
Decision Problems for Propositional Linear LogicPatrick Lincoln1;3 John Mitchell1 Andre Scedrov2Natarajan Shankar3September 13, 1994
1Department of Computer Science, Stanford University, Stanford, CA 943052Department of Mathematics, University of Pennsylvania, Philadelphia, PA 191043Computer Science Laboratory, SRI International, Menlo Park, CA 94025

AbstractLinear logic, introduced by Girard, is a re�nement of classical logic with a natural,intrinsic accounting of resources. This accounting is made possible by removingthe \structural" rules of contraction and weakening; adding a modal operator; andadding �ner versions of the propositional connectives. Linear logic has fundamentallogical interest and applications to computer science, particularly to Petri nets,concurrency, storage allocation, garbage collection, and the control structure of logicprograms. In addition, there is a direct correspondence between polynomial-timecomputation and proof normalization in a bounded form of linear logic.In this paper we show that unlike most other propositional (quanti�er-free) log-ics, full propositional linear logic is undecidable. Further, we prove that without themodal storage operator, which indicates unboundedness of resources, the decisionproblem becomes pspace-complete. We also establish membership in np for themultiplicative fragment, np-completeness for the multiplicative fragment extendedwith unrestricted weakening, and undecidability for fragments of noncommutativepropositional linear logic.

Contents1 Introduction 32 Multiplicative Additive Propositional Linear Logic is PSPACE-complete 72.1 Membership in pspace : 82.2 Informal Outline of pspace-hardness of mall : : : : : : : : : : : : : 82.2.1 Encoding Boolean Evaluation : : : : : : : : : : : : : : : : : : 92.2.2 Encoding Boolean Quanti�cation : : : : : : : : : : : : : : : : 122.3 Formal De�nition of the Encoding : : : : : : : : : : : : : : : : : : : 142.4 Proof of pspace-hardness of mall : : : : : : : : : : : : : : : : : : : 153 Propositional Linear Logic is Undecidable 233.1 Overview : 243.2 Linear Logic Augmented With Theories : : : : : : : : : : : : : : : : 243.3 Coding Theories in Formulas : 263.4 And-Branching Two Counter Machines Without Zero-Test : : : : : : 283.4.1 Two Counter Machines : 293.5 From Machines to Logic : 313.6 Example Computation : 374 Noncommutative Propositional Linear Logic 404.1 ncl Proof Rules : 414.2 ncl is Undecidable : 414.3 ncl Theories : 424.3.1 Semi-Thue Systems : 434.4 From Semi-Thue Systems to Noncommutative Linear Logic : : : : : 444.5 Other Noncommutative Logics : 464.5.1 Rotate Rule versus Embedding : : : : : : : : : : : : : : : : : 474.5.2 ncl without ?E : 474.5.3 Alternate
 : 484.5.4 Mix and Match : 484.6 Degenerate Noncommutative Linear Logics : : : : : : : : : : : : : : 491

2 Decision Problems for Propositional Linear Logic4.6.1 Intermingling
 : 494.6.2 Intermingling Cut : 495 The Multiplicative Fragment 515.1 Multiplicatives : 515.2 Direct Logic : 516 Conclusion 56Bibliography 58A Cut Elimination 61A.1 Cut of non-principal formulas : 63A.1.1
 : 63A.1.2 P : 64A.1.3 � : 64A.1.4 & : 64A.1.5 ?W : 65A.1.6 ?C : 65A.1.7 ?D : 65A.1.8 ? : 66A.1.9 > : 66A.1.10 Cut : 66A.2 Cut of principal formulas : 66A.2.1 I versus any : 67A.2.2
 versus P : 67A.2.3 & versus � : 67A.2.4 ?W versus !S : 67A.2.5 ?C versus !S : 68A.2.6 ?D versus !S : 68A.2.7 !S versus !S : 69A.2.8 Cut� versus !S : 70A.2.9
 versus !S : 70A.2.10 ? versus 1 : 71A.3 Subformula Property : 72B Propositional Linear Logic Proof Rules 74

