 8 4 6 5) .)Result : 8Notice that, if we have several parameters, we can instantiate the parameter-ized module with some views going to theories and others going to modules. Theresult in this case is the expected one, that is, we get a module parameterizedby the targets of those views going to theories.Module RenamingA renaming can be considered as a function that, given a module M and a listof mappings S, returns a copy of the module in which the names of the sorts,operations, etc. are changed as indicated by the mappings. More precisely, givena structured speci�cation, the renaming not only causes the creation of a copyof the top module in the structure, but renames also the part of the submodulestructure that is a�ected by the renaming. For any other submodule M 0 in thestructure which is a�ected by the mappings, a renamed copy of it is generatedwith name M 0 * (S0), where S0 is the subset of mappings in S that a�ect M 0.The complete syntax for renaming maps is as follows.op op_to_ : Token Token -> Map .op op_:_->_to_ : Token SortList Sort Token -> Map .op op_: ->_to_ : Token Sort Token -> Map .op op_to_[_] : Token Token AttrList -> Map .op op_:_->_to_[_] : Token SortList Sort Token AttrList -> Map .



CHAPTER 3. FULL MAUDE 122op op_: ->_to_[_] : Token Sort Token AttrList -> Map .op sort_to_ : Sort Sort -> Map .op label_to_ : Token Token -> Map .op class_to_ : Sort Sort -> Map .op attr_._to_ : Token Sort Token -> Map .op msg_to_ : Token Token -> Map .op msg_:_->_to_ : Token SortList Sort Token -> Map .op msg_: ->_to_ : Token Sort Token -> Map .subsort Map < MapList .op _,_ : MapList MapList -> MapList [assoc prec 42] .Notice that we also allow the renaming of rule labels, which may be useful formetalevel applications.A set of attributes can also be given in the renaming of an operator. Thisallows changing syntactic attributes, such as the precedence values and thegathering patterns, which may be of practical relevance when dealing with mix�xsyntax. For example, when a change in the syntax of the operator could causea parsing di�erent from the intended one. Let us see an example in whichmodifying the grammatical attributes of an operator is useful. Suppose thatwe want to change the syntax of the function max in the module MAX presentedabove, to maximum . We can do the following reduction.Maude> (red-in MAX[MachIntAsToset]* (op max : NeSet[Toset][MachIntAsToset]-> MachineInt to maximum_): maximum 5 4 8 4 6 5 .)Result : 4 5 6 8This result may seem strange, but makes perfect sense. In fact the systemindicates the term that it has reduced:Reduce in MAX[MachIntAsToset]* (op max : NeSet[Toset][MachIntAsToset]-> MachineInt to maximum_): (maximum 5) 4 8 4 6 5 .What has happened is that the precedence given by default to the operator withthis new syntax is the same as that given to the operator , and therefore, bythe default gathering patterns, this is a valid parse. Notice that the otherelements passed to the function maximum have \disappeared" by the equationsin SET. We can obtain the intended result by placing parentheses around theset of numbers, but it is more convenient to change the precedence values of theattributes. We can, for example, raise the precedence of maximum .Maude> (red-in MAX[MachIntAsToset]* (op max : NeSet[Toset][MachIntAsToset]-> MachineInt to maximum_[prec 41]): maximum 5 4 8 4 6 5 .)Reduce in MAX[MachIntAsToset]* (op max : NeSet[Toset][MachIntAsToset]-> MachineInt to maximum_[prec 41]): maximum (5 4 8 4 6 5) .Result : 8



CHAPTER 3. FULL MAUDE 123More examples can be found in Appendix E. We �nish this section with anexample involving object-oriented modules, namely, a stack of banking accounts.(view Accnt from CELL to ACCNT issort Elt to MachineInt .class Cell to Accnt .attr contents . Cell to bal .endv)Now we can do the following rewriting.Maude> (rew-in STACK2[Accnt] :< 'stack : Stack[Accnt] | first : null >< 'paul : Accnt | bal : 5000 >< 'peter : Accnt | bal : 2000 >< 'mary : Accnt | bal : 15000 >('stack push 'paul)('stack push 'peter)('stack push 'mary)('stack top 'peter)('stack pop) .)Result Configuration : ('peter elt 2000)< 'stack : Stack[Accnt] |first : o('stack, 1) >< 'paul : Accnt | bal : 5000 >< 'peter : Accnt | bal : 2000 >< 'mary : Accnt | bal : 15000 >< o('stack, 0) : Node[Accnt] |next : null, node : 'peter >< o('stack, 1) : Node[Accnt] |next : o('stack, 0), node : 'mary >3.6 Syntactic Restrictions and CaveatsWe can write functional and system modules in Full Maude as we do it in CoreMaude, but enclosing them in parentheses. However, there are some syntacticdi�erences between what is currently allowed in Core Maude and in Full Maude.As a consequence, some syntactic restrictions should be taken into account whenusing Full Maude to write speci�cations:1. Operator and message names have to be given in their equivalent singleidenti�er form when they are declared, and2. sort names used in term quali�cations and in sort tests have to be in theirequivalent single identi�er form.We plan to remove these syntactic restrictions in a future version. In the restof the section we explain them in some detail and give some hints on how toavoid them.Operator names have to be given as a single identi�er. To declare multi-identi�er operators they have to be given in their single identi�er form, that is,each identi�er in a multi-identi�er name has to be preceded by a backquote. Forexample, to de�ne an operator with name less than or equal , we have touse its single identi�er form less`than`or`equal . Except for having to use



CHAPTER 3. FULL MAUDE 124the single identi�er form in the operator name, the declaration of operations isexactly as for Core Maude. For example, the declaration of this operator onsort, say, Int is as follows.op _less`than`or`equal_ : Int Int -> Bool .Notice that not only blank spaces, but also the special characters `f', `g', `(',`)', `[', `]' and `,' break the identi�ers. Therefore, to declare in Full Maude anoperator such as f g taking an element of sort, say, Int and with value sortSet, we should writeop `{_`} : Int -> Set .As in Core Maude, several operators with the same arity and coarity can bede�ned in the same declaration using the keyword ops, but again, each operatorname has to be given in its single identi�er form. We could have for examplethe following declaration.ops _`{_`} _`,_ : Foo Bar -> Baz .Notice that, since each operator name is a single identi�er, parentheses are notneeded to indicate the boundaries between the syntactic forms of the di�erentoperators.As for operator names, message names can be mix�x, but they have to bedeclared in single identi�er form. Thus, to de�ne a message credit with syntax,say, ( )credit the declaration has to be given as follows.msg `(_`)credit_ : Oid MachineInt -> Msg .And the same applies to declarations of multiple message names:msgs `(_`)credit_ `(_`)debit_ : Oid MachineInt -> Msg .The last problem mentioned at the beginning of this section has to do withthe quali�cation of terms by sort names and with sort tests. Since quali�cationsby sort and sort tests|as well as parentheses, polymorphism, and other syn-tactic features in the extended signature of a speci�cation{are directly handledby Core Maude, and Core Maude does not know about parameterized sorts,the user is forced to use in these cases the names of parameterized sorts, notas he or she has de�ned them, but in their equivalent single identi�er form.Thus, if we have, for example, a sort List[Nat] and a constant nil in it, ifnecessary, it should be quali�ed as (nil).List`[Nat`]. Similarly, to checkwhether a term T has the sort List[Nat] we have to write T : List`[Nat`]or T :: List`[Nat`].We plan to add to the Maude system new functionality supporting a moreexible treatment of the syntax of Full Maude and other languages, so thatthese syntactic restrictions will eventually be removed.



Chapter 4The Semantics of MaudeWe summarize the semantic foundations of Maude's functional, object-oriented,and system modules, including a brief discussion of parameterized modules. We�rst introduce the basic concepts of membership equational logic, whose initialalgebras provide the mathematical semantics for functional modules. Then, wereview the basic concepts of rewriting logic, whose initial models provide themathematical semantics for object-oriented and system modules.4.1 Membership Equational Logic and FunctionalModulesMaude is a declarative language based on rewriting logic. But rewriting logichas its underlying equational logic as a parameter. There are, for example,unsorted, many-sorted, and order-sorted versions of rewriting logic, each con-taining the previous version as a special case. The underlying equational logicchosen for Maude ismembership equational logic [41, 5], a conservative extensionof both order-sorted equational logic and partial equational logic with existenceequations [41]. It supports partiality, subsort relations, operator overloading,and error speci�cation.A signature in membership equational logic is a triple 
 = (K;�; S) with Ka set of kinds, (K;�) a many-sorted (although it is better to say \many-kinded")signature, and S = fSkgk2K a K-kinded set of sorts .An 
-algebra is then a (K;�)-algebra A together with the assignment toeach sort s 2 Sk of a subset As � Ak. Intuitively, the elements in sorts arethe good, or correct, or nonerror, or de�ned, elements, whereas the elementswithout a sort are error or unde�ned elements.Atomic formulas are either �-equations, or membership assertions of theform t : s, where the term t has kind k and s 2 Sk. General sentences are Hornclauses on these atomic formulae, quanti�ed by �nite sets ofK-kinded variables.That is, they are either conditional equations(8X) t = t0 if ( î ui = vi) ^ ( ĵ wj : sj)or membership axioms of the form(8X) t : s if ( î ui = vi) ^ ( ĵ wj : sj):125



CHAPTER 4. THE SEMANTICS OF MAUDE 126Membership equational logic has all the usual good properties: soundness andcompleteness of appropriate rules of deduction, initial and free algebras, rela-tively free algebras along theory morphisms, and so on [41].In Maude, functional modules are equational theories in membership equa-tional logic satisfying the additional requirement of being Church-Rosser and(preferably) terminating. Functional theories are also membership equationallogic theories, but they do not need to be Church-Rosser; they have a looseinterpretation, in the sense that any algebra satisfying the equations and mem-bership axioms in the theory is an acceptable model1.The semantics of an unparameterized functional module is the initial algebraspeci�ed by its theory. The semantics of a parameterized functional moduleis the free functor associated to the inclusion of the parameter theory2 intothe body of the parameterized module [41]. For example, a parameterized listmodule LIST[X :: TRIV] forms lists of models of the trivial parameter theoryTRIV with one sort Elt, whose models are sets of elements and its semantics isthe functor sending each set to the algebra of lists of the set. Similarly, a sortingmodule SORTING[Y :: POSET] sorts lists whose elements belong to a model ofthe POSET functional theory, that is, the data type of elements must have apartial order and its semantics is the functor sending each poset to the algebraof lists for that poset with a sorting function3. All this is entirely similar to thesemantics of \objects" (that correspond to modules in our sense) and theoriesin OBJ [27]. Indeed, since membership equational logic conservatively extendsorder-sorted equational logic, Maude's functional modules extend OBJ modules.Maude does automatic kind inference from the sorts declared by the userand their subsort relations. There is no need to declare kinds explicitly. Theconvenience of order-sorted notation is retained as syntactic sugar. Thus, anoperator declarationop push : Nat Stack -> NeStack .is understood as syntactic sugar for the membership axiom(8x; y) push(x; y) : NeStack if x : Nat ^ y : Stack:Similarly, a subsort declaration NeStack < Stack corresponds to the member-ship axiom (8x) x : Stack if x : NeStack:Computation in a functional module is accomplished by using the equationsas rewrite rules until a canonical form is found. Therefore, the equations mustsatisfy the additional requirements of being Church-Rosser, terminating, andsort-decreasing [5]. This guarantees that all terms in an equivalence class mod-ulo the equations will rewrite to a unique canonical form, and that this canonicalform can be assigned a sort that is smaller than all other sorts assignable to termsin the class. For a module satisfying such conditions any reduction strategy willreach a normal form; nevertheless, as explained in Section 2.1.3, the user canassign to each operator a functional evaluation strategy in the OBJ style [27] tocontrol the reduction for e�ciency purposes. If no such strategies are declared,1However, a functional theory may contain functional submodules in protecting mode,imposing the additional requirement that those submodules should be interpreted initially.2Of course, if the parameterized module has several parameter theories, we should formtheir colimit, and consider instead the inclusion of such a colimit into the body.3Note that POSET is a good example of a theory where part of the semantics is loose andpart of it initial, because it protects the functional module BOOL, which is used in an essentialway to de�ne the partial order predicate.



CHAPTER 4. THE SEMANTICS OF MAUDE 127a bottom-up strategy is chosen. Since Maude supports rewriting modulo equa-tional theories such as associativity or associativity/commutativity, all that wesay has to be understood for equational rewriting modulo such axioms.In membership equational logic the Church-Rosser property of terminatingand sort-decreasing equations is indeed equivalent to the conuence of their crit-ical pairs [5]. Furthermore, both equality and membership of a term in a sortare then decidable properties [5]. That is, the equality and membership predi-cates are computable functions . We can then use the metatheorem of Bergstraand Tucker [1] to conclude that such predicates are themselves speci�able byChurch-Rosser and terminating equations as Boolean-valued functions. Thishas the pleasant consequence of allowing us to include inequalities t 6= t0 andnegations of sort tests not(t : s) in conditions of equations and of membershipaxioms, since such seemingly negative predicates can also be axiomatized insidethe logic in a positive way, provided that we have a subspeci�cation of (not nec-essarily free) constructors in which to do it, and that the speci�cation is indeedChurch-Rosser, terminating, and sort decreasing. Of course, in practice they donot have to be explicitly axiomatized, since they are built into the implementa-tion of rewriting deduction in a much more e�cient way (see Section 2.4.1).Let us denote membership equational logic by MEqtl and its associatedrewriting logic by MRWLogic. Regarding an equational theory as a rewritetheory whose sets of rules are empty de�nes a conservative map of logics [32]MEqtl �! MRWLogic:This is the way in which Maude's functional modules are regarded as a specialcase of its more general system modules.4.2 Rewriting LogicWe �rst de�ne rewrite theories and give the logic's rules of deduction. Then,the models of rewrite theories, including initial and free models, are discussed.4.2.1 Theories and DeductionA signature in rewriting logic is an equational theory4 (�; E), where � is anequational signature and E is a set of �-equations. Rewriting will operate onequivalence classes of terms modulo E. In this way, we free rewriting from thesyntactic constraints of a term representation and gain a much greater exibilityin deciding what counts as a data structure; for example, string rewriting isobtained by imposing an associativity axiom, and multiset rewriting by imposingassociativity and commutativity. Of course, standard term rewriting is obtainedas the particular case in which the set of equations E is empty. Techniques forrewriting modulo equations have been studied extensively [17] and can be usedto implement rewriting modulo many equational theories of interest. This isprecisely what Maude does, using the equational attributes given in operatordeclarations|such as associativity, commutativity, identity, and idempotency|to rewrite modulo such axioms.4Rewriting logic is parameterized by the choice of its underlying equational logic, that canbe unsorted, many-sorted, order-sorted, membership equational logic, and so on. For Maude,the underlying equational logic is of course membership equational logic. However, to easethe exposition we give here an unsorted presentation.



