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Chapter 1

Introduction

Maude is a high-performance language and system supporting both equational
and rewriting logic computation for a wide range of applications. Maude has
been influenced in important ways by OBJ3 [27]. In particular, Maude’s equa-
tional logic sublanguage essentially contains OBJ3 as a sublanguage. The main
differences from OBJ3 at the equational level are a much greater performance,
and a richer equational logic, namely, membership equational logic [41], that
extends OBJ3’s order-sorted equational logic [26].

The key novelty of Maude is that besides efficiently supporting equational
computation and algebraic specification in the OBJ style—it also supports
rewriting logic computation. Rewriting logic [37] is a logic of concurrent change
that can naturally deal with state and with highly nondeterministic concur-
rent computations. It has good properties as a flexible and general semantic
framework for giving semantics to a wide range of languages and models of
concurrency [40]. In particular, it supports very well concurrent object-oriented
computation. This is reflected in Maude’s design by providing special syntax for
object-oriented modules. Since the computational and logical interpretations of
rewriting logic are like two sides of the same coin, the same reasons making it a
good semantic framework at the computational level make it also a good logical
framework at the logical level, that is, a metalogic in which many other logics
can be naturally represented and implemented [33, 32]. Consequently, some
of the most interesting applications of Maude are metalanguage applications,
in which Maude is used to create executable environments for different logics,
theorem provers, languages, and models of computation.

The rewriting logic research program, although still very young, has shown
good signs of vitality, including two international workshops [20, 28], over a
hundred research papers (see the references in [42, 28]), and three language
implementation efforts, namely ELAN [29, 3] in France, CafeOBJ [24, 23] in
Japan, and Maude. Therefore, Maude should be seen as our contribution to the
broader collective effort of building good language implementations for rewriting
logic. In this regard, a key distinguishing feature of Maude is its systematic and
efficient use of reflection—exploiting the fact that rewriting logic is reflective
[15, 10]—a feature that makes Maude remarkably extensible and powerful, and
that allows many advanced metaprogramming and metalanguage applications.

The present paper documents Maude 1.0, and explains Maude’s basic con-
cepts in a leisurely and mostly informal style, illustrating those concepts with
examples. Early language design for Maude appeared in [35, 46, 38]. A first im-
plementation of Maude, supporting reflection, was presented and demonstrated
at the First International Workshop on Rewriting Logic in September 1996 [13].
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A beta version has been available since March 1998 [9].

1.1 The Logical Basis of Maude

Maude’s functional modules are theories in membership equational logic [41,
4], a Horn logic whose atomic sentences are equalities ¢ = ¢’ and membership
assertions of the form t : s, stating that a term ¢ has sort s. Such a logic
extends order-sorted equational logic [26], and supports sorts, subsort relations,
subsort polymorphic overloading of operators, and definition of partial functions
with equationally defined domains. Maude’s functional modules are assumed
to be Church-Rosser; they are executed by the Maude engine according to the
rewriting techniques and operational semantics developed in [4].

Membership equational logic is a sublogic of rewriting logic [37]. A rewrite
theory is a pair (T, R) with T' a membership equational theory, and R a col-
lection of labeled and possibly conditional rewrite rules involving terms in the
signature of T. Maude’s system modules are rewrite theories in exactly this
sense. The rewrite rules r : ¢ — t' in R are not equations. Computationally,
they are interpreted as local transition rules in a possibly concurrent system.
Logically, they are interpreted as inference rules in a logical system. As already
mentioned, this makes rewriting logic both a general semantic framework to
specify concurrent systems and languages [40], and a general logical framework
to represent and execute different logics [33].

Rewriting in (T, R) happens modulo the equational axioms in 7. Maude
supports rewriting modulo most of the different combinations of associativity,
commutativity, identity, and idempotency axioms. The rules in R need not be
Church-Rosser and need not be terminating. Many different rewriting paths
are then possible; therefore, the choice of appropriate strategies is crucial for
executing rewrite theories.

In Maude, such strategies are not an extra-logical part of the language.
They are instead internal strategies defined by rewrite theories at the metalevel.
This is because rewriting logic is reflective [10] in the precise sense of having a
universal theory U that can represent any finitely presented rewrite theory T
(including U itself) and any terms ¢,#' in T as terms T and ,t' in U, so that
we have the following equivalence:

THt—t & UF(T, 1) — (T,7).

Since U is representable in itself, we can then achieve a “reflective tower” with
an arbitrary number of levels of reflection. Maude efficiently supports this re-
flective tower through its META-LEVEL module, which makes possible not only
the declarative definition and execution of user-definable rewriting strategies,
but also many other applications, including an extensible module algebra of
parameterized module operations that is defined and executed within the logic.

This extensibility by reflection is exploited in Maude’s design and imple-
mentation, so that the basic functionalities of the language, Core Maude, are
extended by reflection to Full Maude. Core Maude supports module hierarchies
consisting of (unparameterized) functional and system modules and provides
the META-LEVEL module. Full Maude is an extension of Core Maude written in
Core Maude itself that supports a module algebra of parameterized modules,
views, and module expressions in the OBJ style [27] as well as object-oriented
modules with convenient syntax for object-oriented applications.
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1.2 Core Maude

The Maude system is built around the Core Maude interpreter, which accepts
module hierarchies of (unparameterized) functional and system modules with
user-definable mixfix syntax. It is implemented in C++ and consists of two
parts: the rewrite engine and the mixfix front end.

The rewrite engine is highly modular and does not contain any Maude-
specific code. Two key components are the “core” module and the “interface”
module. The core module contains classes for objects which are not specific
to an equational theory, such as equations, rules, sorts, and connected sort
components. The “interface” module contains abstract base classes for objects
that may have a different representation in different equational theories, such
as symbols, term nodes, dag nodes, and matching automata. New equational
theories can be “plugged in” by deriving from the classes in the “interface”
module. To date, all combinations of associativity, commutativity, left and
right identity, and idempotence have been implemented apart from those that
contain both associativity and idempotence. New built-in symbols with special
rewriting (equation or rule) semantics may be easily added.

The engine is designed to provide the look and feel of an interpreter with
hooks for source level tracing/debugging and user interrupt handling. These
goals prevent a number of optimizations that one would normally implement in
a compiler, such as transforming the user’s term rewriting system, or keeping
pending evaluations on a stack and only building reduced terms. The actual
implementation is a semi-compiler where the term rewriting system is compiled
to a system of tables and automata, which is then interpreted. Typical perfor-
mance with the current version is 800K-840K free-theory! rewrites per second
and 27K-111K associative-commutative (AC) rewrites per second on standard
hardware (300 MHz Pentium II). The figure for AC rewriting is highly dependent
on the complexity of the AC patterns (AC matching is NP-complete) and the
size of the AC subjects. These results were obtained using fairly simple linear
and nonlinear patterns and large (hundreds of nested AC operators) subjects.

The mixfix front end consists of a bison/flex based parser for Maude’s surface
syntax, a grammar generator (which generates the context-free grammar (CFG)
for the mixfix parts of Maude over the user’s signature), a context-free parser,
a mixfix pretty printer, a fully reentrant debugger, the built-in functions for
quoted identifiers, and the META-LEVEL module, together with a considerable
amount of “glue” code holding everything together. Many of the C++ classes
are derived from those in the rewrite engine. The Maude parser (MSCP) is
implemented using SCP as the formal kernel [54]. The techniques used include
B-extended CFGs (that is, CFGs extended with “bubbles” (strings of identifiers)
and precedence/gathering patterns). MSCP provides a basis for flexible syntax
definition, and an efficient treatment of what might be called syntactic reflection,
which is very useful for parsing inputs in extensions of Core Maude such as Full
Maude, and in other languages with user-definable syntax that can likewise be
implemented in Maude. The point is that we often need to parse the top level
syntax, for example of a module, and then extract from it the grammar in which
to parse the user-definable expressions in that module.

The functional module META-LEVEL efficiently implements key functionality
of the universal theory U. In META-LEVEL Maude terms are reified as elements
of a data type Term, and Maude modules are reified as terms in a data type

IWe say that the rewriting is done in the free-theory when rewriting with terms whose
operators have no equational attributes.
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Module. The processes of reducing a term to normal form in a functional module
and of rewriting a term in a system module using Maude’s default interpreter
are respectively reified by functions meta-reduce and meta-rewrite. Similarly,
the process of applying a rule of a system module to a subject term is reified
by a function meta-apply. Furthermore, parsing and pretty printing of a term
in a signature, as well as key sort operations, are also reified by corresponding
metalevel functions.

1.3 Full Maude

Using reflection, Core Maude can be extended to a much richer language with
an extensible module algebra of module operations that can make Maude mod-
ules highly reusable. The basic idea is that META-LEVEL can be extended with
new data types extending its Module sort to richer sorts for structured and
parameterized modules—and with new module operations—such as instantia-
tion of parameterized modules by views, flattening of module hierarchies into
single modules, desugaring of object-oriented modules into system modules, and
so on. In particular, this supports an OBJ style of parameterized programming
[27], with highly generic and reusable modules. All such new types and oper-
ations can be defined in Core Maude. This, together with the explicit access
to modules as terms provided by reflection, makes the corresponding module
algebra completely open, and easily extensible by new module operations and
transformations.

Using the meta-parsing and meta-pretty printing functions in META-LEVEL
and a simple LOOP-MODE module providing input/output, we can in addition
develop in Core Maude a suitable user interface for Full Maude. At present,
Full Maude supports all of Core Maude plus object-oriented modules, parame-
terized modules, theories with loose semantics to state formal requirements in
parameters, views to bind parameter theories to their instances, and module
expressions instantiating and composing parameterized modules.

1.4 Applications

All applications typical of equational programming and algebraic specification
can be conveniently and efficiently supported through Maude’s sublanguage of
functional modules. In fact, the paper [41] argues that Maude’s equational
logic, namely, membership equational logic, is so expressive—yet efficiently
implementable—as to offer very good advantages as a logical framework for
a very wide range of algebraic specification languages based on both total and
partial equational logic formalisms.

However, many other Maude applications go beyond equational logic. Sys-
tem modules support general rewriting logic applications. The important area
of concurrent and distributed object-based system specification and prototyping
is supported by object-oriented modules. And reflection makes possible many
novel metaprogramming and metalanguage applications. In particular, reflec-
tion is extremely valuable in many applications using rewriting logic as a logical
and semantic framework. Thanks to the sustained efforts of many researchers,
particularly in the ELAN, Pisa, Stanford, and Maude teams, there is by now
very extensive evidence supporting the claim that rewriting logic is indeed a very
flexible and simple semantic framework [37, 40, 42, 6], and logical framework

3

[32, 29, 62, 30, 2, 55, 8, 16, 10, 12]. Moreover, object-oriented design languages,



CHAPTER 1. INTRODUCTION 7

architectural description languages, and languages for distributed components
also have a natural semantics in rewriting logic [63, 34, 57, 47, 48] (see Sec-
tion 2.8.2 for more discussion on the use of reflection in logical and semantic
framework applications, and Appendix E for an application of Maude to the
interoperation of software architectures).

The largest Maude application developed so far is Full Maude itself [19]
(about 7,000 lines of Maude code). Two other substantial applications are an
inductive theorem prover and a Church-Rosser checker for equational theories,
that are part of a formal environment for Maude and for the CafeOBJ lan-
guage [12]. In addition, several language interpreters and strategy languages, a
supercompiler, several object-oriented specifications—including cryptographic
protocols and network applications—and a variety of executable translations
mapping logics, architectural description languages and models of computation
into the rewriting logic reflective framework have been developed by different
authors (see references in [20, 42, 28]). We hope that the present release will
encourage and support many other applications.
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Chapter 2

Core Maude

After introducing functional and system modules we discuss module hierarchies.
Several predefined modules such as Booleans, machine integers, quoted identi-
fiers, and so on are also described. The reflective aspects of Maude, and the
related topic of internal rewriting strategies—that is, strategies that can be de-
fined with rewrite rules at the metalevel—are explained in detail. Parsing issues,
as well as the input/output facilities provided by the LOOP-MODE module are also
treated in detail. We finish the section with a discussion of system issues and
debugging.

2.1 Functional Modules

Functional modules define data types and functions on them by means of equa-
tional theories whose equations are Church-Rosser and terminating. A mathe-
matical model of the data and the functions is provided by the initial algebra
defined by the theory, whose elements consist of equivalence classes of ground
terms modulo the equations. Evaluation of any expression to its reduced form
using the equations as rewrite rules assigns to each equivalence class a unique
canonical representative. Therefore, in a more concrete way we can equivalently
think of the initial algebra as consisting of those canonical representatives, that
is, of the values to which the functional expressions evaluate by algebraic sim-
plification using the equations.

As in the OBJ language [27] that Maude extends, functional modules can
be unparameterized, or they can be parameterized with functional theories as
their parameters. Core Maude only allows unparameterized modules, although,
as further explained in Section 2.3 and also illustrated in some of the following
examples, such unparameterized modules can import other modules to form
module hierarchies. Parameterized modules are supported in Full Maude, as
discussed in Section 3.5.

The equational logic on which Maude functional modules are based is an ex-
tension of order-sorted equational logic called membership equational logic [41,
5]; we discuss this and give more details about the semantics of functional mod-
ules in Section 4.1. For the moment, it suffices to say that, in addition to
supporting sorts, subsort relations, and overloading of function symbols, func-
tional modules also support membership azioms, a generalization of sort con-
straints [43] in which a term is asserted to have a certain sort if a condition
consisting of a conjunction of equations and of unconditional membership tests
is satisfied. Such membership axioms can be used to define partial functions,
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that become defined when their arguments satisfy certain equational and mem-
bership conditions.

N ———- N3

Ny

Figure 2.1: An Automaton.

We can illustrate these ideas, as well as Maude’s support for mixfix user-
definable syntax, with a module PATH that forms paths over a graph. Consider
the graph in Figure 2.1. This graph describes an automaton whose states are
the nodes of the graph, and whose transitions are the labeled edges. A behavior
of the automaton is a path in the graph, that is, a concatenation of transitions
such that the target state of one transition becomes the source state of the
next transition. Of course, not all random concatenations of edges are legal
paths, that is, not all strings of edges are behaviors of the automaton. The PATH
module below axiomatizes the automaton and characterizes in a computable way
its paths by means of a path concatenation operation, a length function, and
source and target functions, together with appropriate axioms in membership
equational logic.

fmod PATH is
protecting MACHINE-INT .

sorts Edge Path Path? Node .
subsorts Edge < Path < Path? .

ops nl n2 n3 n4 nb : -> Node .

ops abcdef : ->Edge .

op _;_ : Path? Path? -> Path? [assoc]
ops source target : Path -> Node .

op length : Path -> MachinelInt .

var E : Edge .
var P : Path .

cmb (E ; P) : Path if target(E) == source(P)

source(E) if E ; P : Path .
target(E) if P ; E : Path .

ceq source(E ; P)
ceq target(P ; E)
eq length(E) = 1
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ceq length(E ; P) = 1 + length(P) if E ; P : Path .
q g g

eq source(a) = nl

eq target(a) = n2 .
eq source(b) = nl .
eq target(b) = n3 .
eq source(c) = n3 .
eq target(c) = n4 .
eq source(d) = n4 .
eq target(d) = n2 .
eq source(e) = n2 .
eq target(e) = nb .
eq source(f) = n2 .
eq target(f) = nl

endfm

The module is introduced with the functional module syntax fmod . .. endfm
and has a name, PATH. It imports a predefined module of machine integers with
the declaration protecting MACHINE-INT (for more on predefined modules see
Section 2.4, and for more on module importation and module hierarchies see
Section 2.3). The sorts and subsort relations of this module are introduced
by a sort declaration and a subsort declaration. Sorts we could have called
them types instead are used to classify data. A subsort relation between two
sorts is interpreted as a set-theoretic inclusion, that is, it means that the data
of the subsort is included in that of the supersort. For example, the subsort
declaration

subsorts Edge < Path < Path? .

declares that edges are a subsort of paths that is, the set of edges is contained
in the set of paths and paths are a subsort of a supersort Path? of what we
might call “confused paths.” This supersort is needed because in general the
path concatenation operator _; _ may build nonsensical concatenations that are
not paths. This operator is declared with the “infix” syntax

op _;_ : Path? Path? -> Path? [assoc]

where the declaration indicates that it is a binary operator with Path? as the
sort of its two arguments and also of its result. Before the colon, the user-
definable “mixfix” syntactic form of the operator is given. In this case it is an
infix operator with the two underbars indicating the places where the first and
second arguments should be placed, namely, on both sides of the semicolon. The
“attribute declaration” assoc states that _;_ is associative. The Maude engine
then uses this information when matching the equations and membership axioms
in the module, that are then matched “modulo associativity,” that is, regardless
of how parentheses are left- or right-associated in a concatenation expression.
In general, when an operator is associative the user does not have to write such
parentheses around expressions involving several instances of such an operator.
For example, b ; ¢ ; d is a perfectly acceptable and unambiguous expression
because of associativity.

Except for the conditional membership axiom for path concatenation, and
the use of sort tests in the conditions of some equations, that we explain below,
the rest of the module should be straightforward. Some nodes and edges are
declared, plus source, target, and length functions, all of them with standard
prefiz notation, that is also allowed as a simpler choice of user-definable syntactic
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form. Then equations are given, defining the semantics of the operations. Each
equation is introduced by the keyword eq, or ceq for conditional equations, and
having variables of appropriate sorts previously declared with var declarations.
The equations are then used from left to right by the Maude engine to simplify
each expression to its canonical form, that is, to evaluate each expression to its
corresponding value.

In general, an operator can be declared with the keyword op! followed by its
syntactic form, followed by a colon, followed by the list? of sorts for its arguments
(called the operator’s arity), followed by ->, followed by the sort of its result
(called the operator’s coarity). The operator can have some attributes, such
as the assoc attribute for path concatenation, which indicate some equational
axioms satisfied by the operator and used for term matching, or some syntactic
information for parsing purposes, or some other information. All such attributes
are declared within a single pair of enclosing square brackets after the sort of
the result and before the ending period.

The syntactic form of the operator is a string of characters®. If no underbar
character occurs in the string—as in the case of the source, target, and length
functions then the operator is declared in prefiz form. If underbar characters
occur in the string, then their number must coincide with the number of sorts
declared as arguments of the operator. The operator is then in mizfiz form, with
the n-th underbar indicating the place where arguments of the n-th sort must
be placed in expressions formed with that operator. There may or may not be
any other characters before or after any of the underbars. If no other characters
appear, we say that the operator has been declared with empty syntaz. For
example, we could have instead declared the path concatenation operator with
empty syntax as

op __ : Path? Path? -> Path?

and then b ¢ d would be a Path expression (see Section 2.1.1 for more discus-
sion on the mixfix syntax of operators, and Section 2.7 for a general discussion
of mixfix parsing issues).

The ruling out of nonsensical concatenations is achieved by the conditional
membership aziom?

cmb (E ; P) : Path if target(E) == source(P)

Tt is possible to simultaneously declare several operators having the same arity and coarity
by using instead the keyword ops and giving the nonempty list of their corresponding syntactic
forms after the ops keyword, as done for the nodes and edges declared in our example.

21f this list is empty, as for the edges and nodes declared in our example, the operator is
called a constant.

3Such a string may have blank spaces and may consist of several identifiers in the Maude
sense; see Section 2.1.1 for more details on the syntactic conventions.

4Unconditional membership axioms are introduced with the keyword mb. For example, in
a module NAT of natural numbers with Peano notation we can define subsorts Zero (for the
zero element) and 3#Nat for numbers that are multiples of three by declaring

fmod NAT is
sorts Zero 3*Nat Nat .
subsorts Zero < 3%Nat < Nat .
op 0 : -> Zero .
op s_ : Nat -> Nat .
var M : 3*xNat .
mb s s s M : 3xNat .

endfm
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stating that an edge concatenated with a path is also a path if the target node
of the edge coincides with the source node of the path. This has the effect of
defining path concatenation as a partial function on paths, although it is total
on the supersort Path? of confused paths. In fact, the domain of definition of
path concatenation as a partial function on path pairs is the set of path pairs
(P,Q) satisfying the equational condition

target (P) == source(Q)
Note, however, that the corresponding conditional membership axiom
cmb (P ; Q) : Path if target(P) == source(Q)

is not explicitly asserted in the module. It is instead an inductive consequence
of all the axioms given in the module, including the simpler membership axiom
that is indeed asserted. That is, it holds in the initial algebra specified by the
functional module, that provides the mathematical semantics for the module
as explained in Section 4.1. Such inductive properties can be proved using an
inductive theorem prover in the style of the one proposed in [12]. Of course,
the above membership axiom could instead have been declared as an axiom in
the module, but we have chosen to use the more restricted membership axiom
because it has a more efficient execution, and because it allows us to illustrate the
distinction between the axioms given explicitly in a module and their inductive
consequences.

All variables in righthand sides of equations should also appear in the cor-
responding lefthand sides. The conditions in conditional membership axioms—
respectively, in conditional equations—should only involve variables appearing
in the corresponding membership predicate—respectively, in the corresponding
lefhand side. As the above example shows, the user can use the Boolean-valued,
built-in equality predicate _==_ and sort predicates such as _: Path, and in gen-
eral Boolean combinations of such predicates or of other user-defined Boolean-
valued expressions, in conditions of equations and membership axioms®. See
Sections 2.4.1 and 4.1 for more details on the built-in equality and inequality
predicates, and for a discussion of why negations and Boolean combinations of
built-in equality and membership predicates in conditions which would seem
to go beyond Horn logic are unproblematic under appropriate Church-Rosser
and terminating assumptions about the specification.

Note that the functions source, target, and length are only defined on legal
paths, so that on nonsensical paths they will return an unevaluated expression in
an error supersort. For the first two functions the error supersort is Error (Node)
above the sort of nodes, and for the third it is Error (MachineInt) above the
sort of machine integers. Such expressions are very informative error messages.

5Tt is possible to give instead a single equation of the form exp = exp’ as the condition. Tn
fact, giving just a Boolean expression exp as the condition is equivalent to giving the equation
exp = true. Note that there is no real loss of generality in restricting conditions to be either a
single equation or a Boolean expression, since we can for example express a condition involving
a conjunction of equations and membership axioms of the form

t1 :t'l/\.../\tn :t;l/\ulzsl/\.../\um:sm
by the single equation
(¢1 ==t} and ... and t, == t, and uj : s, and ... and Uy, : Sm) = true,
or just by the Boolean expression

t1 == t'l and ... and {, == t'n and w1 : 81 and ... and U : Sm-
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The Maude system automatically adds these error supersorts above each of the
connected components of the poset of sorts declared by the user, using the set of
maximal sorts in each connected component to qualify the corresponding error
sort; such error sorts are called kinds in the theory of membership algebras
(see Section 4). In this example there is a third connected component in the
subsort ordering poset, namely, the connected component involving the sorts
Edge, Path, and Path?, and therefore a third error supersort, Error (Path?), is
also added. Note that, even though Path? was introduced by the user with the
purpose of catching errors, Maude always adds a new error supersort above each
connected component. This is because, conceptually, an error supersort is really
not a sort, but a kind. The point is that sorts are user-defined, while kinds are
implicitly associated with connected components of sorts and are automatically
added by Maude in the form of “error supersorts”. The Maude system also
lifts automatically to the error supersorts all the operators involving sorts of
the corresponding connected components to form error expressions. Such error
expressions allow us to give expressions to be evaluated the benefit of the doubt:
if when they are simplified they have a legal sort, then they are ok; otherwise,
the fully simplified error expression is returned as an error message.

As illustrated by a few sample evaluations and their results, expressions
formed with the operators declared in the module can be evaluated with the
reduce command—red in abbreviated form. In the reduction process the equa-
tions are used from left to right as rules of simplification, and the membership
axioms are also used to lower the sort of each expression as much as possible.
When the expression has the lowest possible sort and cannot be simplified any-
more using the equations, it is returned together with its lowest sort as the
result.

Maude> red (b ; c ; 4)
result Path: (b ; ¢ ; d)

Maude> red length(b ; c ; d)
result NzMachinelnt: 3

Maude> red (a ; b ; c)
result Path?: (a ; b ; c)

Maude> red source(a ; b ; c)
result Error(Node): source(a ; b ; c)

Maude> red target(a ; b ; c)
result Error(Node): target(a ; b ; c)

Maude> red length(a ; b ; c)
result Error (MachineInt): length(a ; b ; ¢)

2.1.1 Identifiers, Order-Sorted Signatures, and Overload-
ing

We first explain the syntactic conventions about Maude identifiers, which must
be followed when declaring module, sort, and operator names. Then we explain
the notions of order-sorted signature and overloading that are key for under-
standing the syntax of expressions in functional and system modules.
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In Core Maude, the name of a module or a sort must be an identifier. For
example, PATH, Edge, and Path are identifiers. In general, an identifier in Maude
is any finite string of ASCII characters such that:

e It does not contain any white space. For example, the sequence ‘abc def’
is not one identifier, but two.

e The characters ‘{’, ‘}, ‘C, ), ‘[’, ‘1’ and *,’ are special, in that they
break a sequence of characters into several identifiers. For example, the
sequence ‘ab{c,d}ef’ counts as seven identifiers, namely, ‘ab’, ‘{’, ‘c’, ¢,’,
‘@, ‘), and ‘ef’.

e The backquote character ‘‘’ is only used as an escape character to in-
dicate that a blank space or the special characters do not break the se-
quence. Consequently, backquotes can only appear immediately before any
of the special characters, or between two nonempty strings of characters—
with neither the ending of the first string nor the beginning of the second
string being another backquote—for exactly these purposes. For example,
1¢ab‘{c*,d}ef is a single identifier. Maude’s pretty printer will display
such an identifier in the form ‘1 ab{c,d}ef’.

The conventions for the syntactic form of operators allow great flexibility in
their user-definable syntax. An operator declared using a single identifier has
automatically a prefix form, in which it can be displayed before its arguments
enclosed in parentheses; but if such an operator contains underscore characters
‘_7 then it must contain exactly as many underscores as the number of sorts
in its arity, and in that case it has also a mizfiz form. For example, _+_(2,3)
and 2 + 3 are the prefix and mixfix ways of displaying the same arithmetic
expression®.

An operator can also be declared using several identifiers. This can be due
to the presence of special characters, or to blank spaces, or both. Consider for
example the operator declaration

op [_] and then [_] : Command Command -> Command .

that may allow a natural language style in the syntax of a programming lan-
guage. It uses eight identifiers in the Maude sense, but declares a single binary
operator, with the underscores indicating the place of the arguments in the mix-
fix notation. Internally, Maude also associates to this operator a corresponding
single identifier variant by using backquotes. This is the form in which we could
have equivalently defined the operator using a single identifier, namely,

op ‘[_‘]Jand‘then‘[_°‘] : Command Command -> Command .

Of course, both variants are equivalent and have the same mixfix display, but
the version without backquotes is obviously more convenient.

The declaraton of an operator requires an extra pair of parentheses if we
already use parentheses as part of the syntax of the operator. Suppose we had
in a programming language another binary operator (_ only after _). We
have to declare it as follows.

op ((_ only after _)) : Command Command -> Command .

6By default, Maude’s pretty printer will display operators in mixfix form whenever possible,
but it can be turned to prefix mode by the set print mixfix off command (see Appendix A).
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Since an operator may be declared using several identifiers, in an ops decla-
ration involving several operators each operator declaration can be enclosed in
parentheses if necessary, to indicate where the syntax of each operator begins
and ends. Then, we could have declared both operators together as follows.

op ([_] and then [_]) ((_ only after _))
Command Command -> Command .

We now turn to order-sorted signatures. As the GRAPH example shows, the
sorts declared in a functional module (and the same will hold for system mod-
ules) can be related by a subsort inclusion ordering. At the level of the corre-
sponding algebras this subsort ordering is interpreted as set-theoretic inclusion
of the data in a subsort into the data in a supersort. For example, every Edge
is a Path, and every Path is a Path?. In general, we can declare arbitrary long
chains of subsort inclusions, not only between individual sorts, but between sets
of sorts. For example, if sorts A, B, and C are each of them subsorts of sorts D
and E, and these in turn are subsorts of sorts F, G, and H, we can specify all
these inclusions with a single declaration

subsorts ABC<DE<FGH .

Another feature of order-sorted signatures is that the function symbols de-
clared in the signature can be overloaded, that is, we can have several operator
declarations for the same operator with different arities and coarities. Consider
for example the module

fmod NUMBERS is
sorts Nat NzNat Nat3 .
subsort NzNat < Nat

op zero : —-> Nat

op s_ : Nat -> NzNat .

op p_ : NzNat -> Nat

op _+_ : Nat Nat -> Nat

op _+_ : NzNat NzNat -> NzNat
ops 0 1 2 : -> Nat3 .

op _+_ : Nat3 Nat3 -> Nat3 [comm]

vars N M : Nat
var N3 : Nat3 .

eqpsN=N.

eq N + zero = N .
eqN+sM=s (N+M
eq (N3 + 0) = N3 .

eql +1=2.

eq 1 +2=0

eq2+2=1
endfm

declaring the natural numbers in Peano notation with a subsort NzNat of nonzero
natural numbers and with successor, predecessor and addition functions, and
declaring also the integers modulo 3 with their addition as a commutative (comm)
operator.
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The addition operator has three declarations and is therefore overloaded.
However, there are two different kinds of overloading present in the example.
The signature of the example is an order-sorted signature [26] in which over-
loaded operators related in the subsort ordering, such as the two additions for
natural numbers and for nonzero natural numbers, are supposed to have the ex-
act same behavior, in the sense that the bigger operator restricts to the smaller
one on the subsorts; such operators are called subsort overloaded. Addition in
the number hierarchy of naturals, integers, rationals, and so on, provides a very
familiar example of subsort overloading, of which the present overloading of
natural number addition is a special case (see Section 2.3).

By contrast, the sorts Nat and NzNat on the one hand, and the sort Nat3
on the other form two different connected components in the subsort ordering
and therefore natural number addition and addition modulo-3 are semantically
unrelated. This form of overloading is called ad-hoc overloading. Both subsort
and ad-hoc overloading of operators are allowed in Maude. However, to avoid
ambiguous expressions we require that if the sorts in the arities of two operators
with the same syntactic form are pairwise in the same connected components,
then the sorts in the coarities must likewise be in the same connected component.

In particular, this rules out ad-hoc overloaded constants. Therefore, we
have declared two different constants zero and 0 for the corresponding zero
elements. However, this requirement can be relaxed, and it is often natural to
do so. For example, the constants of a parameterized module can appear in
many different connected components for different instances of the module, and
it may be cumbersome to qualify them all. To allow this relaxation, constants
and, more generally, terms can be qualified by their sort, by enclosing them
in parentheses followed by a dot and the sort name. In this way, we could have
instead declared 0 as an ad-hoc overloaded constant for naturals and for integers
modulo-3, and could then disambiguate the expression 0 + 0 by writing, for
example, 0 + (0).Natand 0 + (0).Nat3,or (0O + 0).Nat and (0 + 0).Nat3.

Note that in an order-sorted signature a term can have several sorts. For
example, the term s s 0 in the NUMBERS module has sorts NzNat and Nat. An
order-sorted signature is called preregular [26] when the set of sorts that can
be assigned to a term according to the signature has always a least element.
The order-sorted signatures in functional and system modules are assumed to
be preregular.

Note that, as already mentioned, Maude will extend the signature given
by the user in a module by adding the error supersorts above each connected
component of sorts, and by adding an additional subsort overloaded operator
with all its arities and coarities in the corresponding error supersorts for each
family of subsort overloaded operators in the original signature for the purpose
of dealing with error terms. Other operators such as equality predicates, sort
predicates, and if-then-else, as well as the above-mentioned sort qualification
operators are also added. See Section 2.7.2 for more details about this extended
signature.

2.1.2 A Set Hierarchy Example

Another functional module example is provided by the following SET-HIERARCHY
functional module, that defines the set hierarchy of all finite sets whose most
basic elements are machine integers. Comments on the meaning of operations
and equations are included in the text. Such comments must begin with *** or
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fmod SET-HIERARCHY is
protecting MACHINE-INT .

sorts Set Elt Magma .
subsorts Set < Elt < Magma .
subsorts MachineInt < Elt

op mt : -> Set . *%* empty set
op _,_ : Magma Magma -> Magma [assoc comm]
op {_} : Magma -> Set
***x set constructor

ops _U_ _I_ : Set Set -> Set [assoc comm]
**x* union, intersection
op _\_ : Set Set -> Set . *x** difference
op _in_ : Elt Set -> Bool .
op P : Set -> Set . *** power set

op augment : Set Set -> Set
op |I_I : Set -> MachinelInt . *x*%* cardinality

vars L M : Magma .
vars E F : Elt
vars S T : Set

*%% equations between constructors to eliminate
*%x* duplicate elements
eq{L,L,M}y={L, M}
eq{L,L}={L3Z

*** set union
eq SUmt =S
eq{L}U{M}={L, M}

*** set membership
eq E in mt = false .
eq Ein { F } = (E == F)
eqEin {F , L}
= if E == F then true else E in { L } fi

*%* set intersection

eqmt I S =mt

eq {E}IS=4if E in S then { E } else mt fi
eq{E,L}IS= {E}IS)UHLL}TIS

*¥x*% set difference
eqmt \ S =mt
eq { E}\
eq{E, L

S = if E in S then mt else { E } fi
}INS=HE}Y\s>u {L3}\S

*** power set (defined using auxiliary function "augment")
eq P(mt) = { mt }
eqPH{E}Y) ={mt , {ED}}
eqP{E, L3} =PH{LJ} Uaugment(P({L 3}, {ED})
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eq augment(mt, T) = mt

eq augment({ S} , T) ={SUT}

eq augment({ S , L } , T)
={SUT}Uaugment({ L }, T)

*%* cardinality
eq | mt | =0
eq | {E} | =
eq | {E, L3}
= | {L}| +if Ein { L } then 0 else 1 fi

1
I

endfm
A finite set is represented using the standard notation {E1,...,En} as an
(associative and commutative) collection of elements E1,...,En (here called

a Magma) that is then enclosed in curly brackets by applying the constructor
{_} , that builds a set out of a magma. Since Set is a subsort of Magma, sets
can contain other sets as elements, and therefore we get the entire hierarchy
of finite sets. The meaning of each operation symbol is explained either in its
declaration or in the comments that precede the equations for that symbol. No-
tice that now several operators such as element concatenation, set union, and
set intersection are declared to be associative and commutative with the assoc
and comm attributes. The Maude engine then performs multiset matching and
rewriting on those symbols; that is, neither association of parentheses nor the
order of elements matter at all when finding a match. In general, the Maude
engine can rewrite modulo most of the different combinations of associativity,
commutativity, identity (left-, right-, or two-sided) and idempotency for dif-
ferent operators in the given specification. This of course gives the effect of
rewriting the equivalence classes modulo such axioms of the terms in question,
instead or rewriting just the terms themselves.

Note that the equational axioms declared as attributes of operators should
not be written explicitly as equations in the specification. There are two reasons
for this. Firstly, this is redundant, since they have already been declared as
attributes. Secondly, although declaring such equations either only explicitly as
equations, or twice one time as attributes, and another as explicit equations
does not affect the mathematical semantics of the specification, that is, the
initial algebra that the specification denotes (see Section 4.1) it does however
drastically alter the specification’s operational semantics. Indeed, Maude uses
the equations from left to right as simplification rules, matching the equations
modulo the axioms declared as attributes in operators. The equations in a
Maude specification are assumed to be Church-Rosser and terminating modulo
such axioms. But they may fail to have such properties if the axioms are instead
added as ordinary equations. For example, a commutativity equation for set
union such as

eq SUT=TUS

would make the above specification nonterminating.
Here are several sample reductions of set expressions.

Maude> red P({ 1 , 2 , 3 }) \PH{ 1, 2 3})
result Set: {{3}, {1, 3}, {2, 3}, {1, 2, 3}}

Maude> red | P(P({ 1, 2, 3 })) |
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result NzMachineInt: 256

Maude> red | (P(P({1, 2, 3 1) \P(PH 1, 2 1) |
result NzMachinelInt: 240

2.1.3 Operator Evaluation Strategies

If a collection of equations is Church-Rosser and terminating, given an expres-
sion, no matter how the equations are used from left to right as simplification
rules we will always reach the same final result. However, even though the final
result may be the same, some orders of evaluation can be considerably more
efficient than others. It may therefore be useful to have some way of controling
the way in which equations are applied by means of strategies.

In general, given an expression f(t,...,t,) we can try to evaluate it to its
reduced form in different ways, such as:

e first obtaining the reduced form of all the ;s and then applying equations
for f at the top of the term, what is called a bottom-up, or eager strategy;

e evaluating only some of the arguments, and then trying to evaluate at the
top with equations for f; for example, an if_then_else_fi operator will
typically be evaluated by evaluating first the first argument, and then the
if_then_else_fi operator at the top;

e trying to evaluate the top of the term first, and then, if this fails, either not
evaluating the subterms at all, or trying to evaluate only some of them,
that is, some kind of lazy evaluation strategy.

Typically, a functional language is either eager, or lazy with some strictness
analysis added for efficiency, and the user has to live with whatever the language
provides. Maude adopts OBJ3’s [27] flexible method of user-specified evaluation
strategies on an operator-by-operator basis, adding some improvements to the
OBJ3 approach to ensure a correct implementation [21]. For an n-ary operator
f such strategies can be specified as a list of numbers from 0 to n ending with
0. For example, the default eager strategy given in Maude to all operators,
unless another strategy is explicitly declared by the user, is (1 ... n 0), and
the one given to the if_then_else_fi is (1 02 3 0), whereas a lazy “cons” list
constructor may have strategy (0).

The syntax to declare an operator £ with strategy (i1 ... ix 0) is

op f :S1 ... Sn -> S [strat (i1 ... ik 0)]

Of course, if some of the argument positions are never mentioned in some of
the operator strategies, the notion of reduced expression becomes now relative
to the given strategies and may not coincide with the standard notion. This
may be just what we want, since we may be able to achieve termination to a
reduced expression relative to some strategies in cases when the equations may
be nonterminating in the standard sense. For example, the factorial equation

fact(N) = if N == O then 1 else N * fact(N - 1) fi

is nonterminating in the standard sense, but it is terminating up to the above
strategy for if_then_else_fi. More generally, strategies may allow us to com-
pute with infinite data structures which are evaluated on demand, such as the
following slight reformulation of the Sieve of Eratosthenes example which finds
all prime numbers using lazy lists in Appendix C.5 of [27].
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fmod SIEVE is
protecting MACHINE-INT .
sort IntList .
subsort MachinelInt < IntList
op nil : -> IntList
op _._ : IntList IntList -> IntList
[assoc id: nil strat (0)]
op force : IntList IntList -> IntList [strat (1 2 0)]
op show_upto_ : IntList MachineInt -> IntList .
op filter_with_ : IntList MachineInt -> IntList .
op ints-from_ : MachinelInt -> IntList .
op sieve_ : IntList -> IntList .
op primes : -> IntList .

var P I E : MachineInt .
var S L : IntList .

eq force(L, S) =L . S
eq show nil upto I = nil
eq show E . S upto I
= if T == 0 then nil
else force(E, show S upto (I - 1))
fi
eq filter nil with P = nil .
eq filter I . S with P
= if (I % P) == 0 then filter S with P
else I . filter S with P
fi
eq ints-from I = I . ints-from (I + 1)
eq sieve nil = nil .
eq sieve (I . S) =1 . sieve (filter S with I)
eq primes = sieve ints-from 2
endfm

Maude> reduce show primes upto 10 .
result IntlList: 2 . 3 . 5 . 7 . 11 . 13 . 17 . 19 . 23 . 29

The paper [21] documents in much more detail the operational semantics
and the implementation techniques for Maude’s operator evaluation strategies.
In particular, it analyzes carefully a number of subtle anomalies in the OBJ3
implementation that are avoided in Maude, and uses a Maude specification of
a rewrite theory (a system module, see Section 2.2) to formally specify the term
graph rewriting done by the implementation to execute such strategies.

Of course, operator evaluation strategies, while quite useful, are by design
restricted in their scope of applicability to functional modules’. As we shall
see in Section 2.2, system modules, specifying rewrite theories—that are not
functional, and need not be Church-Rosser or terminating—require much more
general notions of strategy. Such general strategies are provided by Maude using
reflection by means of internal strategy languages, in which strategies are defined
by rewrite rules at the metalevel (see Section 2.6).

"More precisely, the scope of applicability of operator evaluation strategies are restricted
to functional modules and to the equational part of system modules.
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2.2 Rewriting Logic and System Modules

The type of rewriting typical of functional modules terminates with a single
value as its outcome. In such modules, each step of rewriting is a step of
replacement of equals by equals, until we find the equivalent, fully evaluated
value. In general, however, a set of rewrite rules need not be terminating, and
need not be Church-Rosser. That is, not only can we have infinite chains of
rewriting, but we may also have highly divergent rewriting paths, that could
never cross each other by further rewriting.

The essential idea of rewriting logic [37] is that the semantics of rewriting
can be drastically changed in a very fruitful way. We no longer interpret a
term ¢ as a functional expression, but as a state of a system; we no longer
interpret a rewrite rule t — t' as an equality, but as a local state transition,
stating that if a portion of a system’s state exhibits the pattern described by ¢,
then that portion of the system can change to the corresponding instance of ¢'.
Furthermore, such a local state change can take place independently from, and
therefore concurrently with, any other nonoverlapping local state changes.

Of course, rewriting will happen modulo whatever equational structural ax-
ioms the state of the system satisfies. For example, the top level of a distributed
system’s state does often have the structure of a multiset, so that we can re-
gard the system as composed together by an associative and commutative state
constructor.

We can represent a rewrite theory as a four-tuple R = (Q, E, L, R), where
(Q, E) is a theory in membership equational logic, that specifies states of the
system as an abstract data type, L is a set of labels, to label the rules, and R
is the set of labeled rewrite rules axiomatizing the local state transitions of the
system. Some of the rules in R may be conditional [37].

Rewriting logic is therefore a logic of concurrent state change. The logic’s
four rules of deduction—namely, reflexivity, transitivity, congruence, and re-
placement (see Section 4.2.1) allow us to infer all the complex concurrent state
changes that a system may exhibit, given a set of rewrite rules that describe its
elementary local changes. It then becomes natural to realize that many reactive
systems so specified should never terminate, and that a system may evolve in
highly nondeterministic ways through paths that will never cross each other.

The most general Maude modules are system modules. They specify the ini-
tial model Tr of a rewrite theory R [37]. This initial model is a transition system
whose states are equivalence classes [t] of ground terms modulo the equations E
in R, and whose transitions are proofs « : [t] — [t'] in rewriting logic—that is,
concurrent computations in the system so described. Such proofs are equated
modulo a natural notion of proof equivalence that computationally corresponds
to the “true concurrency” of the computations (for a detailed construction of
Tr see Section 4.2.2).

As a first example of a system module, we specify a simple concurrent system,
namely a vending machine, as a Petri net. Petri nets have a straightforward
rewriting logic semantics as initial models of their associated rewrite theories
[37]; therefore, this example illustrates a general method to give executable
formal specifications in Maude to Petri nets, a method that can also be naturally
extended to high-level algebraic Petri nets [56]. Our Petri net represents a
vending machine to buy cakes and apples; a cake costs a dollar and an apple
three quarters. Due to an unfortunate design, the machine only accepts dollars,
and it returns a quarter when the user buys an apple; to alleviate in part this
problem, the machine can change four quarters into a dollar. We can represent
graphically such a machine in the conventional way as follows.
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| buy-c | | buy-a change

| [change]
O

The so-called places of this net are cakes, apples, quarters, and dollars,
denoted in the picture by circles labeled, respectively, by ¢, a, ¢, and $. In
each of these places several tokens can be placed. We can therefore think of
the places as slots of our machine, in which units of a certain kind appear or
disappear. Tokens in one or several of these places can then be consumed by
transitions, denoted by rectangular boxes labeled by the transition’s name, with
incoming and outgoing arcs indicating which tokens are consumed and produced
by the transition; we can think of such transitions as the buttons of our vending
machine. Such transitions consume tokens from the places in their incoming arcs
and produce new tokens in the places of the outgoing arcs. If several tokens must
be either consumed or produced in a place, then the corresponding arc indicates
the exact number. For example, the change transition requires four quarters to
produce a dollar. The vending machine is concurrent because, provided enough
tokens are available, we can simultaneously push several buttons and then can
simultaneously get the combined results. For example, if we place a dollar and
four quarters in the corresponding slots and push the change and buy-c buttons
at once, we can simultaneously get a dollar changed and a cake as the result.

The distributed states of the machine, namely the collections of tokens avail-
able in the different places, are called markings. They can be naturally regarded
as a multiset of places. Using juxtaposition notation, we can for example regard
the state with one dollar and four quarters as the multiset $ q ¢ ¢ q. Meseguer
and Montanari [44] observed that we can then view the Petri net as an ordinary
graph, in which the transitions are the edges, and the nodes are multisets of
places. Therefore, as a graph, this net has the following arcs:

buy-c: $§—c
buy-a: $—aq
change : qqqq —$

The expression of this Petri net in rewriting logic is now obvious. We can
view each of the labeled arcs of the Petri net as a rewrite rule in a rewrite theory
having a binary associative and commutative operator __ (multiset union), so
that rewriting happens modulo such axioms, that is, it is multiset rewriting. We
can gather together the “places” $, ¢, a,c into a sort Place and view the states
of the net, that is, the markings, as elements of a supersort Marking containing
Place and endowed with a multiset union operator with empty syntax. The
corresponding Maude module then becomes

mod PETRI-NET is
sorts Place Marking .
subsort Place < Marking .
op __ : Marking Marking -> Marking [assoc comm]
ops $ g ac: ->Place .

rl [buy-c] : § => c
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rl [buy-al] : $ =>a q .
rl [change]l : 9 q q q =>$
endm

The rewrite theory ({2, E, L, R) corresponding to a system module has a
signature () given by the sorts, subsort relations, and operator declarations, a
set E of equations, that is assumed to be decomposed as a union £ = AU E’,
with A a set of axioms to rewrite modulo among those supported by Maude,
and E' a set of Church-Rosser and terminating equations modulo A. In the
above example A consists of the associativity and commutativity axioms, E' is
empty, the label set L contains the labels of the three transitions, and the set
of rules R contains the above three rules, each introduced by the keyword rl.
One can also define conditional rules®, introduced by the crl keyword.