Chapter 1IntroductionLinear logic is a re�nement of classical logic introduced by Girard [Gir87a]. Thislogic has a \resource sensitive" character, re
ected in the fact that two assumptionsof a formula A are distinguished from a single assumption of A. In this paper, westudy the decision problem for full propositional linear logic and several naturalfragments. The easiest result to state is that full propositional linear logic is unde-cidable. We also show that an \intuitionistic" fragment is undecidable, a naturalfragment is pspace-complete, and a smaller fragment that is in np becomes np-complete with an additional rule. Before describing these results, we give a shortoverview of linear logic by explaining the passage from classical to linear logic.Formally, linear logic may be derived in three steps from a Gentzen-style sequentcalculus axiomatization of classical logic. The �rst step is to drop two structuralrules, contraction and weakening . This forces a reexamination of conjunction anddisjunction, leading to two forms of each connective. The third step is to recoverthe full expressive power of classical logic by adding two modal operators, ! and ?.These three steps are described in more detail in the following paragraphs. Theresulting logic is surprisingly natural, from both proof-theoretic and computationalstandpoints. In particular, Gentzen-style cut-elimination, a crucial proof-theoreticproperty (see [Gen69, GLT89], for example), has been established for linear logic in[Gir87a]. This yields consistency and provides a natural computational mechanismthat resembles reduction in lambda calculus (e.g., [HS86, GLT89]).The derivation of linear logic begins by dropping the structural rules contrac-tion and weakening, which are an essential part of classical and intuitionistic logic.Each rule may be applied to either the left or right side of a sequent. On the left,contraction allows repeated assumptions of some formula to be replaced by a singleassumption of the same formula. This means that a single hypothesis is as goodas any number of duplicates, or, a hypothesis may be \reused" as often as desired.Contraction on the right also allows duplicates to be dropped, which has essentiallythe same e�ect. Weakening on the left allows us to add irrelevant hypotheses, and,3

4 Decision Problems for Propositional Linear Logicon the right, to extend the set of possible conclusions arbitrarily. Since contractionand weakening make it possible to use an assumption as little or as often as desired,these rules are responsible for what we may regard as a loss of control over resourcesin both classical and intuitionistic logic. Excluding these rules produces a linearsystem in which each assumption must be used exactly once, and each conclusionmust follow from the hypotheses. In linear logic, formulas may be regarded as �xedresources that cannot necessarily be discarded or duplicated without e�ort.The second step in deriving linear logic involves the propositional connectives.Brie
y, the change in structural rules leads to two forms of conjunction and disjunc-tion. The reason for the split is that we must decide whether we require linearity ofthe entire conjunction or disjunction, or whether it su�ces to have each conjunct ordisjunct alone depend linearly on the surrounding formulas. One form, called ad-ditive conjunction or disjunction, is informally described as \sharing of resources"since the two conjuncts or disjuncts may depend on a shared set of hypotheses. Inthe other multiplicative form, there is no such sharing. The general situation may beillustrated by examining two consequences of the pair of linear implications A��Band A��C. Intuitively, A��B says that from A we may conclude B, or, in morecomputational terms, we have a process that will consume A and produce B. Giventhe two assumptions A��B and A��C, there are two possible conclusions involvingconjunctions of B and C. Using additive conjunction, written & , we may concludeA��(B&C) since from A we are capable of obtaining B and we are capable ofobtaining C. With multiplicative conjunction, written
, sharing is not allowed.However, we may obtain B and C from two separate A's. This is written symbol-ically as (A
 A)��(B
 C). One way of describing the distinction is that B&Cindicates a choice between B and C, while B
 C re
ects an ability to have bothsimultaneously.The �nal step in deriving linear logic is to add two modal operators. These area storage or reuse operator, ! , and a dual consumption operator ? , de�nable from! using negation. Intuitively, the formula !A provides unlimited use of the resourceA and ?B allows the unlimited consumption of B. Using a computational metaphorthat we have found useful and faithful to the logic, we may read !A as, \the datumA is stored in the memory and may be referenced an unlimited number of times".In deductive terms, if B follows from any number of assumptions of A, then Bfollows from the single assumption !A. A view of ! which suggests the translation ofclassical logic into linear logic is that while we do not have contraction and weakeningas structural rules, we may apply contraction and weakening to formulas beginningwith !. Since the basic framework remains linear, unbounded use is allowed only\locally", at formulas speci�cally marked with ! or ?.The �rst application of the resource-sensitive aspect of the logic was the devel-opment of a functional programming language implementation in which garbagecollection was replaced by explicit duplication operations based on linear logic