CHAPTER 4. THE SEMANTICS OF MAUDE 128Given a signature (�; E), sentences of rewriting logic are sequents of theform [t]E �! [t0]E ;where t and t0 are �-terms possibly involving some variables, and [t]E denotesthe equivalence class of the term t modulo the equations E. A rewrite theory Ris a 4-tuple R = (�; E; L;R) where � is a ranked alphabet of function symbols,E is a set of �-equations, L is a set of labels, and R is a set of pairs R �L� T�;E(X)2 whose �rst component is a label and whose second component isa pair of E-equivalence classes of terms, with X = fx1; : : : ; xn; : : :g a countablyin�nite set of variables. Elements of R are called rewrite rules.5 We understanda rule (r; ([t]; [t0])) as a labeled sequent and use for it the notation r : [t] �! [t0].To indicate that fx1; : : : ; xng is the set of variables occurring in either t ort0, we write r : [t(x1; : : : ; xn)] �! [t0(x1; : : : ; xn)], or in abbreviated notationr : [t(x)] �! [t0(x)]:Given a rewrite theory R, we say that R entails a sentence [t] �! [t0], orthat [t] �! [t0] is a (concurrent) R-rewrite, and write R ` [t] �! [t0] if andonly if [t] �! [t0] can be obtained by �nite application of the following rulesof deduction (where we assume that all the terms are well formed and t(w=x)denotes the simultaneous substitution of wi for xi in t):1. Reexivity. For each [t] 2 T�;E(X), [t] �! [t] :2. Congruence. For each f 2 �n, n 2 IN,[t1] �! [t01] : : : [tn] �! [t0n][f(t1; : : : ; tn)] �! [f(t01; : : : ; t0n)] :3. Replacement. For each rule r : [t(x1; : : : ; xn)] �! [t0(x1; : : : ; xn)] in R,[w1] �! [w01] : : : [wn] �! [w0n][t(w=x)] �! [t0(w0=x)] :4. Transitivity [t1] �! [t2] [t2] �! [t3][t1] �! [t3] :Rewriting logic is a logic for reasoning correctly about concurrent systemshaving states, and evolving by means of transitions. The signature of a rewritetheory describes a particular structure for the states of a system|e.g., multiset,binary tree, etc.|so that its states can be distributed according to such a struc-ture. The rewrite rules in the theory describe which elementary local transitionsare possible in the distributed state by concurrent local transformations. Therules of rewriting logic allow us to reason correctly about which general con-current transitions are possible in a system satisfying such a description. Thus,computationally, each rewriting step is a parallel local transition in a concurrentsystem.5To simplify the exposition the rules of the logic are given for the case of unconditionalrewrite rules. However, all the ideas presented here have been extended to conditional rulesin [37] with very general rules of the formr : [t] �! [t0] if [u1] �! [v1] ^ : : : ^ [uk] �! [vk]:This increases considerably the expressive power of rewrite theories.



CHAPTER 4. THE SEMANTICS OF MAUDE 129Alternatively, however, we can adopt a logical viewpoint instead, and regardthe rules of rewriting logic as metarules for correct deduction in a logical system.Logically, each rewriting step is a logical entailment in a formal system.The computational and the logical viewpoints under which rewriting logiccan be interpreted can be summarized in the following diagram of correspon-dences:State $ Term $ PropositionTransition $ Rewriting $ DeductionDistributed Structure $ Algebraic Structure $ Propositional StructureThe last row of equivalences is actually quite important. Roughly speaking,it expresses the fact that a state can be transformed in a concurrent way only if itis nonatomic, that is, if it is composed out of smaller state components that canbe changed independently. In rewriting logic this composition of a concurrentstate is formalized by the operations of the signature � of the rewrite theoryR that axiomatizes the system. From the logical point of view such operationscan naturally be regarded as user-de�nable propositional connectives stating theparticular structure that a given state has. A subtle additional point about thelast row of equivalences is that the algebraic structure of a system also involvesequations . Such equations describe the system's global state as a concurrentdata structure; they can have a dramatic impact on the amount of concurrencyavailable in a system.Note that it follows from this discussion that rewriting logic is primarily alogic of change|in which the deduction directly corresponds to the change|asopposed to a logic to talk about change in a more indirect and global mannersuch as the di�erent variants of modal and temporal logic.4.2.2 ModelsWe �rst sketch the construction of initial and free models for a rewrite theoryR = (�; E; L;R). Such models capture nicely the intuitive idea of a \rewrite sys-tem" in the sense that they are systems whose states are E-equivalence classes ofterms, and whose transitions are concurrent rewritings using the rules in R. Byadopting a logical instead of a computational perspective, we can alternativelyview such models as \logical systems" in which formulas are validly rewrittento other formulas by concurrent rewritings which correspond to proofs for thelogic in question. Such models have a natural category structure, with states(or formulas) as objects, transitions (or proofs) as morphisms, and sequentialcomposition as morphism composition, and in them dynamic behavior exactlycorresponds to deduction.Given a rewrite theory R = (�; E; L;R), for which we assume that di�erentlabels in L name di�erent rules in R, the model that we are seeking is a cate-gory TR(X) whose objects are equivalence classes of terms [t] 2 T�;E(X) andwhose morphisms are equivalence classes of \proof terms" representing proofs inrewriting deduction, i.e., concurrent R-rewrites. The rules for generating suchproof terms, with the speci�cation of their respective domains and codomains,are given below; they just \decorate" with proof terms the rules 1{4 of rewritinglogic. Note that we always use \diagrammatic" notation for morphism compo-sition, i.e., �;� always means the composition of � followed by �.1. Identities. For each [t] 2 T�;E(X), [t] : [t] �! [t] :



CHAPTER 4. THE SEMANTICS OF MAUDE 1302. �-structure. For each f 2 �n, n 2 IN,�1 : [t1] �! [t01] : : : �n : [tn] �! [t0n]f(�1; : : : ; �n) : [f(t1; : : : ; tn)] �! [f(t01; : : : ; t0n)] :3. Replacement. For each rewrite rule r : [t(x1; : : : ; xn)] �! [t0(x1; : : : ; xn)]in R, �1 : [w1] �! [w01] : : : �n : [wn] �! [w0n]r(�1; : : : ; �n) : [t(w=x)] �! [t0(w0=x)] :4. Composition � : [t1] �! [t2] � : [t2] �! [t3]�;� : [t1] �! [t3] :Each of the above rules of generation de�nes a di�erent operation takingcertain proof terms as arguments and returning a resulting proof term. In otherwords, proof terms form an algebraic structure PR(X) consisting of a graph withnodes T�;E(X), with identity arrows, and with operations f (for each f 2 �),r (for each rewrite rule), and ; (for composing arrows). Our desired modelTR(X) is the quotient of PR(X) modulo the following equations:61. Category(a) Associativity. For all �; �; ; (�;�);  = �; (�; ):(b) Identities. For each � : [t] �! [t0]; �; [t0] = � and [t];� = �:2. Functoriality of the �-algebraic structure. For each f 2 �n;(a) Preservation of composition. For all �1; : : : ; �n; �1; : : : ; �n,f(�1;�1; : : : ; �n;�n) = f(�1; : : : ; �n); f(�1; : : : ; �n):(b) Preservation of identities. f([t1]; : : : ; [tn]) = [f(t1; : : : ; tn)]:3. Axioms in E. For t(x1; : : : ; xn) = t0(x1; : : : ; xn) an axiom in E, for all�1; : : : ; �n, t(�1; : : : ; �n) = t0(�1; : : : ; �n):4. Exchange. For each r : [t(x1; : : : ; xn)] �! [t0(x1; : : : ; xn)] in R,�1 : [w1] �! [w01] : : : �n : [wn] �! [w0n]r(�) = r([w]); t0(�) = t(�); r([w0 ]) :Note that the set X of variables is actually a parameter of these construc-tions, and we need not assume X to be �xed and countable. In particular, forX = ;, we adopt the notation TR. The equations in 1 make TR(X) a category,the equations in 2 make each f 2 � a functor, and 3 forces the axioms E. Theexchange law states that any rewriting of the form r(�)|which represents thesimultaneous rewriting of the term at the top using rule r and \below," i.e., inthe subterms matched by the variables, using the rewrites �|is equivalent tothe sequential composition r([w]); t0(�), corresponding to �rst rewriting on topwith r and then below on the subterms matched by the variables with �, andis also equivalent to the sequential composition t(�); r([w0]) corresponding to�rst rewriting below with � and then on top with r. Therefore, the exchangelaw states that rewriting at the top by means of rule r and rewriting \below"6In the expressions appearing in the equations, when compositions of morphisms are in-volved, we always implicitly assume that the corresponding domains and codomains match.



CHAPTER 4. THE SEMANTICS OF MAUDE 131using � are processes that are independent of each other and can be done eithersimultaneously or in any order.Since each proof term is a description of a concurrent computation, whatthese equations provide is an equational theory of true concurrency allowing usto characterize when two such descriptions specify the same abstract computa-tion.Note that, since [t(x1; : : : ; xn)] and [t0(x1; : : : ; xn)] can both be regarded asfunctors TR(X)n �! TR(X), from the mathematical point of view the exchangelaw just asserts that r is a natural transformation.Lemma 1 [37] For each rewrite rule r : [t(x1; : : : ; xn)] �! [t0(x1; : : : ; xn)] inR, the family of morphismsfr([w]) : [t(w=x)] �! [t0(w=x)] j [w] 2 T�;E(X)ngis a natural transformation r : [t(x1; : : : ; xn)] ) [t0(x1; : : : ; xn)] between thefunctors [t(x1; : : : ; xn)]; [t0(x1; : : : ; xn)] : TR(X)n �! TR(X):The category TR(X) is just one among many models that can be assignedto the rewrite theory R. The general notion of model, called an R-system, isde�ned as follows:De�nition 1 Given a rewrite theory R = (�; E; L;R), an R-system S is acategory S together with:� a (�; E)-algebra structure given by a family of functorsffS : Sn �! S j f 2 �n; n 2 INgsatisfying the equations E, i.e., for any t(x1; : : : ; xn) = t0(x1; : : : ; xn) inE we have an identity of functors tS = t0S , where the functor tS is de�nedinductively from the functors fS in the obvious way.� for each rewrite rule r : [t(x)] �! [t0(x)] in R a natural transformationrS : tS ) t0S .An R-homomorphism F : S �! S 0 between two R-systems is then a functorF : S �! S 0 such that it is a �-algebra homomorphism, i.e., fS �F = Fn � fS0 ,for each f in �n, n 2 IN, and such that \F preserves R," i.e., for each rewriterule r : [t(x)] �! [t0(x)] in R we have the identity of natural transformations7rS � F = Fn � rS0 , where n is the number of variables appearing in the rule.This de�nes a category R-Sys in the obvious way.A detailed proof of the following theorem on the existence of initial andfree R-systems for the more general case of conditional rewrite theories is givenin [37], where the soundness and completeness of rewriting logic for R-systemmodels is also proved.Theorem 1 TR is an initial object in the category R-Sys. More generally,TR(X) has the following universal property: Given an R-system S, each func-tion F : X �! jSj extends uniquely to an R-homomorphism F \ : TR(X) �! S.7Note that we use diagrammatic order for the horizontal , � � �, and vertical , ; �, compo-sition of natural transformations [31].