A key result about the representation of Petri nets as rewrite theories is
that, given two markings M and M’ on a net, the second is reachable from
the first by a concurrent net computation if and only if the sequent M —
M' is provable in rewriting logic using the rewrite theory associated to the
net [37]. Of course, net computations need not be confluent—therefore, they
can be highly nondeterministic—and need not be terminating (they just happen
to be terminating in this example). Therefore, the issue of ezecuting rewriting
logic specifications, such as those for Petri nets, or for system modules in general,
is considerably more subtle than executing expressions in a functional module,
for which the termination and Church-Rosser properties guarantee a unique final
result regardless of the order in which equations are applied as simplification
rules.

As we explain in Section 2.6, using reflection the rewriting inference process
can be controlled with great flexibility in Maude by means of strategies that can
be defined by rewrite rules at the metalevel. However, the Maude interpreter
provides a default strategy for executing expressions in system modules. The
default strategy applies the rules in a top-down fair way, and is provided by the
rewrite command, with keyword rewrite or, in abbreviated form, rew. Since
we assume that the equations FE in a system module are decomposed as a union
E = AU E' with A a set of equational axioms declared as attributes of some
operators to rewrite modulo, and E' a set of Church-Rosser and terminating
equations modulo A, before the application of each rewrite rule the expression
is simplified to its canonical form using the equations®; that is, it is simplified by

8Rules or conditional rules can have extra variables in their righthand sides that do not
occur in their lefthand sides. For example, the identity rule in the one-sided sequent calculus
for linear logic [25] as presented in [32] is of the form

rl [id] : empty => P not P .

where P is a variable of sort Atom, _,_ is the constructor for multisets of propositions and not_
is the negation operator. However, since for applying such rules we need extra information
about how the extra variables should be instantiated, rules with extra variables cannot be
applied when using the default rewrite command (explained later in this section) to rewrite
terms with Maude’s default interpreter. They must be executed at the metalevel, using the
meta-apply operator in the META-LEVEL module (see Section 2.5.5). In the present version of
Maude, the condition of a conditional rule must satisfy the same requirements as those for
the condition of a conditional equation explained in Section 2.1, including the requirement
that all variables in the condition must appear in the rule’s lefthand side. In a future version
we plan to support more general conditions, involving extra variables and containing not only
equalities and membership axiomss, but also rewrite conditions requiring that a term can
rewrite to another term.

9By always reducing a term to canonical form using the equations before applying a rule,
we could potentially miss some rewrites, in the sense that a rule could have been applied
before simplifying a term, but cannot be applied after simplification. The property ensuring
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applying the equations E' modulo A. Then, a rule is applied to such a simplified
expression modulo the axioms A according to the default strategy. Since in our
Petri net example E' is empty, this equational simplification process before each
rule application becomes in this case the identity.

An expression given to Maude with the rew command will be rewritten
with the default strategy until no more rules can be applied. Since such a
computation in general may not terminate, Maude allows the user to specify
the maximum number, enclosed in brackets, of rule applications allowed when
executing the rew command. We give below several sample executions for our
Petri net module with and without a bound for the rew command.

Maude> rew $ $ $ $ $ 9 qqqq .
result Marking: a a a cccc

Maude> rew [1] $ $$$ $9gq99qq .
result Marking: $ $ $ $ $ $ q

Maude> rew [2] $ $ $ $ $99q949qq .
result Marking: $ $ $ $ $q q a

Maude> rew [3] $ $ $ $ $9gqqqq .
result Marking: $ $ $ $ qqac

Maude> rew [4] $ $ $ $ $q9qqqq .
result Marking: $ $§ $ gqqacc

Another simple, yet interesting, system module is the following ND-INT
module, that provides nondeterministic machine integers and nondeterminis-
tic choice.

mod ND-INT is
protecting MACHINE-INT .
sort NdInt
subsort MachineInt < NdInt
op _7_ : NdInt NdInt -> NdInt [assoc comm]
var N : Machinelnt .
var ND : NdInt
eq N?N=N.
rl [choice]: N ? ND => N .
endm

In this example we regard a finite set of integers as a nondeterministic inte-
ger of sort NdInt, that is, as an integer that could be any of those in the set. Of
course, as indicated by the subsort declaration MachineInt < NdInt, singleton
sets are just machine integers, that is, they can be viewed as those nondeter-
ministic integers from which any nondeterminism has already been eliminated.
Union of nondeterministic integers, denoted _7_ is associative and commuta-
tive and obeys also an idempotency equation. Nondeterministic choice is then
provided by the choice rule.

Note that, since in membership equational logic the operators in the module
are lifted to the kinds, that is, to the error supersorts, we can give expressions

that we do not miss such rewrites is called coherence (see [61] and Section 4.3). Coherence (or
at least “weak coherence”) is assumed to hold for system modules. It plays a role analogous
to that played by the Church-Rosser property for functional modules.
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the benefit of the doubt and therefore we can perform arithmetic operations on
such nondeterministic integers as exemplified by the following Maude executions

Maude> rew (1 2757271 7?5) + (37211727 73711)
result NzMachinelnt: 4

Maude> rew (1 275 72 7?1 ?5) »x (37211727 7?37 11)
result NzMachinelInt: 3

Maude> rew [1] (1 275 7?2 7?1 ?5) «x (37211727737 11)
result Error(NdInt): 1 * (3 72 7 ? 11)

Maude> rew [2] (1 275 7?2 7?1 75) «x (37?11?27 737 11)
result NzMachinelnt: 3

Note that the idempotency equation is applied before and after applying the
choicerule. Note also that this example shows very clearly why equational logic
cannot be used as the semantics of the choice rule, that is, why we absolutely
need a rewriting logic interpretation. Indeed, if we were to consider choice as
an equation, we would for instance have

2=275=5

an obvious absurdity.

As yet another example of a system module we introduce below the mod-
ule SORTING for sorting vectors of integers. In this module, such vectors are
represented as sets of pairs of integers, with the first component of each pair
corresponding to the vector position and the second to the number in that
position.

mod SORTING is
protecting MACHINE-INT .

sorts Pair PairSet .
subsort Pair < PairSet .

op <_;_> : MachineInt Machinelnt -> Pair .
op empty : —-> PairSet .
op __ : PairSet PairSet -> PairSet [assoc comm id: empty]

vars I J X Y : Machinelnt .

crl [sort] : <J ; X ><I;Y>=><J;Y¥Y><I; X>
if (J < I) and (X > Y)
endm

Note that, by default, Maude automatically imports the predefined BOOL module
into any other module. Therefore, the _and_ function is available and can be
used in the condition of the sort rule.

The top level of the state is in fact a set, namely, an element of sort PairSet
built up by the associative and commutative operator __. That is, the states
are sets P of pairs of integers. For the sake of the example, let us suppose that
for any pair < ¢ ; x > in an input set P, i < card(P), and we cannot have
two different pairs < i ; # > and < j ; y > in P such that i = j. That is,
any input set P is indeed a vector of integers; of course, these requirements



CHAPTER 2. CORE MAUDE 26

on P could have been explicitly specified by declaring a subsort and giving
membership axioms imposing the above conditions, but this is inessential for
our present purposes.

There is just one conditional rule, labeled sort, that modifies a vector of
integers in order to put it into sorted order. The system thus described is highly
concurrent, because the sort rule can be applied concurrently to many couples
of pairs in the set representing the vector. Any complex concurrent rewriting
of the set of pairs will then correspond to a proof in rewriting logic.

Using the rew command, we can use Maude’s default interpreter for execut-
ing expressions in system modules. The Maude engine then applies the rules in
a fair top-down fashion to sort a vector of integers, e.g.,

Maude> rew < 1 ; 3 >< 2 ; 2><3; 1>.
result PairSet: <1 ; 1 >< 2 ; 2><3; 3>

Using the default interpreter we have virtually no control over the application
of the rules in the module. In particular, in this example we have virtually no
control over the way in which the rule sort is applied. Although not a problem
in this case, because this specification happens to be confluent and terminating,
in general we may want to control the way in which the rules are applied. Of
course, if the specification is nonconfluent or nonterminating it is not only that
we might want to have this control but that we need it. As already mentioned,
this can be done with strategies. Section 2.6 explains how, using strategies,
the rewriting inference process can be controlled in Maude for this example
and for a highly nondeterministic example specifying the rules of a game. For
this example such strategies correspond to specifying different sorting algorithms
guiding where the sort rule should be applied at each point in the computation.

Among the many concurrent systems that we can specify as system modules
in Maude, concurrent object-oriented systems are an important subclass. Maude
has special syntactic conventions for specifications in this subclass, called object-
oriented modules [38]. However, object-oriented modules are entirely reducible
to ordinary system modules by a desugaring process that strips away the, very
convenient, syntactic sugar. Object-oriented modules are not supported in Core
Maude; they are instead supported in Full Maude, the extension of Maude
written in Maude itself in which we also support parameterized modules and
module expressions. They are discussed in detail in Section 3.2.

2.3 Module Hierarchies

Specifications and code should be structured in modules of relatively small size to
facilitate understandability of large systems, increase reusability of components,
and localize the effects of system changes. In Maude, the fullest support of
these goals is achieved in Full Maude, which has a rich and extensible module
algebra supporting, in particular, parameterized programming techniques in the
OBJ3 style [27]. However, Core Maude provides already some useful basic
support for modularity by allowing the definition of module hierarchies, that
is, acyclic graphs of module importations. Mathematically, we can think of
such hierarchies as partial orders of theory inclusions, that is, the theory of the
importing module contains the theories of its submodules as subtheories.
Recall that a rewrite theory is a four-tuple R = (Q, E, L, R), where (Q, F) is
a theory in membership equational logic. As already mentioned, and further ex-
plained in Section 4, a system module is a rewrite theory with initial semantics.
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Note that we can use the inclusion of membership equational logic into rewriting
logic to view a functional module specifying an equational theory ({2, E) as a
degenerate case of a rewrite theory, namely the rewrite theory (Q, E,0,0). In
fact the initial algebra of (2, E) and the initial model of (22, £, 0, #) coincide [37].
Therefore, in essence we can view all modules as rewrite theories.

The most general form of module inclusion is provided by the including
keyword, followed by the nonempty list of imported modules and finished by
a period. The protecting keyword is a more restricted form of inclusion, in
the sense that it makes a semantic assertion about the relationship between the
initial models of the two theories. Let R = (2, E, L, R) be the rewrite theory
specified by a system module, and let R' = (', E', L', R") be the theory of a
supermodule, so that we have a theory inclusion R C R'. Then, we can view
each model M’ of R’ as a model M'|g of R, simply by disregarding the extra
sorts, operations, equations, membership axioms, and rules in R' — R. Since,
as further explained in Section 4, the rewrite theories R and R’ have respective
initial models Tr and T+, by initiality of Tx we always have a unique R-
homomorphims

h: TR — TRr |R-

The protectingimportation asserts that for each sort s in the signature 2 of R’
the function hy is an isomorphism of categories'®. Intuitively, this means that
the initial model of the supermodule does not add any “junk” or any “confusion”
to the initial model of the submodule.

Of course, the protecting assertion cannot be checked by Maude at runtime.
It requires inductive theorem proving. Using the proof techniques in [4] together
with an inductive theorem prover for membership equational logic and a Church-
Rosser checker such as those described in [12], this can be done for functional
modules; and it seems natural to expect that these techniques and tools will
extend to similar ones for rewrite theories.

By contrast, the including assertion does not make such requirements on
h. It does, however, make some requirements. Namely, if the subtheory R does
itself contain a proper subtheory Ry that it imports in protecting mode, then
the inclusion Rg C R' does still have to be protecting. If we do not want it to
be, we have to say so by explicitly listing the module defining R in the list of
modules imported in including mode.

We give below an example of a module hierarchy, namely, the number hi-
erarchy from the naturals to the rationals in a somewhat different form than
in Appendix C.7 of [27]. This hierarchy happens to be a linear order of theory
inclusions, with BOOL implicitly at the bottom. In general, any partial order
of inclusions can be defined in the same way. Note that all the importations
are protecting importations. The including importation, although possible
in Core Maude, is more natural in the context of a module renaming operation.
Indeed, if the semantics of a module is going to be modified by a supermodule
it is better to make a copy of such a module and import the copy. At present,
Core Maude does not support renaming; it is supported by Full Maude (see
Section 3.5.4). Renaming will probably be added to Core Maude in a future
version.

101n the models of a rewrite theory the sorts are interpreted as categories, thus the require-
ment; for functional theories the requirement becomes that each such hg is bijective. Note
that the expected condition would have been to require h to be an R-isomorphism. However,
due to the presence of error elements at the kind level, the isomorphism condition would be
too strong, since in general, when enlarging a signature, there will be new error terms that
cannot be proved equal to old ones. See [4] for a detailed discussion of, and proof techniques
for, protecting extensions in membership equational logic.
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fmod NAT is
sorts Nat NzNat Zero .
subsorts Zero NzNat < Nat
op 0 : -> Zero .
op s_ : Nat -> NzNat .
op p_ : NzNat -> Nat

op _+_ : Nat Nat -> Nat [comm]

op _*_ : Nat Nat -> Nat [comm]

op _*_ : NzNat NzNat -> NzNat [comm]
op _>_ : Nat Nat -> Bool .

op d : Nat Nat -> Nat [comm]

op quot : Nat NzNat -> Nat

op gcd : NzNat NzNat -> NzNat [comm]
vars N M : Nat

vars N’ M’ : NzNat

eqpsN=N.

eq N+ 0=N.

eq (s N) + (sM) =ss (N+M

eq N x 0 =20 .

eq (s N) x (s M) =s (N+ M+ (N *xM))

eq 0 > M = false .

eq N’ > 0 = true .

eq s N>sM=N>M.

eq d(0, N) =N .

eq d(s N, s M) = d(N, M)

ceq quot(N, M?) s quot(d(N, M’), M’) if N > M’

eq quot(M’, M’) s 0 .

ceq quot(N, M?) 0 if M’ > N .

eq gcd(N’, N’) = N?

ceq gcd(N’, M’) = gcd(d(N’, M’), M’) if N> > M’
endfm

fmod INT is
sorts Int NzInt .
protecting NAT .
subsort Nat < Int
subsorts NzNat < NzInt < Int

op -_ : Int -> Int

op -_ : NzInt -> NzInt

op _+_ : Int Int -> Int [comm]

op _*_ : Int Int -> Int [comm]

op _*_ : NzInt NzInt -> NzInt [comm]

op quot : Int NzInt -> Int

op gcd : NzInt NzInt -> NzNat [comm]
vars I J : Int

vars I’ J’ : NzInt

vars N’ M’ : NzNat

eq--I=1
eq - 0=0
eq I +0=1.

eq M + (- M) =0
ceq M’ + (- N’) = - 4a(N’>, M’) if N’ > M’

28
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ceq M + (- N’) =4W’, M) if M’ > N’

eq (-I) + (-3 =-(I+J)
eq I x0=0.
eq I x (-J) =-(I*1J)

eq quot(0, I’) =0 .

eq quot(- I’, J’) = - quot(I’, J’)
eq quot(I’, - J’) = - quot(I’, J’)
eq gcd(- I’, J’) = gcd(I’, J?)
endfm
fmod RAT is

sorts Rat NzRat .

protecting INT .

subsort Int < Rat .

subsorts NzInt < NzRat < Rat .
op _/_ : Rat NzRat -> Rat .

op _/_ : NzRat NzRat -> NzRat .

op -_ : Rat -> Rat

op -_ : NzRat -> NzRat .

op _+_ : Rat Rat -> Rat [comm]

op _*_ : Rat Rat -> Rat [comm]

op _*_ : NzRat NzRat -> NzRat [comm]

vars I’ J’ : NzInt . vars R S : Rat .
vars R’ S’ : NzRat .
eqR/ (R” /S’) = (R *8’) /R
eq R/ R’) /S =R/ (R *8%)
ceq J’ / I?
= quot(J’, gcd(J’, I’)) / quot(I’, gecd(J’, I’))
if gcd(J’, I’) > s 0 .

eqR/s0=R.

eq 0/ R =0.

eqR/ (-R)=(-R) /R

eq- (R/R)=(-R) /R

eqR+ (S/R)=(R=*R)+8S) /R

eqR * (S/R) =R=*S) /R
endfm

2.4 Some Predefined Modules

Maude has a standard library of predefined modules that, by default, are en-
tered into the system at the beginning of each session, so that any of these
predefined modules can be imported by any other module defined by the user.
Also, by default the predefined functional module BOOL is automatically im-
ported as a submodule of any user-defined module, unless such importation is
explicitly disabled. We discuss below some of the basic predefined modules in
the standard library; some of them have a syntax similar to that of their coun-
terparts in OBJ3’s standard prelude [27]. The META-LEVEL module is discussed
in Section 2.5, and the LOOP-MODE module in Section 2.8. The entire standard
library of predefined modules is included as Appendix D.
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2.4.1 Truth and Booleans

There are three predefined modules involving truth values, namely, TRUTH-VALUE,
TRUTH, and BOOL. The most basic one is TRUTH-VALUE, which has the following
definition.

fmod TRUTH-VALUE is
sort Bool .
op true : -> Bool [special (id-hook SystemTrue)]
op false : -> Bool [special (id-hook SystemFalse)]
endfm

That is, the module just declares two constants, true and false. The key thing
to note is the special attribute associated to each of the operator declarations
for these constants. This states that the constants are treated as built-in op-
erators, so that instead of having the standard treatment of any user-defined
operator they are instead associated to appropriate C++ code by “hooks” as
stated next to the special attribute. This is important, because certain basic
constructs of the language such as conditions in a conditional equation, member-
ship axiom, or rule, and also sort predicates associated to membership assertions
evaluate to these built-in truth values.

In general, many operators in predefined modules are special operators. In
what follows, to lighten the exposition, we will omit the details about such hooks
in special operators writing [special (...)] instead. The full definitions can
be found in Appendix D.

The module TRUTH adds a number of important operators to TRUTH-VALUE.

fmod TRUTH is
protecting TRUTH-VALUE .

op if_then_else_fi : Bool Universal Universal -> Universal

[special ( ... )]

op _==_ : Universal Universal -> Bool
[prec 51 special ( ... )]

op _=/=_ : Universal Universal -> Bool
[prec 51 special ( ... )]

endfm

The prec attribute in the last two operators gives a precedence to the oper-
ator for parsing purposes (see Section 2.7.4). The operators are, respectively,
if_then_else_fi, and the built-in equality and inequality predicates. These
operators are special in a number of ways. Firstly, they are automatically added
to every module. Secondly, they are polymorphic, so that, for each module, they
can be considered to be normal operators that are ad-hoc overloaded for each
connected component in the module. In fact, Universal is not a normal sort,
but should instead be understood as a polymorphic sort whose concrete effect is
the instantiation of the corresponding operators in each connected component.
These operators have the same semantics as their OBJ3 counterparts except
that if if_then_else_fi fails to rewrite at the top, it then evaluates its then
and else arguments. In particular, the equality and inequality predicates are
evaluated by reducing two ground terms to their normal form and comparing
the results for equality, modulo the equational axioms in the attributes of the
operators in the module.

Note that the equality and inequality predicates that the module TRUTH
adds to each connected component of a user-defined module in a built-in and
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efficient way could in principle have been defined in a more cumbersome and
inefficient way by the user. In fact, assuming as we usually do that the equations
and membership axioms in the user module are Church-Rosser and terminating
modulo the axioms in operator attributes, the corresponding initial algebra is
a computable algebraic data type, for which equality and inequality are also
computable functions. Therefore, by a well-known metaresult of Bergstra and
Tucker [1], such equality and inequality predicates can themselves be equation-
ally defined by Church-Rosser and terminating equations. It is of course very
convenient, and much more efficient, to unburden the user from having to give
those explicit equational definitions of equality and inequality, by providing
them in a built-in way.

Note also that, by the above metaargument, the use of inequality predicates
in equations, membership axioms, or conditions, does not involve any real in-
troduction of megation in the underlying membership equational logic, which
remains a Horn logic. What we are really doing is adding more Boolean-valued
functions to the module, but such functions, although provided in a built-in way
for convenience and efficiency, could have been equationally defined without any
use of negation.

The module BOOL imports TRUTH and adds the usual conjunction, disjunction,
exclusive or, negation, and implication operators. Such operators are defined
entirely equationally.

fmod BOOL is
protecting TRUTH .

op _and_ : Bool Bool -> Bool [assoc comm prec 55]
op _or_ : Bool Bool -> Bool [assoc comm prec 59]
op _xor_ : Bool Bool -> Bool [assoc comm prec 57]

op not_ : Bool -> Bool [prec 53]
op _implies_ : Bool Bool -> Bool [gather (e E) prec 61]

vars A B C : Bool .

eq true and A = A .

eq false and A false .

eq A and A = A .

eq false xor A = A .

eq A xor A = false .

eq A and (B xor C) = (A and B) xor (A and C)

eq not A = A xor true .

eq A or B = (A and B) xor A xor B .

eq A implies B = not (A xor (A and B))
endfm

By default, the BOOL module is included as a submodule of any other module
defined by the user. This is accomplished by the command

set include BOOL on .

which can mention any module we wish to include—in this case BOOL—and is
set when the standard library is entered. However, this default inclusion can
be disabled. For example, if the user wished to have the polymorphic equality
and if_then_else_fi operators automatically added to modules, but wanted
to exclude the usual Boolean connectives for the built-in truth values, he/she
could write



CHAPTER 2. CORE MAUDE 32

set include BOOL off
set include TRUTH on .

The last module involving truth values is the IDENTICAL module. It is not
included by default in other modules. That is, it has to be imported explicitly if
it is needed. When imported into a module, it adds to each of its connected com-
ponents polymorphic operators for syntactic equality and inequality. That is,
two ground terms are compared for syntactic equality modulo the equational
axioms in the attributes of the operators in the module—without performing
any reduction of the terms by the equations in the module.

Note that what this module provides in a built-in way would require a con-
siderably more cumbersome, and subtle, explicit definition at the user level. In
fact, given that equality in a functional module is always semantic equality using
the equations, to explicitly define the above operators the entire signature of the
module would have to be duplicated in a disjoint copy, for which no equations
would be given, except for the equational axioms in operator attributes. Then,
the above syntactic operators would reduce to the standard semantic equality
and inequality operators on that equationless disjoint copy of the signature.

fmod IDENTICAL is

op _===_ : Universal Universal -> Bool
[prec 51 strat (0) special ( ... )]
op _=/==_ : Universal Universal -> Bool
[prec 51 strat (0) special ( ... )]
endfm

2.4.2 The Machine Integers

The machine integers are defined below. The constants in this module repre-
sent the C++ data type int, as elements of a sort MachineInt, with a subsort
NzMachineInt of nonzero machine integers. The first two operator declara-
tions illustrate the way of linking the built-in integer constants to the sorts
MachineInt and NzMachineInt. The other operations declared in the module
represent their C++ counterparts with the same notation; their meaning is in-
dicated in the associated comments. The division and remainder operations
produce an unreduced error term if their second argument is zero. The machine
integers provide a fast arithmetic data type for general purpose programming
and for metalevel hooks into the rewriting engine.

fmod MACHINE-INT is
sorts MachineInt NzMachinelnt .
subsort NzMachinelInt < Machinelnt .

op <MachineInts> : -> NzMachineInt [special ( ... )]
op <MachineInts> : -> MachinelInt [special ( ... )]
op -_ : MachinelInt -> Machinelnt
[prec 15 special ( ... )] . **%* minus
op -_ : NzMachineInt -> NzMachineInt
[prec 15 special ( ... )] . *%% minus
op “_ : MachinelInt -> Machinelnt
[prec 15 special ( ... )] . **x* bitwise complement
op _+_ : MachineInt MachineInt -> Machinelnt
[prec 33 gather (E e) special ( ... )] . *** addition

op _—_ : MachineInt MachineInt -> Machinelnt
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op
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[prec 33 gather (E e) special ( ... )] . **x difference
_*_ : MachineInt MachinelInt -> Machinelnt

[prec 31 gather (E e) special ( ... )] . **x multiplication
*¥_ : NzMachinelInt NzMachinelInt -> NzMachinelnt

[prec 31 gather (E e) special ( ... )] . **x multiplication
~/_ : MachineInt NzMachineInt -> MachineInt

[prec 31 gather (E e) special ( ... )] . **x division
_%h_ : MachineInt NzMachineInt -> Machinelnt

[prec 31 gather (E e) special ( ... )] . **x remainder
_&_: MachineInt MachineInt -> MachineInt

[prec 53 gather (E e) special ( ... )] . **x bitwise and
_|_ : MachineInt MachineInt -> MachineInt

[prec 57 gather (E e) special ( ... )] . *** bitwise or
_|_ : NzMachineInt NzMachinelInt -> NzMachineInt

[prec 57 gather (E e) special ( ... )] . **x bitwise or

“_ : MachineInt MachineInt -> MachineInt

[prec 55 gather (E e) special ( ... )] . **x bitwise xor
_>>_ : MachineInt MachineInt -> MachineInt

[prec 35 gather (E e) special ( ... )] . **x left shift
_<<_ : MachinelInt MachineInt -> MachineInt

[prec 35 gather (E e) special ( ... )] . **x right shift
<_ : MachineInt MachineInt -> Bool

[prec 37 special ( ... )] . *** less than
_<=_ : MachinelInt MachinelInt -> Bool

[prec 37 special ( ... )] . *** less or equal than
_>_ : MachineInt MachineInt -> Bool

[prec 37 special ( ... )] . *** greater than
_>=_ : MachineInt MachineInt -> Bool

[prec 37 special ( ... )] . *** greater or equal than

endfm

24.3

Quoted Identifiers

Quoted identifiers have the following signature:

fmod QID is
protecting MACHINE-INT .
sort Qid .
op <Qids> : -> Qid [special ( ... )]
op conc : Qid Qid -> Qid [special ( ... )] .
op index : Qid MachineInt -> Qid [special ( ... )]
op strip : Qid -> Qid [special ( ... )]
endfm

Typical constants of sort Qid are quoted identifiers such as ’a, ’aa, *f‘(x*),
’-1, ??123abc, and ’A_quoted_identifier. Every quoted identifier is a legal
Maude identifier. That is, it satisfies the conventions for Maude identifiers
explained in Section 2.1.1 and, in addition, it begins with the quote character.
Of course, in syntax declarations for sorts, variables, etc., of a module that
includes QID we should avoid using quoted names, since they are now used for
constants of sort Qid. In fact, that is the whole point of using a module of
quoted identifiers instead of a module of general identifiers, since that could
create massive ambiguities.
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Quoted identifiers are defined in a built-in way by the first operator decla-
ration. The operation conc concatenates two quoted identifiers, omitting the
quote of the second. The operation index appends the result of the machine in-
teger expression at the end of the quoted identifier. The operation strip strips
off the first character after the quote. Their semantics can be inferred from the
following examples:

conc(’a, ’b) = ’ab

conc(’a, ’42) = ’a4d2

index(’a, 2 * 21) = ’a42

conc(’a, index(’ , 1 - 43)) = ’a-42
strip(’abcd) = ’becd

For different purposes it is useful to have not only quoted identifiers, but also
a data type of lists of quoted identifiers. In particular, the remaining two pre-
defined modules in the standard library, namely META-LEVEL and LOOP-MODE—
discussed in Sections 2.5 and 2.8, respectively both import the following QID-LIST
module.

fmod QID-LIST is

protecting QID .

sort QidList .

subsort Qid < QidList .

op nil : -> QidList

op __ : QidList QidList -> QidList [assoc id: nil]
endfm

2.5 Reflection and the META-LEVEL

Informally, a reflective logic is a logic in which important aspects of its metathe-
ory can be represented at the object level in a consistent, way, so that the object-
level representation correctly simulates the relevant metatheoretic aspects. In
other words, a reflective logic is a logic which can be faithfully interpreted in
itself. Maude’s language design and implementation make systematic use of the
fact that rewriting logic is reflective [14, 15, 10]. This makes the metatheory of
rewriting logic accessible to the user in a clear and principled way.

A naive implementation of reflection can be very expensive both in time and
memory use. Therefore, a good implementation must provide efficient ways of
performing reflective computations. This section explains how this is achieved
in Maude through its predefined META-LEVEL module. We first discuss the se-
mantics of metalevel computations, and how their efficiency can be dramatically
increased by conservatively extending the universal theory ¢/ to a metalevel the-
ory M with descent functions and rules that allow lowering deductions at higher
levels of reflection to much more efficient deductions at lower levels. Then,
we explain how terms and modules are meta-represented in META-LEVEL, and
how these semantic principles are supported in important special cases by the
META-LEVEL module in a built-in way.

The important topic of internal strategy languages, that use reflection in
an essential way, is discussed separately, in Section 2.6. Besides strategies, re-
flection makes possible many advanced metaprogramming applications. One
important such application is Full Maude which, as discussed later in this docu-
ment, makes essential use of reflection to provide Maude with a rich and exten-
sible module algebra; this is a special instance of a general class of applications
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in which, using reflection, we can use Maude as a metalanguage to reify other
languages and logics within rewriting logic (see Section 2.8.2). The paper [11]
summarizes, and gives references for, a number of other important applications,
including uses of rewriting logic as a logical framework and the development of
theorem proving tools.

2.5.1 Reflection and Metalevel Computation

Rewriting logic is reflective [14, 10] in a precise mathematical way, namely, there
is a finitely presented rewrite theory U that is universal in the sense that we
can represent in I any finitely presented rewrite theory R (including U itself)
as a term R, any terms ¢,# in R as terms 7,#/, and any pair (R,t) as a term
(R,7), in such a way that we have the following equivalence

() RFt —t & UF(R,D — (R,7).

Since U is representable in itself, we can achieve a “reflective tower” with an
arbitrary number of levels of reflection, since we have

REt—=t & UF R = (R, ') & UF U, (R, D) = U, (R,))...

In this chain of equivalences we say that the first rewriting computation takes
place at level 0, the second at level 1, and so on. In a naive implementation, each
step up the reflective tower comes at considerable computational cost, because
simulating a single step of rewriting at one level involves many rewriting steps
one level up. It is therefore important to have systematic ways of lowering
the levels of reflective computations as much as possible so that a rewriting
subcomputation happens at a higher level in the tower only when this is strictly
necessary.

To achieve a systematic descent into equivalent rewriting computations at
lower levels, the key idea is to exploit the equivalence (}). A detailed proof
of this equivalence has been given for the case of unconditional and unsorted
theories [10]. The extension to the case of interest for Maude namely to con-
ditional rewrite theories with membership equational logic [41, 5] as the under-
lying equational logic—although nontrivial, is essentially unproblematic. We
therefore assume a universal theory U for this more general class of finitely
presented rewrite theories. In particular, the signature ¥; of U has sorts
Term, Module, and Kind, whose respective elements 7 : Term, R : Module, and
K : Kind represent terms, rewrite theories, and kinds'! in a signature, respec-
tively. We assume that there is also an equationally defined Boolean predicate
parse : Module x Kind x Term —s Bool so that parse(R, K ,t) = true if t is an
R-term of kind K, and parse(R, K,t) = false otherwise.

We can exploit the equivalence () by introducing the notion of descent func-
tion, that is, a function that, given metalevel representations for a rewrite theory
R and a term t in it, rewrites such a term in R according to a given strategy
and returns the meta-representation of the resulting term. Such functions can
be simply expressed in terms of a general sequential interpreter function I for
rewriting logic. This is a partial function that takes three arguments: a finitely
presented rewrite theory R, a term ¢, and a deterministic strategy S. In case
of termination it returns either the term ¢ to which ¢ was rewritten according

Tn a membership equational logic signature, terms always have a kind; they may or may
not have a sort of that kind. As already mentioned, in Maude kinds are represented as error
sorts, that are added by the system at the top of each connected component of sorts defined
by the user.
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to S, or an error message that is not a term in R. The function is undefined in
case the strategy does not terminate. For any finitely presented rewrite theory
R, terms t, ¢’ in it, and admissible deterministic strategy S, any such interpreter
function must of course satisfy the correctness requirement

) I(R,t,S) =t = RFt—1t.

The point is that, regardless of the particular details of I, we can always equa-
tionally axiomatize any such effective interpreter function by means of a Church-
Rosser, but in general nonterminating, finitary equational theory Z. This can
be done in a signature that we can assume contains 3;; as a subsignature. By
extending our universal theory i/ with the new sorts, operations, and equations
of Z, we obtain an extended rewrite theory U/ UZ. A descent function is then a
function
d : Module x Term x Parameters — Term

such that there is a deterministic strategy expression S; with a single free vari-
able of sort Parameters satisfying the equality

d(ﬁa z/p) = I(Ra t, Sd(p))

Such descent functions are of course easily definable equationally as definitional
extensions of the theory &/ UZ. Note that, since we have only added some new
equations, the only rewrite rules in &/ U Z are exactly those in &/. But, given a
descent, function d, we can now exploit the equivalence (1) by adding to 4 UZ
a descent rule

d: (M) — (M)
if parse(M, K, x) = true A parse(M, K,y) = true Nd(M, z,p) = y.

where M : Module, x,y : Term, K : Kind, and p : Parameters. The equivalence
(1) can be exploited for efficiency reasons with such a rule, because the sequential
interpreter I can be a built-in function such as the Maude interpreter; therefore,
instantiating M with R, we can use efficient deduction in R to perform deduc-
tion in U. Let M denote a rewrite theory of the form M =U UZUD, where D
is the addition of several descent functions and of their associated descent rules.
We shall call M a metalevel theory.

The addition of descent rules to U is of course conservative, in the sense of
not adding any rewrites that could not be performed, albeit less efficiently, in
U itself, since for any descent rule d we have!2,

MERD L RT) = I(R,t Sip) =1

A REt—t

& ur®RH - R

Note that, by applying several descent functions, we can descend several levels
in the reflective tower. Assume that M includes descent functions d and d', and

120f course, to ensure conservativity we also should assume that the new equations in M
do not disturb the equality of terms or the rewriting relation in Y. Since the equations are
assumed to be Church-Rosser, conservativity of equality can be easily achieved by assuming
that the tops of lefthand sides of new equations are new function symbols. Preservation of the
rewriting relation can be achieved by forbidding nonvariable overlaps between lefthand sides
of new equations and of rules, as done in [10].



CHAPTER 2. CORE MAUDE 37

let R and ¢ be an arbitrary rewrite theory and a term in it; then we have, for
example,

d(m/ dl(ﬁ7fapl)7p) I(M,d'(ﬁ,f,p'),sd(p))

IIM (R, t, 54 (p')). Sa(p))-

That is, a meta-metalevel computation can be efficiently carried out at the ob-
ject level. An example of this kind of combined descent is given in Section 3.3.
More generally, we should view descent functions as basic strategies, that can
be used as fundamental building blocks to define internal strategy languages
[16, 10], in which they can be combined with each other and with more com-
plex strategies at several levels of reflection to perform efficiently sophisticated
metalevel computations (see section 2.6).

2.5.2 The Module META-LEVEL

In Maude, key functionality of a metalevel theory M with several descent func-
tions has been efficiently implemented in a functional module META-LEVEL, by
using as the interpreter function I Maude’s own interpreter. Furthermore, sev-
eral other useful functions of the universal theory U/ are also built-in for efficiency
reasons.

We summarize below the key functionality provided by META-LEVEL. We re-
call that Maude’s functional modules are equational theories that are assumed
to be Church-Rosser and terminating modulo some axioms for which match-
ing algorithms are available in the implementation, and that system modules
are rewrite theories whose equational part satisfies the same requirements as a
functional module, and where the equations and the rules are assumed to be
weakly coherent [61, 60] modulo the axioms (see Section 4.3). In META-LEVEL:

e Maude terms are reified as elements of a data type Term of terms;
e Maude modules are reified as terms in a data type Module of modules;

e the processes of reducing a term to normal form in a functional module
and of finding whether such a normal form has a given sort are reified by
a descent function meta-reduce;

e the process of applying a rule of a system module to a subject term is
reified by a descent function meta-apply;

e the process of rewriting a term in a system module using Maude’s default
interpreter is reified by a descent function meta-rewrite; and

e parsing and pretty printing of a term in a module, as well as key sort
operations such as comparing sorts in the subsort ordering of a signature,
are also reified by corresponding metalevel functions.

META-LEVEL imports the module QID-LIST (lists of quoted identifiers) from
the standard library of predefined modules, which contains in turn the modules
QID, MACHINE-INT, and BOOL. We first introduce the syntax used in META-LEVEL
for representing terms; then we explain how modules are represented; and finally
we discuss the different built-in functions, namely, the descent functions, and
the parsing and sort functions.



CHAPTER 2. CORE MAUDE 38

2.5.3 Representing Terms

Terms are reified as elements of the data type Term of terms, with the following
signature

subsort Qid < Term .

subsort Term < TermList .

op {_}_ : Qid Qid -> Term .

op _[_] : Qid TermList -> Term .

op _,_ : TermList TermList -> TermList [assoc]
op _:_ : Term Qid -> Term .

op _::_ : Term Qid -> Term .

op error* : -> Term .

The first declaration, making Qid a subsort of Term, is used to represent variables
by the corresponding quoted identifiers. Thus, the variable N is represented by
’N. The operator {_}_ is used for representing constants essentially as pairs,
with the first argument the constant, in quoted form, and the second argument
the sort of the constant, also in quoted form. For example, the constant 0 in the
module NAT in Section 2.5.4 below is represented as {’0}’Nat. The operator
_[_] corresponds to the recursive construction of terms out of subterms, with
the first argument the top operator in quoted form, and the second argument
the list of its subterms, where list concatenation is denoted _,_. For example,
the term s s 0 + s 0 of sort Nat in module NAT is meta-represented as

'_+_[’s_[’s_[{’0}’Nat]], ’s_[{’0}’Nat]].

Since terms in the module META-LEVEL can be meta-represented just as terms
in any other module, as already mentioned when discussing the universal the-
ory, the representation of terms can be iterated. For example, the meta-meta-
representation s 0 of the term s 0 in NAT is the term

»_[_10{’’s}’Qid,’{_}_[{’’0}’Qid,{’*Nat}’Qid]].

For the most part, the meta-representation of terms involving built-in op-
erators proceeds as for any other term. For example, the application of the
equality predicate _==_ in the term s s 0 == s 0 is represented as the term

' _==_[’s_[’s_[{’0}’Nat]], ’s_[{’0}’Nat]].

But since we can think of membership predicates t : s not as unary predicates,
one for each sort s, but as a binary predicate with the second argument varying
over sorts, it is natural to meta-represent them in a uniform way by means
of a binary constructor _:_ with the first argument the representation of the
term, and the second the representation of the sort as a quoted identifier. For
example, the membership predicate s 0 : Nat is represented as the term

’s_[{’0}’Nat] : ’Nat.

Similarly, there is also a binary constructor _::_ for meta-representing the
“lazy” membership predicate that does not evaluate the term in question at all,
but uses only the syntactic declarations in the module’s order-sorted signature
and the membership axioms to decide whether the least sort (see, e.g., [26]) of
the unreduced term is smaller or equal to a given sort. The last declaration for
the data type of terms is a constant error* to be used as an error element.
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2.5.4 Representing Modules

Functional and system modules are meta-represented in a syntax very similar to
their original user syntax. The main differences are that: (1) terms in equations,
membership axioms, and rules are now meta-represented as we have already ex-
plained; (2) in the meta-representation of modules we follow a fized order in
introducing the different kinds of declarations for sorts, subsort relations, vari-
ables, equations, etc., whereas in the user syntax there is considerable flexibility
for introducing such different declarations in an interleaved and piecemeal way;
and (3) sets of identifiers—used in declarations of sorts—are represented as sets
of quoted identifiers built with an associative and commutative operator _;_.
To motivate the general syntax for representing modules, we illustrate it
with a simple example namely, a module NAT for natural numbers with zero
and successor and with commutative addition and multiplication operators.

fmod NAT is
sorts Zero Nat
subsort Zero < Nat
op 0 : -> Zero .
op s_ : Nat -> Nat
op _+_ : Nat Nat -> Nat [comm]

op _*_ : Nat Nat -> Nat [comm]

vars N M : Nat

eq 0O+ N=N.

eqs N+M=s (N+ M

eq O x N =0 .

eq s N*xM=M+ (N x M
endfm

The syntax for the top-level operators representing functional and system mod-
ules is as follows

sorts FModule Module .
subsort FModule < Module .

op fmod_is_______ endfm : Qid ImportList SortDecl

SubsortDeclSet OpDeclSet
VarDeclSet MembAxSet EquationSet -> FModule .

SubsortDeclSet OpDeclSet
VarDeclSet MembAxSet EquationSet RuleSet -> Module .

op mod_is endm : Qid ImportList SortDecl

The representation NAT of NAT in META-LEVEL is the term

fmod ’NAT is
nil
sorts ’Zero ; ’Nat
subsort ’Zero < ’Nat
op ’0 : nil -> ’Zero [none]

op ’s_ : ’Nat -> ’Nat [none]

op ’_+_ : ’Nat ’Nat -> ’Nat [comm]
op ’_*_ : ’Nat ’Nat -> ’Nat [comm]
var ’N : ’Nat

var M : ’Nat
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none
eq ’_+_[{’0}’Nat, ’N] = ’N .
eq '_+_[’s_[’N], ’M] = ’s_[’_+_[’N, °M]]
eq ’_*_[{’0}’Nat, ’N] = {’0}’Nat .
eq ’_*_[’S_[’N], 'M] = ’_+_[’N, 7_*_[71\], 'M]]
endfm

of sort FModule. Since NAT has no list of imported submodules and no mem-
bership axioms, those fields are filled respectively by the constants nil of sort
ImportList, and none of sort MembAxSet. Similarly, since the zero and successor
operators have no attributes, they have the empty set of attributes none.

The full definition of META-LEVEL is given in Appendix D. Part of the syntax
for functional and system modules is listed below. It extends in a natural
way the fragment illustrated in the above example and should, for the most
part, be self-explanatory by comparison with the Core Maude syntax, which
is mirrored quite closely. Note that we have to represent the set of attributes
of an operator. For this, sorts Attr and AttrSet are used. Such attributes
may be equational axioms to rewrite modulo, syntactic attributes for parsing
purposes, or attributes to link operators to built-in functions (see Sections 2.4.1
and 2.4.2).

sorts FModule Module ModuleExpression Import ImportList
MachineIntList QidSet Sort SortDecl SubsortDecl
SubsortDeclSet Attr AttrSet OpDecl OpDeclSet VarDecl
VarDeclSet Term TermList Equation EquationSet Rule
RuleSet MembAx MembAxSet Hook HookList .

subsort FModule < Module .

subsort Import < ImportList .

subsort Qid < ModuleExpression .

subsort Qid < QidList

subsort Qid < QidSet

subsort Qid < Sort

subsort MachineInt < MachineIntList .

subsort SubsortDecl < SubsortDeclSet .

subsort Attr < AttrSet .

subsort OpDecl < OpDeclSet .

subsort VarDecl < VarDeclSet .

subsort Equation < EquationSet .

subsort Rule < RuleSet .

subsort MembAx < MembAxSet .

subsort Hook < HookList .

op none : -> (QidSet .

op _;_ : QidSet QidSet -> QidSet [assoc comm id: none]
op nil : -> MachinelntList .

op __ : MachinelIntList MachineIntList -> MachineIntList

[assoc id: nill]

op nil : -> ImportList .
op __ : ImportList ImportList -> ImportList [assoc id: nil]
op including_. : ModuleExpression -> Import .

op sorts_. : QidSet -> SortDecl .
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op
op

op __

op

subsort_<_. : Qid Qid -> SubsortDecl .

none : -> SubsortDeclSet .

SubsortDeclSet SubsortDeclSet -> SubsortDeclSet
[assoc comm id: nonel

op_:_->_[_]1. : Qid QidList Qid AttrSet -> OpDecl .

op none : -> OpDeclSet .
op __ OpDeclSet OpDeclSet -> OpDeclSet
[assoc comm id: none]
op none : —> AttrSet
op __ AttrSet AttrSet -> AttrSet [assoc comm id: none]
ops assoc comm idem : -> Attr .

ops id left-id right-id : Term -> Attr .

op
op
op

op
op
op
op
op

op
op
op

op
op
op

op __

op
op
op
op

op
op
op
op

strat : MachineIntList -> Attr .
prec : Machinelnt -> Attr .
gather : QidList -> Attr .

special : HookList -> Attr .

__ : HookList HookList -> HookList [assoc]
id-hook : Qid QidList -> Hook .

op—hook : Qid Qid QidList Qid -> Hook .
term-hook : Qid Term -> Hook .

var_:_. : Qid Qid -> VarDecl
none : —> VarDeclSet .
__ VarDeclSet VarDeclSet -> VarDeclSet
[assoc comm id: none]
mb_:_. : Term Qid -> MembAx .
cmb_:_if_=_. : Term Qid Term Term -> MembAx .
none : —> MembAxSet .
MembAxSet MembAxSet -> MembAxSet
[assoc comm id: nonel
eq_=_. : Term Term -> Equation .
ceq_=_if =_. : Term Term Term Term -> Equation .
none : -> EquationSet .
__ @ EquationSet EquationSet -> EquationSet
[assoc comm id: nonel
rl1[_]:_=>_. : Qid Term Term -> Rule
crl[_]:_=>_if_=_. : Qid Term Term Term Term -> Rule
none : —> RuleSet
__ : RuleSet RuleSet -> RuleSet [assoc comm id: nonel

Note that just as in the case of terms terms of sort Module can be meta-
represented again, yielding then a term of sort Term, and this can be iterated an
arbitrary number of times. This is in fact necessary when a metalevel compu-
tation has to operate at higher levels. A good example is the inductive theorem
prover described in [12], where modules are meta-represented as terms in the in-
ference rules for induction, but they have to be meta-meta-represented as terms
of sort Term when used in strategies that control the application of the inductive
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inference rules. We illustrate the meta-meta-representation of modules with a
simple example, namely a module TRUTH-VALUES of truth values

fmod TRUTH-VALUES is
sorts Truth .
ops t £ : -> Truth .
endfm

whose meta-meta-representation TRUTH-VALUES is the following term of sort
Term

‘fmod_is_ endfm[
{7 TRUTH-VALUES}’Qid,
{’nil}’ ImportList,
’sorts_. [{’’Truth}’Qid],
{’none}’SubsortDeclSet,
P _[Pop_:_—>_‘[_‘1.[
{77t}°Qid, {’nil}’QidList, {’’Truth}’Qid,
{’none}’AttrSet],
top_:_—>_‘[_‘1.[
{>7£}°Qid, {’nil}’QidList, {’’Truth}’Qid,
{’none}’AttrSet]],
{’none}’VarDeclSet,
{’none}’MembAxSet,
{’none}’EquationSet]

2.5.5 Descent Functions

META-LEVEL has three built-in descent functions, meta-reduce, meta-apply,
and meta-rewrite, that provide three useful and efficient ways of reducing
metalevel computations to object-level ones.