Introduction 5[Laf88]. Further studies have demonstrated connections with Petri nets [Asp87,GG89, MOM89, AFG90, GG90] and other models of concurrency [Laf90, AV90].With regard to concurrency, there is a similarity between proof nets, the inherentmodel of computation associated with cut-elimination in multiplicative linear logic(cf [Gir87a, Gir87b, DR89, Laf90]), and connection graphs, which were designedto model connection machine computation [Baw86]. Other applications includeoptimization of copying in lazy functional programming language implementation[GH90] and analyzing the control structure of logic programs [Cer90, AP90]. A nat-ural characterization of polynomial time computations can be given in a boundedversion of linear logic [GSS90] obtained by limiting reuse to speci�ed bounds, i.e.,by bounding the number of references to each datum in memory. Informal intro-ductions to linear logic may be found in [Gir90, Sce90].We now summarize the main results of this paper (which were sketched in[LMSS90]), beginning with the smallest fragment considered. Multiplicative lin-ear logic contains only linear implication, negation, and the multiplicative formsof conjunction and disjunction. Recall that these forms require the available re-source to be partitioned rather than shared. We show that the decision problemfor this fragment is in np. With unrestricted weakening added, we show that themultiplicative fragment is np-complete.There are two natural fragments extending pure multiplicative linear logic, onewith additive connectives and the other with the ! operator. We show that the�rst extension, with additive and multiplicative connectives but not !, is pspace-complete. The proof, by reduction from classical quanti�ed boolean formulas, in-volves encoding quanti�er order using only commutative propositional connectives.We note here in passing that the fragment with only multiplicative connectives andthe ! operator is at least as hard as the reachability problem for Petri nets (or, equiv-alently, commutative semi-Thue systems or vector addition systems). This followsfrom conservativity properties established in this paper and previous work relatinglinear logic and Petri nets. Although reachability is decidable [May81, Kos82], thebest known lower bound is expspace [Lip76, MM82]. A likely upper bound on Petrinet reachability is primitive recursive in the Ackermann function [McA84, Clo86].We do not know if multiplicative linear logic with ! is decidable.Finally, we show that provability in full propositional linear logic with additiveand multiplicative connectives and modal storage operator is undecidable. It followsfrom this undecidability result that when propositional linear logic is extended withquanti�cation over propositions, the resulting logic is also undecidable. (Provabilityis trivially recursively enumerable, since the proof system is e�ective.) Undecidabil-ity also holds for a restricted form called intuitionistic propositional linear logic. Inaddition, we establish the undecidability of a noncommutative variant of linear logic(even without additive connectives), a system that extends the calculus in [Lam58];see [Gir89, Yet90].