CHAPTER 4. THE SEMANTICS OF MAUDE 1324.3 Semantics of Object-Oriented and SystemModulesAs already pointed out, the logic of Maude is the membership logic variant ofrewriting logic MRWLogic. A system module is then a rewrite theory R in sucha logic. In the unparameterized case its semantics is the initial model TR, thatwas constructed for the unsorted case in Section 4.2.2. That is, the initial modelTR is the algebra of all rewriting computations for ground terms in the theory.From a systems perspective this model describes all the concurrent behaviorsthat the system so axiomatized can exhibit. From that perspective, a term tdenotes a state of the system, and a proof term � : t �! t0 denotes a possiblyconcurrent computation.A system module can contain one or more parameter theories. The inclu-sion from the parameter(s) into the module then gives rise to a free extensionfunctor [36], which provides the semantics for the module. This of course meansthat we can compose systems by putting together the rewrite theories in whichthey are speci�ed, as done in Full Maude.A rewrite theory has both rules and equations, so that rewriting is performedmodulo such equations. However, this does not mean that the Maude implemen-tation must have a matching algorithm for each equational theory that a usermight specify, which is impossible, since matching modulo an arbitrary theoryis undecidable. What we instead require for theories in system modules is that:� The equations are divided into a set A of axioms, for which matchingalgorithms exist in the Maude implementation,8 and a set E of equationsthat are Church-Rosser, terminating and sort decreasing modulo A; thatis, the equational part must be equivalent to a functional module.� The rules R in the module are coherent [61] (or at least what might becalled \weakly coherent" [38, Section 5.2.1][60]) with the equationsE mod-ulo A. This means that appropriate critical pairs exist between rules andequations, allowing us to intermix rewriting with rules and rewriting withequations without loosing rewrite computations by failing to perform arewrite that would have been possible before an equational deduction stepwas taken. In this way, we get the e�ect of rewriting modulo E [ A withjust a matching algorithm for A. In particular, a simple strategy availablein these circumstances is to always reduce to canonical form using E be-fore applying any rule in R. This is precisely the strategy adopted by theMaude interpreter.Since the state of the system speci�ed by a system module is axiomatized as anabstract data type by the equations E modulo A, and the rules in R are localrules for changing such a state, in practice the lefthand sides of rules in R onlyinvolve constructor patterns, so that coherence is a natural byproduct of goodspeci�cation practice. Besides, using the completion methods in [61], one cancheck coherence, and one can try to make a set of rules coherent when they arenot so.The semantics of object-oriented modules is entirely reducible to that of sys-tem modules, in the sense that|as explained in Section 3.2.2 and in [38]|thereis a systematic desugaring process translating each object-oriented module into8Maude's rewrite engine has an extensible design, so that matching algorithms for newtheories can be added and can be combined with existing ones [22]. As already mentioned, inthe present version, matching modulo associativity, commutativity, (left-, right- or two-sided)identity, and idempotency, and most combinations of these attributes are supported.



CHAPTER 4. THE SEMANTICS OF MAUDE 133its corresponding system module [38]. The particular ontology supported byobject-oriented modules is something very much worth keeping, and it does notexist for general system modules. For example, in an object-oriented con�gura-tion we have objects that maintain their identity across their state changes, andthe notions of fairness adequate for them are more specialized than those appro-priate for arbitrary system modules. The approach taken in Maude is to pro-vide a logical semantics for concurrent object-oriented programming by takingrewriting logic as its foundation, and then de�ning in a rigorous way higher-levelobject-oriented concepts above such a foundation. The papers [38, 39] providegood background on such foundations. Talcott's paper [58] gives rewriting logicfoundations for actors from a somewhat di�erent viewpoint. The paper [45]shows how, for object-oriented modules satisfying some simple requirements,their initial model semantics coincides with a very natural partial order of eventstruly concurrent semantics.The basic ideas about the reective semantics of Maude have already beendiscussed in Section 2.5. Much more detail can be found in [15, 10].
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Appendix AList of Core MaudeCommandsA.1 Rewriting CommandsWe use curly bracket pairs, f and g to enclose optional syntax.reduce fin module :g term .Causes the speci�ed term to be reduced using the equations and member-ship axioms in the given module. reduce may be abbreviated to red. Ifthe in clause is omitted the current module is assumed. Examples:reduce 6 * 7 == 42 .reduce in QID : conc('a, 'b) .rewrite f[ number ]g fin module :g term .Causes the speci�ed term to be rewritten using the rules, equations andmembership axioms in the given module. The default interpreter for rulesapplies rules using a top down (lazy) strategy and stops when the numberof rule applications reaches the given bound. No rule will be applied if anequation can be applied. If the in clause is omitted the current moduleis assumed. If the upper bound clause is omitted, in�nity is assumed.Examples:rewrite 6 * 7 == 42 .rewrite in FOO : f(6, g(a, b)) .rewrite [50] f(6, g(a, b)) .rewrite [1] in BAR : h(a) .loop fin module :g term .This command is used to initialize the read-eval-print loop in a moduleimporting LOOP-MODE (see Section 2.8). The speci�ed term is rewritten asfar as possible using the rules, equations and membership axioms in thegiven module. If the result has a loop constructor symbol on the top thenit becomes the current state of the loop; also, the list of quoted identi�ersin the output position of the loop constructor is printed as a sequence ofidenti�ers. 139



APPENDIX A. LIST OF CORE MAUDE COMMANDS 140( identi�er* )This command is used to input a list of identi�ers to the loop in a moduleimporting LOOP-MODE. If the current module has not changed since the lastrewriting command, the result of previous rewrites has a loop constructorsymbol on the top, and the last rewriting command was not reduce then:1. the sequence of identi�ers in the parentheses are converted into a listof quoted identi�ers and are placed under the input position of theloop constructor;2. a nil list of quoted identi�ers is placed under the output position ofthe loop constructor;3. the new term is rewritten as far as possible using the rules, equationsand membership axioms in the module to which the term belongs;and4. if the new result has a loop constructor symbol on the top, this listof quoted identi�ers in the output position of the loop constructor isprinted as a sequence of identi�ers.continue fnumberg .Attempts to continue rewriting the result of the last rewriting commandusing the rules, equations and membership axioms, stopping if the upperbound on the number of rule applications is reached. This command isonly usable if the current module has not changed since the last rewritingcommand, and the last rewriting command was not reduce. If no upperbound clause is given, in�nity is assumed.A.2 Matching CommandsMatching commands are used to directly invoke the rewriting engine's termpattern matcher. They can be useful for �guring out exactly what subjects canbe matched by a complex pattern.match f[ number ]g fin module :g pattern <=? subject .This performs straight-forward matching in the given module. This kindof matching is used by the engine for applying membership axioms. Theresult is a list of at most number matching substitutions. If the upperbound clause is omitted, in�nity is assumed. Example:match [5] in FOO : +(X, *(X, Y)) <=? +(*(a, b), *(c, d)) .xmatch f[ number ]g fin module :g pattern <=? subject .This works similarly to the previous command, except that it performsmatching with extension for those theories that need it (currently justthose including the assoc attribute). If the subject (after theory-normali-zation) has a symbol f from an extension theory on top, only a piece of thetop theory layer with f on top need be matched. This kind of matching isused by the engine for applying equations and rules in order to accuratelysimulate congruence class rewriting. The result is a list of all matches. Ifonly part of the subject was matched, that part is given. Example:xmatch +(*(P, Q), *(X, Y)) <=? +(*(a, b), *(c, d), *(a, e)) .



APPENDIX A. LIST OF CORE MAUDE COMMANDS 141A.3 Tracing CommandsTracing produces detailed information about each rewrite performed and eachconditional rewrite attempted. Since this typically results in an unmanageablyhuge volume of output there are commands to control what is actually displayed.set trace on . / set trace o� .These commands turn tracing on and o�. If tracing is turned on, all traceinformation will be generated internally even if none of it is displayed,thus considerably slowing the speed of interpretation.set trace condition on . / set trace condition o� .Determines whether the evaluations of conditions are traced.set trace whole on . / set trace whole o� .Determines whether the whole term is printed before and after a rewrite.set trace substitution on . / set trace substitution o� .Determines whether the substitution is printed.set trace mb on . / set trace mb o� .Determines whether membership axiom applications are printed.set trace eq on . / set trace eq o� .Determines whether equation applications are printed.set trace rl on . / set trace rl o� .Determines whether rule applications are printed.set trace select on . / set trace select o� .Determines whether only trace information for selected operator symbolsis printed (rather than all symbols).trace select symbols . / trace deselect symbols .Selects/deselects operator symbols from the current module for tracingwith the select option. Examples:trace select foo bar baz .trace deselect baz .A.4 Print Option Commandsset print mix�x on . / set print mix�x o� .Controls whether operators with mix�x syntax are printed in mix�x orpre�x form. User-de�ned syntax is supported for pretty printing eventhough it is not currently supported for parsing. It is sometimes advan-tageous to have uniform pre�x notation for output; for example, if theoutput is going to be post-processed by some other tool. Default is on.set print graph on . / set print graph o� .If on, terms that are internally represented by graphs (currently, resultterms together with terms being reduced and terms in substitutions dur-ing tracing) are printed as graph representations rather than as terms,together with the number of operator symbols in the full term. This canbe useful in some pathological cases where the size of the term is expo-nential in the size of the graph. Default is o�.



APPENDIX A. LIST OF CORE MAUDE COMMANDS 142set print attened on . / set print attened o� .Controls whether arguments under function symbols with the associativeattribute are printed in attened form or not. Default is on.set print with parentheses on . / set print with parentheses o� .If on, additional mix�x terms are printed with additional parentheses tomake grouping explicit. Default is o�.set show stats on . / set show stats o� .Determines whether the number of rewrites is printed with the results ofthe reduce, rewrite and continue commands. Default is on.set show timing on . / set show timing o� .Determines whether the cpu and real time used during rewriting is printedwith the results of the reduce, rewrite and continue commands. Defaultis on.set show command on . / set show command o� .Determines whether the full form of certain commands is printed beforethey are executed. Default is on.set show gc on . / set show gc o� .Determines which message is printed when a garbage collect is performed.Default is o�.A.5 Show Commandsshow module fmoduleg .Prints out a representation of the given module (or of the current moduleif none is given).show all fmoduleg .Prints out a attened representation of the given module (or of the currentmodule if none is given).show sorts fmoduleg .Prints out a representation of the sort and subsort information for thegiven module (or for the current module if none is given).show ops fmoduleg .Lists the operators in the given module (or in the current module if noneis given).show vars fmoduleg .Lists the variables in the given module (or in the current module if noneis given).show mbs fmoduleg .Lists the membership axioms in the given module (or in the current moduleif none is given).show eqs fmoduleg .Lists the equations in the given module (or in the current module if noneis given).



APPENDIX A. LIST OF CORE MAUDE COMMANDS 143show rls fmoduleg .Lists the rules in the given module (or in the current module if none isgiven).show components fmoduleg .Lists the connected components of the poset of sorts for the given module(or for the current module if none is given).show summary fmoduleg .Shows a summary of statistics for the context free grammar and termrewriting system generated for the given module (or for the current moduleif none is given).A.6 Debugger Commandsdebug reduce fin module :g term .Works just like the reduce command above, except that it drops into thedebugger before executing the �rst rewrite.debug rewrite f[ number ]g fin module :g term .Works just like the rewrite command above, except that it drops into thedebugger before executing the �rst rewrite.resume .Only usable from the debugger. Exits the debugger and resumes thecurrent rewriting activity.abort .Only usable from the debugger. Exits the debugger and abandons thecurrent rewriting activity.step .Only usable from the debugger. Performs a single step of the currentrewriting activity with tracing switched on.where .Only usable from the debugger. Prints the stack of pending rewrite taskstogether with explanations of how they arose.A.7 Miscellaneous Commandsselect module .Selects a named module to be the current module. All commands thatrequire a module refer to the current module unless a module is explicitlygiven. The current module is usually the last module entered or used.set include module on . / set include module o� .Adds or removes the named module from the set of modules that areautomatically included in every module.



APPENDIX A. LIST OF CORE MAUDE COMMANDS 144A.8 System CommandsThese commands control system level things. Unlike all the above commandsthey are not followed by a period. Unlike in OBJ3, they may be used inside amodule de�nition at any point at which a keyword such as var could legally beused.pwd Prints the path of the working directory.ls fagsg fdirectoriesgRuns the UNIX ls command to list the �les in the speci�ed directories orworking directory if none speci�ed. The allowable ags depend on yourlocal implementation of ls. Example:ls -lF /usr/bin /usr/localcd directory-nameChanges the working directory to directory-name.pushd directory-nameSaves the current working directory on a stack and then changes the work-ing directory to directory-name.popdChanges the working directory to that which is on the top of the directorystack and pops the directory stack.in �le-nameCauses a speci�ed �le to be included at this point. The full �le name mustbe given, together with a full path name if the �le is not in the currentworking directory. May be nested, i.e. the included �le may contain incommands. Example:in ../Examples/foo.maudeeof Causes the interpreter to respond as if it had reached the end of �le.quit Causes the interpreter to exit.A.9 Abbreviations and SynonymsThe following abbreviations and synonyms are supported for module syntax.pr = protectinginc = includingsorts = sortsubsorts = subsortassoc = associativecomm = commutativeidem = idempotentid: = identity:strat = strategyprec = precedencevars = var



APPENDIX A. LIST OF CORE MAUDE COMMANDS 145The following abbreviations and synonyms are supported for command syntax.red = reducerew = rewritecond = conditionsubst = substitutioncont = continueat = attenedparens = parenthesescmd = commandsort = sortsop = opsvar = varsmb = mbseq = eqsrl = rlskinds = componentsmod = moduleA.10 Deprecated featuresThe following features support (very) limited backward compatibility with theOBJ family of languages. They may be omitted in future releases and thusshould not be used in new code.CommandsThe following OBJ commands are recognized as equivalent to Maude commands:set gc show on . = set show gc on .set gc show o� . = set show gc o� .set stats on . = set show stats on .set stats o� . = set show stats o� .Abbreviations and SynonymsThe following abbreviations and synonyms are supported for module syntax.obj = fmodendo = endfmjbo = endfmcq = ceq