The operation meta-reduce takes as arguments the representation of a mod-
ule R and the representation of a term ¢, of a membership predicate t : s, or of
a lazy membership predicate ¢ :: s, in that module. It has syntax

op meta-reduce : Module Term -> Term [special ( ... )]

When the second argument is the representation £ of a term ¢ in R, the function
meta-reduce returns the representation of the fully reduced form of the term ¢
using the equations in R, e.g.,

Maude> red meta-reduce(NAT, s 0 + 0)
result Term: s O

Note that in order to simplify the presentation we use the meta-notations ¢ and
Id for t a term and Id the name of a module. As explained in Section 3.4, in
Full Maude we can use the up command to get the meta-representation denoted
by the overline notation. In Core Maude, however, such a meta-representation
has to be explicitly given, that is, the example above must be written as follows.

Maude> red meta-reduce(
fmod ’NAT is
nil
sorts ’Zero ; ’Nat
subsort ’Zero < ’Nat .
op ’0 : nil -> ’Zero [none]



CHAPTER 2. CORE MAUDE 43

op ’s_ : ’Nat -> ’Nat [none]

op ’_+_ : ’Nat ’Nat -> ’Nat [comm]
op ’_*_ : ’Nat ’Nat -> ’Nat [comm]
var ’N : ’Nat

var ’M : ’Nat

none

eq ’_+_[{’0}’Nat, ’N] = ’N .
eq ’_+_[’s_[’N], 'M] = >s_[’_+_[’N, ’M]]
eq ’_*_[{’0}’Nat, °N] = {’0}’Nat .
eq ’_*_[’S_[’N], M] = ’_+_[’N, ’_*_[’N, 'M]]
endfm,
' _+_[’s_[{’0}’Nat], {’0}’Nat])
result Term: ’s_[{’0}’Zero]

This is particularly cumbersome for the meta-representation of modules, which
can be quite big. However, as illustrated by the examples in Section 2.6, one easy
solution is to define a new module importing META-LEVEL in which we introduce
a new constant of sort Module or FModule to name the module in question—in
this example, the constant NAT and then give an equation identifying such a
constant with the meta-representation of the given module.

Similarly, when the second argument of meta-reduce is the representation
of a membership predicate ¢ : s (or a lazy membership predicate ¢ :: s) the term
t is fully reduced using the equations in R and the least sort of the reduced term
is computed (respectively, the least sort of the term ¢ according to the order-
sorted signature and the membership axioms of the module R is computed) and
then the representation of the Boolean value of the corresponding predicate is
returned.

The interpreter function for meta-reduce(R, ) rewrites the term ¢ to normal
form using only the equations in R, and does so according to the operator
evaluation strategies (see Section 2.1.3 and [21]) declared for each operator in
the signature of R which by default is bottom-up for operators with no such
strategies declared. In other words, the interpreter strategy for this function
coincides with that of the red command in Maude, that is,

meta-reduce(R,?) = Inaude (R, t,red).
The operation meta-rewrite has syntax

op meta-rewrite : Module Term MachineInt -> Term
[special ( ... )]

It is entirely analogous to meta-reduce, but instead of using only the equational
part of a module it now uses both the equations and the rules to rewrite the term
using Maude’s default strategy. Its first two arguments are the representations
of a module R and of a term ¢, and its third argument is a positive machine
integer n. Its result is the representation of the term obtained from ¢ after
at most n applications of the rules in R using the strategy of Maude’s default
interpreter, which applies the rules in a fair, top-down fashion. When the value 0
is given as the third argument, no bound is given to the number of rewrites, and
rewriting proceeds to the bitter end. Again, meta-rewrite is a paradigmatic
example of a descent function; its corresponding interpreter strategy is that of
the rewrite command in Maude [9], that is,

meta-rewrite(R,?,n) = Ipraude (R, t, rewrite [n]).

The operation meta-apply has syntax:
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op meta-apply :
Module Term Qid Substitution MachineInt -> ResultPair
[special ( ... )]

The first four arguments are representations in META-LEVEL of a module R, a
term ¢ in R, a label [ of some rules in R, and a set of assignments (possibly
empty) defining a partial substitution o for the variables in those rules. The
last argument is a natural number n. meta-apply then returns a pair of sort
ResultPair consisting of a term and a substitution. The syntax for substitu-
tions and for results is

sorts Assignment Substitution ResultPair .
subsort Assignment < Substitution .

op _<-_ : Qid Term -> Assignment .
op none : —> Substitution .
op _;_ : Substitution Substitution -> Substitution

[assoc comm id: nonel
op {_,_} : Term Substitution -> ResultPair .

The operation meta-apply is evaluated as follows:
1. the term ¢ is first fully reduced using the equations in R;

2. the resulting term is matched against all rules with label [ partially in-
stantiated with o, with matches that fail to satisfy the condition of their
rule discarded;

3. the first n successful matches are discarded; if there is an (n+ 1)th match,
its rule is applied using that match and the steps 4 and 5 below are taken;
otherwise {error*, none} is returned;

4. the term resulting from applying the given rule with the (n + 1)th match
is fully reduced using the equations in R;

5. the pair formed using the constructor {_ ,_} whose first element is the rep-
resentation of the resulting fully reduced term and whose second element
is the representation of the match used in the reduction is returned.

The interpreter strategy associated to meta-apply(R,%,1,7,n) is not that of
a user-level command in the Maude interpreter. It is instead a built-in strategy
internal to the interpreter that attempts one rewrite at the top as explained
above.

2.5.6 Parsing, Pretty Printing, and Sort Functions

Besides the descent functions already discussed, META-LEVEL provides several

other functions that naturally belong to the universal theory and could have

been equationally axiomatized in such a theory. However, for efficiency rea-

sons they are provided as built-in functions. These functions allow parsing and

pretty printing a term in a module at the metalevel, and performing efficiently

a number of useful operations on the sorts declared in a module’s signature.
The function meta-parse has syntax

op meta-parse : Module QidList -> Term [special ( ... )]
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It takes as arguments the representation of a module and the representation of
a list of tokens as a list of quoted identifiers. It returns the meta-representation
of the parsed term of that list of tokens for the signature of the module, which
is assumed to be unambiguous. If such a parsed term does not exist, the er-
ror constant error* is returned instead. For example, given the module NAT
presented in Section 2.5.4 and the input ’s ’0 ’+ ’0, we get

Maude> red meta-parse(NAT, (’s 0 ’+ ’0))
result Term: ’_+_[’s_[’0’Zero],’0’Zero]

The function meta-pretty-print has syntax

op meta-pretty-print : Module Term -> QidList
[special ( ... )]

It takes as arguments the representation of a module M and the representation
of a term ¢t. It returns a list of quoted identifiers that encode the string of
tokens produced by pretty printing ¢ in the syntax given by M. In the event
of an error an empty list is returned. Thus, given the module NAT presented in
Section 2.5.4, we have, e.g.,

Maude> red meta-pretty-print (NAT,
> x_[?_+_[’s_[’0’Zero], ’0’Zero], ’s_[’0’Zerol])
result QidList: *‘( ’s ’0 ’+ ’0 *¢) ’% ’s ’0

Pretty printing a term involves more than just naively using the mixfix
syntax for operators. Precedence and gathering information (see Section 2.7.4)
and the relative positions of underscores in an operator and its parent in the term
must be considered to determine whether parentheses need to be inserted around
any given subterm to avoid ambiguity. Also, if there is ad-hoc overloading in
the module, additional checks must be done to determine if and where sort
disambiguation syntax is needed.

The operations on sorts include sameComponent, leastSort, lesserSorts,
sortLeq, and glbSorts. They provide commonly needed functions on the poset
of sorts of a module in a built-in way at the metalevel. Their syntax is as follows

subsort Qid < Sort

op leastSort : Module Term -> Sort [special ( ... )]

op sortleq : Module Sort Sort -> Bool [special ( ... )]

op sameComponent : Module Sort Sort -> Bool [special ( ... )]
op lesserSorts : Module Sort -> QidSet [special ( ... )]

op glbSorts : Module Sort Qid -> QidSet [special ( ... )]

At the metalevel, the sorts given by the user in his/her module are represented as
quoted identifiers, that is, terms of sort Qid. However, the module META-LEVEL
has also a sort Sort defined to be a supersort of Qid. Sorts not defined by the
user, as for example the “error supersorts” added by the system to complete each
connected component, are in this sort Sort. The syntax of an error supersort
uses the set of maximal sorts of its connected component and is as follows

op errorSort : QidSet -> Sort

The function leastSort takes as arguments the representations of a module
and a term and computes the (representation of the) least sort of that term in
the module. This function can return an error sort not defined by the user. For
example, we can compute the least sort of the term N + s M in the previous
module NAT as follows.
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Maude> red least-sort(NAT, N + s M)
result Qid: Nat

Given a module M with subsort relation <, and sorts 57_5’ € S, where S
is the set of sorts in M, the Boolean function sortLeq(M,s,s’) is true if and
only if s <p; s’. Note that the sorts passed to the function are of sort Sort.

Maude> red sortLeq(NAT, Nat, NzNat)
result Bool: false

Given a module M with subsort relation <j;, and sorts s, s’ € S, where S is
the set of sorts in M, the Boolean function sameComponent (M, 3,s) is true
if and only if s and s’ belong to the same connected component in the subsort
ordering <,;. Note that the sorts passed to the function are of sort Sort.

Maude> red sortLeq(NAT, Nat, Bool)
result Bool: false

where it should be noted the sort Bool, although not explicitly present in the
signature of NAT, is nevertheless present in its extended signature, as explained
in Sections 2.1.1 and 2.7.2.

Given a module M and a sort s, the function lesserSorts takes their met-
alevel representations as arguments, and returns (the representation of the) set
of sorts strictly smaller than s in M. For example:

Maude> red lesserSorts(NAT, Nat)
result Qid: NzNat

Note that in this case it returns only one sort (of sort Qid), but in general it
returns a set of sorts. Since no error sorts can appear in such a set, that is,
the sorts are all in fact quoted identifiers, the function lesserSorts returns a
QidSet.

Finally, the function glbSorts takes the representations of two sorts and a
module as input and computes the representation of the set of maximal lower
bounds of the two sorts!®. Note the asymmetry in the declaration of this func-
tion, having as arguments, together with the module, a sort of sort Sort and
another of sort Qid. This asymmetry might be eliminated in a future version
of the system. As an example for the use of this function, let us see how to
compute the greatest lower bound for sorts Nat and NzNat in the module NAT
presented above.

Maude> red glbSorts(NAT, Nat, NzNat)
result Qid: NzNat

As for lesserSorts, in general glbSorts returns a set of sorts.

2.6 Internal Strategies

System modules in Maude are rewrite theories that do not need to be Church-
Rosser and terminating. We need to have good ways of controlling the rewriting
inference process which in principle could go in many undesired directions

by means of adequate strategies. In Maude, thanks to its reflective capabilities,

130f course, when the set of maximal lower bounds of two sorts is a singleton {s}, then s
will be the greatest lower bound of the two sorts, thus the notation glbSorts. In subsequent
discussions, when we speak of the “greatest lower bound” we will always in fact mean the
more general notion of the set of maximal lower bounds.
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strategies can be made internal to the system. That is, they can be defined by
rewrite rules in a normal module in Maude, and can be reasoned about as with
rules in any other module.

In fact, there is great freedom for defining many different strategy languages
inside Maude. This can be done in a completely user-definable way, so that
users are not limited by a fixed and closed strategy language. The idea is to use
the operations meta-reduce, meta-apply, and meta-rewrite as basic strategy
expressions, and then to extend the module META-LEVEL by additional strategy
expressions and corresponding semantic rules. Here we follow the methodology
for defining and proving correct internal strategy languages for reflective logics
introduced in [15, 10].

To illustrate this idea, let us reconsider the module SORTING for sorting
vectors of integers introduced in Section 2.2. We will use this module as a
running example to explain the way in which the application of rules can be
controlled.

As mentioned before, strategy languages can be defined within Maude in
user-definable extensions of the module META-LEVEL. As an example, we intro-
duce the following module STRATEGY. We first introduce the basic syntax; the
module’s equations are then discussed and illustrated with examples in the rest
of the section.

fmod STRATEGY is
protecting META-LEVEL .
sorts MetaVar Binding BindingList
Strategy StrategyExpression .
subsort MetaVar < Term .

ops I J : -> MetaVar .

op binding : MetaVar Term -> Binding .

op nilBindingList : -> BindingList .

op bindinglList : Binding BindinglList -> BindingList .

op rewInWith :
Module Term BindinglList Strategy -> StrategyExpression .
op set : MetaVar Term -> Strategy .
op rewInWithAux :
StrategyExpression Strategy -> StrategyExpression .
op idle : -> Strategy .
op failure : -> StrategyExpression .
op and : Strategy Strategy -> Strategy .
op apply : Qid -> Strategy .
op applyWithSubst : Qid Substitution -> Strategy .
op iterate : Strategy -> Strategy .
op while : Term Strategy -> Strategy .
op orelse : Strategy Strategy -> Strategy .

op extTerm : ResultPair -> Term .
op extSubst : ResultPair -> Substitution .
op update : BindingList Binding -> BindingList .
op applyBindinglListSubst :
Module Substitution BindinglList -> Substitution .
op substituteMetaVars : TermList BindingList -> TermList .
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op SORTING : -> Module .

var M : Module .

vars V V2 F G L : Qid .
vars T T’ : Term .

var TL : TermList

var SB : Substitution .
vars B B’ : Binding .

vars BL BL’ : BindingList .
var MV MV’ : MetaVar .

vars ST ST’ : Strategy .

eq SORTING
= (mod ’SORTING is
including ’MACHINE-INT .

sorts ’Pair ; ’PairSet .

subsort ’Pair < ’PairSet

op ’<_;_> : ’Machinelnt ’Machinelnt -> ’Pair

[nonel

op ’empty : nil -> ’PairSet [none]

op ’__ : ’PairSet ’PairSet -> ’PairSet
[assoc comm id({’empty}’PairSet)]

var ’I : ’Machinelnt .

var ’J : ’Machinelnt .

var ’X : ’Machinelnt .

var ’Y : ’Machinelnt .

none

none

crl [’sort]: ’__[’<_;_>[’J, *X], ’<_;_>[’1, °Y]]

=>__[’<_; >3, ’Y1, '<_; >[01, ’X]1]
if ’_and_[’_<_[’J, ’I]1, > _>_[’X, ’Y]]
= {’true}’Bool .
endm)

48

Before we explain some of the strategies that can be defined using the strat-
egy language introduced in STRATEGY, note that the default strategy of the
Maude interpreter for system modules can be easily (and efficiently) called us-

ing the built-in function meta-rewrite introduced in Section 2.5.5.

Maude> rew meta-rewrite(SORTING,

»__[’<_;_>[{’1}’MachineInt, {’3}’Machinelnt],
’<_; _>[{’2}’MachineInt, {’2}’MachineInt],
’<_; _>[{’3}’MachinelInt, {’1}’MachineInt]],

0)

result Term: ’__[’<_;_>[{’1}’NzMachineInt,{’1}’NzMachinelnt],

’<_; _>[{’2}’NzMachinelInt,{’2}’NzMachineInt],
’<_; _>[{’3}’NzMachinelInt,{’3}’NzMachineInt]]

In this example, the third argument of meta-rewrite is 0. As explained in
Section 2.5.5 this indicates that no bound on the number of rewrites is imposed.
We can use this argument to see intermediate steps, or to stop at some point
nonterminating rewrites. For example, we can see the resulting term after the
application of two rules (twice the same rule in this case) as follows.
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Maude> rew meta-rewrite(SORTING,
»__[’<_;_>[{’1}’MachineInt, {’3}’Machinelnt],
’<_; _>[{’2}’MachineInt, {’2}’MachineInt],
’<_; _>[{’3}’MachineInt, {’1}’MachineInt]],
2) .
result Term: ’__[’<_;_>[{’1}’NzMachineInt,{’1} ’NzMachineInt],
’<_; _>[{’2}’NzMachinelInt,{’3}’NzMachineInt],
’<_; _>[{’3}’NzMachinelnt,{’2}’NzMachineInt]]

In the module STRATEGY the function rewInWith computes strategy expres-
sions. The first two arguments of rewInWith are the metarepresentations of a
module T and a term ¢ in META-LEVEL. The fourth argument is the strategy
S we want to compute, and the third argument is used to store information
that may be relevant for S. Our definition of rewInWith is such that, as the
computation of a given strategy expression proceeds, ¢ gets rewritten by con-
trolled application of rules in T, the information stored in the third argument
may be updated, and the strategy S is rewritten into the remaining strategy to
be computed. In case of termination, this is the idle strategy and we are done.
The strategy expression failure is returned when a requested strategy cannot
be carried out.

A basic strategy we can express is the application of a rule once at the
top of a term (if the top operator has attributes containing axioms such as
associativity or associativity and commutativity, matching is done modulo those
axioms) with the first possible match found when no constraints are placed on
the matching substitution. For this basic strategy, we introduce in our signature
the constructor apply, whose only argument is an identifier corresponding to the
rule label to be applied, and we define the value of rewInWith for this strategy,
using the built-in operation meta-apply, as follows:

eq rewInWith(M, T, BL, apply(L))
= if meta-apply(M, T, L, none, 0)
== {error*, none}

then failure

else rewInWith(M,
extTerm(meta-apply(M, T, L, none, 0)),
BL, idle)

fi

The operations extTerm and extSubst are selectors extracting the first and
second component, respectively, from a pair constructed with {_,_}.

eq extSubst({T, SB}) = SB .
eq extTerm({T, SB}) =T .

We can see the computation of an apply-strategy expression with the following
example:

Maude> rew rewInWith(SORTING,
'__[’<_;_>[{’1}’MachineInt, {’3}’MachineInt],
’<_; _>[{’2}’MachinelInt, {’2}’MachinelInt],
’<_; _>[{’3}’MachinelInt, {’1}’MachinelInt]],
nilBindinglList,
apply(’sort)) .
result StrategyExpression:
rewInWith(SORTING'?,
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»__[’<_;_>[{’1}’NzMachinelInt,{’2} ’NzMachineInt],
’<_; _>[{’2}’NzMachineInt,{’3}’NzMachineInt],
’<_; _>[{’3}’NzMachineInt,{’1}’NzMachineInt]],

nilBindinglist,

idle)

The information relevant for the computation of a strategy expression is
recorded as a list of bindings of values to metavariables, where the values are of
sort Term (that is, they are representations of terms) and metavariables are in-
troduced by the user as constants of sort MetaVar. The sort MetaVar is declared
as a subsort of the sort Term, so that in any expression in which the represen-
tation of a term ¢ can appear, a metavariable to which the representation of ¢
may be bound—can appear as well.

The computation of the strategy set updates the recorded information. This
is done by the function update. Notice that the terms whose representations
are bound to metavariables are kept in fully reduced form, using the built-in
operation meta-reduce. The representation of the term set to a metavariable
may itself contain metavariables, which must be substituted by the represen-
tations of the terms they are bound to in the list of bindings present before
the updating. This is done by the function substituteMetaVars. Recall that
the default operational semantics for functional modules, and therefore for the
function meta-reduce, is eager (i.e., bottom up or call-by-value).

eq rewInWith(M, T, BL, set(MV, T’))
= rewInWith(M, T,
update (BL,
binding(MV, meta-reduce(M,
substituteMetaVars(T’, BL)))),
idle)

eq substituteMetaVars(T, nilBindinglist)
=T .
eq substituteMetaVars(MV, bindingList(binding(MV’, T’), BL))
= if MV == MV’ then T’
else substituteMetaVars(MV, BL) fi
eq substituteMetaVars(F, BL)
=F .
eq substituteMetaVars({F}S, BL) = {F}S .
eq substituteMetaVars(F[TL], BL)
= F[substituteMetaVars(TL, BL)]
eq substituteMetaVars((T, TL), BL)
= (substituteMetaVars(T, BL), substituteMetaVars(TL, BL)).

eq update(bindinglist(binding(MV, T), BL), binding(MV’, T’))
= if MV == M\’
then bindingList(binding(MV, T’), BL)
else bindinglList(binding(MV, T),
update (BL, binding(MV’, T’)))
fi
eq update(nilBindinglist, B)
= bindinglList(B, nilBindingList)

140f course, the constant SORTING gets also rewritten (in this case, to the meta-
representation of the module SORTING); however, to ease readability we have “hidden” this
rewrite in all the examples of this Section.
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We can see the computation of a set-strategy expression with the following
example:

Maude> rew rewInWith(SORTING,
»__[’<_;_>[{’1}’MachineInt, {’3}’Machinelnt],
’<_; _>[{’2}’MachineInt, {’2}’MachineInt],
’<_; _>[{’3}’MachinelInt, {’1}’MachineInt]],
nilBindinglist,
set(I, {’1}’Machinelnt)).
result StrategyExpression:
rewInWith(SORTING,
»__[’<_;_>[{’1}’MachineInt,{’3}’MachineInt],
’<_; _>[{’2}’MachinelInt,{’2} ’MachinelInt],
’<_; _>[{’3}’MachinelInt,{’1}’MachinelInt]],
bindinglList (binding(I, {’1}’NzMachinelnt),
nilBindinglist),
idle)

The computation of the strategy applyWithSubst applies a rule partially
instantiated with a set of assignments once at the top of a term (if the top oper-
ator has attributes containing axioms such as associativity or associativity and
commutativity, matching is done modulo those axioms) using the first successful
match consistent with the given partial substitution. The representations of the
terms assigned to variables may contain metavariables that must be substituted
by the representations of the terms they are bound to in the current list of
bindings. This is done by the function applyBindingListSubst.

eq rewInWith(M, T, BL, applyWithSubst(L, SB))
= if meta-apply(M, T, L,
applyBindingListSubst(M, SB, BL), 0)
== {error*, none}

then failure

else rewInWith(M, extTerm(meta-apply(M, T, L,
applyBindingListSubst(M, SB, BL), 0)),
BL, idle)

fi

eq applyBindingListSubst(M, none, BL)
= none .
eq applyBindingListSubst(M, ((V <- T); SB), BL)
= ((V <- meta-reduce(M, substituteMetaVars(T, BL)));
applyBindingListSubst (M, SB, BL))

Many interesting strategies are defined as concatenations of more basic
strategies, or iterations of a given strategy. Frequently, the strategies must
consider possible branchings in their computations, or establish conditions for
further computations. To represent these cases, we extend our basic strategy
language with the constructors and, orelse, iterate, and while.

The equations for the strategies and, orelse, and iterate are defined as
follows.

eq rewInWith(M, T, BL, and(ST, ST’))
= if rewInWith(M, T, BL, ST) == failure
then failure
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else rewInWithAux(rewInWith(M, T, BL, ST), ST’)
fi

eq rewInWith(M, T, BL, orelse(ST, ST’))
= if rewInWith(M, T, BL, ST) == failure
then rewInWith(M, T, BL, ST’)
else rewInWith(M, T, BL, ST)
fi

eq rewInWith(M, T, BL, iterate(ST))
= if rewInWith(M, T, BL, ST) == failure
then rewInWith(M, T, BL, idle)
else rewInWithAux(rewInWith(M, T, BL, ST), iterate(ST))
fi

where the function rewInWithAux is defined by the equation

eq rewInWithAux(rewInWith(M, T, BL, idle), ST)
= rewInWith(M, T, BL, ST)

which forces the computation of a sequence of strategies to proceed step-by-step,
in the sense that a strategy will only be considered after the previous one has
been fully computed. We can illustrate the computation of the above strategies
with the following examples:

Maude> rew rewInWith(SORTING,
»__[’<_;_>[{’1}’MachineInt, {’3}’Machinelnt],
’<_; _>[{’2}’MachineInt, {’2}’MachineInt],
’<_; _>[{’3}’MachinelInt, {’1}’MachineInt]],
nilBindinglList,
and(set(I, {’3}’Machinelnt),
applyWithSubst (’sort, (I <- I))))
result StrategyExpression:
rewInWith (SORTING,
»__[’<_;_>[{’1}’NzMachinelInt,{’1} ’NzMachineInt],
’<_; _>[{’2}’NzMachineInt,{’2}’NzMachineInt],
’<_; _>[{’3}’NzMachineInt,{’3}’NzMachineInt]],
bindinglList (binding(I, {’3}’NzMachinelnt),
nilBindinglist),
idle)

Maude> rew rewInWith(SORTING,
»__[’<_;_>[{’1}’MachineInt, {’3}’Machinelnt],
’<_; _>[{’2}’MachinelInt, {’2}’MachineInt],
’<_; _>[{’3}’MachinelInt, {’1}’MachineInt]],
bindingList (binding(J, {’2}’MachinelInt),
nilBindinglist),
orelse(applyWithSubst (’sort, (°J <- {’4}’MachinelInt)),
applyWithSubst (’sort, (°J <- J)))).
result StrategyExpression:
rewInWith (SORTING,
»__[’<_;_>[{’1}’NzMachinelInt,{’3}’NzMachineInt],
’<_; _>[{’2}’NzMachinelInt,{’1}’NzMachineInt],
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’<_; _>[{’3}’NzMachineInt,{’2}’NzMachineInt]],
bindingList (binding(J, {’2}’Machinelnt),
nilBindinglist),
idle)

Maude> rew rewInWith(SORTING,
'__[’<_;_>[{’1}’MachinelInt, {’3}’Machinelnt],
'<_; _>[{’2}’MachinelInt, {’2}’MachinelInt],
’<_; _>[{’3}’MachineInt, {’1}’MachineInt]],
nilBindinglList,
iterate(apply(’sort))).
result StrategyExpression:
rewInWith(SORTING,
»__[’<_;_>[{’1}’NzMachinelInt,{’1}’NzMachineInt],
'<_; _>[{’2}’NzMachineInt,{’2}’NzMachineInt],
’<_; _>[{’3}’NzMachineInt,{’3}’NzMachineInt]],
nilBindinglist, idle)

Finally, the strategy while makes the computation of a given strategy con-
ditional to the satisfaction of a condition. This condition should be the repre-
sentation in META-LEVEL of a term of sort Bool. As usual, the condition may
contain metavariables that must be substituted by the representations of terms
they are bound to in the current list of bindings. Notice that the definition of
the value of rewInWith for the constructor while makes the iterative computa-
tion of the strategy contained in the second argument of while depend on the
satisfaction (at the metalevel) of the condition represented in the first argument
of while.

eq rewInWith(M, T, BL, while(T’, ST))
= if meta-reduce(M, substituteMetaVars(T’, BL))
== {’true}’Bool

then (if rewInWith(M, T, BL, ST) == failure
then rewInWith(M, T, BL, idle)
else rewInWithAux(rewInWith(M, T, BL, ST),

while(T’, ST))

i)

else rewInWith(M, T, BL, idle)

fi

Now we can extend our basic strategy language to define, as an example, the
algorithm for insertion sorting. The strategy insert(n) below can be used to
sort a vector of integers of length n. The main loop in insertion sorting looks at
each element of the vector of integers from the second to the n-th, and inserts
it in the appropriate place among its predecessors in the vector.

We introduce two new metavariables X and Y.

op insert : Machinelnt -> Strategy .

ops X Y : -> MetaVar .

var N : Machinelnt .

eq insert(N)

= and(set(Y, {’2}’MachinelInt),
while(’ <=_[Y, {index(’, N)}’MachineInt],

and(set (X, Y),
and(while(’ >_[X, {’1}’MachinelInt],
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and (applyWithSubst (’sort,
(CT <= X);
(°J <= ’_-_[X, {’1}’Machinelnt]))),
set(X, ’_-_[X, {’1}’MachinelInt]))),
set(Y, ’_+_[Y, {’1}’MachinelInt])))))

For example, we can use the strategy insert to sort a vector of integers of
length 10:

Maude> rew rewInWith(SORTING,
»__[’<_;_>[{’1}’MachineInt, {’10}’Machinelnt],
’<_; _>[{’2}’MachinelInt, {’9}’MachinelInt],
’<_; _>[{’3}’MachinelInt, {’8}’MachinelInt],
’<_;_>[{’4}’MachinelInt, {’7}’MachinelInt],
’<_; _>[{’5}’Machinelnt, {’6}’MachinelInt],
’<_; _>[{’6}’MachineInt, {’5}’MachinelInt],
’<_; _>[{’7}’MachineInt, {’4}’MachinelInt],
’<_;_>[{’8}’MachinelInt, {’3}’Machinelnt],
’<_; _>[{’9}’MachinelInt, {’2}’MachinelInt],
’<_; _>[{’10}’MachineInt, {’1}’Machinelnt]],
nilBindinglist,
insert (10))
result StrategyExpression:
rewInWith (SORTING,
»__[’<_;_>[{’1}’NzMachinelInt,{’1} ’NzMachineInt],
'<_; _>[{’2}’NzMachinelnt,{’2}’NzMachineInt],
’<_; _>[{’3}’NzMachinelnt,{’3}’NzMachineInt],
’<_;_>[{’4}’NzMachineInt,{’4}’NzMachineInt],
’<_; _>[{’5}’NzMachineInt,{’5}’NzMachineInt],
’<_; _>[{’6}’NzMachineInt,{’6}’NzMachineInt],
’<_; _>[{’7}’NzMachineInt,{’7}’NzMachineInt],
’<_; _>[{’8}’NzMachinelnt,{’8}’NzMachineInt],
'<_; _>[{’9}’NzMachineInt,{’9}’NzMachineInt],
’<_;_>[{’10}’NzMachineInt,{’10}’NzMachineInt]],
bindingList(binding(Y, {’11}’NzMachinelInt),
bindingList (binding(X, {’1}’NzMachinelnt),
nilBindinglList)),
idle)

2.6.1 The Game of Nim

To illustrate the great flexibility we have in defining strategies to control the
process of execution of rules, we discuss a second example, namely, a system
module NIM specifying a version of the game of Nim. There are two players and
two bags of pebbles: a “draw” bag to remove pebbles from, and a “limit” bag
to limit the number of pebbles that can be removed. We represent each state
of the game as a pair of bags, where the first one represents the draw bag and
the second one the limit bag. The two players take turns making moves in the
game. At each move a player draws a nonempty set of pebbles not exceeding
those in the limit bag. The limit bag is then readjusted to contain the least
number of pebbles in either the double of what the player just drew, or what
was left in the draw bag. The game then continues with the two bags in this
new state. This move is axiomatized by the rule mv. The player who empties
the draw bag wins.
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mod NIM is
protecting MACHINE-INT .
sorts Pebble Bag State .
subsorts Pebble < Bag .

op o : —-> Pebble .

op emptyBag : -> Bag .

op __ : Bag Bag -> Bag [assoc id: emptyBag]
op <_;_> : Bag Bag -> State .

op size : Bag -> Machinelnt .

op readjust : Bag Bag -> Bag .

vars X Y Z : Bag .

eq size((o X))
= size(X) + 1
eq size(emptyBag)
=0 .

eq readjust (X, Y)
= if size((X X)) <= size(Y)
then (X X)
else Y
fi

crl [mv] : < XY) ; Z>
=>< Y ; readjust(X, Y) >
if size(X) <= size(Z) and (X =/= emptyBag)
endm

The initial model described by this module is the transition system con-
taining exactly all the possible game moves allowed by the game. But there
are many bad moves that would allow the other player to win. A good player
should avoid such bad moves by trying to have a winning strategy. With such a
strategy, each move made by the player inexorably leads to success, no matter
what moves the other player attempts.

As we have already said, there is great freedom for defining many different
strategy languages inside Maude. Even if some users decide to adopt a particular
strategy language because of its good features, such a language remains fully
extensible, so that new features and new strategies can be defined on top of
them.

We define a winning strategy for the Nim game in the following extension
of the module STRATEGY.

fmod NIM-STRATEGY is
protecting STRATEGY .

op moveToWin : -> Strategy .
op findWinMove : Term Term -> Term .
op noWinMove : -> Term .

op NIM : -> Module .

var T X Y Z : Term .



CHAPTER 2. CORE MAUDE 96

var M : Module .

eq NIM
= (mod ’NIM is
including ’BO0OL .
including ’MACHINE-INT .
sorts ’Pebble ; ’Bag ; ’State .
subsort ’Pebble < ’Bag .
op ’o : nil -> ’Pebble [none]
op ’emptyBag : nil -> ’Bag [none]
op ’__ : (’Bag ’Bag) -> ’Bag
[assoc id({’emptyBag}’Bag)]
op ’<_;_> : (’Bag ’Bag) -> ’State [none]
op ’size : ’Bag -> ’MachineInt [none].
op ’readjust : (’Bag ’Bag) -> ’Bag [none]
var ’X : ’Bag .
var ’Y : ’Bag .
var ’Z : ’Bag .
none
eq ’size[’__[{’0}’Pebble, ’X1]
= ’_+_[’size[’X], {’1}’MachineInt]
eq ’size[{’emptyBag}’Bag] = {’0}’Machinelnt .
eq ’readjust[’X, ’Y]
= ’if_then_else_fil[
' <=_[’sizel[’__[’X, ’X1]1, ’sizel’Y]1],
J__[JX’ 7X],
’Y]
crl[’mv]: ’<_; >[’__[’X, ’Y], *Z]
=> <_; >[’Y, ’readjust[’X, ’Y]]
if ’_and_[’_<=_[’size[’X], ’sizel[’Z]],
»_=/=_[’X, {’emptyBag}’Bag]]
= {’true}’Bool .
endm)

eq rewInWin(M, T, nilBindinglList, moveToWin)
= if findWinMove(T, {’0}’Pebble) == noWinlMove
then failure
else rewInWin(M, findWinMove(T, {’o0}’Pebble),
nilBindinglist, idle)
fi

eq findWinMove (’<_;_>[X, Y], Z)
= if meta-reduce(NIM, ’_>=_[’sizelY], ’size[Z]])
== {’true}’Bool
then (if findWinMove (
extTerm(
meta-apply (NIM, ’<_;_>[X, Y],
'mv, (’X <~ Z), 0)), {’o0}’Pebble)
== noWinMove
then extTerm(
meta-apply (NIM, ’<_;_>[X, Y],
‘mv, (°X <- Z), 0))
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else findWinMove(’<_;_>[X, Y], "__[Z, {’0}’Pebblel)
£i)
else noWinMove
fi
endfm

Given a state < X ; Y > in the game, the strategy moveToWin finds a win-
ning move < X' ; Y' > if there is one, in the sense that either < X' ; Y’ >
is equal to < emptyBag ; emptyBag > or < X' ; Y’ > is a move that even-
tually will lead to success, no matter which moves the other players attempts,
assuming that in the following moves the player that makes the winning move
uses the same winning strategy.

The strategy moveToWin calls the function findWinMove with the represen-
tation of a bag with only one pebble as its second argument. This argument is
used as a tentative move. If the tentative bag Z is valid (the number of pebbles
in it is smaller than the number of pebbles in the limit bag) then we tentatively
make that move; if it is the case that from the new state of the game there is
no winning move for the other player, then we make that move; but, if there
is a winning move for our opponent, then findWinMove is called again with
the tentative number of pebbles to remove increased by one. If the size of the
tentative bag is greater than the size of the limit bag, then there is no possible
winning move and failure is returned.

For example, to make a winning move from a state with a draw bag with
seven pebbles and a limit bag with three pebbles we use the following strategy
expression:

Maude> rew rewInWith(NIM,
’<_; _>[?__[{’0}’Pebble, {’0}’Pebble, {’0}’Pebble,
{’0}’Pebble, {’0}’Pebble, {’0}’Pebble,
{’0}’Pebblel,
’__[{’0}’Pebble, {’0}’Pebble, {’0}’Pebblell,
nilBindinglList, moveToWin)
result StrategyExpression:
rewInWith(NIM,
'<_; _>[?__[{’0}’Pebble,{’0}’Pebble,{’0} ’Pebble,
{’0}’Pebble,{’0} ’Pebblel],
’__[{’0}’Pebble,{’0}’Pebble,{’0} ’Pebble,
{’0}’Pebble]], nilBindingList, idle)

There are, of course, states of the game from which no winning move can be
made. In these cases, the strategy moveToWin will return failure. For example:

Maude> rew rewInWith(NIM,
’<_; >[’__[{’0}’Pebble, {’0}’Pebble, {’0}’Pebblel,
{’0}’Pebble], nilBindinglList, moveToWin)
result StrategyExpression: failure

2.6.2 A Meta-Interpreter

As yet another example of user-defined strategies in Maude, we specify in an
extension of the module STRATEGY a meta-interpreter for modules that only
contain rules that are Church-Rosser and terminating (no equations are declared
and none of the operators have attributes). For the sake of simplicity, we assume
that all the rules are labeled any.
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fmod META-INTERPRETER is
protecting STRATEGY .
sorts Position .
subsorts MachineInt < Position .

op emptyPos : -> Position .

op pos : Position Position -> Position [assoc]
op nullPos : -> Position .

op getSubterm : Term Position -> Term .

op getSubtermAux : TermList Position -> Term .
op replace : Term Term Position -> Term .

op replaceAux : TermList Term Position -> Term .
op nextPosition : Term Position -> Position .

op nextPositionUp : Term Position -> Position .

var P : Position .

var N : MachineInt .

var F G X YL S : Qid .
var T T> T1 T1’ : Term .
var TL TL’ : TermList .

eq pos(emptyPos, P) = P

We first define some auxiliary functions needed to find the positions in a
term. Positions are represented at the metalevel as pos-lists of natural numbers,
and emptyPos is the empty position. We denote by 7 the representation of a
position p in the module META-INTERPRETER.

The function getSubterm(#, P) returns the term %, if p is a valid position
in ¢; otherwise, it returns errorx*.

eq getSubterm(F, N) = errorx
eq getSubterm({F}S, N) = errorx .
eq getSubterm(F[TL], N) = getSubtermAux(TL, N)

eq getSubterm(F, pos(N, P)) = error* .
eq getSubterm({F}S, pos(N, P)) = errorx
eq getSubterm(F[TL], pos(N, P))

= getSubterm(getSubtermAux(TL, N), P)

eq getSubtermAux((T, TL), N)

= if N == 1 then T else getSubtermAux(TL, (N - 1)) fi
eq getSubtermAux (T, N)

= if N == 1 then T else errorx fi

The function nextPosition(#, P) returns the next position in the tree de-
fined by the term t, according to a top-down leftmost-innermost strategy. If
all positions have already been considered, the function nextPosition returns
nullPos.

eq nextPosition(T, P)
= if getSubterm(T, pos(P, 1)) == error*
then nextPositionUp(T, P)
else pos(P, 1)
fi
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eq nextPositionUp(T, emptyPos) = nullPos

eq nextPositionUp(T, N)
= if getSubterm(T, (N + 1)) == error*
then nullPos
else (N + 1)
fi

eq nextPositionUp(T, pos(P, N))
= if getSubterm(T, pos(P, (N + 1))) == errorx
then nextPositionUp(T, P)
else pos(P, (N + 1))
fi

The function replace(?, #, p) returns the term ¢[t'],.

eq replace(T, T’, emptyPos) = T’

eq replace(F, T’, N) = errorx
eq replace({F}S, T’, N) = errorx
eq replace(F[TL], T’, N) = F[replaceAux(TL, T’, N)I

eq replace(F, T’, pos(N, P)) = errorx
eq replace({F}S, T’, pos(N, P)) = error*
eq replace(F[TL], T’, pos(N, P))

= F[replaceAux(TL, T’, pos(N, P))]

eq replaceAux((T, TL), T’, N)
= if N ==
then (T’, TL)
else (T, replaceAux(TL, T’, (N - 1)))

fi
eq replaceAux(T, T’, N)
= if N == 1 then T’ else errorx fi

eq replaceAux((T, TL), T’, pos(N, P))
= if N ==
then (replace(T, T’, P), TL)
else (T, replaceAux(TL, T’, pos((N - 1), P)))
fi
eq replaceAux(T, T’, pos(N, P))
= if N ==
then replace(T, T’, P)
else error*
fi

Finally, we introduce the strategy metaInterpreter that specifies the Maude
interpreter for functional modules'®, that is, for any valid module M and any

15We talk about an interpreter for Maude functional modules in the sense of reducing the
(meta-representation of) a term to its canonical form using the Church-Rosser and termi-
nating equations just as the Maude interpreter would do it. Note, however, that, as already
mentioned, the functional module whose operators cannot have any attributes is repre-
sented here as a system module in which the Church-Rosser equations are represented as rules
labeled any.
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tenntinthatrnodub,rewInWith(ﬁz, t, nilBindinglList, metaInterpreter)
returns rewInWith (M, #', nilBindingList, idle), where ¢’ is the canonical
form of ¢ with respect to M.

op metalnterpreter : -> Strategy .
op applyInPRedex : Position -> Strategy .

var M : Module .

eq rewInWith(M, T, nilBindinglist, metalnterpreter)
= rewInWith(M, T, nilBindinglist,
orelse(and(applyInPRedex(emptyPos),
metalnterpreter),
idle))

The auxiliary strategy applyInPRedex (p) specifies an interpreter that only
applies once a rule to a term ¢ at position p or at any position “after” p in ¢
(traversing the tree defined by ¢ with a top-down leftmost-innermost strategy).

eq rewInWith(M, T, nilBindingList, applyInPRedex(P))
= if P =/= nullPos
then (if meta-apply (M, getSubterm(T, P), ’any, none, 0)
== {error*, none}
then rewInWith(M, T, nilBindingList,
applyInPRedex(nextPosition(T, P)))
else rewInWith(M,
replace(T,
extTerm(
meta-apply (M, getSubterm(T, P),
’any, none, 0)),
P),
nilBindinglist, idle)
fi)
else failure
fi

As an example, consider the following module NAT-TREE:

mod NAT-TREE is
sorts Nat Tree .
subsort Nat < Tree .

op 0 : -> Nat
op s_ : Nat -> Nat
op _+_ : Nat Nat -> Nat

vars N M : Nat

rl [any]: (N + 0) => N .

rl [any]: (0O + N) => N .

rl [any]: (s N+ s M) =>s s (N + M)
op _"_ : Tree Tree -> Tree .

op rev : Tree -> Tree .
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vars T T’ : Tree .

rl [any]: rev(N) => N .
rl [any]: rev(T = T’) => (rev(T’) ~ rev(T))
endm

Thus, in the module NAT-TREE, the tree

s0O + ss0 s 0 0 s0 4+ s0

is represented by the term
(((s0+ss80) "s0) " (0" (s0+s0))).
We extend the modulo META-INTERPRETER with the equation

op NAT-TREE : -> Module .
eq NAT-TREE
= (mod ’NAT-TREE is
including ’BO0OL .
sorts (’Nat ; ’Tree)
subsort ’Nat < ’Tree .
op ’0 : nil -> ’Nat [nonel

op ’s_ : ’Nat -> ’Nat [none]

op ’_+_ (’Nat ’Nat) -> ’Nat [nomne]

op ’_"_ : (’Tree ’Tree) -> ’Tree [none]
op ’rev : ’Tree -> ’Tree [none]

var ’N : ’Nat .

var ’M : ’Nat .

var ’T : ’Tree .

var ’T’ : ’Tree .

none

none

rl [’any]: ’_+_[’N, {’0}’Nat] => °N .
rl [’any]: ’_+_[{’0}’Nat, ’N] => °N .
rl [’anyl: ’_+_[’s_[’N], ’s_[’'M]]
=> ’s_[’s_[’_+_[’N, ’M]]]
rl [’any]: ’rev[’N] => °N .
rl [’any]: ’rev[’_"_[’T, ’T’]]
=> 7’ _~_[’rev[’T’], ’rev[’T]]
endm)

The result of computing the strategy metalnterpreter on the metarep-
resentation of the operation of reversing the above tree is the following

Maude> rew rewInWith(NAT-TREE,
‘rev[’_"_[’_"_[_+_[’s_[{’0}’Nat],
’s_[’s_[{’0}’Nat]]],
’s_[{’0}’Nat]],
»_~_[{’0}’Nat,
’_+_[’s_[{’0}’Nat],
’s_[{’0}’Nat]]111],
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nilBindinglist,
metalnterpreter)
result StrategyExpression:
rewInWith(NAT-TREE,
oD [’s_[’s_[{’0}’Nat]],{’0} Nat],
't _Ds_[{’0}’Nat],’s_[’s_[’s_[{’0}’Nat]]]1]],
nilBindinglist, idle)

Thus, the result is the meta-representation of the tree

< T

ss0 0 s 0 sss0

that is, the meta-representation of the original tree reversed after all its leaves
have been evaluated.