6 Decision Problems for Propositional Linear LogicOur undecidability proof uses a direct encoding of a form of alternating countermachines. Our \and-branching counter machines" resemble the alternating Turingmachines of [CKS81]), but lack a basic operation to test for zero. The basic tran-sitions of these machines may be axiomatized using the multiplicative and additiveconnectives, while the ! operator is needed to allow an instruction to be executed anarbitrary number of times. Additive connectives are used to encode and -branching,which is needed to simulate the zero tests of conventional counter machines. As forthe other lower bounds, the bulk of the technical work lies in establishing that theencoding is faithful, i.e., each deduction in linear logic determines some computa-tion. Faithfulness is demonstrated using a detailed examination of cut-eliminationin linear logic [Gir87a]. This yields a version of the deduction theorem for linearlogic and various conservativity results of independent interest.A key insight is that searching for a proof of a certain special form for a given lin-ear logic sequent corresponds directly to searching for an accepting computation in aparticular machine model. A successful search is exactly an accepting computation.For propositional linear logic without storage, membership in pspace is shownusing a proof bound based on cut-elimination. pspace-hardness is demonstratedby a (log-space) construction of formulas that may be proved only by alternatingbetween rules that simulate classical universal and existential propositional quan-ti�ers. This construction demonstrates a surprising property of linear logic: theconnectives are su�cient to express synchronization to the point of \sequentiality".Undecidability of noncommutative linear logic is proved by encoding the word prob-lem for semigroups. Unlike our other reductions, this does not require the additiveconnectives. Membership in np for multiplicative linear logic, with or without un-restricted weakening, is based on a polynomial bound on proof-size resulting fromcut-elimination. With unrestricted weakening, we show np-completeness by reduc-tion from the vertex cover problem [GJ79].A logic that is super�cially related to linear logic is propositional relevance logic,which is proved undecidable in [Urq84]. Like linear logic, relevance logic lacks weak-ening. However, relevance logic does have unrestricted contraction. In addition,relevance logic has a distributivity axiom, absent from linear logic. Without the dis-tributivity axiom, relevance logic becomes decidable [Mey66]. The system with dis-tributivity also lacks cut-free Gentzen-type formulation. See, for example, [Avr88].Thus both the motivation and technical properties of linear logic are signi�cantlydi�erent from relevance logic.

Chapter 2Multiplicative AdditivePropositional Linear Logic isPSPACE-completeIn this chapter, we analyze the complexity of the fragment of propositional linearlogic without the modal storage operator ! and its dual ?, but including all theremaining connectives and constants of linear logic.We begin with some standard de�nitions. A deduction in propositional linearlogic is a tree, usually presented with the root at the bottom, and the leaves at thetop. Each branch of a deduction is a sequence of applications of the proof rulesgiven in Appendix B, some of which, such as & , represent branching points in thededuction tree, some, such as P , which extend the length of a branch, and some,such as identity, which terminate a branch. The leaves embody the assumptions,and the root the conclusion. Such a structure is said to be a deduction of theconclusion from the assumptions. A proof in linear logic is a deduction with noassumptions. That is, each branch terminates with an application of identity, >,or 1. One interesting feature of linear logic, as presented in Appendix B, is thatnegation is de�ned, and it is not a connective. In particular, the propositionalliterals are assumed to be given in pairs, one positive (written pi for some i) andone negative (written p?i).In this chapter we are concerned with the multiplicative-additive fragment oflinear logic, which we abbreviate as mall. The logical symbols used in this frag-ment are multiplicative conjunction (
) and disjunction (P), additive conjunction(&) and disjunction (�), and the constants 0, 1, >, and ?. mall formulas and se-quents contain only these connectives and constants, in addition to the positive andnegative literals. The proof rules of mall are all of the rules in the Appendix B thatare associated with these connectives and constants. This logic has been studied7