Appendix BThe Grammar of CoreMaudeThis appendix describes the syntax of Maude using the following extended BNFnotation: the symbols `f' and `g' are used as meta-parentheses; the symbol `j'is used to separate alternatives; square bracket pairs, `[' and `]' enclose optionalsyntax; `*' indicate zero or more repetitions of preceding unit; `+' indicate one ormore repetitions of preceding unit; and \x" denotes x literally. As an applicationof this notation, Af, Ag: : : indicates a nonempty list of A's separated by commas.Finally, %%% indicates comments in the syntactic description, as opposed tocomments in the Maude code.hMaudeTop i ::=f hSystemCommand i j hCommand i j hDebuggerCommand i j hModule i g+hSystemCommand i ::= in hFileName i jquit j eof j popd j pwd jcd hDirectory i j push hDirectory i jls [ hLsFlag i ] [ hDirectory i ] jhCommand i ::= select hModId i . jparse [ in hModId i : ] hTerm i . jreduce [ in hModId i : ] hTerm i . jrewrite [ [ hNat i ] ] [ in hModId i : ] hTerm i . jf match j xmatch g [ [ hNat i ] ] [ in hModId i : ] hTerm i <=? hTerm i . jcontinue hNat i . jloop [ in hModId i : ] hTerm i . j( hTokenString i ) jtrace f select j deselect g f hOpId i j ( hOpForm i ) g+ . jshow hShowItem i [ hModId i ] . jset hSetOption i f on j off g .hShowItem i ::= module j all j sorts j ops j vars j mbs jeqs j rls j summary j componentshSetOption i ::= show hShowOption i jprint hPrintOption i jtrace [ hTraceOption i ] jinclude hModId i 146



APPENDIX B. THE GRAMMAR OF CORE MAUDE 147hShowOption i ::= stats j timing j command j gchPrintOption i ::= mixfix j flat j with parentheses j graphhTraceOption i ::= condition j whole j substitution j select jmbs j eqs j rlshDebuggerCommand i ::= debug reduce [ in hModId i : ] hTerm i . jdebug rewrite [ [ hNat i ] ] [ in hModId i : ] hTerm i . jdebug continue hNat i . jresume . j abort . j step . j where .hModule i ::= fmod hModId i is hModElt i* endfm jmod hModId i is hModElt' i* endfm jhModElt i ::= including hModId i . jsorts hSortId i+ . jsubsort hSortId i+ f < hSortId i+ g+ . jop hOpForm i : hSortId i* -> hSortId i [ hAttr i ] . jops f hOpId i j ( hOpForm i ) g+ : hSortId i* -> hSortId i [ hAttr i ] . jvar hVarId i+ : hSortId i . jmb hTerm i : hSortId i . jcmb hTerm i : hSortId i if hCondition i . jeq hTerm i = hTerm i . jceq hTerm i = hTerm i if hCondition i .hModElt' i ::= hModElt i jrl [ [ hLabelId i ] : ] hTerm i => hTerm i . jcrl [ [ hLabelId i ] : ] hTerm i => hTerm i if hCondition i .hCondition i ::= hTerm i = hTerm i j hTerm ihAttr i ::=[ f assoc j comm j[ left j right ] id: hTerm i jidem j memo jstrat ( hNat i+ ) jprec Nat jgather ( f e j E j & g+ ) jspecial ( hHook i+ ) g+ ]hHook i ::= id-hook hToken i [ ( hTokenString i ) ] jf op-hook j term-hook g ( hTokenString i )hFileName i %%% OS dependenthDirectory i %%% OS dependenthLsFlag i %%% OS dependenthModId i %%% simple identifier, by convention all capshSortId i %%% simple identifier, by convention capitalizedhVarId i %%% simple identifier, by convention capitalized



APPENDIX B. THE GRAMMAR OF CORE MAUDE 148hOpId i %%% identifier possibly with underscoreshOpForm i ::= hOpId i j ( hOpForm i ) j hOpForm i+hNat i %%% a natural numberhTerm i ::= hToken i j ( hTerm i ) j hTerm i+hToken i %%% Any symbol other than ( or )hTokenString i ::= hToken i j ( hTokenString i ) j hTokenString i*hLabelId i %%% simple identifierB.1 Lexical IssuesTokens are sequences of printable ASCII characters delimited by white space,except that `(', `)', `[', `]', `f', `g', and `,' are always considered as singlecharacter tokens unless backquoted.Single line comments are started by one of *** or ---, and ended by the endof line. Multiline comments are started by ***( and ended by ). Parentheses(whether backquoted or not) must balance within multiline comments.



Appendix CThe Signature of FullMaudeThe Full Maude system is de�ned as a Core Maude module. That is, the entiresemantics of Full Maude is de�ned and executed in Core Maude. The fullde�nition of the Full Maude system, including the de�nition of all the internalfunctions implementing the system can be found in [19]. In particular, thegrammar of the Full Maude language, that a user should follow to enter modulesand commands, is itself a functional submodule of the overall Full Maude systemspeci�cation. This allows giving the following speci�cation of the Full Maudegrammar in a form more perspicuous in certain ways than the correspondingBNF grammar form.fmod SIGNS&VIEW-EXPRS issorts Token NeTokenList BubbleSortToken Sort SortList SortDeclViewToken ViewExpSubsortRel SubsortDeclOpDecl Attr AttrList Hook HookList .subsorts SortToken < Sort < SortList .subsort ViewToken < ViewExp .subsort Attr < AttrList .subsort Hook < HookList .op ((_)) : Token -> Token .*** extended sortsop _[_] : Sort ViewExp -> Sort [prec 40] .op __ : SortList SortList -> SortList [assoc] .op _,_ : ViewExp ViewExp -> ViewExp [assoc] .*** sort declarationop sorts_. : SortList -> SortDecl .op sort_. : SortList -> SortDecl .*** subsort declarationop subsort_. : SubsortRel -> SubsortDecl .op subsorts_. : SubsortRel -> SubsortDecl .op _<_ : SortList SortList -> SubsortRel .op _<_ : SortList SubsortRel -> SubsortRel .149



APPENDIX C. THE SIGNATURE OF FULL MAUDE 150*** operator attributesop __ : AttrList AttrList -> AttrList [assoc] .op assoc : -> Attr .op associative : -> Attr .op comm : -> Attr .op commutative : -> Attr .op id:_ : Bubble -> Attr .op identity:_ : Bubble -> Attr .op left id:_ : Bubble -> Attr .op left identity:_ : Bubble -> Attr .op right id:_ : Bubble -> Attr .op right identity:_ : Bubble -> Attr .op strat(_) : NeTokenList -> AttrList .op strategy(_) : NeTokenList -> AttrList .op prec_ : Token -> Attr .op precedence_ : Token -> Attr .op gather(_) : NeTokenList -> Attr .op gathering(_) : NeTokenList -> Attr .op idem : -> Attr .op idempotent : -> Attr .op special(_) : HookList -> Attr .op __ : HookList HookList -> HookList [assoc] .op id-hook_ : Token -> Hook .op id-hook_(_) : Token NeTokenList -> Hook .op op-hook_(_:_->_) : Token Token NeTokenList Token -> Hook .op op-hook_(_: ->_) : Token Token Token -> Hook .op term-hook_(_) : Token Bubble -> Hook .*** operator declarationop op_: ->_. : Token Sort -> OpDecl .op op_: ->_[_]. : Token Sort AttrList -> OpDecl .op op_:_->_. : Token SortList Sort -> OpDecl .op op_:_->_[_]. : Token SortList Sort AttrList -> OpDecl .op ops_: ->_. : NeTokenList Sort -> OpDecl .op ops_: ->_[_]. : NeTokenList Sort AttrList -> OpDecl .op ops_:_->_. : NeTokenList SortList Sort -> OpDecl .op ops_:_->_[_]. : NeTokenList SortList Sort AttrList -> OpDecl .endfmfmod F&S-MODS&THS isincluding SIGNS&VIEW-EXPRS .sorts FDeclList SDeclList PreModuleImportDecl ModExp Parameter ParameterListModuleName EquationDecl RuleDecl MembAxDeclVarDecl VarDeclList .subsort Parameter < ParameterList .subsorts Token < ModExp ModuleName .subsort VarDecl < VarDeclList .subsorts VarDecl ImportDecl SortDecl SubsortDeclOpDecl MembAxDecl EquationDecl VarDeclList < FDeclList .subsorts RuleDecl FDeclList < SDeclList .*** variable declarationop vars_:_. : NeTokenList Sort -> VarDecl .op var_:_. : NeTokenList Sort -> VarDecl .



APPENDIX C. THE SIGNATURE OF FULL MAUDE 151*** membership axiom declarationop mb_:_. : Bubble Sort -> MembAxDecl .op cmb_:_if_. : Bubble Sort Bubble -> MembAxDecl .*** equation declarationop eq_=_. : Bubble Bubble -> EquationDecl .op ceq_=_if_. : Bubble Bubble Bubble -> EquationDecl .*** rule declarationop rl[_] :_=>_. : Token Bubble Bubble -> RuleDecl .op crl[_]:_=>_if_. : Token Bubble Bubble Bubble -> RuleDecl .*** importation declarationop including_. : ModExp -> ImportDecl .op inc_. : ModExp -> ImportDecl .op protecting_. : ModExp -> ImportDecl .op pr_. : ModExp -> ImportDecl .*** parameterized module interfaceop _::_ : Token ModExp -> Parameter [prec 40 gather (e &)] .op _,_ : ParameterList ParameterList -> ParameterList [assoc] .op _[_] : Token ParameterList -> ModuleName .*** declaration listop __ : VarDeclList VarDeclList -> VarDeclList [assoc] .op __ : SDeclList SDeclList -> SDeclList [assoc] .op __ : FDeclList FDeclList -> FDeclList [assoc] .*** functional and system module and theoryop fmod_is_endfm : ModuleName FDeclList -> PreModule .op mod_is_endm : ModuleName SDeclList -> PreModule .op fth_is_endfth : ModuleName FDeclList -> PreModule .op th_is_endth : ModuleName SDeclList -> PreModule .endfmfmod OO-MODS&THS isincluding F&S-MODS&THS .sorts ClassDecl AttrDecl AttrDeclListSubclassDecl MsgDecl ODeclList .subsorts SDeclList MsgDecl SubclassDecl ClassDecl < ODeclList .subsort AttrDecl < AttrDeclList .*** object-oriented module and theoryop omod_is_endom : ModuleName ODeclList -> PreModule .op oth_is_endoth : ModuleName ODeclList -> PreModule .*** class declarationop class_|_. : Sort AttrDeclList -> ClassDecl .op class_. : Sort -> ClassDecl .op _,_ : AttrDeclList AttrDeclList -> AttrDeclList [assoc] .op _:_ : Token Sort -> AttrDecl [prec 40] .*** subclass declarationop subclass_. : SubsortRel -> SubclassDecl .op subclasses_. : SubsortRel -> SubclassDecl .



APPENDIX C. THE SIGNATURE OF FULL MAUDE 152op _<_ : SortList SortList -> SubsortRel .op _<_ : SortList SubsortRel -> SubsortRel .*** message declarationop msg_:_->_. : Token SortList Sort -> MsgDecl .op msgs_:_->_. : NeTokenList SortList Sort -> MsgDecl .endfmfmod MOD-EXPRS isincluding OO-MODS&THS .sorts Map MapList .subsort Map < MapList .*** module expressionop _*(_) : ModExp MapList -> ModExp .op _[_] : ModExp ViewExp -> ModExp .*** renaming mapsop op_to_ : Token Token -> Map .op op_:_->_to_ : Token SortList Sort Token -> Map .op op_: ->_to_ : Token Sort Token -> Map .op op_to_[_] : Token Token AttrList -> Map .op op_:_->_to_[_] : Token SortList Sort Token AttrList -> Map .op op_: ->_to_[_] : Token Sort Token AttrList -> Map .op sort_to_ : Sort Sort -> Map .op label_to_ : Token Token -> Map .op class_to_ : Sort Sort -> Map .op attr_._to_ : Token Sort Token -> Map .op msg_to_ : Token Token -> Map .op msg_:_->_to_ : Token SortList Sort Token -> Map .op msg_: ->_to_ : Token Sort Token -> Map .op _,_ : MapList MapList -> MapList [assoc prec 42] .endfmfmod VIEWS isincluding OO-MODS&THS .sorts ViewDecl ViewDeclList PreView .subsorts VarDecl < ViewDecl < ViewDeclList .subsort VarDeclList < ViewDeclList .*** view mapsop op_to term_. : Bubble Bubble -> ViewDecl .op op_to_. : Token Token -> ViewDecl .op op_:_->_to_. : Token SortList Sort Token -> ViewDecl .op op_: ->_to_. : Token Sort Token -> ViewDecl .op sort_to_. : Sort Sort -> ViewDecl .op class_to_. : Sort Sort -> ViewDecl .op attr_._to_. : Token Sort Token -> ViewDecl .op msg_to_. : Token Token -> ViewDecl .op msg_:_->_to_. : Token SortList Sort Token -> ViewDecl .op msg_: ->_to_. : Token Sort Token -> ViewDecl .*** viewop view_from_to_is_endv :



APPENDIX C. THE SIGNATURE OF FULL MAUDE 153ViewToken ModExp ModExp ViewDeclList -> PreView .op __ : ViewDeclList ViewDeclList -> ViewDeclList [assoc] .endfmfmod COMMANDS isincluding MOD-EXPRS .sorts PreCommand .*** down functionop down_:_ : ModExp PreCommand -> PreCommand .*** reduce commandop red_. : Bubble -> PreCommand .op red-in_:_. : ModExp Bubble -> PreCommand .op reduce_. : Bubble -> PreCommand .op reduce-in_:_. : ModExp Bubble -> PreCommand .*** rewrite commandop rew_. : Bubble -> PreCommand .op rew[_]_. : Token Bubble -> PreCommand .op rew-in_:_. : ModExp Bubble -> PreCommand .op rew-in[_]_:_. : Token ModExp Bubble -> PreCommand .op rewrite_. : Bubble -> PreCommand .op rewrite[_]_. : Token Bubble -> PreCommand .op rewrite-in_:_. : ModExp Bubble -> PreCommand .op rewrite-in[_]_:_. : Token ModExp Bubble -> PreCommand .*** select commandop select_. : ModExp -> PreCommand .*** show commandsop show module . : -> PreCommand .op show module_. : ModExp -> PreCommand .op show all . : -> PreCommand .op show all_. : ModExp -> PreCommand .op show sorts . : -> PreCommand .op show sorts_. : ModExp -> PreCommand .op show ops . : -> PreCommand .op show ops_. : ModExp -> PreCommand .op show vars . : -> PreCommand .op show vars_. : ModExp -> PreCommand .op show mbs . : -> PreCommand .op show mbs_. : ModExp -> PreCommand .op show eqns . : -> PreCommand .op show eqns_. : ModExp -> PreCommand .op show rls . : -> PreCommand .op show rls_. : ModExp -> PreCommand .op show view_. : ViewExp -> PreCommand .op show modules . : -> PreCommand .op show views . : -> PreCommand .endfmfmod FULL-MAUDE-SIGN isincluding VIEWS .including COMMANDS .endfm