2.7 Parsing, Bubbles and Meta-Parsing

This section explains the parsing and meta-parsing functionalities of Maude.
Section 2.7.1 presents a general overview of the design of the Maude Parser
(MSCP). Section 2.7.2 explains how terms with user-definable mixfix syntax
are parsed in a module and illustrates the basic functionalities of the parser
with several examples. For convenience and expressiveness the signature of
each module is extended with parentheses, Boolean connectives, some built-in
polymorphic operators, sort test operators, and so on. Section 2.7.3 explains
this extended signature of a module and how terms are parsed in it. Sec-
tion 2.7.4 concentrates on the strategies for the specification of user-defined
models of precedence/gathering patterns. Since a module’s user-defined syntax
can specify a general context-free grammar that can be ambiguous, parentheses
may in general be needed to resolve such ambiguities. By means of the def-
inition of precedence/gathering patterns, the user can control the precedence
and the syntactic order of evaluation of operators to remove such ambiguities
without recourse to unnecessary parentheses, while keeping the same syntax.
Section 2.7.5 describes the rules used by Maude to assign default precedence
values and gathering patterns. Finally, Section 2.7.6 explains what we might
call linguistic reflection, that is, the possibility of parsing a term from which we
then extract a grammar to parse some unanalyzed portions of that term—for
example, parsing the top-level syntax of a module in a language allowing user-
definable syntax, to obtain the grammar in which to parse expressions in that
module | is supported by means of “bubbles” and the metaparsing facility of
META-LEVEL.

2.7.1 MSCP Parser Design: An Overview

From a computational point of view, the semantic and logical framework pro-
vided by rewriting logic has to be complemented with a reflective syntactic
framework. Syntactic, or linguistic, reflection allows the effective specification,
implementation, and semantic definition of a very wide range of logics and
languages including languages such as Core Maude and Full Maude, whose
modules can have user-definable syntax—for which rewriting logic acts as a
metalanguage.
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The intrinsic characteristics of Maude—mainly, its metalanguage functional-
ity, its reflective nature, and its logical and semantic framework applications
pose very strong requirements on the design of a parsing algorithm for the
language, since it has to fulfill the following constraints [52]:

e Interpreted parsing: languages are user-definable.
e Full Context-Free Grammars (CFG), and not only LALR models.

e With precedence/gathering patterns that modify the grammatical power
of nonterminal symbols.

e Grammars are extended to incorporate bubbles. Bubbles are the key notion
to implement syntactic reflection. Furthermore, bubble sorts are user-
definable.

e Techniques for error detection and error recovery must be supported.

e Efficiency is a main goal, as the parser is the surface of the rest of the
system, especially in META-LEVEL computations.

The logical kernel of the current version of the parser is based on the SCP
parsing algorithm [54, 53]. SCP is a bidirectional, bottom-up and event-driven
parser for unrestricted context-free grammars. From an algorithmic point of
view, we have proved the soundness and completeness of SCP. From a com-
putational perspective, SCP avoids overparsing [51], allowing an elegant and
very efficient manipulation of a wide set of CFGs. The use of multi-virtual
trees [50] at the level of representation and the relations of coverage, partial
derivability and adjacency as top-down predictions over the basic bottom-up
strategy, obtain a high level of efficiency without diminishing the generality of
the algorithm.

The logically proved soundness and completeness of SCP guarantees that
the Maude version of SCP (MSCP) will generate all the possible grammatical
analyses for each term in a given signature. This avoids some completeness
problems detected in the OBJ3 parser.

MSCEP is able to analyze 3-extended CFGs (CFGs extended with bubbles and
precedence/gathering patterns) [52]. The MSCP parsing algorithm incorporates
very sophisticated error detection and error recovery mechanisms based on the
notions of partial derivability and adjacency, originally developed in SCP.

Finally, the overall architecture of the MSCP algorithm allows an efficient
treatment of syntactic reflection. Besides, this reflective power of the parser
supports the parsing and meta-parsing functionality of the META-LEVEL mod-
ule (Section 2.5) as well as a flexible and natural syntax definition model (see
Section 2.7.6).

A detailed description of the SCP Parsing Algorithm may be found in [53].
The notion of overparsing is described in [51], while other internal strategies of
SCP such as the use of multi-virtual trees and the formal kernel of the algorithm
may be found in [50]. The techniques used in the computational layer of SCP,
respousible of the efficiency of the algorithm, are described in [54]. Finally, the
technical report [52] describes the Maude version (MSCP) of the parser.

2.7.2 Mixfix Parsing of Terms in a Module

We can illustrate the notion of term and the idea of parsing terms in the sig-
nature of a module by means of the following BINARY-NAT module supporting



CHAPTER 2. CORE MAUDE 64

natural number arithmetic in binary notation. The module includes the usual
arithmetic operators _+_, _*_, and _"_ of sum, product, and exponentiation on
natural numbers in binary notation plus:

Constants 0 and 1 as constructors of the sort Bit.

The operator __ to represent elements of the sort Bits as sequences of 0’s
and 1’s.

The operator |_|, to obtain the length of a binary number.

The operator normalize, to compress the representation of a binary num-
ber by suppressing the 0’s on the left of a number, if any.

The “greater-than” Boolean predicate _>_.

The not_ operator, that performs the logical negation of a string of bits.

fmod BINARY-NAT is

protecting MACHINE-INT .
sorts Bit Bits
subsort Bit < Bits

ops 0 1 : -> Bit

op __ : Bits Bits -> Bits [assoc]
op |_| : Bits -> MachineInt .

op not_ : Bits -> Bits .

op normalize : Bits -> Bits .

ops _+_ _*_ : Bits Bits -> Bits [assoc comm]
op _"_ : Bits Bits -> Bits .

op _>_ : Bits Bits -> Bool .

op _7_:_ : Bool Bits Bits -> Bits

vars S T : Bits
vars B C : Bit
var L : Bool .

**xx Length
eq | B| =1
eq | SB|l =18 +1

*x*x Not

eq not (S T) = (not S) (not T)
eq not 0 =1 .
0 .

eq not 1

*%* Normalize suppresses zeros at the left of a binary number
eq normalize(0 S) = normalize(S)
eq normalize(1 S) =1 S

***% Greater than

eq 0 > S = false .

eq 1 > (0).Bit = true .
eq 1 > (1).Bit

false .
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eq B> (0S) =B>S .
eq B> (1 S) = false .
eq (1 S) >B = true .

eq (BS) » (CT
= if | normalize(B S) | > | normalize(C T) |

then true

else if | normalize(B S) | < | normalize(C T) |
then false
else (S > T)
fi

fi .

*%* Binary addition

eq 0 +S=S8.
eq1+1=10.
eq1l+(TO)=T1

eql+ (T1)=(T+1) 0.

eq (SB) + (TO) =(S+7T)B.
eq (§81) + (T1) =(+T+1)0.

*%% Binary multiplication

eq 0 x T =0 .

eq 1 xT=T.

eq (SB) *x T=((S*T) 0) + (B*T)

*%% Binary exponentiation

eq T~ 0=1.

eqT "~ 1=T.

eq T~ (SB) =(T "~ 8) * (T~ 8S) x (T " B)

**%x Mixfix 7: operator
eqL?S : T=1i1if L then S else T fi .
endfm

Note the use of the sort Bool. This sort is not a proper sort of the signature
of BINARY-NAT. However, Bool, together with other information about polymor-
phic operators, parentheses, subsort-overloaded operators, and so on, belongs
to the extended signature of a module, which Maude generates automatically
for each module (see Section 2.7.3).

This module illustrates several important aspects of the grammatical power
of Maude.

e Empty Syntaz: With the following declarations we can write natural num-
bers in binary notation such as 100 1 or 1 1.

sorts Bit Bits .
subsort Bit < Bits .

ops 0 1 : -> Bit .

op nil : -> Bits .
op __ : Bits Bits -> Bits [assoc id: nill]
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e Qutfix Syntax: The length operator |_| is an example of outfix syntax
specification for operators.

Maude> red | 1 0110 |
result NzMachinelnt: 5

e Prefir and Postfix Syntaz: BINARY-NAT includes the not_ operator, defined
with prefix syntax.

Maude> red 0 (not 1) O .
result Bits: 0 0 O

Maude> red not (1 0 1)
result Bits: 0 1 0

e Infix Syntaz: The operators _+_, _*_ and _>_ illustrate the model for the
specification of infix operators in Maude.

Maude> red (1 0 0) + (1 1 1)
result Bits: 1 0 1 1

Maude> red (1 1 1) * (1 1 0)
result Bits: 1 01 010

Maude> red (0 1 0 1) > (1 1)
result Bool: true

e Mizfix Syntazr: The operator _7_:_ is an example of mixfix notation in
Maude. In fact, this operator combines both outfix and infix notation.

Maude> red ((1 0) > (01 1)) ? ((10) * 1) : ((10) + 1)
result Bits: 1 1

The previous discussion on the user-definable notational power of Maude
is a good basis for discussing the process of parsing terms in the context of a
signature. This process is divided in two phases. In a first step, Maude collects
all the information pertinent to the parsing problem included in a module: set
of sorts, subsort relations, operators (paying special attention to the notational
pattern of each operator) and variables. All this information is translated into a
context-free grammar. In a second step, each time Maude detects a term in the
corresponding signature, the MSCP algorithm is used to obtain the grammatical
structure of the term according to the context-free grammar previously obtained
from the module.

2.7.3 Parsing Terms in the Extended Signature of a Mod-
ule

In BINARY-NAT it is possible to reduce the following terms.

Maude> red ((1 0) + (1 0)) = (1 1)
result Bits: 1 1 00
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Maude> red ((1 0) > 1) and ((1 1) > (1 0))
result Bool: true

Maude> red (1).Bit * O .
result Bit: O

Maude> red (1 0) + (1 0) + (1 0)
result Bits: 1 1 0

But, parentheses, logical operators such as and, sort tests, and qualification
operators are not a proper part of the module. These structures belong to
the so-called extended signature of a module. That is, the process of grammar
generation from the user-defined signature adds automatically more information
than that strictly contained in the signature. From the user’s viewpoint, the
main structures added in the extended signature of a module are:

e Sort Disambiguation: For each sort S in the signature of the module,
Maude generates the operator

op ().8:8 ->5.

This helps in the disambiguation of ad-hoc overloaded constants and
terms. For example, in the module BINARY-NAT, because of the presence
of machine integers, the constants 0 and 1 and the operator _+_ are ad
hoc overloaded (see Section 2.1.1). Thus, terms such as 0, 1 or 1 + 1 are
ambiguous. We can eliminate this ambiguity by using sort disambiguation
operators, that is, by qualifying the ambiguous terms with their sorts.

Maude> red (1) .Bit .
result Bit: 1

Maude> red (1 + 1).Bits .
result Bits: 1 0

Maude> red 1 + (1) .MachineInt .
result NzMachinelnt: 2

e Parentheses: For each sort S in the signature of a module, the extended
signature of that module contains the following operator.

op (L) : §->8

These operators allow the use of parentheses without having to declare a
parentheses operator for each sort.

Maude> red not (1 0 1 1)
result Bits: 0 1 0 O

e Prefiz Form of Mizfiz Operators or Simple Identifier Form: Each operator
declared in mixfix form, may also be used in its single identifier prefix
form. For example:
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Maude> red _>_(1 0, 1)
result Bool: true

Maude> red _7_:_(1 > 1 0, 1, 0)

result Bit: O

e Flattened Associative Argument Lists: Operators with the attribute assoc
may be used in Maude in a nonparenthesized form.

Maude> red (1 1) + (1 1) + (1 1) + (1 1)
result Bits: 1 1 0 O

Furthermore, if the associative operator is given in prefix notation, it can
take not only two, but arbitrarily many more arguments.

Maude> red _+_(1 1, 11, 11, 1 1)
result Bits: 11 0 0

e Polymorphic Operators and the BOOL Module: All the information con-
tained in the predefined modules TRUTH-VALUE, TRUTH and BOOL (see Sec-
tion 2.4) is included in the extended signature of each module. In par-
ticular, appropriate instances of the polymorphic operators contained in
TRUTH (that is, if _then_else_fi, _==_ and _=/=_) are generated for each
sort in the module. In addition, for each sort S sort predicates _: S and
_:: S are also added.

Note that this extension of the signature has allowed the specification of
operators, variables, and equations such as the following ones in BINARY-NAT.

op _7_:_ : Bool Bits Bits -> Bits

var L : Bool .

eq BS>CT
= if | normalize(B S) | > | normalize(C T) |

then true

else if | normalize(B S) | < | normalize(C T) |
then false
else (S > T)
fi

fi

e The extended signature includes also the error supersorts, and the over-
loaded lifting to those supersorts of all operators to support error terms.

2.7.4 Precedence and Gathering

BINARY-NAT contains a rich set of notational models for the specification of op-
erators, and illustrates clearly the idea of an extended signature for a module.
Nevertheless, the operators in this module will generate, in most cases, com-
plex and subtle inconsistencies, ambiguities and unintuitive results, as shown
in the following examples. The concepts of precedence and gathering provide a
flexible way of avoiding these ambiguities without having to write unnecessary
parentheses.
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e Let us consider the following reduction.
Maude> red 1 0 + 1 0 .
result Bits: 1 1 0
The expected result is 1 0 0. The reason for getting the unexpected result
is that Maude is really processing the term 1 (0 + 1) 0, which generates

110.

e The following example shows a problematic interaction between the op-
erators not_ and __. Intuitively, we expect that the result of not 0 1 0
will be 1 0 1. But Maude parses the term not 0 1 0 as (not 0) 1 0.
Therefore, the result is 1 1 0.

Maude> red not 0 1 O .
result Bits: 1 1 0

e One might expect that the two terms reduced in the following example,
namely, (1 0) + (1 0) * (1 0) and (1 0) * (1 0) + (1 0) yield the
same result (1 1 0). However, the second term is parsed in a form that
applies the operators in an unexpected way, yielding a possibly confusing
result.

Maude> red (1 0) + (1 0) * (1 0)
result Bits: 1 1 0

Maude> red (1 0) * (1 0) + (1 0)
result Bits: 1 0 0 O

e Theterm1 1 > 1 7 1 : 0 seems unambiguous. Nevertheless, following
strictly the signature of BINARY-NAT, there are two possible parses:

— ((1 1) »1) 21 : 0, with result 1, and
—1 (1 >1) 71 : 0), with result 1 0.

Maude detects this ambiguity, and selects randomly one of the parses,
which may lead to unexpected results in more complex terms.

Maude> red 1 1 >1 71 : 0 .
WARNING: <standard input>, line 894:
Ambiguous term, two parses are:
(11) >1721:0

-versus-
1(1>1)71:0

Arbitrarily taking the first as correct.
result Bit: 1

At this point we may say a few words about the treatment of ambiguities
in Maude. The MSCP parser obtains all parses of a term. However, since
the number of ambiguous parses can sometimes be quite large, Maude
presents only two of them to show the ambiguity, and lets the user solve the
problem. For example, the following expression in fact has three different
parses, but only two are given.
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Maude> red 1 1 1 >1 71 : 0
WARNING: <standard input>, line 895:
Ambiguous term, two parses are:
(111)>171:0

-versus-

1 ((11)>1)71:0

Arbitrarily taking the first as correct.
result Bit: 1

The third parseis1 1 (1 > 1) 7 1 : 0.

e The following examples illustrate problems which appear as a consequence
of an undefined model of precedence between operators. In this case,
Maude applies automatically the algorithm for default precedence values
and gathering patterns assignment according to the rules presented in
Section 2.7.5. But there is an additional source of ambiguity, in this case
related to the notion of syntactic order of evaluation of operators.

The precedence of infix operators determines the order in which the oper-
ators are to be applied. For example, given two operators §; and do, if §;
takes precedence over ds, this means that an expression like E;dsFEs61 E3
will be evaluated as F1d2(E201FE3). The operator _*_ takes precedence
over (has a higher precedence than) the operator _+_, and this is the
reason why we expect that (1 0) + (1 0) * (1 0) should be parsed as
(1 0) + ((10) = (10)).

Let us now consider expressions with the same operator appearing several
consecutive times. For associative operators, this is not a problem, as it
happens in:

Maude> red (1 1) + (1 1) + (1 1) + (1 1)
result Bits: 11 0 0

But for nonassociative operators, the so-called syntactic order of evalu-
ation'S that is, the order in which the operator should be associated in
several contiguous occurrences, may modify the result. In other words,
expressions with nonassociative operators appearing consecutively are in
fact grammatically ambiguous:

Maude> red (1 1) =~ (1 1) =~ (1 1)
WARNING: <standard input>, line 896:
Ambiguous term, two parses are:
11 "1~ 1

-versus-

((11) ~11) ~ 11

Arbitrarily taking the first as correct.
result Bits: 11 01110111101
0001110111111

100

11 100
110111011

16T he syntactic order of evaluation is a syntactic notion, having to do with how parentheses
are associated. It is different from the semantic notion of order of evaluation of the arguments
of an operator specified by a strategy explained in Section 2.1.3.
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We can distinguish two types of operators from the point of view of their
syntactic order of evaluation:

— Left Associative: operators grouped and analyzed from left to right.
This is the case of the arithmetic operators _+_ and _*_.

— Right Associative: operators grouped and analyzed from right to left.
For example, we shall see how we can make the exponentiation op-
erator _"_ right associative.

Although all the different parenthesized associations of an associative op-
erator are guaranteed to yield the same result, nevertheless, as far as their
syntactic order of evaluation is concerned such operators are grammat-
ically ambiguous. In the extended signature of a module Maude incor-
porates rules to solve this ambiguity (Section 2.7.3). For nonassociative
infix operators this source of ambiguity is solved by defining an order of
evaluation.

These syntactic problems (grammatical scope, precedence and syntactic or-
der of evaluation of operators) are solved in OBJ3 [27] and in Maude by means
of precedence and gathering patterns.

In Maude, each operator has associated to it a precedence value and a gath-
ering pattern. They can be specified by the user by means of the precedence
(abbreviated prec) and gather attributes. If not specified, Maude assigns de-
fault values as explained in Section 2.7.5.

A precedence value is an integer greater than or equal to 0, which may be
understood as an output value associated to terms having the corresponding
operator as their top symbol.

On the other hand, gathering patterns are associated to the arguments of an
operator. Gathering patterns are given as nonempty sequences of the following
possible pattern:

e E: The argument must have a precedence value equal to or lower than the
precedence value of the operator.

e e: The argument must have a precedence value strictly lower that the
precedence value of the operator.

e &: The operator allows any precedence value for the corresponding argu-
ment.

We can illustrate the notions of precedence and gathering by considering a
variant BINARY-NAT-PREC of the module BINARY-NAT whose only difference is
that we have now specified precedence values and gathering patterns for the
operators as follows.

op __ : Bits Bits -> Bits [assoc prec 1 gather (e E)]

op |_| : Bits -> MachinelInt . *x**% Length
op not_ : Bits -> Bits [prec 2 gather (E)]

op normalize : Bits -> Bits .

op _+_ : Bits Bits -> Bits [assoc comm prec 5 gather (E e)]
op _*_ : Bits Bits -> Bits [assoc comm prec 4 gather (E e)]
op _"_ : Bits Bits -> Bits [prec 3 gather (e E)]
op _>_ : Bits Bits -> Bool [prec 6 gather (E E)]

op _7_:_ : Bool Bits Bits -> Bits [prec 7 gather (& E E)]
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Constants have precedence 0. In our example, this rule is applied to 0,
1 and nil. The precedence value of an operator is associated to the terms
generated by this operator. In our example, the term 1 has precedence 0, the
term 1 0 1 has precedence 1, the term 1 0 + 1 has precedence 5,and 1 0 * 1
has precedence 4.

To illustrate the behavior of the gathering patterns, let us focus on the
declaration of the _*_ operator. From it we can infer the following consequences:

e Every term with this operator as top symbol will have precedence 4 (by
the attribute prec 4).

e The first argument of a binary multiplication (an E in the gathering pat-
tern) must be a term with a precedence value smaller than or equal to
the precedence of the operator, that is, the first argument of a binary
multiplication must be a term with precedence 4 or less, for example, a
constant (precedence (), an exponentiation (precedence 3) or another mul-
tiplication (precedence 4), but not an addition (precedence 5) unless it is
enclosed in parentheses.

e The second argument of a binary multiplication (an e in the gathering
pattern) must have a precedence strictly lower than 4. That is, the prece-
dence of the second argument of a binary multiplication may range from 0
to 3. This means that an expression where its top operator is a multiplica-
tion (precedence 4) cannot be the second argument of another expression
whose top symbol is the multiplication operator, unless it is enclosed in
parentheses. We elegantly solve in this way the problem of order of eval-
uation of this operator.

The simultaneous use of precedence and gathering attributes allows speci-
fying any kind of precedence relations between operators and different types of
syntactic order of evaluation.

To show in practice how this strategy works, we analyze some of the problems
detected in BINARY-NAT using the signature of BINARY-NAT-PREC.

The first problem appeared with the term 1 0 + 1 0. Without any infor-
mation about precedence values and gathering patterns, we can think of two
different analyses for this term: (1 0) + (1 0) and 1 (0 + 1) 0. This ambi-
guity can be solved by the use of different precedence values for the operators
involved, namely, __ and _+_. In the module BINARY-NAT-PREC these operators
have been defined as follows:

op __ : Bits Bits -> Bits [assoc id: nil prec 1 gather (e E)]
op _+_ : Bits Bits -> Bits [assoc comm prec 5 gather (E e)]

Let us consider the two previous analyses proposed for the term 1 0 + 1 O:

e First analysis: (1 0) + (1 0). The top symbol of this term is _+_. The
first argument of the addition is (1 0). According to the definition of the
operator __, the term (1 0) will have precedence 1. The second argu-
ment of the addition is the same and will have also the same precedence:
1. Now the gathering pattern of _+_ constrains the precedence of the
first argument E to a value 5 or smaller (the precedence of the operator
_+_), and the second argument e must have a precedence value in the
range 0 to 4. Since these conditions are fulfilled by the arguments of the
addition, this analysis is taken as correct by the parser. Figure 2.2 shows
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1{0} ofo} +  1{0} o{0}

Figure 2.2: Correct parse tree of 1 0 + 1 0.

Prec/Gather Error
_{1}

1{o} ofo} + 1{o} ofo}
Figure 2.3: Incorrect parse treeof 1 0 + 1 0.

graphically the situation just described. In the figure, each constant and
each function symbol of a term has its corresponding precedence value in
braces, and the maximum gathering value of each argument is associated
to the corresponding arrow.

e Second analysis: 1 (0 + 1) 0. This term is a sequence of bits, that is, the
main or top operator of this term is __. The first argument of this operator
is the term 1, while the second argument is the subterm (0 + 1) 0, whose
first argument is the addition (0 + 1) and whose second argument is the
constant 0. Since the precedence value of the addition is 5, and the first
argument of the operator _ _ must have a precedence value less than 1, the
expression 1 (0 + 1) 0is nota valid parse in BINARY-NAT-PREC. Graphi-
cally, the situation is shown in Figure 2.3: the parse error appears because
the precedence value of an argument is higher than allowed by the gath-
ering pattern of the corresponding argument in the operator declaration.

Of course, using parentheses is always a way of resolving ambiguities. In
fact, it is worth noting that the parentheses operator automatically included
in the extended signature of a module has precedence 0. Therefore, the term
1 (0 + 1) 0 is grammatically correct in BINARY-NAT-PREC.

Maude> red 1 0 0 .
1

+ 1
result Bits: 00
Maude> red 1 (0 + 1) O .
result Bits: 1 1 0

Another subtle problem in the BINARY-NAT module was the different behav-
iors of the terms (1 0) + (1 0) * (1 0) and (1 0) * (1 0) + (1 0). In
that module, both operators _+_ and _*_ had no precedence attribute explic-
itly given. As both had the assoc attribute, the gathering patterns generated
by default for both of them was (e E), so the operators were associated from
right to left.
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1{o} ofo} + 1{o} ofo} * 1{o} ofo}
Figure 2.4: Correct interpretationof 1 0 + 1 0 * 1 0.

In BINARY-NAT-PREC these two operators have different precedence values,
and the gathering patterns have also been specified:

op _+_ : Bits Bits -> Bits [assoc comm prec 5 gather (E e)]
op _*_ : Bits Bits -> Bits [assoc comm prec 4 gather (E e)]
op _"_ : Bits Bits -> Bits [prec 3 gather (e E)]

The main consequence of this definition is that, as already explained, an
addition cannot be an argument of a multiplication unless it is enclosed in
parentheses. Thus, we have the following reductions.

Maude> red (1 0) + (1 0) = (1 0)
result Bits: 1 1 0

Maude> red (1 0) * (1 0) + (1 0)
result Bits: 1 1 0

The following examples illustrate how the precedence and gathering model
of the operators of BINARY-NAT-PREC solves the problems of precedence and
order of evaluation of operators.

e Precedence: Let us consider theterm 1 0 + 1 0 * 1 0, in which the two
operators _+_ and _*_ are involved.

op _+_ : Bits Bits -> Bits [assoc comm prec 5 gather (E e)]
op _*_ : Bits Bits -> Bits [assoc comm prec 4 gather (E e)]

Taking into account the precedences of these operators, the expression will
be evaluated by Maude as an addition of a number and a multiplication.

Maude> red 1 0 + 1 0 x 1 0
result Bits: 1 1 0

Figure 2.4 shows the correct interpretation of this term in the signature
of BINARY-NAT-PREC, that is, 1 0 + (1 0 * 1 0), while Figure 2.5 rep-
resents the incorrect interpretation (1 0 + 1 0) * 1 0 and the prece-
dence/gathering error that avoids such an interpretation.

e Right Associativity: We will illustrate the definition of a right associa-
tive operator by means of the exponentiation operator in the module
BINARY-NAT-PREC. Left associativity is entirely analogous.
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Prec/Gather Error

{1} 1} —{1}
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1{0} o{0} +  1{o} ofo} *  1{o} ofo}

Figure 2.5: Incorrect interpretation of 1 0 + 1 0 * 1 0.
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1{o} ofo} - 1{o} 1{o} - 1{o} ofo}
Figure 2.6: Correct interpretationof 1 0 ~ 1 1 =~ 1 0.

op _"_ : Bits Bits -> Bits [prec 3 gather (e E)]

Without parentheses, which modify the precedence and order of evaluation
of the operators, the term 1 0 =~ 1 1 ~ 1 0 is evaluated using the right
to left gathering pattern of the operator _~_. Figures 2.6 and 2.7 draw
graphically the correct and incorrect interpretation of this term.

Maude> red 1 0 ~ 11 ~ 10 .
result Bits: 1 0 0 00 00 00O

Maude> red (1 0 ~ 1 1) ~ 10 .
result Bits: 1 0 0 0 0 0 O

Prec/Gather Error

{1} 1} —{1}
SN N N

1{o} of{o} - 1{o} 1{o} - 1{0} o{o}

Figure 2.7: Incorrect interpretationof 1 0 = 1 1 = 1 0.
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2.7.5 Default Precedence and Gathering

This section sketches the rules used by Maude to generate the default precedence

values and gathering patterns for operators; they are entirely similar to those

used by OBJ3 [27]. These values will be associated to those operators for which

the user does not specify this information as part of the operator declaration.
The rules for the assignment of default precedence values are:

e Prefixz operators always have precedence 0, regardless of user settings. This
rule is applied, for example, to the operator normalize in the module
BINARY-NAT.

e Qutfiz operators have precedence 0. This is the case, for example, for the
operator |_|.

e Unary mizfiz operators have precedence 15. In the module BINARY-NAT
this rule is applied to the operator not_.

o Multi-ary mizfix operators (with arity greater than 1) have precedence 41.
In BINARY-NAT this rule is applied to the operators __, _+_, _*_, _~_, _>_,
and _7_:_.

The rules for the generation of the default gathering patterns are:

e All arguments of prefix operators have a gathering pattern &, regardless
of the user specification.

e For operators with mizfiz notation, the gathering patterns are by default
& for each argument. There are three exceptions to this rule (with ex-
ceptions 2 and 3 mutually exclusive, and with either of them overruling
exception 1):

— FException 1: The gathering pattern of an argument will be E if the
argument position (the corresponding underscore ‘.’ in the operator
name) is:

i. the leftmost token in the operator name, or
ii. the rightmost token in the operator name, or
iii. it is adjacent to another underscore in the operator name.
In BINARY-NAT, this exception changes to E the gathering pattern of

the unique argument of the operator not_, and of the first and last
arguments of the operators _7_:_, _-_, __ ", _<_ and _<=_.

— Exception 2: An operator will have gathering pattern (e E) if:
i. starts with an underscore ‘_’, and
ii. ends with an underscore ‘_’, and
iii. has precedence (if supplied by the user) greater than 0, and
iv. has the assoc attribute.

These conditions are fulfilled by the operators _+_, _*_ and __ of
the BINARY-NAT module.

— FException 3 If an operator

i. starts with an underscore ‘_’, and
ii. ends with an underscore ‘_’, and

iii. has precedence (if supplied by the user) greater than 0, and
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iv. has the first and last arguments and its coarity in the same sort
connected component, and

v. does not have the assoc attribute.
then:

a. the first argument’s gathering pattern will change to e if and
only if the subsort relations allow it to right associate but not
left-associate, and

b. the last argument’s gathering pattern will change to e if and
only if the subsort relations allow it to left associate but not
right-associate.

This exception will apply, for example, to the operator _;_ in the
following module.

fmod LIST is
including MACHINE-INT .
sorts Elt List
subsort Machinelnt < Elt < List
op _;_ : Elt List -> List
endfm

According to the general rule, the gathering pattern should be gather
(& &). Since exception 1 may be applied to the two arguments of
the operator, this exception would change the gathering pattern to
gather (E E). But exception 3 prevails over exception 1 and should
be applied to the first argument, so that the real gathering pattern
of this operator is: gather (e E).

To illustrate these rules, we show below the default precedence and gath-
ering patterns generated by Maude for the module BINARY-NAT presented in
Section 2.7.2.

op
op
op

0 :
1

nil :
: Bits Bits -> Bits [assoc id: nil prec 41 gather (e E)]

op __

op
op
op
op
op
op

op _7_:_
not_

op

-> Bit
-> Bit
-> Bits

: Bits -> MachineInt [prec O gather (&)]

normalize : Bits -> Bits .

v

: Bits Bits -> Bits [assoc comm prec 41 gather (e E)]
: Bits Bits -> Bits [assoc comm prec 41 gather (e E)]
: Bits Bits -> Bits [prec 41 gather (E E)]
: Bits Bits -> Bool [prec 41 gather (E E)]

: Bool Bits Bits -> Bits [prec 41 gather (E & E)]
: Bits -> Bits [prec 15 gather (E)]

2.7.6 Tokens, Bubbles and Metaparsing

In order to generate in Maude an enwvironment for a language £, including
the case of a language with user-definable syntax, the first thing we need to
do is to define the syntax for £-modules. This can be done by extending the
module META-LEVEL with a data type Module, for £-modules, and with other
auxiliary data types for commands and other constructs. Maude provides great
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flexibility to do this thanks to its mixfix front-end and to the use of bubbles!'”
(any nonempty string of Maude identifiers). The intuition behind bubbles is that
they correspond to pieces of a module in a language that can only be parsed
once the grammar introduced by the signature of the module is available.

The idea is that for a language that allows modules with user-definable
syntax—as it is the case for Maude—it is natural to see its syntax as a combined
syntax, at two different levels: what we may call the top level syntax of the
language, and the user-definable syntax introduced in each module. The data
type bubble allows us to reflect this duality of levels in the syntax definition.
Similar ideas have been exploited using ASF+SDF [59].

To illustrate this concept, suppose that we want to define the syntax of
Maude in Maude. Consider the following Maude module:

fmod NAT3 is
sort Nat3 .
op s_- : Nat3 -> Nat3 .
op 0 : -> Nat3 .

eqa[s s s 0]=[0] .

endfm

Notice that the strings of characters inside the boxes are not part of the
top level syntax of Maude. In fact, they can only be parsed with the grammar
associated to the signature of the module NAT3. In this sense, we say that
the syntax for Maude modules is a combination of two levels of syntax. The
term s s s 0, for example, has to be parsed in the grammar associated to the
signature of NAT3. The definition of the syntax of Maude in Maude must reflect
this duality of syntax levels.

So far, we have talked about bubbles in a generic way. In fact, there can
be many different kinds of bubbles. In Maude we can define different types
of bubbles as built-in data types by parameterizing their definition. Thus, for
example, a bubble of length one, which we call a token, can be defined as follows.

sort Token .

op token : Qid -> Token
[special
(id-hook Bubble (1 1)
op-hook gidBaseSymbol (<Qids> : -> Qid))]

Any name can be used to define a bubble sort. It is the special attribute
id-hook Bubble (1 1)

that makes the sort Token a bubble sort. The second argument of the id-hook
special attribute indicates the minimum and maximum length of such bubbles
as strings of identifiers. Therefore, Token has only bubbles of size 1. To specify
a bubble of any length we would use the pair of values 1 and -1. The operator
used in the declaration of the bubble, in this case the operator token, is a bubble
constructor that represents tokens in terms of their quoted form. For example,
the token is represented as token(’abc123).

We can define bubbles of any length, that is, nonempty sequences of Maude
identifiers, with the following declarations.

17In the current version bubbles can only be used in modules passed to the function
meta-parse as arguments. The way of using and defining bubbles will change in future releases.
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sort Bubble .

op bubble : QidList -> Bubble
[special
(id-hook Bubble (1 -1)
op—hook qidListSymbol
(__ : QidList QidList -> QidList)
op-hook gqidBaseSymbol (<Qids> : -> Qid))]

In this case, the system will represent the bubble as a list of quoted identifiers
under the constructor bubble. For example, the bubble is repre-
sented as bubble(’ab ’cd ’ef).

Different types of bubbles can be defined using the id-hook special attribute
Exclude, which takes as parameter a list of identifiers to be excluded from the
given bubble, that is, the bubble being defined cannot contain such identifiers.

Suppose that instead of the declarations given in the module MINI-MAUDE-
SYNTAX below, we had instead given the following two declarations to specify
the syntax of an operator declaration in a module.

op op_: ->_. : Token Token -> Decl .
op op_:_—>_. : Token Bubble Token -> Decl .

With these declarations, bubbles could be bigger than expected. In particular,
the following parse would be possible.

op [::]: ‘NatB -> Nat3 . op O :‘ -> |Nat3| .

We can use the id-hook special attribute Exclude to avoid this situation.
We can declare the sort NeTokenList with constructor neTokenList as a list
of identifiers, of any length greater than one, excluding'® the identifier ‘. with
the following declarations.

sort NeTokenList .

op neTokenList : QidList -> NeTokenList
[special
(id-hook Bubble (1 -1)
op-~hook qidListSymbol
(__ : QidList QidList -> QidList)
op-hook gidBaseSymbol (<Qids> : -> Qid)
id-hook Exclude (.))]

We are now ready to give the signature to parse modules such as NAT3
above. The following module MINI-MAUDE-SYNTAX uses the above definitions of
sorts Token, Bubble and NeTokenList to define the syntax of a sublanguage of
Maude, namely, many sorted, unconditional, functional modules, in which the
declarations of sorts, variables and operators have to be done one at a time, and
in which no attributes are supported for operators.

fmod MINI-MAUDE-SYNTAX is
including QID-LIST .
sorts Bubble Token NeTokenList
PreModule PreCommand
Decl DeclList .

18]1n general, to exclude identifiers I1,12,..., Ik, we use the syntax Exclude (I1 I2...Ik).
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subsort Decl < DeclList

op token : Qid -> Token
[special
(id-hook Bubble (1 1)
op-hook gidBaseSymbol (<Qids> : -> Qid))]
op bubble : QidList -> Bubble
[special
(id-hook Bubble (1 -1)
op-~hook qidListSymbol
(__ : QidList QidList -> QidList)
op-hook gidBaseSymbol (<Qids> : -> Qid))]
op neTokenList : QidList -> NeTokenList
[special
(id-hook Bubble (1 -1)
op—hook qidListSymbol
(__ : QidList QidList -> QidList)
op-hook qidBaseSymbol (<Qids> : -> Qid)
id-hook Exclude (.))]

**xx sort declaration
op sort_. : Token -> Decl

*%* operator declaration
op op_: ->_. : Token Token -> Decl
op op_:_—>_. : Token NeTokenList Token -> Decl

*%% variable declaration
op var_:_. : Token Token -> Decl

*%% equation declaration
op eq_=_. : Bubble Bubble -> Decl

*xx functional module

op fmod_is_endfm : Token DeclList -> PreModule .

op __ : DeclList DeclList -> DeclList [assoc gather(e E)]
endfm

Notice how we explicitly declare operators that correspond to the top level
syntax of Maude, and how we represent as terms of sort Bubble those pieces
of the module—namely, terms in equations—that can only be parsed with the
user-defined syntax.

Then, the functional module NAT3 above can be parsed as a term of sort
PreModule in MINI-MAUDE-SYNTAX. The name of this sort reflects the fact that
not all terms of sort PreModule do actually represent Maude modules. In partic-
ular, for a term of sort PreModule to represent a Maude module all the bubbles
must be correctly parsed as terms in the module’s user-defined syntax.

When calling the function meta-parse with the meta-representation of the
module MINI-MAUDE-SYNTAX' and the previous module transformed into a list

19As pointed out in Section 2.5.5, in Core Maude the meta-representation of the module
MINI-MAUDE-SYNTAX has to be explicitly given. In Full Maude we can refer to the representation
of a module using its name by any of the techniques explained in Section 3.3.
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of quoted identifiers2?, that is,

Maude> red meta—parse(MINI—MAUDE—SYNTAX,
’fmod ’NAT3 ’is

’sort ’Nat3 ’.

op ’s_ ’: ’Nat3 ’-> ’Nat3 ’.

op ’0 ’: ’-> ’Nat3 .

Jeq JS ,S JS 70 )= Jo 7.
’endfm)

we get the following metaterm as a result.

result Term:
’fmod_is_endfm[

s,
’_[’sort_. [] s
’__[’op_:_—>_.[|’s_|, |’Nat3 , | ’Nat3
' [Popoif->_. [, "Nat3 (],
'eq=_.[’s ’s ’s ’0]|, ]]]]]

Of course, Maude does not return these boxes. Instead, the system returns
the bubbles using their constructor form as specified in their corresponding dec-
larations. For example, the bubbles| ’Nat3 | and| ’s ’s ’s 0 | are represented,
respectively, as token(’Nat3) and bubble(’s ’s ’s ’0). Maude returns them
meta-represented. The result given by Maude is therefore the following.

1,

result Term:
’fmod_is_endfm[
’token[{’’NAT3}’Qid],
’__[’sort_.[’token[{’’Nat3}’Qid]l],
’__[op_:_->_.[’token[{’’s_}’Qid],
’neTokenList [{’’Nat3}’Qid],
’token[{’’Nat3}’Qidl],
' __[Pop_:‘->_.[’token[{’’0}’Qid],
’token[{’’Nat3}’Qidl],
'eq_=_.[’bubble[’__[{’’s}’Qid, {’’s}’Qid,
{’’s}’Qid, {’’0}’Qidl],
’bubble[{’’0}’Qid]11111]

This result is a metaterm of sort Term. To convert this term into a term of
sort FModule is now straightforward. As already mentioned, we first have to ex-
tract from the term the module’s signature. For this, we can use an equationally
defined function

op extractSignature : Term -> FModule? .

Notice that extractSignature is a partial function that is not well defined for
metaterms of sort Term that do not meta-represent terms of sort PreModule
in MINI-MAUDE-SYNTAX. Therefore, the result is in general an element of an
error supersort FModule? of FModule. Once we have the signature of the
module—expressed as a functional module with no equations and no member-
ship axioms we can then build terms of sort FModule in the same way with

20We shall see in Section 2.8 that this representation of the input as a list of quoted identifiers
is given automatically by the read-eval-print loop supported by the built-in module LOOP-MODE.
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the equationally defined function solveBubbles, that recursively replaces each
bubble in an equation by the result of calling meta-parse with the already
extracted signature and with the quoted identifier form of the bubble.

op solveBubbles : Term FModule -> FModule? .

The partial function processPreModuleTerm takes a term and, if it has the
appropriate form that is, if it is a term meta-representing a term of sort
PreModule in MINI-MAUDE-SYNTAX, and, furthermore, the solveBubbles func-
tion succeeds in parsing the bubbles in equations as terms—then it returns a
term of sort FModule.

op processPreModuleTerm : Term -> FModule?

eq processPreModuleTerm(T)
= solveBubbles(T, extractSignature(T))

We have then the following reduction.

red processPreModuleTerm(
meta—parse(MINI—MAUDE—SYNTAX,
’fmod ’NAT3 ’is

’sort ’Nat3 ’.

op ’s_ ’: ’Nat3 ’-> ’Nat3 °’.

op ’0 ’: ’-> ’Nat3 ’.

Jeq JS )S JS Jo )= Jo 7.
’endfm) )

Result FModule : fmod ’NAT3 is
nil
sorts ’Nat3 .
none
op ’0 : nil -> ’Nat3 [none]
op ’s_ : ’Nat3 -> ’Nat3 [none]
none
none
eq ’s_[’s_[’s_[{’0}’Nat3]]] = {’0}’Nat3 .
endfm

2.8 LOOP-MODE and Metalanguage Uses

Using object-oriented concepts, we can specify in Maude a general input/output
facility provided by the LOOP-MODE module shown below, that extends the mod-
ule QID-LIST, into a generic read-eval-print loop.

mod LOOP-MODE is
protecting QID-LIST .
sorts State System .
op [_,_,_] : QidList State QidList -> System
[special ( ... )]
endm

The operator [_,_,_] can be seen as a persistent object with an input chan-
nel (the first argument), an output channel (the third argument), and a state
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(given by its second argument). This read-eval-print loop that LOOP-MODE pro-
vides is a simple mechanism developed for this release that may not be main-
tained in future versions. We plan to endow Maude with general built-in support
for objects; this will make possible more general and flexible solutions for dealing
with input/output and persistent objects.

Besides having input and output channels, terms of sort System give us the
possibility of maintaining a persistent state in their second component. This
state has been declared in a completely generic way. In fact, the sort State in
LOOP-MODE does not have any constructor. This gives complete flexibility for
defining the terms we want to have for representing the persistent state of the
loop in each particular application. In this way we can use this input/output
facility not only for extensions of Maude like Full Maude, but also for other uses
of Maude as a metalanguage, where the object language being implemented may
be completely different from Maude. For each such language or tool the nature
of the state of the system may be completely different. We can tailor the State
sort to any such application by importing LOOP-MODE in a module in which we
define the structure of the persitent state and the rewrite rules for changing that
state and interacting with the loop.

2.8.1 The Use of the Loop

We can illustrate the basic ideas with a toy example, namely a system in which
the loop is used to echo each input twice. In this case there is no need to
maintain any state, so we can just declare a constant null to represent the
empty state.

mod DUPLICATE is
including LOOP-MODE .
op null : -> State .
vars Input Output : QidList .
crl [duplicatel
[Input, null, Output]
=> [nil, null, Output Input Input]
if Input =/= nil .
endm

Once this module has been entered, we must first initialize the loop by
setting its initial state using the loop command. That is, we must give to the
loop command the term of sort State that we desire as initial state. For this
example, we can start a loop with empty input and output channels by typing

Maude> loop [nil, null, nill

Since in the current release only one input channel is supported (the current
terminal), the way to distinguish the input passed to the loop from the input to
the Maude system modules or commands is by enclosing them in parentheses.
When something is written in the Maude prompt enclosed in parentheses it is
converted into a list of quoted identifiers. This is done by first breaking the input
stream into a sequence of tokens—that is, into a sequence of Maude identifiers—
and then converting each of these tokens into a quoted identifier by putting a
quote in front of it, and appending the results into a list of quoted identifiers,
which is then placed in the first slot of the loop object. The output is handled
in the reverse way, that is, the list of quoted identifiers placed in the third
slot of the loop is printed on the terminal after applying the inverse process of
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“unquoting” each of the tokens in the list. However, the output channel is not
cleared at the time when the output is printed; it is instead cleared when the
next input is entered. We can think of the input and output events as implicit
rewrites that transfer in a slightly modified, quoted or unquoted form the
input and output data between two objects, namely the loop object and the
“user” or “terminal” object.

Once the loop has been initialized we can input any data by writing it after
the prompt enclosed in parentheses. For example, we can write

Maude> (a s d )
and then we get the output
asdasd

A somewhat more interesting example is a loop that echoes the input, but
only after every ten tokens, that is, it keeps the input until the number of
tokens stored in the state is ten. In this case the input introduced so far has to
be stored. Therefore we now really need a persistent state, albeit a simple one.
We can represent the state as a pair consisting of a list of quoted identifiers—the
tokens seen so far since the last printing—and a counter measuring the length
of such a list.

mod DUPLICATE-TEN is

including LOOP-MODE .
protecting MACHINE-INT .
op <_;_> : QidList MachineInt -> State .
op init : -> System .
vars Input StoredInput Output : QidList
vars QI QIO QI1 QI2 QI3 QI4 QI5 QI6 QI7 QI8 QI9 : Qid .
var Counter : MachineInt .
rl [init]

init => [nil, < nil ; 0 >, nil]
rl [in]

[QI Input, < StoredInput ; Counter >, Qutputl]

=> [Input, < StoredInput QI ; Counter + 1 >, Output]
rl [out]

[Input,

< QIO QI1 QI2 QI3 QI4 QI5 QI6 QI7 QI8 QI9 StoredInput ;

Counter >,
Output]
=> [Input,
< StoredInput ; Counter - 10 >,
Output QIO QI1 QI2 QI3 QI4 QI5 QI6 QI7 QI8 QIQ]
endm

Maude> loop init
Maude> (a b)

Maude> (c d e f g h i)
Maude> (j k 1)

abcdefghi]j
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We can see the state of the loop with the continue command as follows.

Maude> cont
result System: [nil,< ’k ’1 ; 2 >,’a ’b ’c ’d ’e ’f ’g ’h ’i ’j]

Note that, as already mentioned, the data in the output channel remains there
after being printed; it is removed at the time of the next input event.

2.8.2 Metalanguage Uses of Maude

The above examples are toy examples to illustrate the basic features of LOOP-
-MODE. However, the most interesting applications of this module are metalan-
guage applications, in which Maude is used to define the syntax, parse, execute,
and pretty print the execution results of a given object language or tool. In
such applications, most of the hard work is done by the META-LEVEL module,
but handling the input/output and maintaining the persistent state of the object
language interpreter or tool is done by LOOP-MODE.