Appendix DStandard Library ofPrede�ned Modules*** Maude interpreter standard prelude****** Some of the overall structure is adapted from the OBJ3*** interpreter standard prelude.***fmod TRUTH-VALUE issort Bool .op true : -> Bool [special (id-hook SystemTrue)] .op false : -> Bool [special (id-hook SystemFalse)] .endfmfmod TRUTH isprotecting TRUTH-VALUE .op if_then_else_fi : Bool Universal Universal -> Universal[special (id-hook BranchSymbolterm-hook trueTerm (true)term-hook falseTerm (false))] .op _==_ : Universal Universal -> Bool[prec 51special (id-hook EqualitySymbolterm-hook equalTerm (true)term-hook notEqualTerm (false))] .op _=/=_ : Universal Universal -> Bool[prec 51special (id-hook EqualitySymbolterm-hook equalTerm (false)term-hook notEqualTerm (true))] .endfmfmod BOOL isprotecting TRUTH .op _and_ : Bool Bool -> Bool [assoc comm prec 55] .op _or_ : Bool Bool -> Bool [assoc comm prec 59] .op _xor_ : Bool Bool -> Bool [assoc comm prec 57] .op not_ : Bool -> Bool [prec 53] .154



APPENDIX D. STANDARD LIBRARY 155op _implies_ : Bool Bool -> Bool [gather (e E) prec 61] .vars A B C : Bool .eq true and A = A .eq false and A = false .eq A and A = A .eq false xor A = A .eq A xor A = false .eq A and (B xor C) = A and B xor A and C .eq not A = A xor true .eq A or B = A and B xor A xor B .eq A implies B = not(A xor A and B) .endfmset include BOOL on .fmod IDENTICAL isop _===_ : Universal Universal -> Bool[prec 51 strat (0)special (id-hook EqualitySymbolterm-hook equalTerm (true)term-hook notEqualTerm (false))] .op _=/==_ : Universal Universal -> Bool[prec 51 strat (0)special (id-hook EqualitySymbolterm-hook equalTerm (false)term-hook notEqualTerm (true))] .endfmfmod MACHINE-INT issorts MachineInt NzMachineInt .subsort NzMachineInt < MachineInt .op <MachineInts> : -> NzMachineInt [special (id-hook MachineIntegerSymbol)] .op <MachineInts> : -> MachineInt [special (id-hook MachineIntegerSymbol)] .op -_ : MachineInt -> MachineInt[prec 15special (id-hook MachineIntegerOpSymbol (-)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op -_ : NzMachineInt -> NzMachineInt[prec 15special (id-hook MachineIntegerOpSymbol (-)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op ~_ : MachineInt -> MachineInt[prec 15special (id-hook MachineIntegerOpSymbol (~)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op _+_ : MachineInt MachineInt -> MachineInt[prec 33 gather (E e)special (id-hook MachineIntegerOpSymbol (+)op-hook machineIntBaseSymbol



APPENDIX D. STANDARD LIBRARY 156(<MachineInts> : -> MachineInt))] .op _-_ : MachineInt MachineInt -> MachineInt[prec 33 gather (E e)special (id-hook MachineIntegerOpSymbol (-)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op _*_ : MachineInt MachineInt -> MachineInt[prec 31 gather (E e)special (id-hook MachineIntegerOpSymbol (*)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op _*_ : NzMachineInt NzMachineInt -> NzMachineInt[prec 31 gather (E e)special (id-hook MachineIntegerOpSymbol (*)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op _/_ : MachineInt NzMachineInt -> MachineInt[prec 31 gather (E e)special (id-hook MachineIntegerOpSymbol (/)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op _%_ : MachineInt NzMachineInt -> MachineInt[prec 31 gather (E e)special (id-hook MachineIntegerOpSymbol (%)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op _&_ : MachineInt MachineInt -> MachineInt[prec 53 gather (E e)special (id-hook MachineIntegerOpSymbol (&)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op _|_ : MachineInt MachineInt -> MachineInt[prec 57 gather (E e)special (id-hook MachineIntegerOpSymbol (|)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op _|_ : NzMachineInt NzMachineInt -> NzMachineInt[prec 57 gather (E e)special (id-hook MachineIntegerOpSymbol (|)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op _^_ : MachineInt MachineInt -> MachineInt[prec 55 gather (E e)special (id-hook MachineIntegerOpSymbol (^)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op _>>_ : MachineInt MachineInt -> MachineInt



APPENDIX D. STANDARD LIBRARY 157[prec 35 gather (E e)special (id-hook MachineIntegerOpSymbol (>>)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op _<<_ : MachineInt MachineInt -> MachineInt[prec 35 gather (E e)special (id-hook MachineIntegerOpSymbol (<<)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op _<_ : MachineInt MachineInt -> Bool[prec 37special (id-hook MachineIntegerOpSymbol (<)op-hook machineIntBaseSymbol (<MachineInts> : -> MachineInt)term-hook trueTerm (true)term-hook falseTerm (false))] .op _<=_ : MachineInt MachineInt -> Bool[prec 37special (id-hook MachineIntegerOpSymbol (<=)op-hook machineIntBaseSymbol (<MachineInts> : -> MachineInt)term-hook trueTerm (true)term-hook falseTerm (false))] .op _>_ : MachineInt MachineInt -> Bool[prec 37special (id-hook MachineIntegerOpSymbol (>)op-hook machineIntBaseSymbol (<MachineInts> : -> MachineInt)term-hook trueTerm (true)term-hook falseTerm (false))] .op _>=_ : MachineInt MachineInt -> Bool[prec 37special (id-hook MachineIntegerOpSymbol (>=)op-hook machineIntBaseSymbol (<MachineInts> : -> MachineInt)term-hook trueTerm (true)term-hook falseTerm (false))] .endfmfmod QID isprotecting MACHINE-INT .sort Qid .op <Qids> : -> Qid [special (id-hook QuotedIdentifierSymbol)] .op conc : Qid Qid -> Qid[special (id-hook QuotedIdentifierOpSymbol (conc)op-hook qidBaseSymbol (<Qids> : -> Qid))] .op index : Qid MachineInt -> Qid[special (id-hook QuotedIdentifierOpSymbol (index)op-hook qidBaseSymbol (<Qids> : -> Qid)op-hook machineIntBaseSymbol(<MachineInts> : -> MachineInt))] .op strip : Qid -> Qid[special (id-hook QuotedIdentifierOpSymbol (strip)



APPENDIX D. STANDARD LIBRARY 158op-hook qidBaseSymbol (<Qids> : -> Qid))] .endfmfmod QID-LIST isprotecting QID .sort QidList .subsort Qid < QidList .op nil : -> QidList .op __ : QidList QidList -> QidList [assoc id: nil] .endfmfmod META-LEVEL isprotecting QID-LIST .sorts FModule Module ModuleExpression Import ImportListQidSet MachineIntList Sort SortDecl SubsortDecl SubsortDeclSet AttrAttrSet OpDecl OpDeclSet VarDecl VarDeclSet Term TermList EquationEquationSet Rule RuleSet MembAx MembAxSet Assignment SubstitutionResultPair Hook HookList .subsort FModule < Module .subsort Import < ImportList .subsort Qid < ModuleExpression .subsort Qid < QidSet .subsort MachineInt < MachineIntList .subsort Qid < Sort .subsort SubsortDecl < SubsortDeclSet .subsort Attr < AttrSet .subsort OpDecl < OpDeclSet .subsort VarDecl < VarDeclSet .subsort Qid < Term .subsort Term < TermList .subsort Equation < EquationSet .subsort Rule < RuleSet .subsort MembAx < MembAxSet .subsort Assignment < Substitution .subsort Hook < HookList .op _[_] : Qid TermList -> Term .op {_}_ : Qid Qid -> Term .op _,_ : TermList TermList -> TermList [assoc gather (e E) prec 120] .op _:_ : Term Qid -> Term .op _::_ : Term Qid -> Term .op none : -> QidSet .op _;_ : QidSet QidSet -> QidSet [assoc comm id: none] .op nil : -> MachineIntList .op __ : MachineIntList MachineIntList -> MachineIntList [assoc id: nil] .op fmod_is_______endfm : Qid ImportList SortDecl SubsortDeclSetOpDeclSet VarDeclSet MembAxSet EquationSet -> FModule[gather (& & & & & & & &)] .op mod_is________endm : Qid ImportList SortDecl SubsortDeclSetOpDeclSet VarDeclSet MembAxSet EquationSet RuleSet -> Module[gather (& & & & & & & & &)] .op nil : -> ImportList .op __ : ImportList ImportList -> ImportList [assoc id: nil] .op including_. : ModuleExpression -> Import .op sorts_. : QidSet -> SortDecl .



APPENDIX D. STANDARD LIBRARY 159op subsort_<_. : Qid Qid -> SubsortDecl .op none : -> SubsortDeclSet .op __ : SubsortDeclSet SubsortDeclSet -> SubsortDeclSet[assoc comm id: none] .op (op_:_->_[_].) : Qid QidList Qid AttrSet -> OpDecl .op none : -> OpDeclSet .op __ : OpDeclSet OpDeclSet -> OpDeclSet [assoc comm id: none] .op none : -> AttrSet .op __ : AttrSet AttrSet -> AttrSet [assoc comm id: none] .op assoc : -> Attr .op comm : -> Attr .op idem : -> Attr .op id : Term -> Attr .op left-id : Term -> Attr .op right-id : Term -> Attr .op strat : MachineIntList -> Attr .op memo : -> Attr .op prec : MachineInt -> Attr .op gather : QidList -> Attr .op special : HookList -> Attr .op __ : HookList HookList -> HookList [assoc] .op id-hook : Qid QidList -> Hook .op op-hook : Qid Qid QidList Qid -> Hook .op term-hook : Qid Term -> Hook .op var_:_. : Qid Qid -> VarDecl .op none : -> VarDeclSet .op __ : VarDeclSet VarDeclSet -> VarDeclSet [assoc comm id: none] .op mb_:_. : Term Qid -> MembAx .op cmb_:_if_=_. : Term Qid Term Term -> MembAx .op none : -> MembAxSet .op __ : MembAxSet MembAxSet -> MembAxSet [assoc comm id: none] .op eq_=_. : Term Term -> Equation .op ceq_=_if_=_. : Term Term Term Term -> Equation .op none : -> EquationSet .op __ : EquationSet EquationSet -> EquationSet [assoc comm id: none] .op rl[_]:_=>_. : Qid Term Term -> Rule .op crl[_]:_=>_if_=_. : Qid Term Term Term Term -> Rule .op none : -> RuleSet .op __ : RuleSet RuleSet -> RuleSet [assoc comm id: none] .op _<-_ : Qid Term -> Assignment .op none : -> Substitution .op _;_ : Substitution Substitution -> Substitution [assoc comm id: none] .op {_,_} : Term Substitution -> ResultPair .op error* : -> Term .op errorSort : QidSet -> Sort .op meta-reduce : Module Term -> Term[special (



APPENDIX D. STANDARD LIBRARY 160id-hook MetaLevelOpSymbol (meta-reduce)op-hook machineIntBaseSymbol (<MachineInts> : -> MachineInt)op-hook qidBaseSymbol (<Qids> : -> Qid)op-hook nilMachineIntListSymbol (nil : -> MachineIntList)op-hook machineIntListSymbol(__ : MachineIntList MachineIntList -> MachineIntList)op-hook emptyQidSetSymbol (none : -> QidSet)op-hook qidSetSymbol (_;_ : QidSet QidSet -> QidSet)op-hook nilQidListSymbol (nil : -> QidList)op-hook qidListSymbol (__ : QidList QidList -> QidList)op-hook fmodSymbol(fmod_is_______endfm :Qid ImportList SortDecl SubsortDeclSet OpDeclSetVarDeclSet MembAxSet EquationSet -> FModule)op-hook modSymbol(mod_is________endm :Qid ImportList SortDecl SubsortDeclSet OpDeclSetVarDeclSet MembAxSet EquationSet RuleSet -> Module)op-hook nilImportListSymbol (nil : -> ImportList)op-hook importListSymbol (__ : ImportList ImportList -> ImportList)op-hook includingSymbol (including_. : ModuleExpression -> Import)op-hook sortSymbol (sorts_. : QidSet -> SortDecl)op-hook emptySubsortDeclSetSymbol (none : -> SubsortDeclSet)op-hook subsortDeclSetSymbol(__ : SubsortDeclSet SubsortDeclSet -> SubsortDeclSet)op-hook subsortSymbol (subsort_<_. : Qid Qid -> SubsortDecl)op-hook opDeclSetSymbol (__ : OpDeclSet OpDeclSet -> OpDeclSet)op-hook emptyOpDeclSetSymbol (none : -> OpDeclSet)op-hook opDeclSymbol(op_:_->_[_]. : Qid QidList Qid AttrSet -> OpDecl)op-hook emptyAttrSetSymbol (none : -> AttrSet)op-hook attrSetSymbol (__ : AttrSet AttrSet -> AttrSet)op-hook assocSymbol (assoc : -> Attr)op-hook commSymbol (comm : -> Attr)op-hook idemSymbol (idem : -> Attr)op-hook idSymbol (id : Term -> Attr)op-hook leftIdSymbol (left-id : Term -> Attr)op-hook rightIdSymbol (right-id : Term -> Attr)op-hook stratSymbol (strat : MachineIntList -> Attr)op-hook memoSymbol (memo : -> Attr)op-hook precSymbol (prec : MachineInt -> Attr)op-hook gatherSymbol (gather : QidList -> Attr)op-hook specialSymbol (special : HookList -> Attr)op-hook hookListSymbol (__ : HookList HookList -> HookList)op-hook idHookSymbol (id-hook : Qid QidList -> Hook)op-hook opHookSymbol (op-hook : Qid Qid QidList Qid -> Hook)op-hook termHookSymbol (term-hook : Qid Term -> Hook)op-hook emptyVarDeclSetSymbol (none : -> VarDeclSet)op-hook varDeclSetSymbol



APPENDIX D. STANDARD LIBRARY 161(__ : VarDeclSet VarDeclSet -> VarDeclSet)op-hook varDeclSymbol (var_:_. : Qid Qid -> VarDecl)op-hook metaTermSymbol (_[_] : Qid TermList -> Term)op-hook metaDisambigSymbol ({_}_ : Qid Qid -> Term)op-hook metaArgSymbol (_,_ : TermList TermList -> TermList)op-hook emptyMembAxSetSymbol (none : -> MembAxSet)op-hook membAxSetSymbol (__ : MembAxSet MembAxSet -> MembAxSet)op-hook mbSymbol (mb_:_. : Term Qid -> MembAx)op-hook cmbSymbol(cmb_:_if_=_. : Term Qid Term Term -> MembAx)op-hook emptyEquationSetSymbol (none : -> EquationSet)op-hook equationSetSymbol(__ : EquationSet EquationSet -> EquationSet)op-hook eqSymbol (eq_=_. : Term Term -> Equation)op-hook ceqSymbol(ceq_=_if_=_. : Term Term Term Term -> Equation)op-hook emptyRuleSetSymbol (none : -> RuleSet)op-hook ruleSetSymbol (__ : RuleSet RuleSet -> RuleSet)op-hook rlSymbol (rl[_]:_=>_. : Qid Term Term -> Rule)op-hook crlSymbol(crl[_]:_=>_if_=_. : Qid Term Term Term Term -> Rule)op-hook membPredSymbol (_:_ : Term Qid -> Term)op-hook lazyMembPredSymbol (_::_ : Term Qid -> Term)op-hook substitutionSymbol(_;_ : Substitution Substitution -> Substitution)op-hook emptySubstitutionSymbol (none : -> Substitution)op-hook assignmentSymbol (_<-_ : Qid Term -> Assignment)op-hook resultPairSymbol({_,_} : Term Substitution -> ResultPair)op-hook metaErrorSymbol (error* : -> Term)op-hook errorSortSymbol (errorSort : QidSet -> Sort)term-hook trueTerm (true)term-hook falseTerm (false))] .op meta-rewrite : Module Term MachineInt -> Term[special (id-hook MetaLevelOpSymbol (meta-rewrite)op-hook shareWith (meta-reduce : Module Term -> Term))] .op meta-apply : Module Term Qid Substitution MachineInt -> ResultPair[special (id-hook MetaLevelOpSymbol (meta-apply)op-hook shareWith (meta-reduce : Module Term -> Term))] .op meta-parse : Module QidList -> Term[special (id-hook MetaLevelOpSymbol (meta-parse)op-hook shareWith (meta-reduce : Module Term -> Term))] .op meta-pretty-print : Module Term -> QidList



APPENDIX D. STANDARD LIBRARY 162[special (id-hook MetaLevelOpSymbol (meta-pretty-print)op-hook shareWith (meta-reduce : Module Term -> Term))] .op sortLeq : Module Sort Sort -> Bool[special (id-hook MetaLevelOpSymbol (sortLeq)op-hook shareWith (meta-reduce : Module Term -> Term))] .op sameComponent : Module Sort Sort -> Bool[special (id-hook MetaLevelOpSymbol (sameComponent)op-hook shareWith (meta-reduce : Module Term -> Term))] .op leastSort : Module Term -> Sort[special (id-hook MetaLevelOpSymbol (leastSort)op-hook shareWith (meta-reduce : Module Term -> Term))] .op lesserSorts : Module Sort -> QidSet[special (id-hook MetaLevelOpSymbol (lesserSorts)op-hook shareWith (meta-reduce : Module Term -> Term))] .op glbSorts : Module Sort Qid -> QidSet[special (id-hook MetaLevelOpSymbol (glbSorts)op-hook shareWith (meta-reduce : Module Term -> Term))] .endfmmod LOOP-MODE isprotecting QID-LIST .sorts State System .op [_,_,_] : QidList State QidList -> System[special (id-hook LoopSymbolop-hook qidBaseSymbol (<Qids> : -> Qid)op-hook nilQidListSymbol (nil : -> QidList)op-hook qidListSymbol (__ : QidList QidList -> QidList))] .endm



Appendix EA Software ArchitectureInteroperation ExampleThe following example|developed by Francisco Dur�an and Jos�e Meseguer aspart of a broader joint project with Carolyn Talcott on the uses of rewritinglogic as a semantic framework for the interoperation of architectural descriptionlanguages (ADLs) [34]|is included for two purposes.On the one hand, it is a medium-size example that exhibits many of theobject-oriented and parameterized programming features of Full Maude; it cantherefore be pro�tably used together with the examples in Sections 3.2 and 3.5 tobecome more familiar with the object-oriented and parameterized programmingfeatures of Full Maude.On the other hand, the example has an interest in its own right as a non-trivial case study demonstrating the suitability of rewriting logic as a semanticframework, to give a formal semantics to, and to interoperate, di�erent architec-tural description languages. Intuitively, such languages have di�erent semanticmodels, but such models are not always precisely de�ned, and it is even lessclear how one can interoperate in a correct way ADLs based on quite di�erentsemantic models.The example is somewhat modest in its goals. In particular, we do notmodel the syntax of any existing ADLs. Instead, we specify in rewriting logic thesemantics for the semantic models of several typical ADLs, including dataow|in both a static and a reective-dynamic form|message passing, and implicitinvocation.The need for having to use and interoperate several of these models is mo-tivated by the example itself, namely a system in which images from ships inthe ocean, together with information about their location, are �rst sent to animage recognition subsystem that has a typical \pipes and �lters" dataow ar-chitecture. In this case the dataow architecture happens to be dynamic, sothat it can be modi�ed at runtime in a reexive way by adding new recognitionunits to it. The results of the image recognition subsystem are then summarizedand sent in a message-passing style to a command center that has an implicitinvocation architecture, so that each object will react in its own particular wayto the same event broadcast to all of them. Each of the objects in the commandcenter can then send appropriate messages in response to the information thatit receives. The overall architecture of the system is summarized in a pictorialway in Figure E.1.(fmod MACHINE-INT* is 163
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Figure E.1: Semantic interoperability of heterogeneous architectures.protecting MACHINE-INT .var N : MachineInt .var M : MachineInt .*** difference of two numbersop dif : MachineInt MachineInt -> MachineInt .eq dif(N, M)= if N > Mthen N - Melse M - Nfi .*** maximum of two numbersop max : MachineInt MachineInt -> MachineInt .eq max(N, M)= if N > Mthen Nelse Mfi .endfm)(fth TRIV issort Elt .endfth)(fmod DEFAULT[Y :: TRIV] issort Default[Y] .



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 165subsort Elt.Y < Default[Y] .op null : -> Default[Y] .endfm)(fmod PAIR[X :: TRIV, Y :: TRIV] issort Pair[X, Y] .op <_;_> : Elt.X Elt.Y -> Pair[X, Y] .op 1st : Pair[X, Y] -> Elt.X .op 2nd : Pair[X, Y] -> Elt.Y .var A : Elt.X .var B : Elt.Y .eq 1st(< A ; B >) = A .eq 2nd(< A ; B >) = B .endfm)(fmod TRIPLE[X :: TRIV, Y :: TRIV, Z :: TRIV] issort Triple[X, Y, Z] .op <_;_;_> : Elt.X Elt.Y Elt.Z -> Triple[X, Y, Z] .op 1st : Triple[X, Y, Z] -> Elt.X .op 2nd : Triple[X, Y, Z] -> Elt.Y .op 3rd : Triple[X, Y, Z] -> Elt.Z .var A : Elt.X .var B : Elt.Y .var C : Elt.Z .eq 1st(< A ; B ; C >) = A .eq 2nd(< A ; B ; C >) = B .eq 3rd(< A ; B ; C >) = C .endfm)(fmod LIST[X :: TRIV] issort List[X] .subsort Elt.X < List[X] .op nil : -> List[X] .op _._ : List[X] List[X] -> List[X] [assoc id: nil] .endfm)(fmod SET[X :: TRIV] isprotecting BOOL .sorts Set[X] NeSet[X] .subsorts Elt.X < NeSet[X] < Set[X] .op mt : -> Set[X] .op __ : Set[X] Set[X] -> Set[X] [assoc comm id: mt] .op __ : NeSet[X] NeSet[X] -> NeSet[X] [assoc comm id: mt] .op _in_ : Elt.X Set[X] -> Bool .



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 166vars E E' : Elt.X .var S : Set[X] .eq E E = E .eq E in mt = false .eq E in (E' S) = E == E' or (E in S) .endfm)(fth FUNCTION issorts Domain Codomain .op f : Domain -> Codomain .endfth)(view Domain from TRIV to FUNCTION issort Elt to Domain .endv)(view Codomain from TRIV to FUNCTION issort Elt to Codomain .endv)(fmod MAP[F :: FUNCTION] isprotecting (SET[Domain] * (op __ to _;_))[F] .protecting SET[Codomain][F] .op map : Set[Domain][F] -> Set[Codomain][F] .var A : Domain.F .var S : Set[Domain][F] .eq map(mt) = (mt).Set`[Codomain`]`[F`] .eq map(A ; S) = f(A) map(S) .endfm)(fmod PFUN[U :: TRIV, V :: TRIV] isprotecting BOOL .protecting DEFAULT[V] .*** protecting PAIR[U, Default[V]] not supported.*** We use Pair[U, V] instead of Pair[U, Default[V]]sort Pair[U, V] .op <_;_> : Elt.U Default[V] -> Pair[U, V] .op 1st : Pair[U, V] -> Elt.U .op 2nd : Pair[U, V] -> Default[V] .var A : Elt.U .var B : Default[V] .



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 167eq 1st(< A ; B >) = A .eq 2nd(< A ; B >) = B .*** protecting SET[Pair[U, Default[V]]] not supported.*** We would like to be able to write*** pr SET[Pair[U, Default[V]]]*** * (sort Set[Pair[U, Default[V]]] to PairSet[U, Default[V]],*** sort NeSet[Pair[U, Default[V]]] to NePairSet[U, Default[V]]) .*** We use PairSet[U, V] and NePairSet[U, V] instead of*** PairSet[U, Default[V]] and NePairSet[U, Default[V]].sorts PairSet[U, V] NePairSet[U, V] .subsorts Pair[U, V] < NePairSet[U, V] < PairSet[U, V] .op mt : -> PairSet[U, V] .op __ : PairSet[U, V] PairSet[U, V] -> PairSet[U, V][assoc comm id: (mt).PairSet`[U`,V`]] .op __ : NePairSet[U, V] NePairSet[U, V] -> NePairSet[U, V][assoc comm id: (mt).PairSet`[U`,V`]] .op _in_ : Pair[U, V] PairSet[U, V] -> Bool .vars E E' : Pair[U, V] .var S : PairSet[U, V] .eq E E = E .eq E in (mt).PairSet`[U`,V`] = false .eq E in (E' S) = (E == E') or (E in S) .*** We would like to be able to write****** pr MAP[view to PAIR[U, Default[V]] is*** sort Domain to Pair[U, Default[V]] .*** sort Codomain to Elt.U .*** op f to 1st .*** endv]*** * (sort Set[Domain][U] to PairSet[U, Default[V]],*** sort Set[Codomain][Default[V]] to Set[U],*** op map to dom) .****** and****** pr MAP[view to PAIR[U, Default[V]] is*** sort Domain to Pair[U, Default[V]] .*** sort Codomain to Default[V] .*** op f to 2nd .*** endv]*** * (sort Set[Domain][U] to PairSet[U, Default[V]],*** sort Set[Codomain][Default[V]] to Set[Default[V]],*** op map to im) .****** Instead, we use Set[U] and Set[V]protecting SET[U] .*** protecting SET[Default[V]] not supported.*** We use Set[V] instead of Set[Default[V]].



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 168protecting SET[V] .sort PFun[U, V] .subsorts Pair[U, V] < PFun[U, V] < PairSet[U, V] .op mt : -> PFun[U, V] .op _`[_`] : PFun[U, V] Elt.U -> Default[V] .op _`[_->_`] : PFun[U, V] Elt.U Default[V] -> PFun[U, V] .vars C : Default[V] .var F : PFun[U, V] .op dom : PairSet[U, V] -> Set[U] . *** domaineq dom((mt).PairSet`[U`,V`]) = (mt).Set`[U`] .eq dom(< A ; B > S) = A dom(S) .op im : PairSet[U, V] -> Set[V] . *** imageeq im((mt).PairSet`[U`,V`]) = (mt).Set`[V`] .eq im(< A ; B > S) = B im(S) .cmb < A ; B > F : PFun[U, V]if not(A in dom(F)) .eq (< A ; B > F)[ A ] = B .ceq F [ A ]= nullif not(A in dom(F)) .eq (< A ; B > F)[ A -> C ]= < A ; C > F .ceq F [ A -> C ]= < A ; C > Fif not(A in dom(F)) .endfm)*** the following data type of Ports will be used for the input and output*** ports of filter objects in the pipe and filters model.(view NzMachineInt from TRIV to MACHINE-INT* issort Elt to NzMachineInt .endv)(fmod PORTS[X :: TRIV] isprotecting BOOL .protecting PFUN[NzMachineInt, X]* (sort Pair[NzMachineInt, X] to Port[X],sort PairSet[NzMachineInt, X] to PortSet[X],sort NePairSet[NzMachineInt, X] to NePortSet[X]) .op put : Default[X] PortSet[X] -> PortSet[X] .*** set the value of all the ports to the given valueop flush : PortSet[X] -> PortSet[X] .*** set all the ports to nullop empty : PortSet[X] -> Bool .