The metalanguage uses of Maude are a natural consequence of the good
properties of rewriting logic as a logical and semantic framework. Indeed, one of
the key goals of rewriting logic from its beginning has been to provide a semantic
framework in which many models of computation—particularly concurrent and
distributed ones—and languages can be naturally represented. Because of the
intrinsic duality between logic and computation that rewriting logic supports,
the very same reasons making rewriting logic a suitable semantic framework,
make it also an attractive logical framework [32] to represent many different
logics.

What is common to all these logical and semantic framework applications is
that the models of computation, logics, or languages are represented in rewriting
logic by mappings of the form

(t) ®: L — RWLoygic.

The representations are typically very simple and natural. They map theories
or modules in £ to rewrite theories.

For language prototyping purposes, the obvious question to ask is: how can
a rewriting logic language best support representation maps of the form (}), so
that it becomes a metalanguage in which a very wide variety of programming,
specification, and design languages, and of computational and logical systems
can be both semantically defined, and implemented in it?

Our answer is: by being reflective. As already explained in Section 2.5,
Maude’s language design and implementation make systematic use of the fact
that rewriting logic is reflective and provide efficient support of reflective com-
putation by means of the META-LEVEL module.

Indeed, using META-LEVEL we can both make the above representation map ®
executable, and we can execute the resulting rewrite theory representing a theory
or module in £, thus getting an implementation of £ in Maude. Specifically,
we can reify a representation map ® of the form (f) by defining an abstract
data type Module, representing modules in the logic or language £. Since in
META-LEVEL we also have a data type Module whose terms represent rewrite
theories, we can then internalize the representation map ® as an equationally
defined function

D : Module; — Module.

In fact, thanks to the general meta-result of Bergstra and Tucker [1], any com-
putable representation map ® can be specified in this way by a finite number
of Church-Rosser and terminating equations.
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Having this representation map defined in Maude, we can then execute in
Maude the rewrite theory ® (M) associated to a theory or module M in £. This
has been done, for example, for linear logic in [33, 10], and for structured Maude
modules in Full Maude. But it could also be done for a very wide range of other
languages and logics using the same method.

By defining the data type Module, in an extension of META-LEVEL we can
indeed define the syntax of £ within Maude. However, to provide a satisfactory
execution environment for £ in Maude, we also have to support input/output
and a persistent state for interacting with the interpreter for £ that we want
to define. That is, we want to be able to enter module definitions, execute
commands, and get results of executions. This is precisely what LOOP-MODE
makes possible. As a consequence, an environment for £ in Maude will typi-
cally be realized by a module containing both META-LEVEL and LOOP-MODE as
submodules.

To illustrate the way in which LOOP-MODE can be used in conjunction with
META-LEVEL for metalanguage purposes, we discuss in some detail the way in
which we make use of it in the implementation of Full Maude. The complete
specification can be found in [19]. In Full Maude, the state of the system is
given by a single object of class database. This object has attributes db, to
keep the actual database in which all the modules being entered are stored, an
attribute default, to keep the identifier of the current module by default, and
attributes input and output to simplify the communication of the loop with
the database. Using the notation for classes in object-oriented modules (see
Section 3.2) we can declare the class database as follows?!.

class database | db : Database, input : TermlList,
output : QidList, default : ModId .

Since we assume that database is the only object class that has been
defined so that the only objects of sort Object will belong to the database
class to specify the admissible states in the persistent state of LOOP-MODE for
Full Maude, it is enough to give the subsort declaration

subsort Object < State .

We now give the rules to initialize the loop, and to specify the communi-
cation between the loop—the input/output of the system—and the database.
Depending on the kind of input that the database receives, its state will be
changed or some output will be generated. Before giving the rules we need
some declarations. We start declaring a constant o of sort 0id to identify the
persistent database object, and a constant init to name the initial value of
the loop.

op o : -> 0id .
op init : -> System .

The rule specifying the initial value of the loop is given below. In it,
initialDatabase is a constant naming the initial database??.

rl [init]
init

2INote that since the module FULL-MAUDE is a system module in Core Maude, object-oriented
declarations such as this one cannot be given directly. Instead, the equivalent declarations
desugaring the desired object-oriented module have to be specified.

22Possibly containing the library of predefined modules and some other predefined modules,
such as CONFIGURATION.
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=> [nil,
< o : database |
db : initialDatabase, input : nilTermList,
output : nil, default : nullModId >,
nil]

To initialize the loop we have to write
Maude> loop init .

When some text has been introduced in the loop, the first argument of the
operator [_,_,_] is different from nil, and we can use this fact to activate the
following rule, that enters an input such as a module or a command from the
user into the database. The constant grammar names the module containing the
signature defining the top level syntax of Full Maude (see Appendix C). This
grammar is used by the meta-parse function in META-LEVEL to parse the input.
In case of being a syntactically valid input, the parsed input is placed in the
input attribute of the database object; otherwise, an error message is placed in
the output channel of the loop.

crl [in]
[QIL,
< o : database | db : DB,
input : nilTermlist,
output : nil,
default : MI >,
QIL’]
=> if meta-parse(grammar, QIL) == error*
then [nil,
< o : database | db : DB,
input : nilTermlist,
output : (’ERROR: ’incorrect ’input ’.),
default : MI >,
QIL’]
else [nil,
< o : database | db : DB,
input : meta-parse(grammar, QIL),
output : nil,
default : MI >,
QIL’]
fi
if QIL =/= nil .

When the output attribute of the persistent object contains a nonempty list
of quoted identifiers, the out rule moves it to the third argument of the loop.
Then the Core Maude system displays it in the terminal.

crl [out]
[QIL,
< o : database | db : DB, input : TL,
output : QIL’, default : MI >,
QIL’’]
=> [QIL,
< o : database | db : DB, input : TL,
output : nil, default : MI >,
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(QIL’> QIL’’)]
if QIL’ =/= nil

For each particular language, the rewrite rules defining the system behavior
for different language commands are specified according to the specific details
of the language in question. We illustrate below the case of Full Maude. In
Full Maude there is a function processUnit that takes as arguments the result
of the call to meta-parse, an empty module of the kind of the module being
introduced named by the constant emptyStrFModule in the rule below and
the current database. It returns a modified copy of the database after processing
the new module. Thus, for example, for the case of the constructor of functional
modules in the module grammar

op fmod_is_endfm : Token DeclList -> PreModule .

the processing of a functional PreModule once it has been entered into the
system is done by the rule

rl [functional-module]
< o : database | db : DB,
input : (’fmod_is_endfm[T, T’]),
output : nil,
default : MI >
=> < o : database |
db : processUnit(T, T’, emptyStrFModule, DB),
input : nilTermlist,
output : (’Introduced ’module:
modIdToQid (parseModName(T))),
default : parseModName(T) >

Note the message placed in the output channel, and the change in the current
module by default, which is now the new module just processed. Since the name
T of the module can be complex a module expression , some extra parsing
has to be performed by the auxiliary function parseModName.

User-defined commands are handled by rules as well. For example, the show
module command, which prints the specified module, or the current one if no
module name is specified, is handled by the following rules.

rl [show-module-1]
< o : database | db : DB,
input : ({’show‘module‘.}’PreCommand),
output : nil, default : MI >
=> < o : database |
db : DB, input : nilTermlist,
output : meta-pretty-print(
getFlatModule (MI, DB),
getTopModule (MI, DB)),
default : MI >
rl [show-module-2]
< o : database | db : DB, input : (’show‘module_.[T]),
output : nil, default : MI >
=> < o : database |
db : DB, input : nilTermlist,
output : meta-pretty-print(
getFlatModule (parseModExp(T), DB),
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getTopModule (parseModExp(T), DB)),
default : MI >

The functions getTopModule and getFlatModule return, respectively, the
module as introduced by the user and its flattened version?® as stored in the
database.

2.9 System Issues and Debugging

2.9.1 Command Line Options

The interpreter is started by the command
maude flag* file*

where maude is the name of the executable (it might be called something like
maude.linux on a linux box). The file prelude.maude should normally be in
the same directory as the maude executable. If any files are specified, they
will be read in after prelude.maude, but before the interpreter reads from the
standard input. Currently understood flags are:

-no-mixfix
Start the interpreter in prefix mode. This is intended for noninteractive
use with a post processor.

-no-prelude
Do not attempt to read in prelude.maude on start up.

-batch
Do not handle control-C.

2.9.2 Debugging Core Maude Specifications

There are two approaches to debugging Core Maude specifications. The most
general technique is to turn tracing on with the command

set trace on .

and capture a log of the trace using script or xterm logging. This can then be
studied using a text editor. Since the trace is usually voluminous, there are a
number of trace options to control just what is traced. One of the more useful
is selective tracing:

set trace select on .
trace select foo bar ([_,_])

This will cause only rewrites where the redex is headed by operators with the
selected names to be traced. Note that these operators need not be in existence
at the time the trace select command is executed; thus it is possible to select
operators that will only be created at runtime via the metalevel.

The other approach is to use the Core Maude debugger. When reductions are
happening and a control-C interrupt is received, the debugger is automatically
entered. The prompt changes to Debug(n)> where n is the debug level; or the
number of times the debugger has been re-entered (it is fully re-entrant). All top
level commands can be executed from the debugger, along with four commands
that are special to the debugger:

23We call flattened module to the version of the module in which the module and all its
submodules have been collapsed to a single module.
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where .
Prints out the stack of pending rewrites, explaining how each one arose.

step .
Executes the next rewrite with tracing turned on.

resume .
Exits the debugger and continues with the current rewriting task.

abort .
Exits the debugger and abandons the current rewriting task.

Since it is sometimes useful to enter the debugger just before the first rewrite
takes place, the reduce, rewrite and continue commands can be prefixed by
the debug keyword to accomplish this. For example:

debug rewrite [8] in MY-SPEC : init-symbol .

2.9.3 User Facilities Not Yet Implemented

There are a number of important features that have not yet been implemented
in Core Maude in this release. Here is a list of the most important omissions.

1. Module renamings?*.
2. Garbage collection for top level modules.

3. Special strategy for the rewrite command in the case of object-oriented
modules, and built-in objects and messages.

4. Various built-in data types.
5. Error handling and recovery for certain situations.

6. Rules whose conditions can contain not only equations and membership
axioms, but other rewrites.

7. Memoization.

8. Operators that have both assoc and idem attributes.

2.9.4 Miscellaneous Differences from OBJ3

1. True rewriting modulo identity is implemented rather than the restricted
version done by OBJ3; this leads to nontermination more often.

2. The attribute idr: is not recognized.

3. Maude allows arbitrary forward references to sorts, variables and operators
within a module. The order of statements in a module is irrelevant, except,
possibly, on error messages, importations, and nonconfluent systems.

4. Identities are not restricted to being constants; an identity may be any
ground term that does not have the parent operator on top. Cyclic depen-
dencies between two or more identity elements is explicitly allowed and is
correctly resolved by the matching algorithms.

24Renamings and, more generally, module expressions are of course supported in Full Maude
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5. The attribute idem means rewriting modulo idempotence, rather than
adding the equation for idempotence.

6. The lefthand side of an equation can be a single variable; this often (but
not always) leads to nontermination.

7. Error supersorts are used instead of retracts; this is due to the use of mem-
bership equational logic, so that the error supersorts exactly correspond
to kinds.

8. Operator strategies available with the strat attribute do not support
negative integers (evaluate on demand) and are restricted to a subset
of “sensible” strategies that depend on the operator’s other attributes.
Various OBJ3 strategy bugs are not emulated [21].

9. Operators which have the assoc attribute may be used in “flattened”
form, e.g., £(a, b, c) instead of £(a, £(b, c)) or £(£f(a, b), c).

10. Operators may always be used in prefix form, e.g., if then_else fi(b, t,
instead of if b then t else e fi.

11. Labeled equations are not supported (use labeled rules).

12. Sort declarations of operators with assoc, comm, id: and idem attributes
must respect those attributes: rearrangement or permutation by associa-
tivity or commutativity must not change the sort of a term, while collapse
due to identity or idempotence must either lower the sort of a term or
leave it unchanged.

13. There is no support for Lisp the Maude interpreter is written in C++.

2.9.5 Traps for the Unwary
Bare Variable Lefthand Sides

The use of a bare variable lefthand side for an equation, rule, or membership
axiom may lead to unexpected nontermination. The recommended place to use
them is in rules which are only going to be applied via a strategy language.
Using them in membership axioms is seductive, but very tricky. For example:

subsort Prime < Nat
var N : Nat
cmb N : Prime if favoritePrimeTest (N)

will end up with the membership axiom and favoritePrimeTest being applied
to every reduced term of sort Nat, including those that arise during evaluation
of favoritePrimeTest (N) with likely nontermination.

Collapse Theories

Using id: or idem attributes means that you are (notionally) working with
infinite congruence classes and that many lefthand side patterns will match
in unexpected ways. Unlike OBJ3, Maude has true collapse matching algo-
rithms, rather than identity completion, and it does not try to omit problematic
matches. Consider for example the module

e)
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fmod FOO is

sort Foo .

ops a e : -> Foo .

op f : Foo Foo -> Foo [left id: el
var X : Foo .

eq £f(X, a) = ...
endfm

Then we have
a=1f(e, a) = f(e, f(e, a)) = £(f(e, e), a) =

In particular, the pattern £ (X, a) matches a with X « e leading to possible
nontermination. You should be wary of having an operator with an identity
element as the top symbol for a lefthand side. One useful trick when you need
a pattern like £ (X, a) is to use a pattern £(Y, a) where Y has a sort lower
than that of the identity element. For example:

fmod NAT is
sorts Nat NzNat .
subsort NzNat < Nat
op 0 : -> Nat
op s : Nat -> NzNat
op + : Nat Nat -> Nat [assoc comm id: 0]
op + : Nat NzNat -> Nat [assoc comm id: 0]
var X : Nat
var Y : NzNat .
eq +(s(X), Y) = s(+(X, Y))
endfm

Here +(s(X), Y) cannot match s(0) because, although s(0) = +(s(0), 0)
by the identity attribute, Y cannot match 0.
Rewriting with the idem attribute is even riskier. For example:

fmod F002 is

sort Foo .

ops a b : -> Foo .

op f : Foo Foo -> Foo [idem]
var X : Foo .

eqa=>b.
endfm

We then have
a=1f(a, a) = f(f(a, a), a) = f(a, f(a, a)) =

And thus, if a can be rewritten by an equation, then any number of rewrites
can be done by using the idem axiom to create new copies of a. In fact, the
current implementation would choose the obvious rewrite and just produce b,
but this should not be relied on; FO02 is a nonterminating system. The only
safe way to use idem is as follows. Whenever a connected component is the
domain and range of an operator having the idem attribute, then its sorts are
poisoned. Terms of poisoned sorts must never rewrite other than by rules under
the control of a strategy. They must be built out of free (other than attributes)
constructors. Of course it is ok to have defined functions that work on such
constructor terms; it is just that the terms themselves may not rewrite.



CHAPTER 2. CORE MAUDE 93

One-sided Identities and Associativity

When the associativity axiom is combined with a one-sided identity axiom some
unexpected matching properties result. Consider the module:

fmod BAR is

sort Foo .

ops a b 1f : -> Foo

op f : Foo Foo -> Foo [assoc left id: 1f]
var X Y : Foo .
endfm

Then
match £(X, Y) <=7 f(a, b)
yields three solutions:

Solution 1
X:Foo --> 1f
Y:Foo --> f(a, b)

Solution 2
X:Foo --> a
Y:Foo --> b
Solution 3
X:Foo --> f(a, 1f)
Y:Foo --> b

whereas the naive user may not have expected the last solution. Matching with
extension can be even more surprising;:

xmatch £(X, Y) <=7 f(a, b)
yields five solutions:

Solution 1
Matched portion = f(a, 1f)
X:Foo —--> a
Y:Foo -—> 1f

Solution 2
Matched portion = f(a, 1f)
X:Foo --> f(a, 1f)
Y:Foo -—> 1f

Solution 3
Matched portion = (whole)
X:Foo --> 1f
Y:Foo --> f(a, b)

Solution 4
Matched portion = (whole)
X:Foo --> a
Y:Foo --> b
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Solution 5

Matched portion = (whole)
X:Foo --> f(a, 1f)
Y:Foo --=> b

Here the first two solutions match a portion f (a, 1f) of the subject that was not
apparent from the original problem. However, if one considers the congruence
class of f(a, b) they are valid solutions that are necessary for correct simulation
of congruence class (conditional) rewriting.

2.9.6 Known Problems

1.

The user input is not checked very rigorously, and some kinds of unde-
tected errors can cause core dumps while other kinds of errors are fatal.
This problem will gradually go away as error handling and recovery is
improved.

The interpreter can be very stack hungry when working on deep terms.
This is an unfortunate consequence of the highly modular design of the
rewrite engine. Stack overflow usually manifests itself as a segmentation
fault with a corrupted core dump; try the UNIX command wunlimit stack
size before running the interpreter. Stack overflow is also characteristic of
nonterminating computations.

Heap usage for storing and processing large modules can be quite large.
In particular, the memory required for parsing can be quadratic in the
size of the (flattened) signature. This problem is magnified because top
level modules are not yet garbage collected.

Response to control-C can be delayed a very long time when the interpreter
is reading in modules or printing results.



Chapter 3

Full Maude

During the development of the Maude system we have put special emphasis
on the creation of metaprogramming facilities to allow the generation of exe-
cution environments for a wide variety of languages and logics. The first most
obvious area where Maude can be used as a metalanguage is in building lan-
guage extensions for Maude itself. OQur experience in this regard—first reported
in [18], and further documented here and in [19] is very encouraging. We
have been able to define in Core Maude a language extension with notation
for object-oriented programming, parameterized modules, views (for module in-
stantiation) and module expressions [18]. Furthermore, using the META-LEVEL
and LOOP-MODE modules, we have also been able to define in Core Maude all
the additional functionality required for parsing, evaluating, and pretty print-
ing modules in the extended language, and also for input/output interaction, as
already discussed in Sections 2.5.6 and 2.8.

Thanks to the efficient implementation of the rewrite engine, the parser, and
the module META-LEVEL, such a language extension executes with reasonable ef-
ficiency. In the future, however, we may support in Core Maude a significant
part of the functionality currently supported by Full Maude. Full Maude con-
tains Core Maude as a sublanguage, so that Core Maude modules can also be
entered at the Full Maude level. However, at present there are a few syntac-
tic restrictions that have to be satisfied by modules and commands in order to
be acceptable inputs at the Full Maude level. These syntactic restrictions are
explained in Section 3.6; they will be removed in the future.

Since the execution environment for Full Maude has been implemented in
Core Maude, to initialize the system so that we can start using it, the first
thing we have to do is to load the FULL-MAUDE module in the system. Assuming
that the file full-maude.maude, containing such specification, is located in the
current, directory, we just need to type the corresponding in command in the
Maude prompt.

Maude> in full-maude.maude

The Full Maude system is then loaded and we can use it as any other module.
Before entering any module or executing any command in Full Maude we need to
initialize the system. Full Maude uses the LOOP-MODE module in order to allow
the entering of modules into the system and to maintain a persistent database
in which to store all the modules, theories and views being introduced. To start
the loop we need to type

Maude> loop init

95
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where init is a constant of sort System giving the initial state of the Full Maude
database.

We are now ready. Let us recall from Section 2.8 that to get something
into the LOOP-MODE system, the text has to be enclosed in parentheses. This
means that any module or command intended for Full Maude has to be written
enclosed in parentheses. Notice that, since Core Maude is still active—indeed, it
now provides what might be called the system programming level it will handle
any input not enclosed in parentheses. This allows the possibility of using both
systems at the same time.

3.1 Functional and System Modules

A Core Maude module, such as those presented in previous sections, can be
entered in Full Maude by enclosing it in parentheses. For example, the module
PATH given in Section 2.1 can be entered to Full Maude as follows.

Maude> (fmod PATH is
protecting MACHINE-INT .

sorts Edge Path Path? Node .
subsorts Edge < Path < Path? .

ops nl n2 n3 n4 n5 : -> Node .

ops abcde: ->Edge .

op _;_ : Path? Path? -> Path? [assoc]
ops source target : Path -> Node .

op length : Path -> Machinelnt .

var E : Edge .
var P : Path .

cmb E ; P : Path if target(E) == source(P)

source(E) if E ; P : Path .
target(E) if P ; E : Path .

ceq source(E ; P)
ceq target(P ; E)
eq length(E) = 1 .
ceq length(E ; P) = 1 + length(P) if E ; P : Path .

eq source(a) = nl .
eq target(a) = n2 .
eq source(b) = nl .
eq target(b) = n3 .
eq source(c) = n3 .
eq target(c) = n4 .
eq source(d) = n4 .
eq target(d) = n2 .
eq source(e) = n2 .
eq target(e) = nb .
endfm)

As in Core Maude, we can enter any module or command by writing it
directly after the prompt, or by having it in a file and then using the in command
of Core Maude. Also as in Core Maude, we can write several Full Maude modules
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or commands in a file and then enter all of them with a single in command,;
but each of the modules or commands has to be enclosed in parentheses. In
Full Maude, in addition to functional and system modules and some of the
Core Maude commands, we can enter object-oriented modules, parameterized
modules, theories, views and some additional commands. We discuss all these
concepts in the coming sections.

As we will discuss in Section 3.4, we can do some reduction or rewriting
using a syntax for commands such as that of Core Maude, although with some
minor differences that will be explained in Section 3.4.

Maude> (red b ; ¢ ; 4 .)
Result Path? : b ; ¢ ; d

Maude> (red length(b ; c ; d) .)
Result NzMachineInt : 3

Maude> (red a ; b ; c .)
Result Path? : a ; b ; ¢

Maude> (red source(a ; b ; c) .)
Result errorSort(Node) : source(a ; b ; c)

Maude> (red target(a ; b ; c) .)
Result errorSort(Node) : target(a ; b ; c)

Maude> (red length(a ; b ; c) .)
Result errorSort(MachineInt) : length(a ; b ; c)

In the rest of this chapter we describe the syntax of Full Maude giving the
declarations of sorts, subsort relations, and operators included in the actual
module used in the parsing of the inputs to Full Maude. We use the techniques
described in Section 2.7.6 to parse these inputs. In addition to the declarations
for Token, Bubble, and NeTokenList introduced in Section 2.7.6, we need to add
declarations for two new kinds of tokens, namely ViewToken and SortToken.
These two sorts are just particular cases of tokens which exclude several identi-
fiers.

op viewToken : Qid -> ViewToken
[special
(id-hook Bubble 11
op-hook gidBaseSymbol (<Qids> : -> Qid)
id-hook Exclude (assoc associative
comm commutative
idem idempotent))]
op sortToken : Qid -> SortToken
[special
(id-hook Bubble 11
op~hook gidBaseSymbol (<Qids> : -> Qid)
id-hook Exclude ([ ] < to : , . ()))]

The basic syntax for the declarations of sorts, subsort relations, and opera-
tions in Full Maude modules is given by the following declarations®.

!We do not give all the declarations in this chapter. The complete set of declarations can
be found in Appendix C.
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subsorts SortToken < Sort < SortList
subsort Attr < AttrList .

op __ : SortlList SortList -> SortList [assoc]
op sort_. : SortlList -> SortDecl .
op sorts_. : SortList -> SortDecl .

op _<_ : SortList SortList -> SubsortRel .
op _<_ : SortList SubsortRel -> SubsortRel .

op subsort_. : SubsortRel -> SubsortDecl .
op subsorts_. : SubsortRel -> SubsortDecl .
op assoc : -> Attr .

op comm : -> Attr .

op id:_ : Bubble -> Attr .

op left id:_ : Bubble -> Attr .

op right id:_ : Bubble -> Attr .

op strat(_) : NeTokenList -> AttrList .
op prec_ : Token -> Attr .
op gather(_) : NeTokenList -> Attr .

op idem : -> Attr .

op __ : AttrList AttrList -> AttrList [assoc]

op op_: ->_. : Token Sort -> OpDecl .

op op_: ->_[_]. : Token Sort AttrList -> OpDecl .

op op_:_—>_. : Token SortList Sort -> 0OpDecl .

op op_:_->_[_]. : Token SortList Sort AttrList -> OpDecl .

op ops_: —>_. : NeTokenList Sort -> OpDecl .

op ops_: ->_[_]. : NeTokenList Sort AttrList -> OpDecl .

op ops_:_->_. : NeTokenList SortList Sort -> OpDecl .

op ops_:_->_[_]. : NeTokenList SortList Sort AttrList -> OpDecl .

Full Maude supports, not only module hierachies, that is, acyclic graphs
of module importations, as discussed in Section 2.3 for Core Maude, but also
parameterized programming techniques in the OBJ3 style. In particular, Full
Maude supports importations in including and protecting modes, not only
for user-defined modules, but, as we will see in Section 3.5.4, for module expres-
sions as well. The syntax for importation declarations is as follows.

subsort Token < ModExp .

op including_. : ModExp -> ImportDecl .
op protecting_. : ModExp -> ImportDecl .

The syntax for the declaration of variables, membership axioms, equations, and
rules is the following.

op vars_:_. : NeTokenList Sort -> VarDecl .

op var_:_. : NeTokenlList Sort -> VarDecl .

op mb_:_. : Bubble Sort -> MembAxDecl .

op cmb_:_if_. : Bubble Sort Bubble -> MembAxDecl .

op eq_=_. : Bubble Bubble -> EquationDecl .
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op ceq_=_if_. : Bubble Bubble Bubble -> EquationDecl .
op rl[_J:_=>_. : Token Bubble Bubble -> RuleDecl .
op crl[_]:_=>_if_. : Token Bubble Bubble Bubble -> RuleDecl .

Finally, the top syntax for functional and system modules is given by the fol-
lowing declarations.

subsort VarDecl < VarDeclList .
op __ : VarDeclList VarDeclList -> VarDeclList [assoc]

subsorts ImportDecl SortDecl SubsortDecl OpDecl
MembAxDecl EquationDecl VarDeclList < FDeclList .
op __ : FDeclList FDeclList -> FDeclList [assoc]

subsorts RuleDecl FDeclList < SDeclList .
op __ : SDeclList SDeclList -> SDeclList [assoc]

subsort Token < ModuleName .
op fmod_is_endfm : ModuleName FDeclList -> PreModule .
op mod_is_endm : ModuleName SDeclList -> PreModule .

3.2 Object-Oriented Modules

In a concurrent object-oriented system the concurrent state, which is usually
called a configuration, has typically the structure of a multiset made up of
objects and messages that evolves by concurrent ACU-rewriting? using rules
that describe the effects of communication events between some objects and
messages. Intuitively, we can think of messages as “traveling” to come into
contact with the objects to which they are sent, and then causing “communica-
tion events” by application of rewrite rules. Therefore, we can view concurrent
object-oriented computation as deduction in rewriting logic; in this way, the
configurations S that are reachable from a given initial configuration Sy are ex-
actly those such that the sequent Sy — S is prowvable in rewriting logic using
the rewrite rules that specify the behavior of the given object-oriented system.
An object in a given state is represented as a term

<O:Clay:vy, ...,apn: vy >

where O is the object’s name or identifier, C' is its class identifier, the a;’s are
the names of the object’s attribute identifiers, and the v;’s are the corresponding
values. An object with no attributes can be represented as

<O:C 1>

Messages do not have a fixed syntactic form. Such syntactic form can be defined
by the user for each application. The concurrent state of an object-oriented
system is then a multiset of objects and messages, called a Configuration,
with multiset union described with empty syntax __.

The following module CONFIGURATION defines the basic concepts of concur-
rent object systems. Note that the sorts Message and Attribute—as well as
the sorts 0id and Cid of object and class identifiers—are for the moment left

2We call rewriting modulo associativity, commutativity and identity ACU-rewriting.
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unspecified. They will become fully defined when the CONFIGURATION mod-
ule is extended by specific object-oriented definitions in a given object-oriented
module.

fmod CONFIGURATION is
sorts 0id Cid Attribute AttributeSet
Object Msg Configuration .
subsorts Object Msg < Configuration .
subsort Attribute < AttributeSet .

op none : -> AttributeSet .
op _,_ : AttributeSet AttributeSet -> AttributeSet
[assoc comm id: none]

op <_:_| > : 0id Cid -> Object .
op <_:_|_> : 0id Cid AttributeSet -> Object
op none : -> Configuration .
op __ : Configuration Configuration -> Configuration
[assoc comm id: none]
endfm

In Full Maude, concurrent object-oriented systems can be defined by means
of object-oriented modules—introduced by the keyword omod—using a syntax
more convenient than that of system modules because it assumes acquaintance
with the basic entities, such as objects, messages and configurations, and sup-
ports linguistic distinctions appropriate for the object-oriented case. In partic-
ular, all object-oriented modules implicitly include the above CONFIGURATION
module and assume its syntax. For example, the ACCNT object-oriented module
below specifies the concurrent behavior of objects in a very simple class Accnt
of bank accounts, each having a bal(ance) attribute, which may receive mes-
sages for crediting or debiting the account, or for transferring funds between
two accounts.

(omod ACCNT is
protecting QID .
protecting MACHINE-INT .

subsort Qid < 0id .
class Accnt | bal : MachineInt .

msgs credit debit : 0id MachinelInt -> Msg .
msg transfer_from_to_ : MachinelInt 0id 0id -> Msg .

vars A B : 0id .
vars M N N’ : MachineInt .

rl [credit] : credit(A, M) < A : Accnt | bal : N >
=>< A : Accnt | bal : (W + M) >
crl [debit] : debit(A, M) < A : Accnt | bal : N >
=> < A : Acent | bal : (N - M) >
if N>M.
crl [transfer] : (transfer M from A to B)
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< A : Accnt | bal : N > < B : Accnt | bal : N’ >
=> < A : Acent | bal : (N - M) >
< B : Accnt | bal : (N’ + M) >
if N>M.
endom)

3.2.1 The Syntax of Object-Oriented Modules

Classes are defined with the keyword class, followed by the name of the class
C, and by a list of attribute declarations separated by commas. Each attribute
declaration has the form a : S, where a is an attribute identifier and S is the sort
in which the values of the attribute identifier range. That is, class declarations
have the form

classC | ai1: S, ..., a,: S, -

We can declare classes without attributes using syntax
class C .

The basic syntax for class declarations is given by the following operators
and subsort relationship.

subsort AttrDecl < AttrDeclList .
op _:_ : Token Sort -> AttrDecl [prec 40]
op _,_ : AttrDeclList AttrDeclList -> AttrDecllList [assoc]

op class_|_. : Sort AttrDeclList -> ClassDecl .
op class_. : Sort -> ClassDecl .

In this example, the only attribute of an account is its bal(ance), which is de-
clared to be a value in MachineInt, a sort declared in the module MACHINE-INT.
The three kinds of messages involving accounts are credit, debit, and transfer
messages, whose user-definable syntax is introduced by the keyword msg. No-
tice the use of msgs to define multiple messages with the same arity in a single
declaration.

The syntax for message declarations is given by the following operators.

op msg_:_->_. : Token SortList Sort -> MsgDecl .
op msgs_:_->_. : NeTokenList SortList Sort -> MsgDecl .

The rewrite rules in the module specify in a declarative way the behavior
associated with the messages. The multiset structure of the configuration pro-
vides the top-level distributed structure of the system and allows concurrent
application of the rules [38]. For example, we can rewrite a simple configuration
consisting of an account and a message as follows.

Maude> (rew < ’Peter : Accnt | bal : 2000 >
debit (’Peter, 1000) .)

Result Object : < ’Peter : Accnt | bal : 1000 >

Class inheritance is directly supported by Maude’s order-sorted type struc-
ture. A subclass declaration C < C’ in an object-oriented module is just a
particular case of a subsort declaration C < C’. The effect of a subclass decla-
ration is that the attributes, messages, and rules of all the superclasses as well
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as the newly defined attributes, messages, and rules of the subclass characterize
the structure and behavior of the objects in the subclass.

For example, we can define an object-oriented module SAV-ACCNT of saving
accounts introducing a subclass SavAcent of Accnt with a new attribute rate
recording the interest rate of the account. We leave unspecified the rules for
computing and crediting the interest of an account according to its rate whose
proper expression should introduce a real-time? attribute in account objects.

(omod SAV-ACCNT is
including ACCNT .
class SavAccnt | rate : Machinelnt .
subclass SavAccnt < Accnt .

endom)

In this example, there is only one class immediately above SavAccnt, namely,
Accnt. In general, however, a class C' may be defined as a subclass of several
classes D1, ..., Dy, i.e., multiple inheritance is supported. If an attribute and
its sort have already been declared in a superclass, they should not be declared
again in the subclass. Indeed, all such attributes are inherited. In the case of
multiple inheritance, the only requirement that is made is that if an attribute
occurs in two different superclasses, then the sort attributed to it in each of those
superclasses must be the same. In summary, a class inherits all the attributes,
messages, and rules from all its superclasses. An object in the subclass behaves
exactly as any object in any of the superclasses, but it may exhibit additional
behavior due to the introduction of new attributes, messages, and rules in the
subclass.

As for subsort relationships, we can declare multiple subclass relationships
in the same declaration. Thus, given, for example, classes A, ..., H, we can have
a declaration such as

subclasses ABC<DECKFGH .

Since class names have the same form as sorts, in the signature used to parse
Full Maude given in Appendix C, we use the sort Sort to parse them, and the
sort SortList for lists of names of classes. The syntax for subclass declarations
is given by the following operators.

op subclass_. : SubsortRel -> SubclassDecl .
op subclasses_. : SubsortRel -> SubclassDecl .

Objects in the class SavAccnt will have an attribute bal and can receive
messages debiting, crediting and transferring funds exactly as any other object
in the class Accnt. We can now rewrite a configuration, obtaining the following
result.

Maude> (rew < ’Paul : SavAccnt | bal : 5000, rate : 3 >
< ’Peter : Accnt | bal : 2000 >
< ’Mary : SavAccnt | bal : 9000, rate : 3 >
debit (’Peter, 1000)
credit(’Paul, 1300)
credit (’Mary, 200) .)

Result Configuration :
< ’Peter : Accnt | bal : 1000 >

3See [49] for a general method to specify real-time systems in rewriting logic.
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< ’Paul : SavAccnt | bal : 6300 , rate : 3 >
< ’Mary : SavAccnt | bal : 9200 , rate : 3 >

The top level syntax for object-oriented modules is given by the following
declarations.

subsorts SDeclList MsgDecl SubclassDecl ClassDecl < 0ODeclList .

op omod_is_endom : ModuleName ODeclList -> PreModule .

3.2.2 Transforming Object-Oriented Modules into System
Modules

The best way to understand classes and class inheritance in Maude is by mak-
ing explicit the full structure of an object-oriented module, which is left some-
what implicit in the syntactic conventions adopted for them. Indeed, although
Maude’s object-oriented modules provide convenient syntax for programming
object-oriented systems, their semantics can be reduced to that of system mod-
ules. We can regard the special syntax reserved for object-oriented modules
as syntactic sugar. In fact, each object-oriented module can be translated into
a corresponding system module whose semantics is by definition that of the
original object-oriented module.

However, although Maude’s object-oriented modules can in this way be re-
duced to system modules, there are of course important conceptual advantages
provided by the syntax of object-oriented modules, because it allows the user
to think and express his or her thoughts in object-oriented terms whenever
such a viewpoint seems best suited for the problem at hand. Those conceptual
advantages would be lost if only system modules were provided.

In the translation process, the most basic structure shared by all object-
oriented modules is made explicit by the CONFIGURATION functional module
defined at the beginning of this section. The translation of a given object-
oriented module extends this structure with the classes, messages and rules
introduced by the module. For example, the following system module is the
translation of the ACCNT module introduced earlier. Note that a subsort Accnt
of Cid is introduced. The purpose of this subsort is to range over the class
identifiers of the subclasses of Accnt. For the moment, no such subclasses have
been introduced; therefore, at present the only constant of sort Accnt is the
class identifier Accnt.

mod ACCNT is
including MACHINE-INT .
including QID .
including CONFIGURATION .
sorts Accnt .
subsort Qid < 0id .
subsort Accnt < Cid .
op Accnt : -> Accnt
op credit : 0id MachineInt -> Msg .
op debit : 0id MachineInt -> Msg .
op transfer_from_to_ : Machinelnt 0id 0id -> Msg .

op bal :_ : Machinelnt -> Attribute .
var A : 0id .
var B : 0id .

var M : Machinelnt .
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var N : MachineInt .
var N’ : Machinelnt .
var V@Accnt : Accnt
var ATTSQ@O : AttributeSet .
var V@Accntl : Accnt
var ATTS@2 : AttributeSet .
rl [credit] : credit(A, M)
< A : V@Accnt | bal : N, none, ATTSQO >
=> < A : V@Acent | bal : (N + M), ATTSeO >
crl [debit] : debit(A, M)
< A : V@Accnt | bal : N, none, ATTS@O >
=> < A : V@Accnt | bal : (N - M), ATTS@O >
if N> M = true .
crl [transfer] : (transfer M from A to B)
< A : V@Accnt | bal : N, none, ATTS@O >
< B : V@Accntl | bal : N’, none, ATTS@2 >
=> < A : V@Accnt | bal : (N - M), ATTS@O >
< B : V@Accntl | bal : (N’ + M), ATTS@2 >
if N> M = true .
endm

We can describe the desired transformation from an object-oriented module
to a system module as follows?:

e The module CONFIGURATION is imported.

e For each class declaration of the form class C | a;:51,...,a,:S,, the
following has to be introduced: a subsort C of sort Cid, a constant C' of
sort C, and declarations of operations a; :_ : S; -> Attribute for each
attribute a;.

e For each subclass relation C < C' a subsort declaration
subsort C < C'

is introduced, and the set of attributes for objects of class C are completed
with those of C'.

e The rewrite rules are modified to make them applicable to all objects
of the given classes and of their subclasses, that is, not only to objects
whose class identifiers are those explicitly given. The rules are then “in-
herited” by all objects in their subclasses by replacing the class identifiers
in the objects in the rules by variables of the corresponding class sort.
Variables of sort AttributeSet are also introduced to range over the ad-
ditional attributes that may appear in objects of a subclass. That is,
each object < O : C' | ... > appearing in a rule, is translated into
<O : X | ..., Atts > where the new variable X is declared of sort

C, and the new variable Atts has sort AttributeSet.

e As described in [38], we simplify the notation used in object-oriented mod-
ules by giving the user the possibility of not mentioning in a given rule
those attributes of an object that are not relevant for that rule. To explain
this convention, let @ v denote the attribute-value pairs ay : vy, ..., a, : Uy,

4Notice that we have simplified the transformation of object-oriented modules into system
modules that originally appeared in [38].
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where the @ are the attribute identifiers of a given class C' (after completing
it with all the attributes in its superclasses) having S as the corresponding
sorts of values prescribed for those attributes. Then, in object-oriented
modules we allow rules where the attributes for an object O, mentioned
in the lefthand and righthand sides of a rule, need not exhaust all the
object’s attributes, but can instead be in any two arbitrary subsets of the
object’s attributes. We can picture this as follows

A0 :Clal:vlyab:vby... — ...{O:C |ab:vb,arzor)...

where al are the attributes appearing only on the left, ab are the attributes
appearing on both sides, and ar are the attributes appearing only on the
right. In the transformation into a system module, this rule is translated
into

.. {0 : X ]al:vl,ab:vb,ar = T,ac: x', Atts) . ..

— .. (O:X |al:vl,ab: vl ,arTor,ac: o', Atts) . ..

where X is a variable of sort C, @c are the attributes defined in the class
C that do not appear in al, ab, or ar, the T and z’ are new variables of the
appropriate sorts, and Atts matches the remaining attribute-value pairs.
Although the form of the rule obtained is slightly different from the one
given in [38], the convention is similar to the convention presented there:
The attributes mentioned only on the left are preserved unchanged, the
original values of attributes mentioned only on the right do not matter,
and all attributes not explicitly mentioned are left unchanged.

The rewrite rules given in the original ACCNT module are interpreted here
according to the conventions already explained—in a form that can be inherited
by subclasses of Accnt that could be defined later. Thus, SavAcent inherits the
rewrite rules for crediting and debiting accounts, and for transferring funds
between accounts that had been defined for Accnt.

Let us illustrate the treatment of class inheritance with the system module
resulting from the transformation of the module SAV-ACCNT introduced previ-
ously.

mod SAV-ACCNT is
including CONFIGURATION .
including ACCNT .
sorts SavAccnt .
subsort SavAccnt < Cid .
subsort SavAccnt < Accnt .

op SavAccnt : -> SavAccnt .
op rate :_ : MachineInt -> Attribute .
endm

3.3 Structured Specifications and Extensions of
META-LEVEL

As explained for Core Maude in Section 2.3, in Full Maude we can use keywords
protecting and including, or pr and inc in abbreviated form, to define struc-
tured specifications. All the predefined modules introduced in Section 2.4, plus
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the module META-LEVEL, are also available in Full Maude®. As we will explain
in Section 3.5, Full Maude supports not only the importation of modules, but
the importation of module expressions as well.

In metalevel computations it is very convenient to be able to refer by name
to the meta-representations of modules already entered into the system. To
make this possible, Full Maude allows importation declarations of the form

protecting META-LEVEL[Idy,...,Id,]

where Idy,...,Id, is a list of names of user-defined modules. With this decla-
ration, new constants Idy, ..., Id, of sort Module are declared, and equations
making each constant Id; equal to the metalevel representation of the module
with name Id; declared previously by the user, for i = 1...n, are added. Thus,

we can first enter the module.

(fmod NAT is
sort Nat
op 0 : -> Nat
op s_ : Nat -> Nat
op _+_ : Nat Nat -> Nat [assoc comm id: 0]
var N M : Nat
eqs N+sM=ss (N+M
endfm)

and then we can declare a module that protects META-LEVEL [NAT] and defines
a function to extract the set of operator declarations of a functional module as
follows.

(fmod META-NAT is
protecting META-LEVEL[NAT]

op getOpDeclSet : FModule -> OpDeclSet .

var QI : Qid .

var IL : ImportlList .

var SD : SortDecl .

var SSDS : SubsortDeclSet .
var ODS : OpDeclSet .

var VDS : VarDeclSet .

var MAS : MembAxSet .

var EqS : EquationSet .

eq getOpDeclSet (fmod QI is IL SD SSDS ODS VDS MAS EgS endfm)
= 0DS .
endfm)

Then we can apply this function to the constant NAT, which in META-NAT has
been declared to be equal to the meta-representation of the above module NAT,
as follows.

Maude> (red getOpDeclSet(NAT) .)

Result OpDeclSet
op 0 : nil -> ’Nat [nonel
op ’_+_ : ’Nat ’Nat -> ’Nat [assoc comm id({’0}’Nat)]
op ’s_ : ’Nat -> ’Nat [none]

5The built-in module LOOP-MODE presented in Section 2.8 is not supported in Full Maude.
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We can also use the descent functions as discussed in Section 2.5.5.

Maude> (red meta-reduce(NAT, ’_+_[{’0}’Nat, ’s_[{’0}’Nat]]) .)
Result Term : ’s_[{’0}’Nat]

Note that we have written the actual meta-representation of the term 0 + s 0
instead of using the more intuitive notation 0 + s 0 used in Section 2.5.5. How-
ever, in Full Maude, we can use the up function to avoid the cumbersome task of
explicitly writing the meta-representation of a term or the meta-representation
of a module. For example, to obtain the meta-representation of a term as s 0
in the module NAT, which we denote by s 0, we can write

Maude> (red up(NAT, s 0) .)
Result Term : ’s_[{’0}’Nat]

Thus, instead of explicitly writing the meta-representation 0 + s 0 in the above
reduction we can write

Maude> (red meta-reduce(NAT, up(NAT, O + s 0)) .)
Result Term : ’s_[{’0}’Nat]

Note that the module name is the first argument of the up function, with the
term of that module to be meta-represented as the second argument. Since the
same term can be parsed in different ways in different modules, and therefore
can have different meta-representations depending on the module in which it
is considered, the module to which the term belongs has to be used to obtain
the correct meta-representation. Note also that the above reduction only makes
sense at the metalevel, that is, in a module importing the module META-LEVEL.

The up function also gives us a second way of accessing the meta-represen-
tation of any module in the database. Evaluating in any module importing
the module META-LEVEL the up function with the name of any module in the
database as argument we obtain the meta-representation of such a module.
Thus, assuming that the previous module NAT has been entered in Full Maude,
and therefore is in the database, we can get its meta-representation, which we
denote by NAT, as follows.

Maude> (red up(NAT) .)
Result FModule :
fmod ’NAT is
nil
sorts ’Nat .

none

op ’0 : nil -> ’Nat [none]

op ’_+_ : ’Nat ’Nat -> ’Nat [assoc comm id({’0}’Nat)]

op ’s_ : ’Nat -> ’Nat [none]

var ’M : ’Nat

var ’N : ’Nat

none

eq '_+_[’s_[’N], ’s_[’M]] = ’s_D’s_[’_+_[’N, ’MI1].
endfm

This facility can be used to write reductions of terms as those presented in
Section 2.5.5, for example of meta-reduce(NAT, s s 0 + s s s 0), as follows.

Maude> (red meta-reduce(up(NAT), up(NAT, s s 0 + s s s 0)) .)
Result Term : ’s_[’s_[’s_[’s_[’s_[{’0}’Nat]]]1]1]
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The result of a metalevel computation that may use several levels of reflection
can be a term or module meta-represented one or more times, which may be
hard to read. Therefore, to display the output in a more readable form we
can use the down command, which is in a sense inverse to up, since it gives
us back the term from its meta-representation. The down command takes two
arguments. The first argument is the name of the module to which the term
to be returned belongs. The meta-representation of the desired output term
should be the result of the command given as second argument. The syntax of
the down command is as follows.

op down_:_ : ModExp PreCommand -> PreCommand .

Thus, we can give the following command.