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 169*** true if all the ports in the set are set to nullop full : PortSet[X] -> Bool .*** true if all the ports in the set ar different from nullvar N : NzMachineInt .vars A B : Default[X] .var S : PortSet[X] .eq put(B, mt)= (mt).PortSet`[X`] .eq put(B, (< N ; A > S))= < N ; B > put(B, S) .eq flush(S)= put(null, S) .eq empty(mt)= true .eq empty(< N ; A > S)= (A == null) and empty(S) .eq full(mt)= true .eq full(< N ; A > S)= (A =/= null) and full(S) .endfm)(omod OID isprotecting MACHINE-INT* .op o : MachineInt -> Oid .endom)(view MachineInt from TRIV to MACHINE-INT* issort Elt to MachineInt .endv)(view Triple`[MachineInt`,MachineInt`,MachineInt`]from TRIVto TRIPLE[MachineInt,MachineInt,MachineInt] issort Elt to Triple[MachineInt, MachineInt, MachineInt] .endv)(view List`[MachineInt`] from TRIV to LIST[MachineInt] issort Elt to List[MachineInt] .endv)(view Image from TRIV to LIST[MachineInt]*(sort List[MachineInt] to Image) issort Elt to Image .endv)*** A sighting consists of two-dimensional coords plus a time, plus



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 170*** an image described as a list of block heights.*** For example, the image of a destroyer, with shape****** #*** # # #*** # # # # # #*** # # # # # #,****** is given by the list 2 . 2 . 4 . 3 . 3 . 2.(fmod SIGHTING ispr LIST[MachineInt]*(sort List[MachineInt] to Image) .pr PAIR[Triple`[MachineInt`,MachineInt`,MachineInt`], Image]*(sort Triple[MachineInt, MachineInt, MachineInt] to Location,sort Pair[Triple`[MachineInt`,MachineInt`,MachineInt`], Image]to Sighting,op 1st : Pair[Triple`[MachineInt`,MachineInt`,MachineInt`], Image]-> Triple`[MachineInt`,MachineInt`,MachineInt`] to sighting,op 2nd : Pair[Triple`[MachineInt`,MachineInt`,MachineInt`], Image]-> Image to image) .op distance : Image Image -> MachineInt . *** distance between two imagesop size : Image -> MachineInt .op aircraft-carrier : -> Image .op oil-tanker : -> Image .op destroyer : -> Image .op speedboat : -> Image .vars N M : MachineInt .vars L Q : Image .eq size(nil) = 0 .eq size(N) = N .eq size(N . L) = N + size(L) .eq distance(nil, L) = size(L) .eq distance(L, nil) = size(L) .eq distance(N, M . L) = dif(N, M) + size(L) .eq distance(M . L, N) = dif(N, M) + size(L) .eq distance(N . L, M . Q) = dif(N, M) + distance(L, Q) .eq aircraft-carrier = 3 . 3 . 3 . 3 . 3 . 4 . 3 . 3 . 3 .eq oil-tanker = 2 . 2 . 2 . 2 . 2 . 2 . 2 . 3 .eq destroyer = 2 . 2 . 4 . 3 . 3 . 2 .eq speedboat = 1 . 1 .endfm)(view Oid from TRIV to OID issort Elt to Oid .endv)(view Pair`[Oid`,NzMachineInt`] from TRIV to PAIR[Oid, NzMachineInt] issort Elt to Pair[Oid, NzMachineInt] .endv)(omod PIPE[X :: TRIV] is



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 171pr DEFAULT[Pair`[Oid`,NzMachineInt`]]* (sort Default[Pair`[Oid`,NzMachineInt`]] to DfltAddr) .pr LIST[X] .class Pipe[X] | from : DfltAddr, to : DfltAddr, q : List[X] .endom)(omod FILTER[X :: TRIV] isincluding PIPE[X] .protecting PORTS[X] .class Filter[X] | in : PortSet[X], out : PortSet[X] .vars O P : Oid .var N : NzMachineInt .var E : Elt.X .var S : PortSet[X] .var Q : List[X] .rl [filter-1] :< O : Filter[X] | out : (< N ; E > S) >< P : Pipe[X] | from : < O ; N >, q : Q >=> < O : Filter[X] | out : (< N ; null > S) >< P : Pipe[X] | q : (E . Q) > .rl [filter-2] :< O : Filter[X] | in : (< N ; null > S) >< P : Pipe[X] | to : < O ; N >, q : E >=> < O : Filter[X] | in : (< N ; E > S) >< P : Pipe[X] | q : nil > .rl [filter-3] :< O : Filter[X] | in : (< N ; null > S) >< P : Pipe[X] | to : < O ; N >, q : (Q . E) >=> < O : Filter[X] | in : (< N ; E > S) >< P : Pipe[X] | q : Q > .endom)(omod FANOUT[X :: TRIV] isincluding FILTER[X] .class Fanout[X] | cnt : MachineInt .subclass Fanout[X] < Filter[X] .var E : Elt.X .var S : PortSet[X] .var F : Oid .var N : MachineInt .crl [fanout] :< F : Fanout[X] | in : < 1 ; E >, out : S, cnt : N >=> < F : Fanout[X] | in : < 1 ; (null).Default`[X`] >,out : put(E, S),cnt : (N + 1) >if empty(S) and not (E == (null).Default`[X`]) .



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 172endom)(view Sighting from TRIV to SIGHTING issort Elt to Sighting .endv)(view Loc-Eval from FUNCTIONto PAIR[Sighting, MachineInt]* (sort Pair[Sighting, MachineInt] to Loc-Eval) issort Domain to Loc-Eval .sort Codomain to Location .var D : Domain .op f(D) to term sighting(1st(D)) .endv)(view ImageSight from TRIV to SIGHTING issort Elt to Image .endv)(view Pair`[ImageSight`,MachineInt`]from TRIV to PAIR[ImageSight, MachineInt] issort Elt to Pair[ImageSight, MachineInt] .endv)(fmod DATA isprotecting SIGHTING .protecting MAP[Loc-Eval]*(sort Set[Domain][Loc-Eval] to Loc-Evals,sort NeSet[Domain][Loc-Eval] to Ne-Loc-Evals,op mt : -> Set[Domain][Loc-Eval] to mt-Loc-Evals,sort Set[Codomain][Loc-Eval] to Locations,sort NeSet[Codomain][Loc-Eval] to Ne-Locations,op mt : -> Set[Codomain][Loc-Eval] to mt-Locations,op map to locs) .protecting SET[Pair`[ImageSight`,MachineInt`]]*(sort Pair[ImageSight, MachineInt] to Eval,sort Set[Pair`[ImageSight`,MachineInt`]] to Evals,sort NeSet[Pair`[ImageSight`,MachineInt`]] to NeEvals,op mt to mt-Evals) .sort Data .subsort Sighting < Data .subsort Loc-Evals < Data .op unidentified-object : -> Eval .op winners : Loc-Evals NzMachineInt -> Evals .var LEVS : Loc-Evals .vars N M : MachineInt .var L : Location .var I : Image .



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 173eq winners(mt-Loc-Evals, N) = mt-Evals .eq winners((< < L ; I > ; M > ; LEVS), N)= if N > Mthen (< I ; M > winners(LEVS, N))else winners(LEVS, N)fi .endfm)(view Data from TRIV to DATA issort Elt to Data .endv)(omod RECOGNIZER isincluding FILTER[Data] .class Recognizer | model : Image .subclass Recognizer < Filter[Data] .var L : Location .vars I M : Image .var R : Oid .rl [recognizer] :< R : Recognizer | in : < 1 ; < L ; I > >, out : < 1 ; null >, model : M >=> < R : Recognizer |in : < 1 ; null >,out : < 1 ; < < L ; M > ; distance(I, M) > > > .*** this rule assumes unique input and output ports and singleton*** data values in them as the way recognizer filters are used.endom)(omod COLLECTOR isincluding FILTER[Data] .class Collector | cnt : MachineInt .subclass Collector < Filter[Data] .op evals : PortSet[Data] -> Loc-Evals .var S : PortSet[Data] .var C : Oid .var N : MachineInt .var D : Data .eq evals(< N ; D > S) = (D ; evals(S)).Loc-Evals .eq evals((mt).PortSet`[Data`]) = mt-Loc-Evals .crl [collector] :< C : Collector | in : S, out : < 1 ; null >, cnt : N >=> < C : Collector | in : flush(S), out : < 1 ; evals(S) >, cnt : (N + 1) >if full(S) and (S =/= mt) .endom)



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 174(omod DISCRIMINATOR isincluding COLLECTOR .class Discriminator |collector : Oid, threshold : NzMachineInt, controller : Oid .msg to_at_evals_ot : Oid Location Evals -> Msg .var S : PortSet[Data] .vars C D G : Oid .var N : NzMachineInt .var LEVS : Loc-Evals .crl [discriminator] :< D : Discriminator | collector : C, threshold : N, controller : G >< C : Collector | out : < 1 ; LEVS > >=> < D : Discriminator | >< C : Collector | out : < 1 ; null > >(to G at locs(LEVS) evals unidentified-object ot)if (locs(LEVS) : Location) and (winners(LEVS, N) == mt-Evals) .crl [discriminator] :< D : Discriminator | collector : C, threshold : N, controller : G >< C : Collector | out : < 1 ; LEVS > >=> < D : Discriminator | >< C : Collector | out : < 1 ; null > >(to G at locs(LEVS) evals winners(LEVS, N) ot)if (locs(LEVS) : Location) and not (winners(LEVS, N) == mt-Evals) .*** the above rule uses the subsort inclusion Location < Locations and*** assumes that all the located evaluations originate from*** the same sighting and therefore have the same locationendom)(omod META isinc RECOGNIZER .inc DISCRIMINATOR .inc FANOUT[Data] .pr DEFAULT[Oid] * (sort Default[Oid] to DftOid) .pr DEFAULT[MachineInt] * (sort Default[MachineInt] to DftMachineInt) .sort State .op lock : Cid -> Cid .op _._ : Oid MachineInt -> Oid .op ready : -> State .op busy : -> State .msg to_install-recognizer_ot : Oid Image -> Msg .class Meta | in-pipe : DftOid, out-pipe : DftOid, fanout : DftOid,recognizer : DftOid, collector : DftOid, state : State,cnt : DftMachineInt, tag : MachineInt .vars M P P' R F C : Oid .



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 175var I : Image .vars N N' : MachineInt .vars S S' : PortSet[Data] .op max : NeSet[NzMachineInt] -> NzMachineInt .var T : NeSet[NzMachineInt] .eq max(N) = N .ceq max(N T) = N if N > max(T) .ceq max(N T) = max(T) if not (N > max(T)) .*** A meta-object can, upon request, dynamically change the configuration*** of the dataflow network it controls, by adding a new recognizer object*** to recognize a given image and two new pipes and by hooking it up*** through the pipes to the fanout and collector objects.rl [create] :(to M install-recognizer I ot)< M : Meta | state : ready, tag : N >=> < M : Meta | state : busy, recognizer : (M . N), in-pipe : (M . (N + 1)),out-pipe : (M . (N + 2)), tag : (N + 3) >< (M . N) : Recognizer | in : < 1 ; (null).Default`[Data`] >,out : < 1 ; (null).Default`[Data`] >, model : I >< (M . (N + 1)) : Pipe[Data] |from : (null).DfltAddr, to : < (M . N) ; 1 >, q : nil >< (M . (N + 2)) : Pipe[Data] |from : < (M . N) ; 1 >, to : (null).DfltAddr, q : nil > .crl [hook-fanout-collector] :< M : Meta | state : busy, recognizer : R,fanout : F, in-pipe : P,collector : C, out-pipe : P' >< F : Fanout[Data] | cnt : N', out : S >< P : Pipe[Data] | from : (null).DfltAddr >< C : Collector | cnt : N', in : S' >< P' : Pipe[Data] | to : (null).DfltAddr >=> < M : Meta | state : ready, recognizer : (null).DftOid,in-pipe : (null).DftOid, out-pipe : (null).DftOid >< F : Fanout[Data] |out : (S < (max(dom(S)) + 1) ; (null).Default`[Data`] >) >< P : Pipe[Data] | from : < F ; (max(dom(S)) + 1) > >< C : Collector |in : (S' < (max(dom(S')) + 1) ; (null).Default`[Data`] >) >< P' : Pipe[Data] | to : < C ; (max(dom(S')) + 1) > >if empty(S) and empty(S') .endom)(omod IMAGE-RECOGNITION isincluding META .op init-conf : -> Configuration .*** this initial configuration has a pipe feeding images and linked*** to a fanout object that is then linked by pipes to three*** recognizers for speedboats, destroyers, and aircraft carriers*** their evaluations are then fed by other pipes into a collector*** object. A discriminator object then selects the evaluations