Maude> (down NAT :
red-in META-NAT :
meta-reduce (NAT, up(NAT, 0 + s 0)) .)
Result Nat : s O

Notice that this is equivalent to what we wrote in section 2.5.5 as

Maude> red meta-reduce(NAT, s 0 + 0)
result Term: s O

The use of up and down can be iterated with as many levels of reflection as
we wish. For example, in a module

(fmod META-META-NAT is
protecting META-LEVEL [META-NAT]
endfm)

we can give the command

Maude> (down NAT :
down META-NAT :
red meta-reduce (META-NAT,
up (META-NAT,
meta-reduce (NAT,
up(NAT, 0 + s 0)))) .)
Result Nat : s O

This is equivalent to what we would have written using the overline notation as

Maude> red meta-reduce (META-NAT, meta-reduce(NAT, s O + 0))
result Term: s O

3.4 Commands and the Module Database

As with modules, all commands at the Full Maude level should be entered
enclosed in parentheses. In this way the system can distinguish between com-
mands at the Core Maude level—that in this context are “system programming”
commands in the module FULL-MAUDE—and commands to be handled by Full
Maude.

The reduce and rewrite commands have the same effect in Full Maude
specifications as their homonymous commands in Core Maude.
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The syntax for the reduce commands is given by the following declarations.
Notice that, as in Core Maude, red is used as an abbreviation for reduce.
However, the command to reduce a term in a given module has a somewhat
different syntax than the one used in Core Maude®.

op red_. : Bubble -> PreCommand .
op red-in_: : ModExp Bubble -> PreCommand .

Similarly, the following are the declarations defining the syntax of the rewrite
commands.

op rew_. : Bubble -> PreCommand .

op rew[_]_. : Token Bubble -> PreCommand .

op rew-in_:_. : ModExp Bubble -> PreCommand .

op rew-in[_]_:_. : Token ModExp Bubble -> PreCommand .

Full Maude maintains a database with all the modules that have been in-
troduced since the begining of the session. Notice that a Full Maude session
does not start automatically when we start the system. The Maude specifi-
cation of Full Maude has to be loaded first, and the loop has to be initialized.
Apart from the built-in modules, Core Maude and Full Maude keep independent
module stores.

As in Core Maude, when a module is not explicitly specified the system uses
a module by default, that in general is the last module introduced, although
one can select another module from the database with the select command.

op select_. : ModExp -> PreCommand .

There are also several show commands as in Core Maude. There are com-
mands to show a module or theory” as introduced by the user, to show the
flattened version of any module in the database, and to show some of the com-
ponents in a module in the same way as the commands for Core Maude, as
explained in Section A. For any of these commands the name of a module can
be given. If no name is specified, the default current module is used. The syntax
of these commands is as follows.

op show module . : -> PreCommand .

op show module_. : ModExp -> PreCommand .

op show all . : -> PreCommand .

op show all_. : ModExp -> PreCommand .

op show sorts . : -> PreCommand .

op show sorts_. : ModExp -> PreCommand .

op show ops . : -> PreCommand .

op show ops_. : ModExp -> PreCommand .

op show vars . : -> PreCommand .

op show vars_. : ModExp -> PreCommand .

op show mbs . : -> PreCommand .

6To have, for example, the command red in_:_. we would need the operator declaration

op red in_:_. : ModExp Bubble -> PreCommand .
However, given a command like red in NAT : s 0 . there would be two possible parses:

red in : . and red | in NAT : s 0| .. Both of them are correct parses, but the

meta-parse function returns only one of them. In case of ambiguity, one of the possible parses

is arbitrarily chosen, preventing us from the possibility of taking the right one. This syntactic

limitation as well as those discussed in Section 3.6 will be overcome in a future version.
"Theories are discussed in Section 3.5.1.



CHAPTER 3. FULL MAUDE 110

op show mbs_. : ModExp -> PreCommand .
op show eqns . : -> PreCommand .
op show eqns_. : ModExp -> PreCommand .
op show rls . : -> PreCommand .
op show rls_. : ModExp -> PreCommand .

The show view_ command prints the view® with the specified name.
op show view_. : ViewExp -> PreCommand .

The show modules and show views commands print, respectively, the list
of the names of all modules, and the list of the names of all views, present in
the database.

op show modules . : -> PreCommand .
op show views . : -> PreCommand .

3.5 Parameterized Programming

Parameterized modules, theories and views are the basic building blocks of pa-
rameterized programming [7, 27]. As in OBJ, a theory defines the interface of
a parameterized module, that is, the structure and properties required of an
actual parameter. The instantiation of the formal parameters of a parameter-
ized module with actual parameter modules requires a wview from the formal
interface theory to the corresponding actual module. That is, views provide the
interpretation of the actual parameters.

3.5.1 Theories

Theories are used to declare module interfaces, namely the syntactic and se-
mantic properties to be satisfied by the actual parameter modules used in an
instantiation. As for modules, Full Maude supports three different types of the-
ories: functional theories, system theories, and object-oriented theories. Their
structure is the same as that of their module counterparts. All of them can
have sorts, subsort relationships, operators, variables, membership assertions
and equations, and can import other theories or modules. System theories can
have rules as well, and object-oriented theories can have classes, subclass rela-
tionships and messages.

Theories are rewriting logic theories with a loose interpretation. Theories are
then allowed to contain rules and equations with variables in their righthand
sides or conditions that may not appear in their corresponding lefthand sides.
Similarly, conditional membership axioms may have variables in their conditions
that do not appear in their membership assertions. Also, the lefthand side may
be a single variable. In the current version, theories are not executed and cannot
be parameterized.

Functional theories are declared with the keywords fth ... endfth, system
theories with the keywords th ... endth, and object-oriented theories with
the keywords oth ... endoth. The syntax for the declaration of theories is as
follows.

op fth_is_endfth : ModuleName FDeclList -> PreModule .
op th_is_endth : ModuleName SDeclList -> PreModule .
op oth_is_endoth : ModuleName ODeclList -> PreModule .

8Views are discussed in Section 3.5.3.
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Let us begin by introducing the functional theory TRIV, which requires just
a sort.

(fth TRIV is
sort Elt
endfth)

The theory of partially ordered sets with an anti-reflexive and transitive
binary operator can be expressed in the following way.

(fth POSET is

protecting BOOL .

sort Elt

op _<_ : Elt E1t -> Bool .

vars X Y Z : Elt .

eq X < X = false .

ceq X < Z = true if X < Yand Y < Z .
endfth)

The theory of totally ordered sets, that is, posets in which all pairs of distinct
elements have to be related, can be given as follows.

(fth TOSET is

including POSET .

vars X Y : Elt

eq X <Yor Y<XorX ==Y = true .
endfth)

The including importation of a theory into another theory keeps its loose
semantics. However, if the imported theory contains a module, which therefore
must be interpreted with an initial semantics®, then that initial semantics is
maintained by the importation. For example, in the definition of the POSET
theory, the declaration protecting BOOL ensures that the initial semantics of
the functional module for the Booleans is preserved, which is in fact a crucial
requirement!'®. This requirement is then preserved by TOSET when POSET is
included. In fact, we are dealing with a structure in which part of it, not only
the top theory, has a loose semantics, while other parts contain modules with
an initial semantics. The kind of semantics of a module or theory is determined
by the keyword used in its definition and the importation mode.

As an example of a system theory, let us consider the theory CHOICE of
multisets of elements with a choice operator defined on the multisets by a rewrite
rule that nondeterministically picks up one of the elements in the multiset. We
can express this theory as indicated below, where we have a sort MSet declared
as a supersort of the sort E1t.

(th CHOICE is
sort MSet Elt
subsort El1t < MSet
op __ : Elt Elt -> Elt [assoc comm]
var E : Elt
var L : MSet

9In Full Maude, the importation of a module into a theory is supported only in protecting
mode.

10Note that a declaration importing BOOL is added to all modules and theories. There is no
way in the current version of Full Maude of setting off this inclusion. In Core Maude it can
be done with the set include command.
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rl [choice] : EL =>E .
endth)

Our last example is an object-oriented theory, namely, the theory of classes
with at least one attribute of any sort. It is defined as follows.

(oth CELL is

sort Elt

class Cell | contents : Elt
endoth)

This last theory could have been more naturally expressed as a parameterized
theory. We could have defined CELL with a parameter TRIV to capture the idea of
defining cells in a generic way. However, the present Full Maude implementation
does not support parameterized theories. We plan to extend the language to
support not only parameterized theories, but also parameterized views.

3.5.2 Parameterized Modules

Theories can be used to declare the interface requirements for parameterized
modules. Modules can be parameterized by one or more theories. All theories
appearing in the interface have to be labeled in such a way that their sorts can be
uniquely identified. The general form for the interface of a parameterized mod-
uleis [ Xy :: Ty, ..., X, ::T,], where X;...X, are the labels and T} ...T,
are the names of the parameter theories. Thus, the syntax of the interface of
parameterized modules is given by the following declarations.

op _::_ : Token ModExp -> Parameter [prec 40 gather (e &)]

subsort Parameter < ParameterList .
op _,_ : ParameterList ParameterList -> ParameterList [assoc]

op _[_] : Token ParameterList -> ModuleName .

In the current version of Full Maude all the sorts coming from theories in the
interface must be qualified by their labels, even if there is no ambiguity. If Z is
the label of a parameter theory 7', then each sort S in 7" has to be qualified as
S.Z. Since, as we will see in Section 3.5.3, operator maps affect entire families
of subsort-overloaded operators, there cannot be subsort overloading between
an operator declared in a theory being used as parameter of a parameterized
module and an operator declared in the body of the parameterized module,
or between operators declared in two parameter theories of the same module.
Thus, the parameterized module SIMPLE-SET, with TRIV as interface can be
defined as follows.

(fmod SIMPLE-SET[X :: TRIV] is
sorts Set NeSet .
subsorts E1t.X < NeSet < Set

op mt : -> Set

op __ : Set Set -> Set [assoc comm id: mt]

op __ : NeSet NeSet -> NeSet [assoc comm id: mt]
var E : E1t.X .

eq EE =E

endfm)
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Note that, as discussed in Section 3.3, in Maude—unlike OBJ3—sorts are not
systematically qualified by their module name. In the case of OBJ3, importing,
for example, sets or lists of different elements introduces repeated sorts Set or
List and operators that must be qualified by the names of the submodules
they come from, that is, by module expressions often of considerable length. Of
course, in OBJ3 it is possible to rename all these items. But this means that,
to avoid the burden of long qualifications by module expressions, we have to
include explicitly many more renamings than we would like.

The convention of not qualifying sorts may be particularly weak when deal-
ing with parameterized modules. However, given that Maude supports ad-
hoc overloading and that constants can be qualified in order to be disam-
biguated, the problem of ambiguity in a signature is reduced to collisions of
sorts. Our proposal consists in qualifying parameterized sorts, not with the
module expression they belong to, but with the name of the view or views used
in the instantiation of the parameterized module. In the current version of
Full Maude, we assume that all views are named, and that these names are
the ones used in the qualification. Specifically, in the body of a parameterized
module M [X; :: Ty, ..., X, ::T,], any sort S can be written in the form
S[Xy, ..., X,]. When the module is instantiated with views V7, ..., V,, then
this sort becomes S[Vy, ..., V,]1. Note that the parameterization of sorts is
optional. The above specification, for example, is perfectly valid.

The declarations needed to allow parameterized sorts are the following.

subsort ViewToken < ViewExp .
op _,_ : ViewExp ViewExp -> ViewExp [assoc]

op _[_] : Sort ViewExp -> Sort [prec 40]

Thus, the previous module to define sets could instead have been defined as
follows.

(fmod SET[X :: TRIV] is
sorts Set[X] NeSet [X]
subsorts E1t.X < NeSet[X] < Set[X]
op mt : -> Set[X]

op __ : Set[X] Set[X] -> Set[X] [assoc comm id: mt]

op __ : NeSet[X] NeSet[X] -> NeSet[X] [assoc comm id: mt]
var E : E1t.X .

eq EE=E .

endfm)

In the coming sections we will see how this qualification convention for
the sorts of a parameterized module avoids many unintended collisions of sort
names, thus making renaming practically unnecessary.

The module SET has only one parameter. In general, however, parameterized
modules can have several parameters. It can furthermore happen that several
parameters are declared with the same parameter theory, that is, we can have
an interface of the form [X :: TRIV, Y :: TRIV] involving the theory TRIV.
Therefore, parameters cannot be treated as normal submodules, since we do
not want them to be shared when their labels are different. We regard the
relationship between the body of a parameterized module and the interface of its
parameters not as an inclusion, but as a module constructor which is evaluated
generating renamed copies of the parameters, which are then included. For
the above interface, two copies of the theory TRIV are generated, with names
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X :: TRIVand Y :: TRIV. In such copies of parameter theories sorts are renamed
as follows: If Z is the label of a parameter theory 7', then each sort S in T' (for
TRIV just the sort E1t) is renamed to S. Z. This is the reason why all occurrences
of these sorts in the parameterized module must mention their corresponding
renaming. In a future version of the system, this qualification will be necessary
only in case of ambiguity.

Let us consider as an example the following module PAIR. Notice the use of
the qualifications for the sorts coming from each of the parameters, and notice
also the qualification of the sort Pair[X, Y].

(fmod PAIR[X :: TRIV, Y :: TRIV] is
sort Pair[X, Y]
op <_;_> : Elt.X Elt.Y -> Pair[X, Y]
op 1st : Pair[X, Y] -> Elt.X .
op 2nd : Pair[X, Y] -> Elt.Y .
var A : E1t.X .
var B : E1t.Y .
eq 1st(< A ; B >)
eq 2nd(< A ; B >)
endfm)

[[]|
o =

If a parameter theory is structured, this renaming process for parameter
theories is carried out not only at the top level, but for the whole “theory
part,” that is, not renaming modules. Consider, for example, the following
parameterized module defining a lexicographical ordering on pairs of elements
of a totally ordered set.

(fmod TOSET-PAIR[X :: TOSET, Y :: TOSET] is
sort Pair[X, Y]
op <_;_> : Elt.X EI1t.Y -> Pair[X, Y]
op _<_ : Pair[X, Y] Pair[X, Y] -> Bool .
op 1st : Pair[X, Y] -> Elt.X .
op 2nd : Pair[X, Y] -> Elt.Y .
var A A’ : E1t.X .
var B B’ : Elt.Y

eq 1st(< A ; B>) = A .
eq 2nd(< A ; B> =B .
eq <A ; B><<A ; B>
= (A< A’) or (A ==A’ and B < B?)
endfm)

Representing by — the inclusion relations between modules and theories,
and by = the initiality constraints, we can depict the resulting structure as



CHAPTER 3. FULL MAUDE 115

follows.

TOSET-PAIR

ﬂ

X::TOSET + Y::TOSET

T

X::TOSET Y::TOSET
| |
X::POSET Y::POSET
\\\\\\\\\\\\) L//////////i’

BOOL
ﬂ
0

where we have two copies not only of TOSET but also of the POSET subtheory.

An object-oriented parameterized module defining a stack of elements can
be defined as follows. We define a class Stack [X]'! as a linked sequence of node
objects. Objects of class Stack [X] only have an attribute first, containing the
identifier of the first node in the stack. If the stack is empty the value of the
first attribute is null. Each object of class Node[X] has an attribute next
holding the identifier of the next node—which will be null if there is no next
node and an attribute contents to store a value of sort E1t.X. Notice that
the identifiers of the nodes are of the form o(S,N), where S is the identifier of
the stack object to which the node belongs, and N is a natural number. The
messages push, pop and top have as their first argument the identifier of the
object to which they are addressed, and will cause, respectively, the insertion
at the top of the stack of a new element, the deletion of the top element, and
the sending of a response message elt containing the element at the top of the
stack to the object making the request.

(omod STACK[X :: TRIV] is
protecting MACHINE-INT .
protecting QID .
subsort Qid < 0id .
class Node[X] | next : 0id, contents : Elt.X .
class Stack[X] | first : 0id .
msg _push_ : 0id E1lt.X -> Msg .
msg _pop : 0id -> Msg .
msg _top_ : 0id 0id -> Msg .
msg _elt_ : 0id E1t.X -> Msg .

op null : -> 0id .
op o : 0id Machinelnt -> 0id .

! Notice that naming of parameterized classes follows the same conventions discussed above
for parameterized sorts.
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vars 0 0’ 0’° : 0id .
var E : E1t.X .
var N : Machinelnt .

rl [top] : *** top on a nonempty stack
< 0 : Stack[X] | first : 0’ >
< 0’ : Node[X] | contents : E >
(0 top 077)
=> < 0 : Stack([X] | >
< 0’ : Node[X] | >
(0’ elt E)

rl [pushl] : #** push on a nonempty stack
< 0 : Stack[X] | first : o(0, N) >
(0 push E)
=> < 0 : Stack[X] | first : o(0, N + 1) >
< o(0, N+ 1) : Node[X] |
contents : E, next : o(0, N) >
rl [push2] : #** push on an empty stack
< 0 : Stack[X] | first : null >
(0 push E)
=> < 0 : Stack[X] | first : o(0, 0) >
< o(0, 0) : Nodel[X] | contents : E, next : null >

rl [pop] : *** pop on a nonempty stack
< 0 : Stack[X] | first : 0’ >
< 0’ : Node[X] | next : 0’ >
(0 pop)
=> < 0 : Stack[X] | first : 0’ >
endom)

We may want to define stacks not storing data elements of a particular sort,
but actually objects in a particular class. We can define an object-oriented mod-
ule with the intended behavior as a parameterized module STACK2 parameterized
by the object-oriented theory CELL, presented in Section 3.5.1, as follows.

(omod STACK2[X :: CELL] is
protecting MACHINE-INT .
protecting QID .
subsort Qid < 0id .
class Node[X] | next : 0id, node : 0id .
class Stack[X] | first : 0id .
msg _push_ : 0id 0id -> Msg .
msg _pop : 0id -> Msg .
msg _top_ : 0id 0id -> Msg .
msg _elt_ : 0id E1t.X -> Msg .

op null : -> 0id .
op o : 0id Machinelnt -> 0id .

vars 0 0’ 0’’ 0’’’ : 0id .
var E : E1t.X .
var N : MachineInt .
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rl [top] : *** top on a nonempty stack
< 0 : Stack[X] | first : 0’ >
< 0’ : Node[X] | node : 0’ >
<0’ : Cell.X | contents : E >
(0 top 0777)
=> < 0 : Stack[X] | >
< 0’ : Node[X] | >
<0’ : Cell.X | >
(0’ elt E)

rl [pushl] : *** push on a nonempty stack
< 0 : Stack[X] | first : o(0, N) >
(0 push 07)
=> < 0 : Stack[X] | first : o(0, N + 1) >
< o(0, N+ 1) : Node[X] |
next : o(0, N), node : 0’ >
rl [push2] : *** push on an empty stack
< 0 : Stack[X] | first : null >
(0 push 07)
=> < 0 : Stack[X] | first : o(0, 0) >
< o(0, 0) : Node[X] | next : null, node : 0’ >

rl [pop] : *** pop on a nonempty stack
< 0 : Stack[X] | first : 0’ >
< 0’ : Node[X] | next : 0’ >
(0 pop)
=> < 0 : Stack[X] | first : 0°’ >
endom)

3.5.3 Views

We use views to assert how a particular target module or theory is claimed to
satisfy'? a source theory. In general, there may be several ways in which such
requirements might be satisfied, if at all, by the target module or theory; that
is, there can be many different views, each specifying a particular interpretation
of the source theory in the target.

In the current version of Full Maude, default views are not supported. There-
fore, all views have to be defined explicitly, and all of them must have a name.
As any theory or module, views should have been defined before they are used.

In the definition of a view we have to indicate its name, the source theory,
the target module or theory, and the mapping of each sort, function, class, and
message in the source theory. Although the current version does not support
default views in the style of OBJ3, “obvious” parts of a mapping do not need
to be explicitly given, namely, any identical mapping of a function, message,
or attribute f to itself such that its arity and coarity are mapped to those of
an operator, message, or attribute with the same name in the target can be
omitted. However, maps for all sorts in the source theory have to be given, even
when they are identity maps.

12Fach view declaration has an associated set of proof obligations, namely, for each axiom
in the source theory it should be the case that the axiom’s translation by the view holds in the
target. Since the target can be a module interpreted initially, verifying such proof obligations
may in general require inductive proof techniques of the style supported for Maude’s logic
in [12].
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The mapping of a sort S in the source theory to a sort S’ in the target is
expressed with syntax
sort S to S

The mapping of operators is expressed with syntax
op O to O

where O is an operator identifier or an operator identifier together with its
arity and value sort. An operator map in which explicit arity and coarity are
given affects, not only the operators with such arity and coarity, but the entire
family of subsort-overloaded operators (see Section 2.1.1) associated to the given
operator. The target operators can be derived operators, that is, they can be
terms with variables. Therefore, we can map a function symbol, not only to
another function symbol, but also to an expression. Consider, for example, the
case in which we want to define a view from a theory in which we have a “less
or equal” operator _<=_, defined with reflexivity, symmetry and transitivity
equations, to a module in which such an operator does not exist but we have
an operator “less than” _<_. Then, we can define a view with a map

op X <= Y to term X < Y or X ==

The mapping of a class C in the source theory to a class C’ in the target is
expressed with syntax
class C to ('

Attribute maps have the form
attr A . C to A

where A is the name of an attribute of class C in the source theory and A’ is
an attribute of the image class of C' under the view. The mapping of messages
is expressed with syntax

msg M to M’

where M is a message identifier or a message identifier together with its arity and
value sort. As for operators, a message map in which explicit arity and coarity
are given affects the entire family of subsort-overloaded message declarations
associated to the declaration of the given message.

The syntax for views is given by the following declarations.

op op_to term_. : Bubble Bubble -> ViewDecl .

op op_to_. : Token Token -> ViewDecl .

op op_:_—>_to_. : Token SortList Sort Token -> ViewDecl .
op op_: ->_to_. : Token Sort Token -> ViewDecl .

op sort_to_. : Sort Sort -> ViewDecl .

op class_to_. : Sort Sort -> ViewDecl .

op attr_._to_. : Token Sort Token -> ViewDecl .

op msg_to_. : Token Token -> ViewDecl .

op msg_:_->_to_. : Token SortList Sort Token -> ViewDecl .
op msg_: ->_to_. : Token Sort Token -> ViewDecl .

subsorts VarDecl < ViewDecl < ViewDeclList .
subsort VarDeclList < ViewDeclList .

op __ : ViewDeclList ViewDeclList -> ViewDeclList [assoc]



CHAPTER 3. FULL MAUDE 119

op view_from_to_is_endv :
ViewToken ModExp ModExp ViewDeclList -> PreView .

Thus, we can have a view

(view MachineInt from TRIV to MACHINE-INT is
sort Elt to Machinelnt .
endv)

which defines a view from the theory TRIV to the module MACHINE-INT. In views
from TRIV we encourage the convention of naming such views by the name of
the sort to which E1t is mapped. Although it is not necessary to follow this
convention, it can add understandability to the specifications. What has to be
avoided is using the labels in interfaces of parameterized modules as names of
views, since this can sometimes generate ambiguities.

We can have views between theories, which is particularly useful to compose
instantiations of views to link the formal parameter of some parameterized mod-
ule to some actual parameter via some intermediate formal parameter of another
parameterized module. We will give some examples in the coming sections. An
example of a view whose target is a theory is the following.

(view Toset from TRIV to TOSET is
sort Elt to Elt
endv)

As already mentioned, in some cases it is useful to be able to express map-
pings of functions, not to other functions but to expressions. For example, the
_<_ relation of a toset can be mapped to an expression using the “less than or
equal” operator _<=_ and the inequality operator _=/=_ as follows.

(view MachIntAsToset from TOSET to MACHINE-INT is
sort Elt to Machinelnt .
vars X Y : Elt
op X <Y to term X <= Y and X =/=Y .

endv)

Notice that, when dealing with parameterized modules with structured the-
ories as parameters, as in the TOSET-PAIR example discussed in Section 3.5.1,
we have to give a view not only for the top theory but for the entire “loose part,”
that is, for all other subtheories imported by the theory. In the near future we
plan to handle parameterized theories and views as well, as a way to give more
structure to both theories and views.

3.5.4 Module Expressions

As in Clear [7], OBJ [27], and other specification languages in that tradition,
the abstract syntax for writing specifications in Maude can be seen as given
by module expressions, where the notion of module expression is understood as
an expression that defines a new module out of previously defined modules by
combining and/or modifying them according to a specific set of operations, that
is, according to a specific module algebra. In fact, structuring is essential in all
specification languages, not only to facilitate the construction of specifications
from already existing ones with more or less flexible reusability mechanisms
but also for managing the complexity of understanding and analyzing large
specifications.
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A module importing some combination of modules, given by module expres-
sions, can be seen as a structured module with more or less complex relationships
among its component submodules. For execution purposes, however, we typ-
ically want to convert this structured module into an equivalent unstructured
module, that is, into a “flattened” module without submodules. In the case
of Maude, this flattened module will then be compiled into the rewrite engine.
By systematically using the metaprogramming capabilities of Maude we can
both evaluate module expressions into structured module hierarchies, and flat-
ten such hierarchies into unstructured modules for execution. All such module
operations are defined by rewrite rules that operate on the metalevel term rep-
resentations of modules. This is essentially the idea behind the implementation
of Full Maude in Maude.

The current version of Full Maude supports two types of module expression:
instantiation of a module expression with a view expression, and renaming of a
module expression with a set of mappings. The syntax used for both of them is
the same one as in OBJ3, namely

op _[_] : ModExp ViewExp -> ModExp .
for instantiation of parameterized modules, and
op _*(_) : ModExp MapList -> ModExp .

for renamings. As we saw in Section 3.5.2, a view expression can be a single view
name, or a sequence of view names separated by commas in case the module
being instantiated has several parameters.

Module Instantiation

Instantiation is the process by which actual parameters are bound to the param-
eters of a parameterized module and a new module is created as a result. This
can be seen in fact as the evaluation of a module expression. The instantiation
requires a view from each formal parameter to its corresponding actual param-
eter. Each such view is then used to bind the names of sorts, operators, etc.
in the actual parameters to the corresponding sorts, operators (or expressions),
etc. in the target.

The instantiation of a parameterized module has to be made with views
explicitly defined previously. Thus, we can have a set of machine integers with
the module expression SET [MachineInt], or a pair of machine integers as tosets
with TOSET-PAIR[MachIntAsToset, MachIntAsToset].

As mentioned in Section 3.5.3, we can define views from theories to theories.
Using such views we can, for example, instantiate the module SET with the
view Toset given in the previous section. The result is a module SET [Toset]
which is still parameterized, but now by the theory TOSET. We can instantiate
it again with a view from TOSET to some other theory or module, for example,
MachIntAsToset, obtaining the module SET [Toset] [MachIntAsToset], which
is just a set of machine integers. For example, we can give a more concise
definition of the parameterized module TOSET-PAIR[X :: TOSET, Y :: TOSET]
using these ideas as follows.

(fmod TOSET-PAIR[X :: TOSET, Y :: TOSET] is
protecting PAIR[Toset, Toset] [X, Y]
op _<_ : Pair[Toset, Toset][X, Y] Pair[Toset, Toset][X, Y]
-> Bool .
var A A’ : E1t.X .
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var B B’ : E1t.Y .

eq <A ; B><<A ;B >

= (A< A’) or (A ==A" and B < B?)
endfm)

Let us consider now the following module MAX, parameterized by the the-
ory TOSET. Given a set of elements in this toset, the function max returns the
maximum element in the set.

(fmod MAX[T :: TOSET] is
protecting SET[Toset] [T]
op max : NeSet[Toset] [T] -> E1t.T .
var E : E1t.T .
var S : NeSet[Toset] [T]
eq max(E) = E .

E if max(S) < E .
max(S) if not (max(S) < E)

ceq max(E S)
ceq max(E S)
endfm)

Module expressions can be arguments of a protecting or including im-
portation, or can be used as the module in which to reduce or rewrite by a red
or rew command. In general we can use module expressions in any place where
the name of a module is expected. In fact, in Full Maude the name of a module
is given by a module expression, and each time a new module expression is en-
tered, the module expression is evaluated, and a module is generated with this
module expression as its name. It is this module which is passed to the engine
to get the intended result.

Let us see how module expressions can be used in red commands using the
instantiation of MAX with the view MachIntAsToset presented in Section 3.5.3.

Maude> (red-in MAX[MachIntAsToset] : max(5 4 8 4 6 5) .)
Result : 8

Notice that, if we have several parameters, we can instantiate the parameter-
ized module with some views going to theories and others going to modules. The
result in this case is the expected one, that is, we get a module parameterized
by the targets of those views going to theories.

Module Renaming

A renaming can be considered as a function that, given a module M and a list
of mappings S, returns a copy of the module in which the names of the sorts,
operations, etc. are changed as indicated by the mappings. More precisely, given
a structured specification, the renaming not only causes the creation of a copy
of the top module in the structure, but renames also the part of the submodule
structure that is affected by the renaming. For any other submodule M’ in the
structure which is affected by the mappings, a renamed copy of it is generated
with name M' * (S’), where S’ is the subset of mappings in S that affect M’.
The complete syntax for renaming maps is as follows.

op op_to_ : Token Token -> Map .

op op_:_—>_to_ : Token SortList Sort Token -> Map .

op op_: —->_to_ : Token Sort Token -> Map .

op op_to_[_] : Token Token AttrList -> Map .

op op_:_->_to_[_] : Token SortList Sort Token AttrList -> Map .
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op op_: ->_to_[_] : Token Sort Token AttrList -> Map .
op sort_to_ : Sort Sort -> Map .

op label_to_ : Token Token -> Map .

op class_to_ : Sort Sort -> Map .

op attr_._to_ : Token Sort Token -> Map .

op msg_to_ : Token Token -> Map .

op msg_:_->_to_ : Token SortList Sort Token -> Map .
op msg_: ->_to_ : Token Sort Token -> Map .

subsort Map < MapList
op _,_ : MapList MapList -> MapList [assoc prec 42]

Notice that we also allow the renaming of rule labels, which may be useful for
metalevel applications.

A set of attributes can also be given in the renaming of an operator. This
allows changing syntactic attributes, such as the precedence values and the
gathering patterns, which may be of practical relevance when dealing with mixfix
syntax. For example, when a change in the syntax of the operator could cause
a parsing different from the intended one. Let us see an example in which
modifying the grammatical attributes of an operator is useful. Suppose that
we want to change the syntax of the function max in the module MAX presented
above, to maximum_. We can do the following reduction.

Maude> (red-in MAX[MachIntAsToset]
* (op max : NeSet[Toset] [MachIntAsToset]
-> MachineInt to maximum_)
: maximum 5 4 8 4 6 5 .)
Result : 4 56 6 8

This result may seem strange, but makes perfect sense. In fact the system
indicates the term that it has reduced:

Reduce in MAX[MachIntAsToset]
* (op max : NeSet[Toset] [MachIntAsToset]
-> MachinelInt to maximum_)
(maximum 5) 4 8 4 6 5

What has happened is that the precedence given by default to the operator with
this new syntax is the same as that given to the operator __, and therefore, by
the default gathering patterns, this is a valid parse. Notice that the other
elements passed to the function maximum have “disappeared” by the equations
in SET. We can obtain the intended result by placing parentheses around the
set of numbers, but it is more convenient to change the precedence values of the
attributes. We can, for example, raise the precedence of maximum_.

Maude> (red-in MAX[MachIntAsToset]
* (op max : NeSet[Toset] [MachIntAsToset]
-> MachineInt to maximum_
[prec 411)
: maximum 5 4 8 4 6 5 .)
Reduce in MAX[MachIntAsToset]
* (op max : NeSet[Toset] [MachIntAsToset]
-> MachineInt to maximum_
[prec 41])
: maximum (5 4 8 4 6 5)
Result : 8



CHAPTER 3. FULL MAUDE 123

More examples can be found in Appendix E. We finish this section with an
example involving object-oriented modules, namely, a stack of banking accounts.

(view Accnt from CELL to ACCNT is
sort E1lt to Machinelnt .
class Cell to Accnt
attr contents . Cell to bal .
endv)

Now we can do the following rewriting.

Maude> (rew-in STACK2[Accnt]

< ’stack : Stack[Accnt] | first : null >

< ’paul : Accnt | bal : 5000 >

< ’peter : Accnt | bal : 2000 >

< ’mary : Accnt | bal : 15000 >

(’stack push ’paul)

(’stack push ’peter)

(’stack push ’mary)

(’stack top ’peter)

(’stack pop) .)
Result Configuration : (’peter elt 2000)

< ’stack : Stack[Accnt] |

first : o(’stack, 1) >
’paul : Accnt | bal : 5000 >
‘peter : Accnt | bal : 2000 >
’mary : Accnt | bal : 15000 >
o(’stack, 0) : Node[Accnt] |
next : null, node : ’peter >
< o(’stack, 1) : Nodel[Accnt] |
next : o(’stack, 0), node : ’mary >

AN N N AN

3.6 Syntactic Restrictions and Caveats

We can write functional and system modules in Full Maude as we do it in Core
Maude, but enclosing them in parentheses. However, there are some syntactic
differences between what is currently allowed in Core Maude and in Full Maude.
As a consequence, some syntactic restrictions should be taken into account when
using Full Maude to write specifications:

1. Operator and message names have to be given in their equivalent single
identifier form when they are declared, and

2. sort names used in term qualifications and in sort tests have to be in their
equivalent single identifier form.

We plan to remove these syntactic restrictions in a future version. In the rest
of the section we explain them in some detail and give some hints on how to
avoid them.

Operator names have to be given as a single identifier. To declare multi-
identifier operators they have to be given in their single identifier form, that is,
each identifier in a multi-identifier name has to be preceded by a backquote. For
example, to define an operator with name _less than or equal_, we have to
use its single identifier form _less‘than‘or‘equal_. Except for having to use
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the single identifier form in the operator name, the declaration of operations is
exactly as for Core Maude. For example, the declaration of this operator on
sort, say, Int is as follows.

op _less‘than‘orfequal_ : Int Int -> Bool .

Notice that not only blank spaces, but also the special characters ‘{’, ‘}’, ‘C,
97, ‘[’, ‘1" and ,’ break the identifiers. Therefore, to declare in Full Maude an
operator such as {_} taking an element of sort, say, Int and with value sort
Set, we should write

op ‘{_‘} : Int -> Set

As in Core Maude, several operators with the same arity and coarity can be
defined in the same declaration using the keyword ops, but again, each operator
name has to be given in its single identifier form. We could have for example
the following declaration.

ops _‘{_‘} _¢,_ : Foo Bar -> Baz .

Notice that, since each operator name is a single identifier, parentheses are not
needed to indicate the boundaries between the syntactic forms of the different
operators.

As for operator names, message names can be mixfix, but they have to be
declared in single identifier form. Thus, to define a message credit with syntax,
say, (_)credit_ the declaration has to be given as follows.

msg ‘(_¢)credit_ : 0id MachineInt -> Msg .
And the same applies to declarations of multiple message names:
msgs ‘(_‘)credit_ ‘(_‘)debit_ : 0id MachineInt -> Msg .

The last problem mentioned at the beginning of this section has to do with
the qualification of terms by sort names and with sort tests. Since qualifications
by sort and sort tests—as well as parentheses, polymorphism, and other syn-
tactic features in the extended signature of a specification—are directly handled
by Core Maude, and Core Maude does not know about parameterized sorts,
the user is forced to use in these cases the names of parameterized sorts, not
as he or she has defined them, but in their equivalent single identifier form.
Thus, if we have, for example, a sort List[Nat] and a constant nil in it, if
necessary, it should be qualified as (nil) .List‘[Nat‘]. Similarly, to check
whether a term T has the sort List[Nat] we have to write T : List‘[Nat‘]
or T :: List‘[Nat‘].

We plan to add to the Maude system new functionality supporting a more
flexible treatment of the syntax of Full Maude and other languages, so that
these syntactic restrictions will eventually be removed.



Chapter 4

The Semantics of Maude

We summarize the semantic foundations of Maude’s functional, object-oriented,
and system modules, including a brief discussion of parameterized modules. We
first introduce the basic concepts of membership equational logic, whose initial
algebras provide the mathematical semantics for functional modules. Then, we
review the basic concepts of rewriting logic, whose initial models provide the
mathematical semantics for object-oriented and system modules.

4.1 Membership Equational Logic and Functional
Modules

Maude is a declarative language based on rewriting logic. But rewriting logic
has its underlying equational logic as a parameter. There are, for example,
unsorted, many-sorted, and order-sorted versions of rewriting logic, each con-
taining the previous version as a special case. The underlying equational logic
chosen for Maude is membership equational logic [41, 5], a conservative extension
of both order-sorted equational logic and partial equational logic with existence
equations [41]. It supports partiality, subsort relations, operator overloading,
and error specification.

A signature in membership equational logic is a triple = (K, X, S) with K
a set of kinds, (K, Y) a many-sorted (although it is better to say “many-kinded”)
signature, and S = {Si }rex a K-kinded set of sorts.

An Q-algebra is then a (K, X)-algebra A together with the assignment to
each sort s € Sy of a subset Ay C Aj. Intuitively, the elements in sorts are
the good, or correct, or nonerror, or defined, elements, whereas the elements
without a sort are error or undefined elements.

Atomic formulas are either Y-equations, or membership assertions of the
form ¢ : s, where the term ¢ has kind & and s € S;. General sentences are Horn
clauses on these atomic formulae, quantified by finite sets of K-kinded variables.
That is, they are either conditional equations

(VX) t=1t"if (/\ui:vi)A(/\il)j 1 55)

J
or membership axioms of the form

(VX) t:s if (/\uizvi)A(/\wj:Sj).

125
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Membership equational logic has all the usual good properties: soundness and
completeness of appropriate rules of deduction, initial and free algebras, rela-
tively free algebras along theory morphisms, and so on [41].

In Maude, functional modules are equational theories in membership equa-
tional logic satisfying the additional requirement of being Church-Rosser and
(preferably) terminating. Functional theories are also membership equational
logic theories, but they do not need to be Church-Rosser; they have a loose
interpretation, in the sense that any algebra satisfying the equations and mem-
bership axioms in the theory is an acceptable modell.

The semantics of an unparameterized functional module is the initial algebra
specified by its theory. The semantics of a parameterized functional module
is the free functor associated to the inclusion of the parameter theory? into
the body of the parameterized module [41]. For example, a parameterized list
module LIST[X :: TRIV] forms lists of models of the trivial parameter theory
TRIV with one sort E1t, whose models are sets of elements and its semantics is
the functor sending each set to the algebra of lists of the set. Similarly, a sorting
module SORTINGLY :: POSET] sorts lists whose elements belong to a model of
the POSET functional theory, that is, the data type of elements must have a
partial order and its semantics is the functor sending each poset to the algebra
of lists for that poset with a sorting function®. All this is entirely similar to the
semantics of “objects” (that correspond to modules in our sense) and theories
in OBJ [27]. Indeed, since membership equational logic conservatively extends
order-sorted equational logic, Maude’s functional modules extend OBJ modules.

Maude does automatic kind inference from the sorts declared by the user
and their subsort relations. There is no need to declare kinds explicitly. The
convenience of order-sorted notation is retained as syntactic sugar. Thus, an
operator declaration

op push : Nat Stack -> NeStack .

is understood as syntactic sugar for the membership axiom
(Vx,y) push(z,y): NeStack if x: Nat Ay : Stack.

Similarly, a subsort declaration NeStack < Stack corresponds to the member-
ship axiom
(Vz) =z : Stack if x: NeStack.

Computation in a functional module is accomplished by using the equations
as rewrite rules until a canonical form is found. Therefore, the equations must
satisfy the additional requirements of being Church-Rosser, terminating, and
sort-decreasing [5]. This guarantees that all terms in an equivalence class mod-
ulo the equations will rewrite to a unique canonical form, and that this canonical
form can be assigned a sort that is smaller than all other sorts assignable to terms
in the class. For a module satisfying such conditions any reduction strategy will
reach a normal form; nevertheless, as explained in Section 2.1.3, the user can
assign to each operator a functional evaluation strategy in the OBJ style [27] to
control the reduction for efficiency purposes. If no such strategies are declared,

However, a functional theory may contain functional submodules in protecting mode,
imposing the additional requirement that those submodules should be interpreted initially.

20f course, if the parameterized module has several parameter theories, we should form
their colimit, and consider instead the inclusion of such a colimit into the body.

3Note that POSET is a good example of a theory where part of the semantics is loose and
part of it initial, because it protects the functional module BOOL, which is used in an essential
way to define the partial order predicate.
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a bottom-up strategy is chosen. Since Maude supports rewriting modulo equa-
tional theories such as associativity or associativity/commutativity, all that we
say has to be understood for equational rewriting modulo such axioms.

In membership equational logic the Church-Rosser property of terminating
and sort-decreasing equations is indeed equivalent to the confluence of their crit-
ical pairs [5]. Furthermore, both equality and membership of a term in a sort
are then decidable properties [5]. That is, the equality and membership predi-
cates are computable functions. We can then use the metatheorem of Bergstra
and Tucker [1] to conclude that such predicates are themselves specifiable by
Church-Rosser and terminating equations as Boolean-valued functions. This
has the pleasant consequence of allowing us to include inequalities ¢ # ¢' and
negations of sort tests not(t : s) in conditions of equations and of membership
axioms, since such seemingly negative predicates can also be axiomatized inside
the logic in a positive way, provided that we have a subspecification of (not nec-
essarily free) constructors in which to do it, and that the specification is indeed
Church-Rosser, terminating, and sort decreasing. Of course, in practice they do
not have to be explicitly axiomatized, since they are built into the implementa-
tion of rewriting deduction in a much more efficient way (see Section 2.4.1).

Let us denote membership equational logic by MEgtl and its associated
rewriting logic by MRWLogic. Regarding an equational theory as a rewrite
theory whose sets of rules are empty defines a conservative map of logics [32]

MEqtl — MRW Logic.

This is the way in which Maude’s functional modules are regarded as a special
case of its more general system modules.

4.2 Rewriting Logic

We first define rewrite theories and give the logic’s rules of deduction. Then,
the models of rewrite theories, including initial and free models, are discussed.

4.2.1 Theories and Deduction

A signature in rewriting logic is an equational theory? (X, E), where X is an
equational signature and F is a set of ¥-equations. Rewriting will operate on
equivalence classes of terms modulo E. In this way, we free rewriting from the
syntactic constraints of a term representation and gain a much greater flexibility
in deciding what counts as a data structure; for example, string rewriting is
obtained by imposing an associativity axiom, and multiset rewriting by imposing
associativity and commutativity. Of course, standard term rewriting is obtained
as the particular case in which the set of equations E is empty. Techniques for
rewriting modulo equations have been studied extensively [17] and can be used
to implement rewriting modulo many equational theories of interest. This is
precisely what Maude does, using the equational attributes given in operator
declarations such as associativity, commutativity, identity, and idempotency
to rewrite modulo such axioms.

4Rewriting logic is parameterized by the choice of its underlying equational logic, that can
be unsorted, many-sorted, order-sorted, membership equational logic, and so on. For Maude,
the underlying equational logic is of course membership equational logic. However, to ease
the exposition we give here an unsorted presentation.
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Given a signature (X, E), sentences of rewriting logic are sequents of the
form
[tle — [t']e,

where ¢ and ¢ are ¥-terms possibly involving some variables, and [t]x denotes
the equivalence class of the term ¢ modulo the equations E. A rewrite theory R
is a 4-tuple R = (%, E, L, R) where ¥ is a ranked alphabet of function symbols,
E is a set of Y-equations, L is a set of labels, and R is a set of pairs R C
L x Ts g(X)? whose first component is a label and whose second component is
a pair of E-equivalence classes of terms, with X = {z;,...,z,,...} a countably
infinite set of variables. Elements of R are called rewrite rules.” We understand
arule (r, ([t],[t'])) as a labeled sequent and use for it the notation r : [t] — [t'].
To indicate that {zy,...,z,} is the set of variables occurring in either ¢ or
t', we write r : [t(x1,...,2n)] — [t'(x1,...,2n)], or in abbreviated notation
r @) — [ (@),

Given a rewrite theory R, we say that R entails a sentence [t] — [t'], or
that [t] — [t'] is a (concurrent) R-rewrite, and write R F [t] — [t'] if and
only if [t] — [t'] can be obtained by finite application of the following rules
of deduction (where we assume that all the terms are well formed and ¢(w/x)
denotes the simultaneous substitution of w; for z; in t):

1. Reﬂexivity For each [t] € :Z"ZLE()()7 m

2. Congruence. For each f € ¥,,, n € IN,

3. Replacement. For each rule r : [t(zy,...,2,)] — [t'(x1,...,25)] in R,

4. Transitivity
[t1] — [ta]  [t2] — [ts]

[t1] — [ts]

Rewriting logic is a logic for reasoning correctly about concurrent systems
having states, and evolving by means of transitions. The signature of a rewrite
theory describes a particular structure for the states of a system e.g., multiset,
binary tree, etc. so that its states can be distributed according to such a struc-
ture. The rewrite rules in the theory describe which elementary local transitions
are possible in the distributed state by concurrent local transformations. The
rules of rewriting logic allow us to reason correctly about which general con-
current transitions are possible in a system satisfying such a description. Thus,
computationally, each rewriting step is a parallel local transition in a concurrent
system.

5To simplify the exposition the rules of the logic are given for the case of unconditional
rewrite rules. However, all the ideas presented here have been extended to conditional rules
in [37] with very general rules of the form

o[t — '] if [u1] — [v1] Ao A Jug] — [og].

This increases considerably the expressive power of rewrite theories.
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Alternatively, however, we can adopt a logical viewpoint instead, and regard
the rules of rewriting logic as metarules for correct deduction in a logical system.
Logically, each rewriting step is a logical entailment in a formal system.

The computational and the logical viewpoints under which rewriting logic
can be interpreted can be summarized in the following diagram of correspon-
dences:

State < Term < Proposition
Transition < Rewriting < Deduction
Distributed Structure <> Algebraic Structure < Propositional Structure

The last row of equivalences is actually quite important. Roughly speaking,
it expresses the fact that a state can be transformed in a concurrent way only if it
is nonatomic, that is, if it is composed out of smaller state components that can
be changed independently. In rewriting logic this composition of a concurrent
state is formalized by the operations of the signature ¥ of the rewrite theory
R that axiomatizes the system. From the logical point of view such operations
can naturally be regarded as user-definable propositional connectives stating the
particular structure that a given state has. A subtle additional point about the
last row of equivalences is that the algebraic structure of a system also involves
equations. Such equations describe the system’s global state as a concurrent
data structure; they can have a dramatic impact on the amount of concurrency
available in a system.

Note that it follows from this discussion that rewriting logic is primarily a
logic of change—in which the deduction directly corresponds to the change—as
opposed to a logic to talk about change in a more indirect and global manner
such as the different variants of modal and temporal logic.

4.2.2 Models

We first sketch the construction of initial and free models for a rewrite theory
R = (X, E, L, R). Such models capture nicely the intuitive idea of a “rewrite sys-
tem” in the sense that they are systems whose states are E-equivalence classes of
terms, and whose transitions are concurrent rewritings using the rules in R. By
adopting a logical instead of a computational perspective, we can alternatively
view such models as “logical systems” in which formulas are validly rewritten
to other formulas by concurrent rewritings which correspond to proofs for the
logic in question. Such models have a natural category structure, with states
(or formulas) as objects, transitions (or proofs) as morphisms, and sequential
composition as morphism composition, and in them dynamic behavior exactly
corresponds to deduction.

Given a rewrite theory R = (X, E, L, R), for which we assume that different
labels in L name different rules in R, the model that we are seeking is a cate-
gory Tr(X) whose objects are equivalence classes of terms [t] € Ty g(X) and
whose morphisms are equivalence classes of “proof terms” representing proofs in
rewriting deduction, i.e., concurrent R-rewrites. The rules for generating such
proof terms, with the specification of their respective domains and codomains,
are given below; they just “decorate” with proof terms the rules 1 4 of rewriting
logic. Note that we always use “diagrammatic” notation for morphism compo-
sition, i.e., a; B always means the composition of a followed by 3.

1. Identities. For each [t] S TZ7E(X)7 W
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2. Y¥-structure. For each f € ¥,,, n € IN,

ar:[h] — [th] o an: [ta] — (1]

Flarsom) )] — (s E]

3. Replacement. For each rewrite rule r : [t(z1,...,2,)] — [t'(z1,...,2Zn)]
in R,
ay :[w] — [wi] . ap i [wy] — [wh)]
Hon,—an) - @/ — (7))

a:t] ——[ta] B [ts] — [ts]
a;,@ : [tl] — [tg]

4. Composition

Each of the above rules of generation defines a different operation taking
certain proof terms as arguments and returning a resulting proof term. In other
words, proof terms form an algebraic structure P (X)) consisting of a graph with
nodes Tx, 5(X), with identity arrows, and with operations f (for each f € ¥),
r (for each rewrite rule), and _;_ (for composing arrows). Our desired model
Tr(X) is the quotient of Pr(X) modulo the following equations:®

1. Category

(a) Associativity. For all «, 8,7, (a;8);v = a;(8;7).
(b) Identities. For each a : [t] — [t'], «a;[t'] =« and [t];a = a.

2. Functoriality of the Y-algebraic structure. For each f € ¥,

(a) Preservation of composition. For all ay,...,an,01,. .., Bn,

f(al;ﬂl:---:an;ﬂn) :f(ala---7an);f(ﬂ1>---:ﬂn)'

(b) Preservation of identities.  f([t1],--.,[tn]) = [f(t1,- .-, tn)]-

3. Axioms in E. For ¢(z1,...,2,) = t'(x1,...,2,) an axiom in E, for all

1y, Qpy tlar,. .o ap) =t (ar,. .., an).

4. Exchange. For each r : [t(z1,...,2,)] — [t'(z1,...,2,)] in R,

Note that the set X of variables is actually a parameter of these construc-
tions, and we need not assume X to be fixed and countable. In particular, for
X = B, we adopt the notation Tx. The equations in 1 make T (X) a category,
the equations in 2 make each f € ¥ a functor, and 3 forces the axioms E. The
exchange law states that any rewriting of the form r(@)—which represents the
stmultaneous rewriting of the term at the top using rule r and “below,” i.e., in
the subterms matched by the variables, using the rewrites @ is equivalent to
the sequential composition r([w]); # (@), corresponding to first rewriting on top
with r and then below on the subterms matched by the variables with @, and
is also equivalent to the sequential composition ¢(@);r([w’]) corresponding to
first rewriting below with @ and then on top with r. Therefore, the exchange
law states that rewriting at the top by means of rule r and rewriting “below”

5Tn the expressions appearing in the equations, when compositions of morphisms are in-
volved, we always implicitly assume that the corresponding domains and codomains match.
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using @ are processes that are independent of each other and can be done either
simultaneously or in any order.

Since each proof term is a description of a concurrent computation, what
these equations provide is an equational theory of true concurrency allowing us
to characterize when two such descriptions specify the same abstract computa-
tion.

Note that, since [t(z1,...,2,)] and [t'(x1,...,%,)] can both be regarded as
functors Tr (X)™ — Tr(X), from the mathematical point of view the exchange
law just asserts that r is a natural transformation.

Lemma 1 [37] For each rewrite rule r : [t(xz1,...,x,)] — [t'(x1,...,2,)] in
R, the family of morphisms

{r([w)) : t@/)] — [ (@/Z)] | [w] € Ty, p(X)"}

is a natural transformation v : [t(z1,...,z,)] = [t'(z1,...,2z,)] between the
functors [t(z1,...,z,)], [t'(z1,. .., z0)] : TR(X)" — Tr(X).

The category Tr(X) is just one among many models that can be assigned
to the rewrite theory R. The general notion of model, called an R-system, is
defined as follows:

Definition 1 Given a rewrite theory R = (X,E,L,R), an R-system S is a
category S together with:

e a (X, E)-algebra structure given by a family of functors
{fs:8" —S|feX,,neN}

satisfying the equations E, i.e., for any t(x1,...,2n) = t'(x1,...,2,) in
E we have an identity of functors ts = t's, where the functor ts is defined
inductively from the functors fs in the obvious way.

e for each rewrite rule r : [t(T)] — [t'(Z)] in R a natural transformation
rs:ts = tig.

An R-homomorphism F' : S — S’ between two R-systems is then a functor
F:S — S8 such that it is a X-algebra homomorphism, i.e., fs* F = F" x fs1,
for each f in X, n € IN, and such that “F preserves R,” i.e., for each rewrite
rule r : [t(T)] — [t'(T)] in R we have the identity of natural transformations’
rs x F' = F" xrs:, where n is the number of variables appearing in the rule.
This defines a category R-Sys in the obvious way.

A detailed proof of the following theorem on the existence of initial and
free R-systems for the more general case of conditional rewrite theories is given
in [37], where the soundness and completeness of rewriting logic for R-system

models is also proved.

Theorem 1 T is an initial object in the category R-Sys. More generally,
Tr(X) has the following universal property: Given an R-system S, each func-
tion F : X — |S| extends uniquely to an R-homomorphism F" : Tr(X) — S.

"Note that we use diagrammatic order for the horizontal, o % 8, and vertical, v; 8, compo-
sition of natural transformations [31].
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4.3 Semantics of Object-Oriented and System
Modules

As already pointed out, the logic of Maude is the membership logic variant of
rewriting logic MRWLogic. A system module is then a rewrite theory R in such
a logic. In the unparameterized case its semantics is the initial model Tx, that
was constructed for the unsorted case in Section 4.2.2. That is, the initial model
Tr is the algebra of all rewriting computations for ground terms in the theory.
From a systems perspective this model describes all the concurrent behaviors
that the system so axiomatized can exhibit. From that perspective, a term ¢
denotes a state of the system, and a proof term « : ¢ — t' denotes a possibly
concurrent computation.

A system module can contain one or more parameter theories. The inclu-
sion from the parameter(s) into the module then gives rise to a free extension
functor [36], which provides the semantics for the module. This of course means
that we can compose systems by putting together the rewrite theories in which
they are specified, as done in Full Maude.

A rewrite theory has both rules and equations, so that rewriting is performed
modulo such equations. However, this does not mean that the Maude implemen-
tation must have a matching algorithm for each equational theory that a user
might specify, which is impossible, since matching modulo an arbitrary theory
is undecidable. What we instead require for theories in system modules is that:

e The equations are divided into a set A of axioms, for which matching
algorithms exist in the Maude implementation,® and a set E of equations
that are Church-Rosser, terminating and sort decreasing modulo A; that
is, the equational part must be equivalent to a functional module.

e The rules R in the module are coherent [61] (or at least what might be
called “weakly coherent” [38, Section 5.2.1][60]) with the equations £ mod-
ulo A. This means that appropriate critical pairs exist between rules and
equations, allowing us to intermix rewriting with rules and rewriting with
equations without loosing rewrite computations by failing to perform a
rewrite that would have been possible before an equational deduction step
was taken. In this way, we get the effect of rewriting modulo £ U A with
just a matching algorithm for A. In particular, a simple strategy available
in these circumstances is to always reduce to canonical form using E be-
fore applying any rule in R. This is precisely the strategy adopted by the
Maude interpreter.

Since the state of the system specified by a system module is axiomatized as an
abstract data type by the equations F modulo A, and the rules in R are local
rules for changing such a state, in practice the lefthand sides of rules in R only
involve constructor patterns, so that coherence is a natural byproduct of good
specification practice. Besides, using the completion methods in [61], one can
check coherence, and one can try to make a set of rules coherent when they are
not so.

The semantics of object-oriented modules is entirely reducible to that of sys-
tem modules, in the sense that as explained in Section 3.2.2 and in [38] there

is a systematic desugaring process translating each object-oriented module into

8Maude’s rewrite engine has an extensible design, so that matching algorithms for new
theories can be added and can be combined with existing ones [22]. As already mentioned, in
the present version, matching modulo associativity, commutativity, (left-, right- or two-sided)
identity, and idempotency, and most combinations of these attributes are supported.
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its corresponding system module [38]. The particular ontology supported by
object-oriented modules is something very much worth keeping, and it does not
exist for general system modules. For example, in an object-oriented configura-
tion we have objects that maintain their identity across their state changes, and
the notions of fairness adequate for them are more specialized than those appro-
priate for arbitrary system modules. The approach taken in Maude is to pro-
vide a logical semantics for concurrent object-oriented programming by taking
rewriting logic as its foundation, and then defining in a rigorous way higher-level
object-oriented concepts above such a foundation. The papers [38, 39] provide
good background on such foundations. Talcott’s paper [58] gives rewriting logic
foundations for actors from a somewhat different viewpoint. The paper [45]
shows how, for object-oriented modules satisfying some simple requirements,
their initial model semantics coincides with a very natural partial order of events
truly concurrent semantics.

The basic ideas about the reflective semantics of Maude have already been
discussed in Section 2.5. Much more detail can be found in [15, 10].
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Appendix A

Li

st of Core Maude

Commands

Al

Rewriting Commands

We use curly bracket pairs, { and } to enclose optional syntax.

reduce {in module :} term .

Causes the specified term to be reduced using the equations and member-
ship axioms in the given module. reduce may be abbreviated to red. If
the in clause is omitted the current module is assumed. Examples:

reduce 6 *x 7 == 42 .
reduce in QID : conc(’a, ’b)

rewrite {[ number |} {in module :} term .

loop

Causes the specified term to be rewritten using the rules, equations and
membership axioms in the given module. The default interpreter for rules
applies rules using a top down (lazy) strategy and stops when the number
of rule applications reaches the given bound. No rule will be applied if an
equation can be applied. If the in clause is omitted the current module
is assumed. If the upper bound clause is omitted, infinity is assumed.
Examples:

rewrite 6 * 7 == 42 .

rewrite in FOO0 : f(6, g(a, b))
rewrite [50] £(6, g(a, b))
rewrite [1] in BAR : h(a)

{in module :} term .

This command is used to initialize the read-eval-print loop in a module
importing LOOP-MODE (see Section 2.8). The specified term is rewritten as
far as possible using the rules, equations and membership axioms in the
given module. If the result has a loop constructor symbol on the top then
it becomes the current state of the loop; also, the list of quoted identifiers
in the output position of the loop constructor is printed as a sequence of
identifiers.
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( identifier* )
This command is used to input a list of identifiers to the loop in a module
importing LOOP-MODE. If the current module has not changed since the last
rewriting command, the result of previous rewrites has a loop constructor
symbol on the top, and the last rewriting command was not reduce then:

1. the sequence of identifiers in the parentheses are converted into a list
of quoted identifiers and are placed under the input position of the
loop constructor;

2. a nil list of quoted identifiers is placed under the output position of
the loop constructor;

3. the new term is rewritten as far as possible using the rules, equations
and membership axioms in the module to which the term belongs;
and

4. if the new result has a loop constructor symbol on the top, this list
of quoted identifiers in the output position of the loop constructor is
printed as a sequence of identifiers.

continue {number} .
Attempts to continue rewriting the result of the last rewriting command
using the rules, equations and membership axioms, stopping if the upper
bound on the number of rule applications is reached. This command is
only usable if the current module has not changed since the last rewriting
command, and the last rewriting command was not reduce. If no upper
bound clause is given, infinity is assumed.

A.2 Matching Commands

Matching commands are used to directly invoke the rewriting engine’s term
pattern matcher. They can be useful for figuring out exactly what subjects can
be matched by a complex pattern.

match {[ number |} {in module :} pattern <=7 subject .
This performs straight-forward matching in the given module. This kind
of matching is used by the engine for applying membership axioms. The
result is a list of at most number matching substitutions. If the upper
bound clause is omitted, infinity is assumed. Example:

match [5] in FOO : +(X, *(X, Y)) <=7 +(*(a, b), *(c, d))

xmatch {[ number |} {in module :} pattern <=7 subject .

This works similarly to the previous command, except that it performs
matching with extension for those theories that need it (currently just
those including the assoc attribute). If the subject (after theory-normali-
zation) has a symbol f from an extension theory on top, only a piece of the
top theory layer with f on top need be matched. This kind of matching is
used by the engine for applying equations and rules in order to accurately
simulate congruence class rewriting. The result is a list of all matches. If
only part of the subject was matched, that part is given. Example:

xmatch +(*(P, Q), *(X, Y)) <=7 +(x(a, b), *(c, d), *(a, e))
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A.3 Tracing Commands

Tracing produces detailed information about each rewrite performed and each
conditional rewrite attempted. Since this typically results in an unmanageably
huge volume of output there are commands to control what is actually displayed.

set trace on . / set trace off .
These commands turn tracing on and off. If tracing is turned on, all trace
information will be generated internally even if none of it is displayed,
thus considerably slowing the speed of interpretation.

set trace condition on . / set trace condition off .
Determines whether the evaluations of conditions are traced.

set trace whole on . / set trace whole off .
Determines whether the whole term is printed before and after a rewrite.

set trace substitution on . / set trace substitution off .
Determines whether the substitution is printed.

set trace mb on . / set trace mb off .
Determines whether membership axiom applications are printed.

set trace eq on . / set trace eq off .
Determines whether equation applications are printed.

set trace rl on . / set trace rl off .
Determines whether rule applications are printed.

set trace select on . / set trace select off .
Determines whether only trace information for selected operator symbols
is printed (rather than all symbols).

trace select symbols . / trace deselect symbols .
Selects/deselects operator symbols from the current module for tracing
with the select option. Examples:

trace select foo bar baz .
trace deselect baz .

A.4 Print Option Commands

set print mixfix on . / set print mixfix off .
Controls whether operators with mixfix syntax are printed in mixfix or
prefix form. User-defined syntax is supported for pretty printing even
though it is not currently supported for parsing. It is sometimes advan-
tageous to have uniform prefix notation for output; for example, if the
output is going to be post-processed by some other tool. Default is on.

set print graph on . / set print graph off .
If on, terms that are internally represented by graphs (currently, result
terms together with terms being reduced and terms in substitutions dur-
ing tracing) are printed as graph representations rather than as terms,
together with the number of operator symbols in the full term. This can
be useful in some pathological cases where the size of the term is expo-
nential in the size of the graph. Default is off.
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set print flattened on . / set print flattened off .
Controls whether arguments under function symbols with the associative
attribute are printed in flattened form or not. Default is on.

set print with parentheses on . / set print with parentheses off .
If on, additional mixfix terms are printed with additional parentheses to
make grouping explicit. Default is off.

set show stats on . / set show stats off .
Determines whether the number of rewrites is printed with the results of
the reduce, rewrite and continue commands. Default is on.

set show timing on . / set show timing off .
Determines whether the cpu and real time used during rewriting is printed
with the results of the reduce, rewrite and continue commands. Default
is on.

set show command on . / set show command off .
Determines whether the full form of certain commands is printed before
they are executed. Default is on.

set show gc on . / set show gc off .
Determines which message is printed when a garbage collect is performed.
Default is off.

A.5 Show Commands

show module {module} .
Prints out a representation of the given module (or of the current module
if none is given).

show all {module} .
Prints out a flattened representation of the given module (or of the current
module if none is given).

show sorts {module} .
Prints out a representation of the sort and subsort information for the
given module (or for the current module if none is given).

show ops {module} .
Lists the operators in the given module (or in the current module if none
is given).

show vars {module} .
Lists the variables in the given module (or in the current module if none
is given).

show mbs {module} .
Lists the membership axioms in the given module (or in the current module
if none is given).

show eqs {module} .
Lists the equations in the given module (or in the current module if none
is given).
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show rls {module} .
Lists the rules in the given module (or in the current module if none is
given).

show components {module} .
Lists the connected components of the poset of sorts for the given module
(or for the current module if none is given).

show summary {module} .
Shows a summary of statistics for the context free grammar and term
rewriting system generated for the given module (or for the current module
if none is given).

A.6 Debugger Commands

debug reduce {in module :} term .
Works just like the reduce command above, except that it drops into the
debugger before executing the first rewrite.

debug rewrite {[ number |} {in module :} term .
Works just like the rewrite command above, except that it drops into the
debugger before executing the first rewrite.

resume .
Only usable from the debugger. Exits the debugger and resumes the
current rewriting activity.

abort .
Only usable from the debugger. Exits the debugger and abandons the
current rewriting activity.

step .
Only usable from the debugger. Performs a single step of the current
rewriting activity with tracing switched on.

where .
Only usable from the debugger. Prints the stack of pending rewrite tasks
together with explanations of how they arose.

A.7 Miscellaneous Commands

select module .
Selects a named module to be the current module. All commands that
require a module refer to the current module unless a module is explicitly
given. The current module is usually the last module entered or used.

set include module on . / set include module off .
Adds or removes the named module from the set of modules that are
automatically included in every module.
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A.8 System Commands

These commands control system level things. Unlike all the above commands
they are not followed by a period. Unlike in OBJ3, they may be used inside a
module definition at any point at which a keyword such as var could legally be
used.

pwd
Prints the path of the working directory.

Is {flags} {directories}
Runs the UNIX Is command to list the files in the specified directories or
working directory if none specified. The allowable flags depend on your
local implementation of Is. Example:

1s -1F /usr/bin /usr/local

cd directory-name
Changes the working directory to directory-name.

pushd directory-name
Saves the current working directory on a stack and then changes the work-
ing directory to directory-name.

popd
Changes the working directory to that which is on the top of the directory
stack and pops the directory stack.

in file-name
Causes a specified file to be included at this point. The full file name must
be given, together with a full path name if the file is not in the current
working directory. May be nested, i.e. the included file may contain in
commands. Example:

in ../Examples/foo.maude

eof
Causes the interpreter to respond as if it had reached the end of file.

quit
Causes the interpreter to exit.

A.9 Abbreviations and Synonyms

The following abbreviations and synonyms are supported for module syntax.

pr = protecting
inc = including
sorts = sort
subsorts = subsort
assoc = associative
comm = commutative
idem = idempotent
id: = identity:
strat = strategy
prec = precedence

vars = var
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The following abbreviations and synonyms are supported for command syntax.

red = reduce
rew = rewrite
cond = condition
subst = substitution
cont = continue
flat = flattened
parens = parentheses
cmd = command
sort = sorts
op = ops
var = vars
mb = mbs
eq = eqs
rl = rls
kinds = components
mod = module

A.10 Deprecated features

The following features support (very) limited backward compatibility with the
OBJ family of languages. They may be omitted in future releases and thus
should not be used in new code.

Commands
The following OBJ commands are recognized as equivalent to Maude commands:

set gc show on. = set show gcon .

set gc show off . = set show gc off .
set stats on . = set show stats on .
set stats off . = set show stats off .

Abbreviations and Synonyms
The following abbreviations and synonyms are supported for module syntax.

obj = fmod
endo = endfm
jbo = endfm

cq = ceq



Appendix B

The Grammar of Core
Maude

This appendix describes the syntax of Maude using the following extended BNF
notation: the symbols ‘{’ and ‘}’ are used as meta-parentheses; the symbol |’
is used to separate alternatives; square bracket pairs, ‘[’ and ‘]’ enclose optional
syntax; ‘*’ indicate zero or more repetitions of preceding unit; ‘+’ indicate one or
more repetitions of preceding unit; and “x” denotes x literally. As an application
of this notation, A{, A}...indicates a nonempty list of A’s separated by commas.
Finally, %%% indicates comments in the syntactic description, as opposed to
comments in the Maude code.

(MaudeTop ) ::=
{ (SystemCommand) | (Command) | (DebuggerCommand) | (Module) }+

(SystemCommand) ::= in (FileName) |
quit | eof | popd | pwd |
cd (Directory) | push (Directory) |
1s [ (LsFlag) | [ (Directory) | |

(Command) ::= select (Modld) . |
parse [ in (ModId) : ] (Term) . |
reduce [ in (ModId) : ] (Term) . |
rewrite [ [ (Nat) 1 ] [ in (ModId) : | (Term) . |
{ match | xmatch } [ [ (Nat) 1 ][ in (ModIld) : | (Term) <=7 (Term) .
continue (Nat) . |
loop [ in (ModId) : ] (Term) . |
( (TokenString) ) |
trace { select | deselect } { (Opld) | ( (OpForm) ) }+ . |
show (Showltem) [ (Modld) ] . |
set (SetOption) { on | off } .

(ShowItem) ::= module | all | sorts | ops | vars | mbs |
eqs | rls | summary | components

(SetOption) ::= show (ShowOption) |
print (PrintOption) |
trace [ (TraceOption) | |
include (ModlId)
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(ShowOption) ::= stats | timing | command | gc
(PrintOption) ::= mixfix | flat | with parentheses | graph
(TraceOption) ::= condition | whole | substitution | select |

mbs | eqs | rls

(DebuggerCommand) ::= debug reduce [ in (ModId) : | (Term) . |
debug rewrite [ [ (Nat) 1 ]| [ in (Modld) : | (Term) . |
debug continue (Nat) . |
resume . | abort . | step . | where .

(Module) ::= fmod (Modld) is (ModElt)* endfm |
mod (Modld) is (ModElt’)* endfm |

(ModElt) ::= including (ModIld) . |
sorts (Sortld)+ . |
subsort (Sortld)+ { < (Sortld)+ }+ . |
op (OpForm) : (Sortld)* -> (Sortld) [ (Attr) ] . |
ops { (OpId) | C (OpForm) ) }+ : (Sortld)* -> (Sortld) [ (Attr) ] .
var (Varld)+ : (Sortld) . |
mb (Term) : (Sortld) . |
cmb (Term) : (Sortld) if (Condition) . |
eq (Term) = (Term) . |
ceq (Term) = (Term) if (Condition) .

(ModElt’) ::= (ModElt) |
rl [ [ (Labelld) 1 : | (Term) => (Term) . |
crl [ [ (Labelld) 1 : | (Term) => (Term) if (Condition) .

(Condition) ::= (Term) = (Term) | (Term)

(Attr) ::=

[ { assoc | comm |
[ left | right ] id: (Term) |
idem | memo |
strat ( (Nat)+ ) |
prec Nat |
gather ( { e | E| & }+ ) |
special ( (Hook)+ ) }+ ]

(Hook) ::= id-hook (Token) [ ( (TokenString) ) ] |
{ op-hook | term-hook } ( (TokenString) )

(FileName ) %%% 0S dependent
(Directory)  %%% 0S dependent

(LsFlag) %%% 0S dependent
(ModId) %%% simple identifier, by convention all caps
(Sortld) %%% simple identifier, by convention capitalized

(Varld) %%% simple identifier, by convention capitalized
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(Opld) %%% identifier possibly with underscores
(OpForm) ::= (Opld) | ( (OpForm) ) | (OpForm)+

(Nat) %%4% a natural number

(Term) ::= (Token) | ( (Term) ) | (Term)+

(Token ) %%% Any symbol other than ( or )
(TokenString) ::= (Token) | ( (TokenString) ) | (TokenString)*
(Labelld ) %%% simple identifier

B.1 Lexical Issues

Tokens are sequences of printable ASCII characters delimited by white space,
except that ‘C, )’ ‘[’, 1°, {°, ‘}, and *,” are always considered as single
character tokens unless backquoted.

Single line comments are started by one of *** or -——-, and ended by the end
of line. Multiline comments are started by *#**( and ended by ). Parentheses
(whether backquoted or not) must balance within multiline comments.



Appendix C

The Signature of Full
Maude

The Full Maude system is defined as a Core Maude module. That is, the entire
semantics of Full Maude is defined and executed in Core Maude. The full
definition of the Full Maude system, including the definition of all the internal
functions implementing the system can be found in [19]. In particular, the
grammar of the Full Maude language, that a user should follow to enter modules
and commands, is itself a functional submodule of the overall Full Maude system
specification. This allows giving the following specification of the Full Maude
grammar in a form more perspicuous in certain ways than the corresponding
BNF grammar form.

fmod SIGNS&VIEW-EXPRS is
sorts Token NeTokenList Bubble
SortToken Sort SortList SortDecl
ViewToken ViewExp
SubsortRel SubsortDecl
OpDecl Attr AttrList Hook HookList
subsorts SortToken < Sort < SortList
subsort ViewToken < ViewExp .
subsort Attr < AttrList
subsort Hook < HookList

op ((1)) : Token -> Token .

*xx extended sorts

op _[_] : Sort ViewExp -> Sort [prec 40] .

op __ : SortList SortList -> SortList [assoc]
op _,_ : ViewExp ViewExp -> ViewExp [assoc]

*** sort declaration
op sorts_. : SortList -> SortDecl

op sort_. : SortList -> SortDecl

*** subsort declaration

op subsort_. : SubsortRel -> SubsortDecl
op subsorts_. : SubsortRel -> SubsortDecl
op _<_ : SortList SortList -> SubsortRel

op _<_ : SortList SubsortRel -> SubsortRel
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*** operator attributes

op __ : AttrList AttrList -> AttrList [assoc]
op assoc : -> Attr

op associative : -> Attr .

op comm : -> Attr .

op commutative : -> Attr .

op id:_ : Bubble -> Attr .

op identity:_ : Bubble -> Attr .

op left id:_ : Bubble -> Attr .

op left identity:_ : Bubble -> Attr .

op right id:_ : Bubble -> Attr .

op right identity:_ : Bubble -> Attr

op strat(_) : NeTokenList -> AttrList

op strategy(_) : NeTokenList -> AttrList
op prec_ : Token -> Attr .

op precedence_ : Token -> Attr .

op gather(_) : NeTokenList -> Attr .

op gathering(_) : NeTokenList -> Attr .
op idem : -> Attr .

op idempotent : -> Attr .

op special(_) : HookList -> Attr .

op __ : HookList HookList -> HookList [assoc]

op id-hook_ : Token —-> Hook .

op id-hook_(_) : Token NeTokenList -> Hook .

op op-hook_(_:_->_) : Token Token NeTokenList Token -> Hook .
op op-hook_(_: ->_) : Token Token Token -> Hook .

op term-hook_(_) : Token Bubble -> Hook .

*** operator declaration

op op_: ->_. : Token Sort -> OpDecl

op op_: ->_[_]. : Token Sort AttrList -> OpDecl

op op_:_—>_. : Token SortList Sort -> OpDecl

op op_:_->_[_]. : Token SortList Sort AttrList -> OpDecl

op ops_: ->_. : NeTokenList Sort -> OpDecl

op ops_: ->_[_]. : NeTokenList Sort AttrList -> OpDecl

op ops_:_—>_. : NeTokenList SortList Sort -> OpDecl

op ops_:_->_[_]. : NeTokenList SortList Sort AttrList -> OpDecl
endfm

fmod F&S-MODS&THS 1is
including SIGNS&VIEW-EXPRS

sorts FDeclList SDeclList PrelModule

ImportDecl ModExp Parameter ParameterList

ModuleName EquationDecl RuleDecl MembAxDecl

VarDecl VarDeclList
subsort Parameter < ParameterList
subsorts Token < ModExp ModuleName
subsort VarDecl < VarDeclList
subsorts VarDecl ImportDecl SortDecl SubsortDecl

OpDecl MembAxDecl EquationDecl VarDeclList < FDeclList

subsorts RuleDecl FDeclList < SDeclList

*** variable declaration
op vars_:_. : NeTokenList Sort -> VarDecl
op var_:_. : NeTokenList Sort -> VarDecl
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*** membership axiom declaration
op mb_:_. : Bubble Sort -> MembAxDecl
op cmb_:_if_. : Bubble Sort Bubble -> MembAxDecl

*** equation declaration
op eq_=_. : Bubble Bubble -> EquationDecl
op ceq_=_if_. : Bubble Bubble Bubble -> EquationDecl

*** rule declaration
op rl[_] :_=>_. : Token Bubble Bubble -> RuleDecl
op crl[_J:_=>_if_. : Token Bubble Bubble Bubble -> RuleDecl

*** importation declaration

op including_. : ModExp -> ImportDecl
op inc_. : ModExp -> ImportDecl
op protecting_. : ModExp -> ImportDecl
op pr_. : ModExp -> ImportDecl

*%* parameterized module interface

op _::_ : Token ModExp -> Parameter [prec 40 gather (e &)]

op _,_ : ParameterList ParameterList -> ParameterList [assoc]
op _[_] : Token ParameterList -> ModuleName

*** declaration list

op __ : VarDeclList VarDeclList -> VarDeclList [assoc]
op __ : SDeclList SDeclList -> SDeclList [assoc]
op __ : FDeclList FDeclList -> FDeclList [assoc]

*** functional and system module and theory

op fmod_is_endfm : ModuleName FDeclList -> PreModule

op mod_is_endm : ModuleName SDeclList -> PreModule

op fth_is_endfth : ModuleName FDeclList -> PreModule

op th_is_endth : ModuleName SDeclList -> PreModule
endfm

fmod 00-MODS&THS is
including F&S-MODS&THS

sorts ClassDecl AttrDecl AttrDeclList

SubclassDecl MsgDecl ODeclList
subsorts SDeclList MsgDecl SubclassDecl ClassDecl < ODeclList
subsort AttrDecl < AttrDecllist

*** object-oriented module and theory
op omod_is_endom : ModuleName 0DeclList -> PreModule
op oth_is_endoth : ModuleName 0DeclList -> PreModule

*x*x class declaration

op class_|_. : Sort AttrDeclList -> ClassDecl

op class_. : Sort -> ClassDecl

op _,_ : AttrDeclList AttrDeclList -> AttrDecllist [assoc]
op _:_ : Token Sort -> AttrDecl [prec 40]

*** subclass declaration
op subclass_. : SubsortRel -> SubclassDecl
op subclasses_. : SubsortRel -> SubclassDecl
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op _<_ : SortList SortList -> SubsortRel
op _<_ : SortList SubsortRel -> SubsortRel

*** message declaration

op msg_:_->_. : Token SortList Sort -> MsgDecl
op msgs_:_—>_. : NeTokenList SortList Sort -> MsgDecl
endfm

fmod MOD-EXPRS is
including 00-MODS&THS

sorts Map MapList
subsort Map < MapList

***x module expression
op _*(_) : ModExp MapList -> ModExp
op _[_] : ModExp ViewExp -> ModExp

*¥* renaming maps

op op_to_ : Token Token -> Map

op op_:_—>_to_ : Token SortList Sort Token -> Map

op op_: ->_to_ : Token Sort Token -> Map

op op_to_[_] : Token Token AttrList -> Map

op op_:_—>_to_[_] : Token SortList Sort Token AttrList -> Map
op op_: ->_to_[_] : Token Sort Token AttrList -> Map

op sort_to_ : Sort Sort -> Map

op label_to_ : Token Token -> Map

op class_to_ : Sort Sort -> Map .

op attr_._to_ : Token Sort Token -> Map

op msg_to_ : Token Token -> Map .

op msg_:_->_to_ : Token SortList Sort Token -> Map

op msg_: ->_to_ : Token Sort Token -> Map

op _,_ : MapList MapList -> MapList [assoc prec 42]
endfm

fmod VIEWS is
including 00-MODS&THS

sorts ViewDecl ViewDeclList PreView
subsorts VarDecl < ViewDecl < ViewDeclList

subsort VarDeclList < ViewDeclList

*** view maps

op op_to term_. : Bubble Bubble -> ViewDecl

op op_to_. : Token Token -> ViewDecl

op op_:_->_to_. : Token SortList Sort Token -> ViewDecl
op op_: —>_to_. : Token Sort Token -> ViewDecl

op sort_to_. : Sort Sort -> ViewDecl

op class_to_. : Sort Sort -> ViewDecl

op attr_._to_. : Token Sort Token -> ViewDecl

op msg_to_. : Token Token -> ViewDecl

op msg_:_->_to_. : Token SortList Sort Token -> ViewDecl
op msg_: ->_to_. : Token Sort Token -> ViewDecl

**¥* view

op view_from_to_is_endv
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ViewToken ModExp ModExp ViewDeclList —-> PreView
op __ : ViewDeclList ViewDeclList -> ViewDeclList [assoc]
endfm

fmod COMMANDS is
including MOD-EXPRS

sorts PreCommand

*** down function
op down_:_ : ModExp PreCommand -> PreCommand

*** reduce command

op red_. : Bubble -> PreCommand
op red-in_:_. : ModExp Bubble -> PreCommand
op reduce_. : Bubble -> PreCommand

op reduce-in_: : ModExp Bubble -> PreCommand

*** rewrite command

op rew_. : Bubble -> PreCommand

op rew[_]_. : Token Bubble -> PreCommand

op rew-in_:_. : ModExp Bubble -> PreCommand

op rew-in[_]_:_. : Token ModExp Bubble -> PreCommand
op rewrite_. : Bubble -> PreCommand

op rewrite[_]_. : Token Bubble -> PreCommand

op rewrite-in_:_ ModExp Bubble -> PreCommand
op rewrite-in[_]_:_. : Token ModExp Bubble -> PreCommand
*x*x select command

op select_. : ModExp -> PreCommand

***x show commands

op show module . : -> PreCommand

op show module_. : ModExp -> PreCommand

op show all . : -> PreCommand

op show all_. : ModExp -> PreCommand

op show sorts . : -> PreCommand

op show sorts_. : ModExp -> PreCommand

op show ops . : -> PreCommand

op show ops_. : ModExp -> PreCommand

op show vars . : -> PreCommand

op show vars_. : ModExp -> PreCommand

op show mbs . : -> PreCommand

op show mbs_. : ModExp -> PreCommand

op show egqns . : -> PreCommand

op show eqns_. : ModExp -> PreCommand

op show rls . : -> PreCommand

op show rls_. : ModExp -> PreCommand

op show view_. : ViewExp -> PreCommand

op show modules . : -> PreCommand

op show views . : -> PreCommand

endfm

fmod FULL-MAUDE-SIGN is
including VIEWS
including COMMANDS
endfm
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Standard Library of
Predefined Modules

*okok Maude interpreter standard prelude

*k ok

*okok Some of the overall structure is adapted from the 0BJ3
*okk interpreter standard prelude.

*k ok

fmod TRUTH-VALUE is
sort Bool
op true : -> Bool [special (id-hook SystemTrue)]
op false : -> Bool [special (id-hook SystemFalse)]
endfm

fmod TRUTH is
protecting TRUTH-VALUE
op if_then_else_fi : Bool Universal Universal -> Universal
[special (id-hook BranchSymbol
term-hook trueTerm (true)
term-hook falseTerm (false))]

op _==_ : Universal Universal -> Bool
[prec 51
special (id-hook EqualitySymbol
term-hook equalTerm (true)
term-hook notEqualTerm (false))]

op _=/=_ : Universal Universal -> Bool
[prec 51
special (id-hook EqualitySymbol
term-hook equalTerm (false)
term-hook notEqualTerm (true))]
endfm

fmod BOOL is
protecting TRUTH .

op _and_ : Bool Bool -> Bool [assoc comm prec 55]
op _or_ : Bool Bool -> Bool [assoc comm prec 59]
op _xor_ : Bool Bool -> Bool [assoc comm prec 571

op not_ : Bool -> Bool [prec 53]

154



APPENDIX D. STANDARD LIBRARY 155

op _implies_ : Bool Bool -> Bool [gather (e E) prec 61]
vars A B C : Bool
eq true and A = A .
eq false and A = false
eq A and A = A .
eq false xor A = A .
eq A xor A = false
eq A and (B xor C) = A and B xor A and C .
eq not A = A xor true
eq A or B = A and B xor A xor B .
eq A implies B = not(A xor A and B)
endfm

set include BOOL on .

fmod IDENTICAL is
op _===_ : Universal Universal -> Bool
[prec 51 strat (0)
special (id-hook EqualitySymbol
term-hook equalTerm (true)
term-hook notEqualTerm (false))]

op _=/==_ : Universal Universal -> Bool
[prec 51 strat (0)
special (id-hook EqualitySymbol
term-hook equalTerm (false)
term-hook notEqualTerm (true))]
endfm

fmod MACHINE-INT is
sorts MachineInt NzMachineInt
subsort NzMachineInt < MachineInt

op <MachineInts> : -> NzMachineInt [special (id-hook MachineIntegerSymbol)]
op <MachineInts> : -> MachineInt [special (id-hook MachineIntegerSymbol)]
op -_ : MachineInt -> Machinelnt

[prec 15

special (id-hook MachineIntegerOpSymbol (-)
op~hook machineIntBaseSymbol
(<Machinelnts> : -> Machinelnt))]

op -_ : NzMachineInt -> NzMachinelnt
[prec 15
special (id-hook MachineIntegerOpSymbol (-)
op~hook machineIntBaseSymbol
(<MachinelInts> : -> Machinelnt))]

op “_ : MachineInt -> Machinelnt
[prec 15
special (id-hook MachineIntegerOpSymbol (~)
op~hook machineIntBaseSymbol
(<MachinelInts> : -> Machinelnt))]

op _+_ : MachineInt MachineInt -> Machinelnt
[prec 33 gather (E e)
special (id-hook MachineIntegerQOpSymbol (+)
op~hook machineIntBaseSymbol
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op

op

op

op

op

op

op _

op

op

op

(<MachineInts> : -> MachineInt))]

_—_ : MachineInt MachineInt -> MachineInt
[prec 33 gather (E e)
special (id-hook MachineIntegerOpSymbol (-)
op~hook machineIntBaseSymbol
(<MachineInts> : -> MachineInt))]

_*%_ : MachineInt MachineInt -> MachineInt
[prec 31 gather (E e)
special (id-hook MachineIntegerOpSymbol (*)
op~hook machineIntBaseSymbol

(<MachineInts> : -> MachineInt))]

_*%_ : NzMachineInt NzMachineInt -> NzMachineInt
[prec 31 gather (E e)
special (id-hook MachineIntegerOpSymbol (*)
op~hook machineIntBaseSymbol

(<MachineInts> : -> MachineInt))]

_/_ : MachineInt NzMachineInt -> MachinelInt
[prec 31 gather (E e)
special (id-hook MachineIntegerOpSymbol (/)
op~hook machineIntBaseSymbol
(<MachinelInts> : -> Machinelnt))]

_%_ : MachineInt NzMachineInt -> MachinelInt
[prec 31 gather (E e)
special (id-hook MachineIntegerOpSymbol (%)
op~hook machineIntBaseSymbol
(<MachinelInts> : -> Machinelnt))]

_&_ : MachineInt MachineInt -> MachineInt
[prec 53 gather (E e)
special (id-hook MachineIntegerOpSymbol (&)
op~hook machineIntBaseSymbol

(<MachineInts> : -> MachineInt))]

|_ : MachineInt MachineInt -> MachineInt
[prec 57 gather (E e)
special (id-hook MachineIntegerOpSymbol (/)
op~hook machineIntBaseSymbol
(<Machinelnts> : -> Machinelnt))]

_|_ : NzMachineInt NzMachineInt -> NzMachineInt
[prec 57 gather (E e)
special (id-hook MachineIntegerOpSymbol (/)
op~hook machineIntBaseSymbol
(<MachinelInts> : -> Machinelnt))]

_"_ : MachineInt MachineInt -> MachineInt
[prec 55 gather (E e)
special (id-hook MachineIntegerOpSymbol (~)
op~hook machineIntBaseSymbol

(<MachineInts> : -> MachineInt))]

_>>_ : MachineInt MachineInt -> Machinelnt
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[prec 35 gather (E e)
special (id-hook MachineIntegerOpSymbol (>>)
op~hook machineIntBaseSymbol
(<MachinelInts> : -> Machinelnt))]

op _<<_ : MachineInt MachineInt -> Machinelnt
[prec 35 gather (E e)
special (id-hook MachineIntegerOpSymbol (<<)
op~hook machineIntBaseSymbol
(<MachineInts> : —-> MachineInt))]

op _<_ : MachineInt MachineInt -> Bool
[prec 37
special (id-hook MachineIntegerOpSymbol (<)
op-hook machineIntBaseSymbol (<MachineInts>
term-hook trueTerm (true)
term-hook falseTerm (false))]

op _<=_ : MachineInt MachineInt -> Bool
[prec 37
special (id-hook MachineIntegerOpSymbol (<=)
op-hook machineIntBaseSymbol (<MachineInts>
term-hook trueTerm (true)
term-hook falseTerm (false))]

op _>_ : MachinelInt MachineInt -> Bool
[prec 37
special (id-hook MachineIntegerOpSymbol (>)
op-hook machineIntBaseSymbol (<MachineInts>
term-hook trueTerm (true)
term-hook falseTerm (false))]

op _>=_ : MachineInt MachineInt -> Bool
[prec 37
special (id-hook MachineIntegerOpSymbol (>=)
op-hook machineIntBaseSymbol (<MachineInts>
term-hook trueTerm (true)
term-hook falseTerm (false))]

endfm

fmod QID is

protecting MACHINE-INT
sort Qid .

op <Qids> : -> Qid [special (id-hook QuotedIdentifierSymbol)]

op conc : Qid Qid -> Qid
[special (id-hook QuotedIdentifierOpSymbol (conc)
op-hook gidBaseSymbol (<Qids> : -> Qid))]

op index : Qid MachineInt -> Qid
[special (id-hook QuotedIdentifierOpSymbol (index)
op-hook qidBaseSymbol (<Qids> : -> Qid)
op-hook machineIntBaseSymbol
(<MachineInts> : -> MachineInt))]

op strip : Qid -> Qid
[special (id-hook QuotedIdentifierOpSymbol (strip)
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op-hook gidBaseSymbol (<Qids> : -> Qid))]
endfm

fmod QID-LIST is

protecting QID

sort QidList

subsort Qid < QidList

op nil : -> QidList

op __ : QidList QidList -> QidList [assoc id: nil]
endfm

fmod META-LEVEL is

protecting QID-LIST

sorts FModule Module ModuleExpression Import ImportList
QidSet MachineIntList Sort SortDecl SubsortDecl SubsortDeclSet Attr
AttrSet OpDecl OpDeclSet VarDecl VarDeclSet Term TermList Equation
EquationSet Rule RuleSet MembAx MembAxSet Assignment Substitution
ResultPair Hook HookList

subsort FModule < Module

subsort Import < ImportList

subsort Qid < ModuleExpression

subsort Qid < QidSet

subsort MachineInt < MachinelIntList

subsort Qid < Sort

subsort SubsortDecl < SubsortDeclSet

subsort Attr < AttrSet

subsort OpDecl < OpDeclSet

subsort VarDecl < VarDeclSet

subsort Qid < Term .

subsort Term < TermList

subsort Equation < EquationSet

subsort Rule < RuleSet

subsort MembAx < MembAxSet

subsort Assignment < Substitution

subsort Hook < HookList

op _[_] : Qid TermList -> Term .
op {_}_ : Qid Qid -> Term .

op _,_ : TermList TermList -> TermList [assoc gather (e E) prec 120]

op _:_ : Term Qid -> Term .

op _::_ : Term Qid -> Term .

op none : -> (idSet

op _;_ : QidSet QidSet -> QidSet [assoc comm id: none]

op nil : -> MachineIntList

op __ : MachineIntList MachineIntList -> MachineIntList [assoc id: nil]
op fmod_is_______ endfm : Qid ImportList SortDecl SubsortDeclSet

OpDeclSet VarDeclSet MembAxSet EquationSet -> FModule
[gather (& & & & & & & &)]
opmod_is________ endm : (id ImportList SortDecl SubsortDeclSet

OpDeclSet VarDeclSet MembAxSet EquationSet RuleSet -> Module
[gather (& & & & & & & & &)]

op nil : -> ImportList
op __ : ImportList ImportList -> ImportList [assoc id: nil]
op including_. : ModuleExpression -> Import

op sorts_. : QidSet -> SortDecl
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op
op

op __

op
op
op

op

op __

op
op
op
op
op
op
op
op
op
op

op
op
op
op
op

op
op
op

op
op
op
op

op
op
op
op

op
op
op
op

op
op
op
op

op
op

op

subsort_<_. : Qid Qid -> SubsortDecl
none : -> SubsortDeclSet

SubsortDeclSet SubsortDeclSet -> SubsortDeclSet
[assoc comm id: none]