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 176*** accurate within a threshold and sends them (or an unidentified*** object report) to a controller object. Finally, there is a*** metaobject that can dynamically change the dataflow network*** by hooking up to it new recognizers via new pipes.eq init-conf= < o(0) : Pipe[Data] |from : (null).DfltAddr,to : < o(1) ; 1 >,q : (< < 1 ; 2 ; 3 > ; (2 . 2 . 4 . 4 . 3 . 2) > .< < 4 ; 5 ; 2 > ; (2 . 1) > .< < 7 ; 5 ; 1 > ; (3 . 3 . 3 . 3 . 3 . 5 . 4 . 3 . 3) > .< < 0 ; 0 ; 0 > ; (2 . 2 . 2 . 2 . 2 . 2 . 2 . 3) >) >< o(1) : Fanout[Data] |in : < 1 ; (null).Default`[Data`] >,out : (< 1 ; (null).Default`[Data`] >< 2 ; (null).Default`[Data`] >< 3 ; (null).Default`[Data`] >),cnt : 0 >< o(2) : Pipe[Data] |from : < o(1) ; 1 >,to : < o(5) ; 1 >,q : nil >< o(3) : Pipe[Data] |from : < o(1) ; 2 >,to : < o(6) ; 1 >,q : nil >< o(4) : Pipe[Data] |from : < o(1) ; 3 >,to : < o(7) ; 1 >,q : nil >< o(5) : Recognizer |in : < 1 ; (null).Default`[Data`] >,out : < 1 ; (null).Default`[Data`] >,model : destroyer >< o(6) : Recognizer |in : < 1 ; (null).Default`[Data`] >,out : < 1 ; (null).Default`[Data`] >,model : speedboat >< o(7) : Recognizer |in : < 1 ; (null).Default`[Data`] >,out : < 1 ; (null).Default`[Data`] >,model : aircraft-carrier >< o(8) : Pipe[Data] |from : < o(5) ; 1 >,to : < o(11) ; 1 >,q : nil >< o(9) : Pipe[Data] |from : < o(6) ; 1 >,to : < o(11) ; 2 >,q : nil >< o(10) : Pipe[Data] |from : < o(7) ; 1 >,to : < o(11) ; 3 >,q : nil >< o(11) : Collector |in : (< 1 ; (null).Default`[Data`] >



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 177< 2 ; (null).Default`[Data`] >< 3 ; (null).Default`[Data`] >),out : < 1 ; (null).Default`[Data`] >,cnt : 0 >< o(12) : Discriminator |collector : o(11),threshold : 4,controller : o(13) >< o(13) : Meta |in-pipe : (null).DftOid,out-pipe : (null).DftOid,fanout : o(1),recognizer : (null).DftOid,collector : o(11),state : ready,cnt : (null).DftMachineInt,tag : 0 > .endom)(omod IMPLICIT-INVOCATION[M :: TRIV, E :: TRIV, P :: TRIV] ispr PFUN[E, M] * (sort PFun[E, M] to Table[E, M]) .class Bubble | conf : Configuration .class Implicit | table : Table[E, M] .msg to_msg_with_ot : Oid Elt.M Elt.P -> Msg .op bc_with_in_cb : Elt.E Elt.P Configuration -> Configuration .sort ExtAct .subsort ExtAct < Msg .vars B O : Oid .var M : Elt.M .var E : Elt.E .var P : Elt.P .var T : Table[E, M] .vars C C' : Configuration .var MSG : Msg .var EA : ExtAct .crl [bc1] :bc E with P in C C' cb=> bc E with P in C cbbc E with P in C' cbif (C =/= empty) and (C' =/= empty) .rl [bc2] :bc E with P in empty cb=> (empty).Configuration .rl [bc3] :bc E with P in MSG cb=> MSG .crl [bc4] :bc E with P in < O : Implicit | table : T > cb=> < O : Implicit | table : T >



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 178if T[E] == null .crl [bc4] :bc E with P in < O : Implicit | table : T > cb=> to O msg T[E] with P ot< O : Implicit | table : T >if not (T[E] == null) .rl [out] :< B : Bubble | conf : (EA C) >=> < B : Bubble | conf : C > EA .endom)(fmod OVERALL-SYSTEM0 issorts Event MsgId .op sghtng : -> Event .op air-act : -> MsgId .op bttlshp-act : -> MsgId .endfm)(view MsgId from TRIV to OVERALL-SYSTEM0 issort Elt to MsgId .endv)(view Event from TRIV to OVERALL-SYSTEM0 issort Elt to Event .endv)(view Location from TRIV to IMAGE-RECOGNITION issort Elt to Location .endv)(view Evals from TRIV to IMAGE-RECOGNITION issort Elt to Evals .endv)(view Pair`[Location`,Evals`] from TRIV to PAIR[Location, Evals] issort Elt to Pair[Location, Evals] .endv)(omod OVERALL-SYSTEM isinc IMAGE-RECOGNITION .inc IMPLICIT-INVOCATION[MsgId, Event, Pair`[Location`,Evals`]]* (class Bubble to Controller) .class Commander | table : Table[Event, MsgId], subordinate : Oid .subclass Commander < Implicit .msg to_threat-at_ot : Oid Location -> ExtAct .



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 179msg to_recon-at_ot : Oid Location -> ExtAct .op q : MachineInt -> Oid .vars O Q S : Oid .var L : Location .var EVS : Evals .var C : Configuration .rl [control] :to O at L evals EVS ot< O : Controller | conf : C >=> < O : Controller | conf : (bc sghtng with < L ; EVS > in C cb) > .rl [bttlshp-act] :to Q msg bttlshp-act with < L ; EVS > ot< O : Commander | subordinate : S >=> < O : Commander | >to S threat-at L ot .rl [air-act] :to Q msg air-act with < L ; EVS > ot< O : Commander | subordinate : S >=> < O : Commander | >to S recon-at L ot .op syst-conf : -> Configuration .eq syst-conf= init-conf< o(14) : Controller |conf : (< q(0) : Commander | table : < sghtng ; air-act >,subordinate : q(1) >< q(2) : Commander | table : < sghtng ; air-act >,subordinate : q(3) >) > .endom)Maude> (rew init-conf .)Rewrite in OVERALL-SYSTEM : init-conf .Result Configuration :< o(0) : Pipe[Data] | q : nil, from : null, to : < o(1) ; 1 > >< o(1) : Fanout[Data] | out : (< 1 ; null > < 2 ; null > < 3 ; null >),in : < 1 ; null >, cnt : 4 >< o(2) : Pipe[Data] | q : nil, from : < o(1) ; 1 >, to : < o(5) ; 1 > >< o(3) : Pipe[Data] | q : nil, from : < o(1) ; 2 >, to : < o(6) ; 1 > >< o(4) : Pipe[Data] | q : nil, from : < o(1) ; 3 >, to : < o(7) ; 1 > >< o(5) : Recognizer | out : < 1 ; null >, in : < 1 ; null >,model : (2 . 2 . 4 . 3 . 3 . 2) >< o(6) : Recognizer | out : < 1 ; null >, in : < 1 ; null >,model : (1 . 1) >< o(7) : Recognizer | out : < 1 ; null >, in : < 1 ; null >,model : (3 . 3 . 3 . 3 . 3 . 4 . 3 . 3 . 3) >< o(8) : Pipe[Data] | q : nil, from : < o(5) ; 1 >, to : < o(11) ; 1 > >< o(9) : Pipe[Data] | q : nil, from : < o(6) ; 1 >, to : < o(11) ; 2 > >< o(10) : Pipe[Data] | q : nil, from : < o(7) ; 1 >, to : < o(11) ; 3 > >< o(11) : Collector | out : < 1 ; null >,in : (< 1 ; null > < 2 ; null > < 3 ; null >),



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 180cnt : 4 >< o(12) : Discriminator | controller : o(13), threshold : 4,collector : o(11) >< o(13) : Meta | cnt : null, collector : o(11), tag : 0,state : ready, out-pipe : null, in-pipe : null,recognizer : null, fanout : o(1) >to o(13) at < 0 ; 0 ; 0 > evals unidentified-object otto o(13) at < 1 ; 2 ; 3 > evals < 2 . 2 . 4 . 3 . 3 . 2 ; 1 > otto o(13) at < 4 ; 5 ; 2 > evals < 1 . 1 ; 1 > otto o(13) at < 7 ; 5 ; 1 > evals < 3 . 3 . 3 . 3 . 3 . 4 . 3 . 3 . 3 ; 2 > otMaude> (rew init-conf (to o(13) install-recognizer oil-tanker ot) .)Rewrite in OVERALL-SYSTEM :init-confto o(13) install-recognizer oil-tanker ot .Result Configuration :< o(0) : Pipe[Data] | q : nil, from : null, to : < o(1) ; 1 > >< o(1) : Fanout[Data] |out : (< 1 ; null > < 2 ; null > < 3 ; null > < 4 ; null >),in : < 1 ; null >, cnt : 4 >< o(2) : Pipe[Data] | q : nil, from : < o(1) ; 1 >, to : < o(5) ; 1 > >< o(3) : Pipe[Data] | q : nil, from : < o(1) ; 2 >, to : < o(6) ; 1 > >< o(4) : Pipe[Data] | q : nil, from : < o(1) ; 3 >, to : < o(7) ; 1 > >< o(5) : Recognizer | out : < 1 ; null >, in : < 1 ; null >,model : (2 . 2 . 4 . 3 . 3 . 2) >< o(6) : Recognizer | out : < 1 ; null >, in : < 1 ; null >,model : (1 . 1) >< o(7) : Recognizer | out : < 1 ; null >, in : < 1 ; null >,model : (3 . 3 . 3 . 3 . 3 . 4 . 3 . 3 . 3) >< o(8) : Pipe[Data] | q : nil, from : < o(5) ; 1 >, to : < o(11) ; 1 > >< o(9) : Pipe[Data] | q : nil, from : < o(6) ; 1 >, to : < o(11) ; 2 > >< o(10) : Pipe[Data] | q : nil, from : < o(7) ; 1 >, to : < o(11) ; 3 > >< o(11) : Collector | out : < 1 ; null >,in : (< 1 ; null > < 2 ; null > < 3 ; null > < 4 ; null >),cnt : 4 >< o(12) : Discriminator | controller : o(13), threshold : 4,collector : o(11) >< o(13) : Meta | cnt : null, collector : o(11), tag : 3,state : ready, out-pipe : null, in-pipe : null,recognizer : null, fanout : o(1) >< o(13) . 0 : Recognizer | out : < 1 ; null >, in : < 1 ; null >,model : (2 . 2 . 2 . 2 . 2 . 2 . 2 . 3) >< o(13) . 1 : Pipe[Data] | q : nil, from : < o(1) ; 4 >,to : < o(13) . 0 ; 1 > >< o(13) . 2 : Pipe[Data] | q : nil, from : < o(13) . 0 ; 1 >,to : < o(11) ; 4 > >to o(13) at < 0 ; 0 ; 0 > evals < 2 . 2 . 2 . 2 . 2 . 2 . 2 . 3 ; 0 > otto o(13) at < 1 ; 2 ; 3 > evals < 2 . 2 . 4 . 3 . 3 . 2 ; 1 > otto o(13) at < 4 ; 5 ; 2 > evals < 1 . 1 ; 1 > otto o(13) at < 7 ; 5 ; 1 > evals < 3 . 3 . 3 . 3 . 3 . 4 . 3 . 3 . 3 ; 2 > otMaude> (rew syst-conf .)Rewrite in OVERALL-SYSTEM : syst-conf .Result Configuration :< o(0) : Pipe[Data] | q : nil, from : null, to : < o(1) ; 1 > >< o(1) : Fanout[Data] | out : (< 1 ; null > < 2 ; null > < 3 ; null >),in : < 1 ; null >, cnt : 4 >



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 181< o(2) : Pipe[Data] | q : nil, from : < o(1) ; 1 >, to : < o(5) ; 1 > >< o(3) : Pipe[Data] | q : nil, from : < o(1) ; 2 >, to : < o(6) ; 1 > >< o(4) : Pipe[Data] | q : nil, from : < o(1) ; 3 >, to : < o(7) ; 1 > >< o(5) : Recognizer | out : < 1 ; null >, in : < 1 ; null >,model : (2 . 2 . 4 . 3 . 3 . 2) >< o(6) : Recognizer | out : < 1 ; null >, in : < 1 ; null >,model : (1 . 1) >< o(7) : Recognizer | out : < 1 ; null >, in : < 1 ; null >,model : (3 . 3 . 3 . 3 . 3 . 4 . 3 . 3 . 3) >< o(8) : Pipe[Data] | q : nil, from : < o(5) ; 1 >, to : < o(11) ; 1 > >< o(9) : Pipe[Data] | q : nil, from : < o(6) ; 1 >, to : < o(11) ; 2 > >< o(10) : Pipe[Data] | q : nil, from : < o(7) ; 1 >, to : < o(11) ; 3 > >< o(11) : Collector | out : < 1 ; null >,in : (< 1 ; null > < 2 ; null > < 3 ; null >),cnt : 4 >< o(12) : Discriminator | controller : o(13), threshold : 4,collector : o(11) >< o(13) : Meta | cnt : null, collector : o(11), tag : 0,state : ready, out-pipe : null, in-pipe : null,recognizer : null, fanout : o(1) >< o(14) : Controller |conf : (< q(0) : Commander | table : < sghtng ; air-act >,subordinate : q(1) >< q(2) : Commander | table : < sghtng ; air-act >,subordinate : q(3) >) >to o(13) at < 0 ; 0 ; 0 > evals unidentified-object otto o(13) at < 1 ; 2 ; 3 > evals < 2 . 2 . 4 . 3 . 3 . 2 ; 1 > otto o(13) at < 4 ; 5 ; 2 > evals < 1 . 1 ; 1 > otto o(13) at < 7 ; 5 ; 1 > evals < 3 . 3 . 3 . 3 . 3 . 4 . 3 . 3 . 3 ; 2 > ot