(op_:_->_[_1.) : Qid QidList Qid AttrSet -> OpDecl
none : -> OpDeclSet

__ : OpDeclSet OpDeclSet -> OpDeclSet [assoc comm id: none]
none : -> AttrSet
AttrSet AttrSet -> AttrSet [assoc comm id: none]
assoc : —-> Attr
comm : -> Attr
idem : -> Attr

id : Term -> Attr

left-id : Term -> Attr
right-id : Term -> Attr

strat : MachineIntList -> Attr
memo : -> Attr

prec : MachineInt -> Attr
gather : QidList -> Attr

special : HookList -> Attr

__ : HookList HookList -> HookList [assoc]
id-hook : Qid QidList -> Hook .

op-hook : Qid Qid QidList Qid -> Hook
term-hook : Qid Term -> Hook .

var_:_. : Qid Qid -> VarDecl

none : -> VarDeclSet

__ : VarDeclSet VarDeclSet -> VarDeclSet [assoc comm id: none]
mb_:_. : Term Qid -> MembAx

cmb_:_if =_. : Term Qid Term Term -> MembAx

none : -> MembAxSet

__ : MembAxSet MembAxSet -> MembAxSet [assoc comm id: none]
eq_=_. : Term Term -> Equation

ceq_=_if_= Term Term Term Term -> Equation

none : -> EquationSet

__ : EquationSet EquationSet -> EquationSet [assoc comm id: none]
r1[_]:_=>_. : Qid Term Term -> Rule

crl[_J:_=>_if_=_. : Qid Term Term Term Term -> Rule

none : -> RuleSet

__ : RuleSet RuleSet -> RuleSet [assoc comm id: none]

_<-_ : Qid Term -> Assignment

none : -> Substitution

i Substitution Substitution -> Substitution [assoc comm id: none]
{_,_} : Term Substitution -> ResultPair

error* : -> Term .
errorSort : QidSet -> Sort

meta-reduce : Module Term -> Term
[special (
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id-hook MetalevelOpSymbol

op~hook machineIntBaseSymbol
op~hook gidBaseSymbol

op-hook nilMachineIntListSymbol (nil

op~hook machineIntListSymbol

160

(meta-reduce)

(<MachineInts>
(kQids> : -> Qid)

-> Machinelnt)

: => MachineIntList)

(__ : MachineIntList MachineIntList -> MachineIntList)

op~hook emptyQidSetSymbol
op~hook gidSetSymbol
op-hook nilQidListSymbol
op~hook gidListSymbol

op-hook fmodSymbol
(fmod_is

(none -> QidSet)

(_;_ : QidSet QidSet -> QidSet)
(nil : -> QidList)

(__ : QidList QidList -> QidList)

Qid ImportList SortDecl SubsortDeclSet OpDeclSet
VarDeclSet MembAxSet EquationSet -> FModule)

op~hook modSymbol
(mod_is

Qid ImportList SortDecl SubsortDeclSet OpDeclSet
VarDeclSet MembAxSet EquationSet RuleSet -> Module)

op-hook nilImportListSymbol
op-hook importListSymbol
op~hook includingSymbol

op-hook sortSymbol

op-hook emptySubsortDeclSetSymbol (none

op-hook subsortDeclSetSymbol

(nil : -> ImportList)

(__ : ImportList ImportList -> ImportList)
(including_. : ModuleExpression -> Import)
(sorts_. QidSet -> SortDecl)

: —> SubsortDeclSet)

(__ : SubsortDeclSet SubsortDeclSet -> SubsortDeclSet)

op~hook subsortSymbol

op-hook opDeclSetSymbol

op~hook emptyOpDeclSetSymbol

op-hook opDeclSymbol
(op_:_—>_[_1.

op-hook emptyAttrSetSymbol
op-hook attrSetSymbol
op~hook assocSymbol
op-hook commSymbol
op-hook idemSymbol
op~hook idSymbol
op-hook leftIdSymbol
op-hook rightIdSymbol
op~hook stratSymbol
op-hook memoSymbol
op-hook precSymbol
op~hook gatherSymbol

op-hook specialSymbol
op~hook hookListSymbol
op-hook idHookSymbol
op-hook opHookSymbol
op~hook termHookSymbol

op~hook emptyVarDeclSetSymbol
op~hook varDeclSetSymbol

(subsort_<_. : Qid Qid -> SubsortDecl)
(__ : OpDeclSet OpDeclSet -> OpDeclSet)
(none : -> OpDeclSet)

: Qid QidList Qid AttrSet -> OpDecl)

(none -> AttrSet)

(__ : AttrSet AttrSet -> AttrSet)
(assoc -> Attr)

(comm : -> Attr)

(idem : -> Attr)

(id : Term -> Attr)

(left-id : Term -> Attr)
(right-id : Term -> Attr)

(strat : MachinelIntList -> Attr)
(memo -> Attr)

(prec : MachineInt -> Attr)
(gather : QidList -> Attr)
(special : HookList -> Attr)

(__ : HookList HookList -> HookList)
(id-hook : Qid QidList -> Hook)
(op-hook : Qid Qid QidList Qid -> Hook)
(term-hook : Qid Term -> Hook)

(none -> VarDeclSet)
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(__ : VarDeclSet VarDeclSet -> VarDeclSet)
op-hook varDeclSymbol (var_:_. : Qid Qid -> VarDecl)
op~hook metaTermSymbol (_[_] : Qid TermList —-> Term)
op-hook metaDisambigSymbol ({_}_ : Qid Qid -> Term)
op-hook metaArgSymbol (_,_ : TermList TermList -> TermList)

op-hook emptyMembAxSetSymbol (none : -> MembAxSet)

op~hook membAxSetSymbol (__ : MembAxSet MembAxSet —> MembAxSet)
op~hook mbSymbol (mb_:_. : Term Qid -> MembAx)
op-hook cmbSymbol

(cmb_:_if_=_. : Term Qid Term Term -> MembAx)

op-hook emptyEquationSetSymbol (none : -> EquationSet)
op~hook equationSetSymbol

(__ : EquationSet EquationSet -> EquationSet)
op-hook eqSymbol (eq_=_. : Term Term -> Equation)
op~hook ceqSymbol

(ceq_=_if_=_. : Term Term Term Term -> Equation)
op-hook emptyRuleSetSymbol (none : -> RuleSet)
op-hook ruleSetSymbol (__ : RuleSet RuleSet -> RuleSet)
op-hook rlSymbol (r1[_]:_=>_. : Qid Term Term -> Rule)
op~hook crlSymbol

(crl[_]:_=>_if_=_. : Qid Term Term Term Term -> Rule)
op~hook membPredSymbol (_:_ : Term Qid -> Term)
op-hook lazyMembPredSymbol (_::_ : Term Qid -> Term)

op~hook substitutionSymbol

(_;_ : Substitution Substitution -> Substitution)
op-hook emptySubstitutionSymbol (none : -> Substitution)
op-hook assignmentSymbol (_<-_ : Qid Term -> Assignment)

op-hook resultPairSymbol
({_,_} : Term Substitution -> ResultPair)

op-hook metaErrorSymbol (error* : -> Term)

op-hook errorSortSymbol (errorSort : QidSet -> Sort)
term-hook trueTerm (true)

term-hook falseTerm (false))]

op meta-rewrite : Module Term MachineInt -> Term

[special (
id-hook MetalevelOpSymbol (meta-rewrite)
op-hook shareWith (meta-reduce : Module Term -> Term))]

op meta-apply : Module Term Qid Substitution MachineInt -> ResultPair

[special (
id-hook MetalevelOpSymbol (meta-apply)
op-hook shareWith (meta-reduce : Module Term -> Term))]

op meta-parse : Module QidList -> Term

[special (
id-hook MetaLevelOpSymbol (meta-parse)
op-hook shareWith (meta-reduce : Module Term -> Term))]

op meta-pretty-print : Module Term -> QidList
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[special (
id-hook MetalLevelOpSymbol (meta-pretty-print)
op-hook shareWith (meta-reduce : Module Term -> Term))]
op sortlLeq : Module Sort Sort -> Bool
[special (
id-hook MetalLevelOpSymbol (sortLeq)
op-hook shareWith (meta-reduce : Module Term -> Term))]
op sameComponent : Module Sort Sort -> Bool
[special (
id-hook MetalLevelOpSymbol (sameComponent)
op-hook shareWith (meta-reduce : Module Term -> Term))]
op leastSort : Module Term -> Sort
[special (
id-hook MetalevelOpSymbol (leastSort)
op-hook shareWith (meta-reduce : Module Term -> Term))]
op lesserSorts : Module Sort -> QidSet
[special (
id-hook MetalLevelOpSymbol (lesserSorts)
op-hook shareWith (meta-reduce : Module Term -> Term))]
op glbSorts : Module Sort Qid -> QidSet
[special (
id-hook MetalLevelOpSymbol (glbSorts)
op-hook shareWith (meta-reduce : Module Term -> Term))]
endfm
mod LOOP-MODE is
protecting QID-LIST .
sorts State System .
op [_,_,_] : QidList State QidList -> System
[special (
id-hook LoopSymbol
op-hook qidBaseSymbol (<Qids> : -> Qid)
op-hook nilQidListSymbol (nil : -> QidList)
op—hook gidListSymbol (__ : QidList QidList -> QidList))]

endm



Appendix E

A Software Architecture
Interoperation Example

The following example—developed by Francisco Durdn and José Meseguer as
part of a broader joint project with Carolyn Talcott on the uses of rewriting
logic as a semantic framework for the interoperation of architectural description
languages (ADLs) [34] is included for two purposes.

On the one hand, it is a medium-size example that exhibits many of the
object-oriented and parameterized programming features of Full Maude; it can
therefore be profitably used together with the examples in Sections 3.2 and 3.5 to
become more familiar with the object-oriented and parameterized programming
features of Full Maude.

On the other hand, the example has an interest in its own right as a non-
trivial case study demonstrating the suitability of rewriting logic as a semantic
framework, to give a formal semantics to, and to interoperate, different architec-
tural description languages. Intuitively, such languages have different semantic
models, but such models are not always precisely defined, and it is even less
clear how one can interoperate in a correct way ADLs based on quite different
semantic models.

The example is somewhat modest in its goals. In particular, we do not
model the syntaz of any existing ADLs. Instead, we specify in rewriting logic the
semantics for the semantic models of several typical ADLs, including dataflow
in both a static and a reflective-dynamic form message passing, and implicit
invocation.

The need for having to use and interoperate several of these models is mo-
tivated by the example itself, namely a system in which images from ships in
the ocean, together with information about their location, are first sent to an
image recognition subsystem that has a typical “pipes and filters” dataflow ar-
chitecture. In this case the dataflow architecture happens to be dynamic, so
that it can be modified at runtime in a reflexive way by adding new recognition
units to it. The results of the image recognition subsystem are then summarized
and sent in a message-passing style to a command center that has an implicit
invocation architecture, so that each object will react in its own particular way
to the same event broadcast to all of them. Each of the objects in the command
center can then send appropriate messages in response to the information that
it receives. The overall architecture of the system is summarized in a pictorial
way in Figure E.1.

(fmod MACHINE-INT* is

163
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Figure E.1: Semantic interoperability of heterogeneous architectures.

protecting MACHINE-INT .

var N : MachinelInt .
var M : MachineInt .

**x*% difference of two numbers
op dif : MachineInt MachinelInt -> Machinelnt .
eq dif (N, M)
=if N> M
then N - M
else M - N
fi .

*** maximum of two numbers

op max : MachineInt MachinelInt -> Machinelnt .

eq max (N, M)

=if N> M
then N
else M
fi .
endfm)

(fth TRIV is
sort Elt .
endfth)

(fmod DEFAULT[Y :: TRIV] is
sort Default[Y]
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subsort E1t.Y < Default[Y]
op null : -> Default[Y]
endfm)

(fmod PAIR[X :: TRIV, Y :: TRIV] is
sort Pair[X, Y]

_;_> : E1t.X E1t.Y -> Pair[X, Y]
op 1st : Pair[X, Y] -> Elt.X
op 2nd : Pair[X, Y] -> Elt.Y .

op <_;

var A : E1t.X .
var B : E1t.Y .

1]
=

eq 1st(< A ; B >)
eq 2nd(< A ; B >)
endfm)

1]
lo~]

(fmod TRIPLE[X :: TRIV, Y :: TRIV, Z :: TRIV] is
sort Triple[X, Y, Z]

op <_;_;_> : E1t.X E1t.Y E1t.Z -> Triple[X, Y, Z]
op 1st : Triple[X, Y, Z] -> Elt.X .

op 2nd : Triple[X, Y, Z] -> Elt.Y .

op 3rd : Triplel[X, Y, Z] -> Elt.Z

var A : El1t.X .
var B : E1t.Y .
var C : E1t.Z .

eq I1st(< A ; B ; C>) = A .
eq 2nd(< A ; B ; C> =B .
eq 3rd(< A ; B; C> =C .
endfm)

(fmod LIST[X :: TRIV] is
sort List[X]
subsort El1t.X < List[X]

op nil : -> List[X]
op _._ : List[X] List[X] -> List[X] [assoc id: nill
endfm)

(fmod SET[X :: TRIV] is
protecting BOOL

sorts Set[X] NeSet[X]
subsorts Elt.X < NeSet[X] < Set[X]

op mt : -> Set[X]

op __ : Set[X] Set[X] -> Set[X] [assoc comm id: mt]

op __ : NeSet[X] NeSet[X] -> NeSet[X] [assoc comm id: mt]
op _in_ : E1t.X Set[X] -> Bool
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vars E E’ : Elt.X .
var S : Set[X]

eq EE=E .

eq E in mt = false
eq E in (E’ S) = E == E’ or (E in S)
endfm)

(fth FUNCTION is

sorts Domain Codomain .

op £ : Domain -> Codomain .
endfth)

(view Domain from TRIV to FUNCTION is
sort E1t to Domain .
endv)

(view Codomain from TRIV to FUNCTION is
sort Elt to Codomain .
endv)

(fmod MAP[F :: FUNCTION] is
protecting (SET[Domain] * (op __ to _;_))[F]
protecting SET[Codomain] [F]

op map : Set[Domain] [F] -> Set[Codomain] [F]

var A : Domain.F .
var S : Set[Domain] [F]

eq map(mt) = (mt).Set‘[Codomain‘]‘[F‘]

eq map(A ; S) = f(A) map(S)
endfm)

(fmod PFUN[U :: TRIV, V :: TRIV] is
protecting BOOL
protecting DEFAULT[V]

*x*x protecting PAIR[U, Default[V]] not supported.
*** We use Pair[U, V] instead of Pair[U, Default[V]]

sort Pair([U, V]

op <_;_> : E1t.U Default[V] -> Pair[U, V]
op 1st : Pair[U, V] -> E1t.U .

op 2nd : Pair[U, V] -> Default[V]

var A : E1t.U .
var B : Default[V]

166
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1]
=

eq 1st(< A ; B >)
eq 2nd(< A ; B >) =

1
o5}

*x*x protecting SET[Pair[U, Default[V]]] not supported.

***x We would like to be able to write

*x*%* pr SET[Pair[U, Default[V]]]

* kK * (sort Set[Pair[U, Default[V]]] to PairSet[U, Default[V]],

* kK sort NeSet[Pair[U, Default[V]]] to NePairSet[U, Default[V]])
*** We use PairSet[U, V] and NePairSet[U, V] instead of

*%* PairSet[U, Default[V]] and NePairSet[U, Default[V]].

sorts PairSet[U, V] NePairSet[U, V]
subsorts Pair[U, V] < NePairSet[U, V] < PairSet[U, V]

op mt : -> PairSet[U, V]

op __ : PairSet[U, V] PairSet[U, V] -> PairSet[U, V]
[assoc comm id: (mt).PairSet‘[U‘,V‘]]
op __ : NePairSet[U, V] NePairSet[U, V] -> NePairSet[U, V]

[assoc comm id: (mt).PairSet‘[U¢,V‘]]
op _in_ : Pair[U, V] PairSet[U, V] -> Bool

vars E E’ : Pair[U, V]
var S : PairSet[U, V]

eq EE=E .

eq E in (mt) .PairSet‘[U¢,V‘] = false
eq E in (E* S) = (E == E’) or (E in 9)

**x* We would like to be able to write

* Kk
*x*%* pr MAP[view to PAIR[U, Default[V]] is

* kK sort Domain to Pair[U, Default[V]]

*ok K sort Codomain to El1t.U .

*ok K op f to 1st

*kok endv]

*ok ok * (sort Set[Domain] [U] to PairSet[U, Default[V]],
* kK sort Set[Codomain] [Default[V]] to Set[U],

*okk op map to dom)

* Kk

**% and

* Kk

*x** pr MAP[view to PAIR[U, Default[V]] is

*okk sort Domain to Pair[U, Default[V]]

*k ok sort Codomain to Default[V]

*ok K op £ to 2nd .

KKk endv]

*ok ok * (sort Set[Domain] [U] to PairSet[U, Default[V]],
*ok ok sort Set[Codomain] [Default[V]] to Set[Default[V]],
KKk op map to im)

* Kok

*** Instead, we use Set[U] and Set[V]

protecting SET[U]
**x protecting SET[Default[V]] not supported.
**% Wle use Set[V] instead of Set[Default[V]].
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protecting SET[V]
sort PFun[U, V]
subsorts Pair[U, V] < PFun[U, V] < PairSet[U, V]

op mt : -> PFun[U, V]
op _‘[_‘] : PFun[U, V] E1t.U -> Default[V]
op _‘[_->_¢1 : PFun[U, V] E1t.U Default[V] -> PFun[U, V]

vars C : Default[V]
var F : PFun[U, V]

op dom : PairSet[U, V] -> Set[U] . x*#*x domain
eq dom((mt) .PairSet‘[U‘,V‘]) = (mt).Set‘[U‘]
eq dom(< A ; B > S) = A dom(S)

op im : PairSet[U, V] -> Set[V] .  ***x image
eq im((mt) .PairSet‘[U¢,V¢]) = (mt).Set‘[V‘]
eq im(< A ; B > S) = B im(S)

cmb < A ; B> F : PFunl[U, V]
if not(A in dom(F))

eq (KA ; B>F)[A]=B.
ceq F [ 4]
= null
if not(A in dom(F))
eq (KA ; B>F)[A->C]
=<A; C>F.
ceq F[A->C]
=< A ; C>F
if not(A in dom(F))
endfm)

*x*x the following data type of Ports will be used for the input and output
*** ports of filter objects in the pipe and filters model.

(view NzMachineInt from TRIV to MACHINE-INT* is
sort E1lt to NzMachineInt
endv)

(fmod PORTS[X :: TRIV] is
protecting BOOL
protecting PFUN[NzMachineInt, X]
* (sort Pair[NzMachineInt, X] to Port[X],
sort PairSet[NzMachineInt, X] to PortSet[X],
sort NePairSet[NzMachineInt, X] to NePortSet[X])

op put : Default[X] PortSet[X] -> PortSet[X]

*** set the value of all the ports to the given value
op flush : PortSet[X] -> PortSet[X]

*** set all the ports to null
op empty : PortSet[X] -> Bool
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**x true if all the ports in the set are set to null
op full : PortSet[X] -> Bool
**x true if all the ports in the set ar different from null

var N : NzMachinelnt
vars A B : Default[X]
var S : PortSet[X]

eq put(B, mt)
= (mt) .PortSet‘[X‘]

eq put(B, (< N ; A > 8))
= <N ; B> put(B, S)

eq flush(S)
= put(null, S)

eq empty (mt)
= true
eq empty(< N ; A > S)
= (A == null) and empty(S)

eq full(mt)

= true
eq full(< N ; A > S)

= (A =/= null) and full(S)
endfm)

(omod 0ID is

protecting MACHINE-INT=*

op o : MachineInt -> 0id .
endom)

(view MachineInt from TRIV to MACHINE-INT* is
sort E1t to MachineInt
endv)

(view Triple‘[MachineInt‘,MachineInt‘,Machinelnt‘]
from TRIV
to TRIPLE[MachineInt,MachineInt,MachineInt] is
sort Elt to Triple[MachineInt, MachineInt, MachineInt]
endv)

(view List‘[MachineInt‘] from TRIV to LIST[MachineInt] is
sort Elt to List[MachinelInt]
endv)

(view Image from TRIV to LIST[MachineInt]*(sort List[MachineInt] to Image) is
sort Elt to Image
endv)

*xx A sighting consists of two-dimensional coords plus a time, plus
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*** an image described as a list of block heights.

*x*x For example, the image of a destroyer, with shape
*kok
*kok
*k ok
*kok

H
®H O
H OB O B
H H
H H
®H O

*k ok
ok ok
*** is given by the 1list 2 . 2 . 4 . 3 . 3 . 2.

(fmod SIGHTING is
pr LIST[MachineInt]*(sort List[MachineInt] to Image)
pr PAIR[Triple‘[MachineInt‘,MachineInt‘,MachineInt‘], Image]
*(sort Triple[MachineInt, MachineInt, MachineInt] to Location,
sort Pair[Triple‘[MachineInt‘,MachineInt‘,MachineInt‘], Imagel
to Sighting,
op 1st : Pair[Triple‘[MachineInt‘,MachineInt‘,MachineInt‘], Imagel

-> Triple‘[MachineInt‘,MachineInt‘,MachineInt‘] to sighting,

op 2nd : Pair[Triple‘[MachineInt‘,MachineInt‘,MachineInt‘], Imagel
-> Image to image)

op distance : Image Image -> MachineInt . *** distance between two images
op size : Image -> Machinelnt

op aircraft-carrier : -> Image

op oil-tanker : -> Image

op destroyer : -> Image

op speedboat : —> Image

vars N M : Machinelnt
vars L Q : Image

eq size(nil) = 0 .

eq size(N) =N .

eq size(N . L) = N + size(L)

eq distance(nil, L) = size(L)

eq distance(L, nil) = size(L)

eq distance(N, M . L) dif (N, M) + size(L)

eq distance(M . L, N) dif (N, M) + size(L)

eq distance(N . L, M . Q) = dif(N, M) + distance(L, Q)
eq aircraft-carrier =3 .3 .3 .3 .3.4.3.3.3.
eq oil-tanker =2 . 2 .2 .2 .2 .2 .2 .3.

eq destroyer =2 . 2 . 4 .3 .3 .2

eq speedboat = 1 1

endfm)

(view 0id from TRIV to 0ID is
sort Elt to 0id .
endv)

(view Pair‘[0id‘,NzMachineInt‘] from TRIV to PAIR[0id, NzMachineInt] is
sort Elt to Pair[0id, NzMachineInt]
endv)

(omod PIPE[X :: TRIV] is
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pr DEFAULT[Pair‘[0id‘,NzMachineInt‘]]
* (sort Default[Pair‘[0id‘,NzMachineInt‘]] to DfltAddr)
pr LISTIX]

class Pipe[X] | from : DfltAddr, to : DfltAddr, q : List[X]

endom)

(omod FILTER[X :: TRIV] is
including PIPE[X]
protecting PORTS [X]
class Filter[X] | in : PortSet[X], out : PortSet[X]

vars 0 P : 0id .

var N : NzMachinelInt
var E : E1t.X .

var S : PortSet[X]
var Q : List[X]

rl [filter-1]

< 0 : Filter[X] | out : (<K N ; E > S) >

<P : Pipe[X] | from : <0 ; N>, q : Q@ >

=> < 0 : Filter[X] | out : (< N ; null > S) >
<P : Pipe[X] | q: (E. Q@ >

rl [filter-2]

< 0 : Filter[X] | in : (< N ; null > S) >

<P : Pipe[X] | to : <0 ; N>, q: E>

=> < 0 : Filter[X] | in : (K N ; E > 8) >
<P : Pipe[X] | q : nil > .

rl [filter-3]
< 0 : Filter[X] | in : (< N ; null > S) >
<P : Pipe[X] | to : <0 ; N>, q: (Q . E) >
=> < 0 : Filter[X] | in : (K N ; E > 8) >
<P : Pipe[X] | q : Q >
endom)

(omod FANOUT([X :: TRIV] is
including FILTER[X]

class Fanout[X] | cnt : Machinelnt
subclass Fanout[X] < Filter[X]

var E : E1t.X .
var S : PortSet[X]
var F : 0id .

var N : MachineInt

crl [fanout]
< F : Fanout[X] | in : <1 ; E>, out : S, cnt : N >
=> < F : Fanout[X] | in : < 1 ; (null).Default‘[X‘] >,
out : put(E, S),
cnt : (W + 1) >
if empty(S) and not (E == (null).Default‘[X‘])
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endom)

(view Sighting from TRIV to SIGHTING is
sort Elt to Sighting .
endv)

(view Loc-Eval from FUNCTION
to PAIR[Sighting, MachineInt]
* (sort Pair[Sighting, MachineInt] to Loc-Eval) is
sort Domain to Loc-Eval
sort Codomain to Location .
var D : Domain .
op £(D) to term sighting(1st(D))
endv)

(view ImageSight from TRIV to SIGHTING is
sort Elt to Image
endv)

(view Pair‘[ImageSight‘,MachineInt ‘]
from TRIV to PAIR[ImageSight, MachineInt] is
sort Elt to Pair[ImageSight, MachineInt]
endv)

(fmod DATA is
protecting SIGHTING .
protecting MAP[Loc-Eval]
*(sort Set[Domain] [Loc-Eval] to Loc-Evals,
sort NeSet[Domain] [Loc-Eval] to Ne-Loc-Evals,
op mt : -> Set[Domain] [Loc-Eval] to mt-Loc-Evals,
sort Set[Codomain] [Loc-Eval] to Locationms,
sort NeSet[Codomain] [Loc-Eval] to Ne-Locations,
op mt : -> Set[Codomain] [Loc-Eval] to mt-Locations,
op map to locs)
protecting SET[Pair‘[ImageSight‘,MachineInt‘]]
*(sort Pair[ImageSight, MachineInt] to Eval,
sort Set[Pair‘[ImageSight‘,MachineInt‘]] to Evals,
sort NeSet[Pair‘[ImageSight‘,MachineInt‘]] to NeEvals,
op mt to mt-Evals)

sort Data .
subsort Sighting < Data .
subsort Loc-Evals < Data .

op unidentified-object : -> Eval
op winners : Loc-Evals NzMachineInt -> Evals

var LEVS : Loc-Evals
vars N M : Machinelnt
var L : Location .
var I : Image
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eq winners(mt-Loc-Evals, N) = mt-Evals
eq winners((< <L ; I > ; M > ; LEVS), N)
=if N> M

then (<K I ; M > winners(LEVS, N))
else winners(LEVS, N)
fi

endfm)

(view Data from TRIV to DATA is
sort Elt to Data .
endv)

(omod RECOGNIZER is
including FILTER[Data]

class Recognizer | model : Image
subclass Recognizer < Filter[Data]

var L : Location .
vars I M : Image
var R : 0id .

rl [recognizer]
<R : Recognizer | in : <1 ; <L ; I > >, out : < 1 ; null >, model : M >
=> < R : Recognizer |

in : < 1 ; null >,

out : <1 ; <<L ; M>; distance(I, M) > > >

*x*x this rule assumes unique input and output ports and singleton

*x*x data values in them as the way recognizer filters are used.

endom)
(omod COLLECTOR is
including FILTER[Datal

class Collector | cnt : Machinelnt
subclass Collector < Filter[Data]

op evals : PortSet[Datal -> Loc-Evals

var S : PortSet[Datal
var C : 0id .

var N : MachineInt
var D : Data .

eq evals(< N ; D > S) = (D ; evals(S)).Loc-Evals
eq evals((mt) .PortSet‘[Data‘]) = mt-Loc-Evals

crl [collector]
< C : Collector | in : S, out : < 1 ; null >, cnt : N >
=> < C : Collector | in : flush(S), out : < 1 ; evals(S) >, cnt : (N + 1)
if full(S) and (S =/= mt)
endom)
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(omod DISCRIMINATOR is
including COLLECTOR .

class Discriminator |
collector : 0id, threshold : NzMachineInt, controller : 0id .

msg to_at_evals_ot : 0id Location Evals -> Msg .

var S : PortSet[Data]
vars C D G : 0id .

var N : NzMachinelInt
var LEVS : Loc-Evals

crl [discriminator]
< D : Discriminator | collector : C, threshold : N, controller : G >
< C : Collector | out : < 1 ; LEVS > >
=> < D : Discriminator | >
< C : Collector | out : < 1 ; null > >
(to G at locs(LEVS) evals unidentified-object ot)
if (locs(LEVS) : Location) and (winners(LEVS, N) == mt-Evals)
crl [discriminator]
< D : Discriminator | collector : C, threshold : N, controller : G >
< C : Collector | out : < 1 ; LEVS > >
=> < D : Discriminator | >
< C : Collector | out : < 1 ; null > >
(to G at locs(LEVS) evals winners(LEVS, N) ot)
if (locs(LEVS) : Location) and not (winners(LEVS, N) == mt-Evals)

**x*x the above rule uses the subsort inclusion Location < Locations and
*x*x assumes that all the located evaluations originate from
*x*x the same sighting and therefore have the same location

endom)

(omod META is
inc RECOGNIZER .
inc DISCRIMINATOR .
inc FANOUT [Datal
pr DEFAULT[0id] * (sort Default[0id] to Dft0id)
pr DEFAULT [MachineInt] #* (sort Default[MachineInt] to DftMachinelInt)

sort State

op lock : Cid -> Cid .

op _._ : 0id MachineInt -> 0id .

op ready : -> State

op busy : -> State

msg to_install-recognizer_ot : 0id Image —-> Msg .

class Meta | in-pipe : Dft0id, out-pipe : Dft0id, fanout : Dft0id,
recognizer : Dft0id, collector : Dft0id, state : State,

cnt : DftMachinelnt, tag : Machinelnt

vars M P P> R F C : 0id .
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var I : Image
vars N N’ : Machinelnt
vars S S’ : PortSet[Data]

op max : NeSet[NzMachineInt] -> NzMachineInt
var T : NeSet[NzMachineInt]

eq max(N) = N .

ceq max(N T) = N if N > max(T)

ceq max(N T) = max(T) if not (N > max(T))

175

*x*x A meta-object can, upon request, dynamically change the configuration
*xx of the dataflow network it controls, by adding a new recognizer object
*** to recognize a given image and two new pipes and by hooking it up

*x*x through the pipes to the fanout and collector objects.

rl [create]
(to M install-recognizer I ot)
< M : Meta | state : ready, tag : N >
=> < M : Meta | state : busy, recognizer : (M . N), in-pipe
out-pipe : (M . (N + 2)), tag : (N + 3) >

m .

< (M . N) : Recognizer | in : < 1 ; (null).Default‘[Data‘] >,

out : < 1 ; (null).Default‘[Data‘] >, model : I >
<M. (N + 1)) : Pipe[Data] |

from : (null) .DfltAddr, to : < (M . N)
<M. (N + 2)) : Pipe[Data] |

from : < (M . N) ; 1>, to : (null).DfltAddr, q :

;0 1>, g

crl [hook-fanout-collector]

< M : Meta | state : busy, recognizer : R,
fanout : F, in-pipe : P,
collector : C, out-pipe : P’ >

nil >

nil >

N+ 1)),

< F : Fanout[Data] | cnt : N’, out : S >
< P : Pipe[Datal] | from : (null).DfltAddr >
< C : Collector | cnt : N’, in : S’ >
< P’ : Pipe[Datal] | to : (null).DfltAddr >
=> < M : Meta | state : ready, recognizer : (null).Dft0id,
in-pipe : (null).Dft0id, out-pipe : (null).Dft0id >
< F : Fanout[Data] |
out : (S < (max(dom(S)) + 1) ; (null).Default‘[Data‘] >) >
< P : Pipe[Data] | from : < F ; (max(dom(S)) + 1) > >
< C : Collector |
in : (S’ < (max(dom(S’)) + 1) ; (mull).Default‘[Data‘] >) >
< P’ : Pipe[Data] | to : < C ; (max(dom(S’)) + 1) > >
if empty(S) and empty(S’)
endom)

(omod IMAGE-RECOGNITION is

including META .

op init-conf : -> Configuration .

*x* this initial configuration has a pipe feeding images and linked

***x to a fanout object that is then linked by pipes to three

*xx recognizers for speedboats, destroyers, and aircraft carriers
*** their evaluations are then fed by other pipes into a collector

*** object. A discriminator object then selects the evaluations
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**%* accurate within a threshold and sends them (or an unidentified
*** object report) to a controller object. Finally, there is a
*** metaobject that can dynamically change the dataflow network

*** by hooking up to it new recognizers via new pipes.

eq init-conf

=< 0o(0)

< o(1)

< 0(2)

< 0(3)

< o(4)

< o(5)

< o(6)

< o(7)

< o(8)

< 0(9)

< 0(10)

< o(11)

: Pipe[Datal |
from : (null).DfltAddr,
to : < o(1) ; 1>,

qg: (k<1;2;3>;(2.2.4.4.3.2 >
<<4 ;5 ;2>; (2.1)>.
<<7;5;1>;(@.3.3.3.3.5.4.3.
<<0;0;0>; (2.2.2.2.2.2.2.23)

: Fanout[Data] |

in : < 1 ; (null).Default‘[Data‘] >,
out : (< 1 ; (null).Default‘[Data‘] >
< 2 ; (null).Default‘[Data‘] >
< 3 ; (null).Default‘[Data‘] >),
cnt : 0 >

: Pipe[Data] |

from : < o(1) ; 1 >,
to : < o(B) ; 1>,
q : nil >

: Pipe[Datal |

from : < o(1) ; 2 >,
to : < o(6) ; 1 >,

q : nil >

: Pipe[Data] |

from : < o(1) ; 3 >,
to : < o(7) ; 1>,
q : nil >

: Recognizer |

in : < 1 ; (null).Default‘[Data‘] >,
out : < 1 ; (null).Default‘[Data‘] >,
model : destroyer >

: Recognizer |

in : < 1 ; (null).Default‘[Data‘] >,
out : < 1 ; (null).Default‘[Data‘] >,
model : speedboat >

: Recognizer |

in : < 1 ; (null).Default‘[Data‘] >,
out : < 1 ; (null).Default‘[Data‘] >,
model : aircraft-carrier >

: Pipe[Data] |

from : < o(5) ; 1 >,
to : < o(11) ; 1 >,
q : nil >

: Pipe[Datal |

from : < o(6) ; 1 >,
to : < o(11) ; 2 >,
q : nil >
: Pipe[Data] |
from : < o(7) ; 1 >,
to : < o(11) ; 3 >,
q : nil >
Collector |
in : (< 1 ; (null).Default‘[Data‘] >

3) > .
>) >
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< 2 ; (null).Default‘[Data‘] >
< 3 ; (null).Default‘[Data‘] >),
out < 1 ; (null).Default‘[Data‘] >,
cnt : 0 >
< 0(12) : Discriminator |
collector : o(11),
threshold : 4,
controller : o(13) >
< 0(13) : Meta |
in-pipe : (null).Dft0id,
out-pipe : (null).Dft0id,
fanout : o(1),
recognizer : (null).Dft0id,
collector : o(11),
state : ready,
cnt : (null).DftMachinelnt,
tag : 0 >
endom)

(omod IMPLICIT-INVOCATION[M :: TRIV, E :: TRIV, P :: TRIV] is

pr PFUN[E, M] * (sort PFun[E, M] to Table[E, M])

class Bubble | conf : Configuration
class Implicit | table : Table[E, M]

msg to_msg_with_ot : 0id Elt.M El1t.P -> Msg .
op bc_with_in_cb : Elt.E Elt.P Configuration -> Configuration

sort ExtAct
subsort ExtAct < Msg .

vars B 0 : 0id .

var M : E1t.M .

var E : E1t.E .

var P : E1t.P .

var T : Tablel[E, M]

vars C C’ : Configuration

var MSG : Msg .
var EA : ExtAct

crl [bell
bc E with P in C C’ cb
=> bc E with P in C cb
bc E with P in C’ cb
if (C =/= empty) and (C’ =/= empty)
rl [bc2]
bc E with P in empty cb
=> (empty) .Configuration
rl [bc3]
bc E with P in MSG cb
=> MSG .
crl [bc4]
bc E with P in < 0 : Implicit | table : T > cb
=> < 0 : Implicit | table : T >



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE

if T[E] == null
crl [bc4l
bc E with P in < 0 : Implicit | table : T > cb
=> to 0 msg T[E] with P ot

< 0 : Implicit | table : T >

if not (T[E] == null)

rl [out]
< B : Bubble | conf : (EA C) >
=> < B : Bubble | conf : C > EA
endom)

(fmod OVERALL-SYSTEMO is
sorts Event MsgId .

op sghtng : -> Event

op air-act : -> MsgId .

op bttlshp-act : -> Msgld .
endfm)

(view MsgId from TRIV to OVERALL-SYSTEMO is
sort Elt to MsgId .
endv)

(view Event from TRIV to OVERALL-SYSTEMO is
sort Elt to Event
endv)

(view Location from TRIV to IMAGE-RECOGNITION is
sort Elt to Location .
endv)

(view Evals from TRIV to IMAGE-RECOGNITION is
sort Elt to Evals
endv)

(view Pair‘[Location‘,Evals‘] from TRIV to PAIR[Location, Evals] is

sort Elt to Pair[Location, Evals]
endv)

(omod OVERALL-SYSTEM is
inc IMAGE-RECOGNITION

inc IMPLICIT-INVOCATION[MsgId, Event, Pair‘[Location‘,Evals‘]]

* (class Bubble to Controller)

class Commander | table : Table[Event, MsgId], subordinate

subclass Commander < Implicit

msg to_threat-at_ot : 0id Location -> ExtAct

178
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msg to_recon-at_ot : 0id Location -> ExtAct
op q : MachineInt -> 0id .

vars 0 Q S : 0id .

var L : Location .

var EVS : Evals

var C : Configuration .

rl [controll]
to 0 at L evals EVS ot
< 0 : Controller | conf : C >
=> < 0 : Controller | conf : (bc sghtng with < L ; EVS > in C cb) >

rl [bttlshp-act]
to Q msg bttlshp-act with < L ; EVS > ot
< 0 : Commander | subordinate : S >
=> < 0 : Commander | >
to S threat-at L ot
rl [air-act]
to Q msg air-act with < L ; EVS > ot
< 0 : Commander | subordinate : S >
=> < 0 : Commander | >
to S recon-at L ot

op syst-conf : -> Configuration .

eq syst-conf
= init-conf
< 0(14) : Controller |
conf : (< q(0) : Commander | table : < sghtng ; air-act >,
subordinate : q(1) >
< q(2) : Commander | table : < sghtng ; air-act >,
subordinate : q(3) >) > .
endom)

Maude> (rew init-conf .)

Rewrite in OVERALL-SYSTEM : init-conf
Result Configuration
< 0(0) : Pipe[Datal] | q : nil, from : null, to : < o(1) ; 1 > >
< o(1) : Fanout[Data] out : (< 1 ; null > < 2 ; null > < 3 ; null >),
in : < 1 ; null >, cnt >

H
< 0(2) : Pipe[Datal] | q : nil, from : < o(1) ; 1 >, to : < o(5) ; 1> >
< 0(3) : Pipe[Datal | q : nil, from : < o(1) ; 2 >, to : < 0(6) ; 1> >
< 0(4) : Pipe[Datal] | q : nil, from : < o(1) ; 3 >, to : < o(7) ; 1> >
< o(5) : Recognizer | out : < 1 ; null >, in : < 1 ; null >,
model : (2 . 2 .4 .3 .3 2) >
< 0o(6) : Recognizer | out : < 1 ; null >, in : < 1 ; null >,

model : (1 . 1) >

out : <1 ; null >, in : < 1 ; null >,

model : (3.3 .3.3.3.4.3.3.3)>
1
1

< o(7) : Recognizer

0(8) : Pipe[Datal | q : nil, from : < o(5) ; >, to : < o(11) ; 1> >
0(9) : Pipel[Data] | q : nil, from : < o(6) ; >, to : < o(11) ; 2 > >
0(10) : Pipe[Datal | q : nil, from : < o(7) ; 1 >, to : < o(11) ; 3 > >
o(11) : Collector | out : < 1 ; null >,

in : (<1 ; null > < 2 ; null > < 3 ; null >),

AN AN A A



APPENDIX E. SOFTWARE ARQUITECTURE EXAMPLE 180
cnt : 4 >
< 0(12) : Discriminator | controller : o(13), threshold : 4,
collector o(11) >
< 0(13) : Meta | cnt : null, collector : o(11), tag : O,
state : ready, out-pipe : null, in-pipe : null,
recognizer : null, fanout : o(1) >
to 0(13) at < 0 ; 0 ; O > evals unidentified-object ot
to 0(13) at <1 ; 2 ; 3 > evals < 2 2 .4 .3.3.2;1>o0t
to 0(13) at < 4 ; 5 ; 2 > evals < 1 1 ;1> ot
to o(13) at <7 ; 5 ;1 >evals <3 .3 .3.3.3.4.3.3.33;2>o0t

Maude> (rew init-conf (to 0(13) install-recognizer oil-tanker ot)

Rewrite in OVERALL-SYSTEM

init-conf

to 0(13) install-recognizer oil-tanker ot

Result Configuration

)

< 0(0) : Pipe[Datal] | q : nil, from : null, to <o(1) ; 1>>
< o(1) : Fanout[Data] |
out (<1 ; null > < 2 ; null > < 3 ; null > < 4 ; null >),
in : <1 ; null >, cnt : 4 >
< 0(2) : Pipe[Datal | q : nil, from : < o(1) ; 1 >, to : < o(5) ; 1> >
< 0(3) : Pipe[Datal] | q : nil, from : < o(1) ; 2 >, to : < o(6) ; 1> >
< 0(4) : Pipe[Datal | q : nil, from : < o(1) ; 3 >, to : < o(7) ; 1> >
< o(5) : Recognizer | out <1 ; null >, in : < 1 ; null >,
model (2 2.4.3.3 2) >
< o(6) : Recognizer | out <1 ; null >, in : < 1 ; null >,
model (1 1) >
< o(7) : Recognizer | out <1 ; null >, in : < 1 ; null >,
model (3.3.3.3.3.4.3.3.3)>
< 0(8) : Pipe[Datal | q : nil, from : < o(5) ; 1 >, to : < o(11) ; 1 > >
< 0(9) : Pipe[Datal] | q : nil, from : < o(6) ; 1 >, to : < o(11) ; 2 > >
< 0(10) : Pipe[Data] | q : nil, from : < o(7) ; 1 >, to <o(11) ; 3> >
< 0(11) : Collector | out <1 ; null >,
in : (<1 ; null > < 2 ; null > < 3 ; null > < 4 ; null >),
cnt : 4 >
< 0(12) : Discriminator | controller : o(13), threshold : 4,
collector o(11) >
< 0(13) : Meta | cnt : null, collector : o(11), tag : 3,
state : ready, out-pipe : null, in-pipe : null,
recognizer : null, fanout : o(1) >
< 0o(13) . O : Recognizer | out <1 ; null >, in : < 1 ; null >,
model (2.2 .2 .2 .2 .2 .3)>
< 0(13) 1 : Pipe[Data] | q : nil, from : < o(1) ; 4 >,
to <o(13) .0 ; 1>>
< 0(13) 2 : Pipe[Datal | q : nil, from : < o(13) . 0 ; 1 >,
to <o(11) ; 4 > >
to 0(13) at < 0 ; 0 ; 0 > evals < 2 2.2 .2 2.2 .2.3;0>0t
too(13) at <1 ; 2 ; 3>evals <2 .2 .4.3.3.2;1>o0t
to 0(13) at <4 ; 5 ; 2 >evals <1 .1 ;1> ot
to 0(13) at < 7 ; 5 ; 1 > evals < 3 3.3.3.3.4.3.3.33;2>o0t
Maude> (rew syst-conf .)
Rewrite in OVERALL-SYSTEM syst-conf
Result Configuration
< 0(0) : Pipe[Datal] | q : nil, from : null, to <o(1) ; 1>>
< o(1) : Fanout[Data] | out (<1 ; null > < 2 ; null > < 3 ; null >),
in : <1 ; null >, cnt : 4 >
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< 0(2) : Pipe[Datal | q : nil, from : < o(1) ; 1 >, to : < o(5) ; 1> >
< 0(3) : Pipe[Datal | q : nil, from : < o(1) ; 2 >, to : < o(6) ; 1 > >
< o(4) : Pipe[Datal | q : nil, from : < o(1) ; 3 >, to : < o(7) ; 1> >
< o(5) : Recognizer | out <1 ; null >, in : < 1 ; null >,
model (2 .4 .3.3 2) >
< 0(6) : Recognizer | out <1 ; null >, in : < 1 ; null >,
model (1 1) >
< o(7) : Recognizer | out <1 ; null >, in : < 1 ; null >,
model (3 .3.3.3 . 3.3 >
< 0(8) : Pipe[Datal | q : nil, from : < o(5) ; 1 >, to : < o(11) 1>>
< 0(9) : Pipe[Datal] | q : nil, from : < o(6) ; 1 >, to : < o(11) ; 2 > >
< 0(10) : Pipe[Data]l | q : nil, from : < o(7) ; 1 >, to < o(11) ; 3> >
< 0(11) : Collector | out <1 ; null >,
in : (<1 ; null > < 2 ; null > < 3 ; null >),
cnt : 4 >
< 0(12) : Discriminator | controller : o(13), threshold : 4,
collector o(11) >
< 0(13) : Meta | cnt : null, collector : o(11), tag : O,
state : ready, out-pipe : null, in-pipe : null,
recognizer : null, fanout : o(1) >
< 0(14) : Controller |
conf : (< q(0) : Commander | table : < sghtng ; air-act >,
subordinate : q(1) >
< q(2) Commander | table : < sghtng ; air-act >,
subordinate : q(3) >) >
to 0(13) at < 0 ; 0 ; O > evals unidentified-object ot
too(13) at <1 ; 2 ; 3>evals <2 .2 .4.3.3.2;1>o0t
to 0(13) at < 4 ; 5 ; 2 > evals < 1 1 ;1> ot
to o(13) at <7 ;5 ;1 >evals <3 .3.3.3.3.4.3.3.33;2>o0t