8 Decision Problems for Propositional Linear Logicby Girard [Gir87a] and Bellin [Bel90]. While provability for the classical proposi-tional logic is co-NP-complete, we show below that provability for mall is pspace-complete.An important property of the sequent calculus formulation of mall is cut-elimination. This property follows from the Theorem A.3 of Appendix A.Theorem 2.1 Any sequent provable in mall is provable without the cut rule.Proof. Since mall is a fragment of linear logic, we may use the cut-eliminationprocedure from Theorem A.3 to convert a mall proof to a cut-free proof in linearlogic. By the subformula property (Theorem A.4), such a cut-free proof of a mallsequent contains only mall formulas. Since all the rules which apply to mallformulas are already in mall, any cut-free proof of a mall sequent must alreadybe a mall proof.Membership in pspace is straightforward, given cut elimination, but we includea short sketch to illustrate the importance of Theorem 2.1. The proof of pspace-hardness is more technical. Proof search in the cut-free sequent calculus is crucial tothe proof. The primitive step in proof search is a reduction, namely the applicationof an inference rule to transform a sequent matching the conclusion of the ruleto the collection of sequents given by the corresponding premises of the rule. Areduction is the inverse of an inference rule, and drives conclusions to premises.Proof search is the process of constructing a cut-free proof in a bottom-up mannerby nondeterministically applying reductions starting from the conclusion sequent.2.1 Membership in PSPACETheorem 2.2 The provability in mall of a given sequent can be decided by apolynomial-space bounded Turing machine.Proof. By Theorem 2.1, a provable mall sequent has a cut-free mall proof. In acut-free mall proof, there are at most two premises to each rule, and each premise isstrictly smaller than the consequent. Therefore, the depth of a cut-free mall prooftree is at most linear in the length of the �nal sequent of the proof. An alternatingTuring machine [CKS81] may guess and check a cut-free proof in linear time, usingOR-branching to nondeterministically guess a reduction in the cut-free proof, andAND-branching to generate and check the proofs of both premises of a two premiserule in parallel.Membership in pspace can also be proved without reference to alternation. Anondeterministic Turing machine can be de�ned to generate and check a cut-freesequent proof in a depth-�rst manner. Given the linear bound on the depth of anycut-free proof with respect to the size of the conclusion sequent, the search stack

Multiplicative Additive Linear Logic 9need contain no more than a linear number of sequents. Since each sequent in acut-free proof is no larger than the conclusion sequent, we get a quadratic bound onthe stack size.2.2 Informal Outline of PSPACE-hardness of MALLSince there are a number of technical details to the proof of pspace-hardness, wewill illustrate the key intuitions by means of an example; the details of the proofare given in Section 2.4.The pspace-hardness of mall provability is demonstrated by a transforma-tion from the validity problem for quanti�ed Boolean formulas (QBF). A quanti�edBoolean formula has the (prenex) form QmXm : : :Q1X1:M , where1. each Qi is either 8 or 9,2. M is a quanti�er-free Boolean matrix containing only the connectives : and^, and Boolean variables .A closed QBF contains no free variables. Our conventions in this section are thatG and H range over quanti�ed Boolean formulas; M and N range over quanti�er-free Boolean formulas; U; V;X; Y;Z range over Boolean variables; and I ranges overtruth value assignments. For expository convenience, we refer to quanti�er-freeBoolean formulas simply as Boolean formulas.An assignment I for a set of Boolean variables fX1; : : : ; Xng maps each Xi toa truth value from fT; Fg. An assignment is represented by a sequence of Booleanvariables and negated Boolean variables. For example, the assignment X1;:X2; X3maps X1 to T , X2 to F , and X3 to T . The assignment I;X assigns T to X , butbehaves like I , otherwise. If I is an assignment for the free variables in G, we usethe standard notation I j= G to indicate that G is valid under I , and write I 6j= Gif I falsi�es G. Note thatI j= 8X:G i� I;X j= G and I;:X j= GI j= 9X:G i� I;X j= G or I;:X j= GIf G is a QBF and I is an assignment for the free variables in G, we say G isvalid under I exactly if I j= G. If G is a closed QBF, then G is said to be valid if itis valid under the empty assignment. The validity of a closed QBF G is representedas j= G. The QBF validity problem is: Given a closed QBF G, is G valid?We demonstrate the pspace-hardness of mall provability by de�ning a succinctencoding of a QBF as a mall sequent that is provable exactly when the given QBFis valid.The transformation of the QBF validity problem to mall provability takes placein two steps:

10 Decision Problems for Propositional Linear Logic� Given a quanti�er-free Boolean formula M and an assignment I for the freevariables inM , we show that there is a mall sequent encoding M and I whichis provable exactly when M is valid under I . This essentially demonstratesthat the process of evaluating Boolean functions can be represented by theprocess of cut-free proof search in the mall sequent calculus.� Given a QBF G and an assignment I for the free variables in G, there existsa mall sequent encoding the quanti�er pre�x and the Boolean matrix of Gso that the mall sequent is provable exactly when G is valid under I . Theidea here is to simulate the Boolean quanti�ers 9 and 8 by using the additiveconnectives � and &.Two-sided vs. one-sided sequents. We use a formulation of mall with one-sided sequents to simplify the proofs. In linear logic, a two-sided sequentA1; : : : ; Am `B1; : : : ; Bn has the one-sided form ` A?1 ; : : : ; A?m; B1; : : : ; Bn. Thus, a formula A��Bon the left of a two-sided sequent becomes A
B? in a one-sided sequent. Similarly,the provable two-sided sequent A;A��B ` B becomes ` A?; A
 B?; B. Whileone-sided sequents simplify the technical arguments considerably, the reader mightgain further insight by rewriting parts of our encoding in a two-sided form.2.2.1 Encoding Boolean EvaluationThe encoding of the Boolean connectives and quanti�ers in mall is described hereby means of an example. The full de�nition of the encoding appears in Section 2.3.The encoding from QBF validity to mall provability makes no use of the mallconstants. Consider the valid QBF G given by8X29X1::(:X1 ^X2)^ :(:X2 ^X1):The matrix M of G is essentially a restatement of (X1 () X2). Let H bethe falsi�able formula 9X18X2:M that is obtained from G by reversing the orderof the quanti�ers. It is crucial that the encodings of G and H in mall respect theordering of quanti�ers so that the encoding of G is provable but the encoding of His not.The encoding of the Boolean matrix describes the formula as a circuit withsignals labeled by mall literals. Let the assignment I be encoded by a sequence ofmall formulas hIi, and [M]a be the mall formula encoding M with output labeledby the literal a. Then I j=M is encoded by the sequent` hIi; [M]a; awhereas I 6j=M is encoded by ` hIi; [M]a; a?:

Multiplicative Additive Linear Logic 11Since we are using one-sided sequents, we encode the assignment X1;:X2 byx?1 ; x2. The mall literals encoding the assignment are to be seen as the inputsignals to the encoding of the Boolean formula.We �rst consider the Boolean connectives : and ^, then construct the full en-coding of M . The encoding [:X1]a of :X1 with output labeled a is the formulanot(x1; a). For literals x and y, the de�nition of not(x; y) is just the representa-tion of the truth table for negation within mall, as shown below:not(x; y) = (x
 y)� (x?
 y?): (2:1)not(x1; a) is simply the linear negation of the formula(x1��a?)&(x?1 ��a)which is more perspicuous in describing a as the Boolean negation of x1. The sequent` x1;not(x1; a); a (2:2)encodes the situation where the input X1 is F , and asserts (correctly) that theoutput :X1 is T .The sequent (2.2) is easily seen to have the mallproof` x1; x?1 I ` a?; aI
` x1; (x?1
 a?); a` x1; (x1
 a)� (x?1
 a?); a�Similarly, the sequent (2.3) representing fX1 Tg 6j= :X1 is also provable.` x?1 ;not(x1; a); a?: (2:3)On the other hand, the sequent` x?1 ;not(x1; a); a (2:4)asserts (falsely) that fX1 Tg j= :X1. To see why sequent (2.4) is not provable, weobserve that mall is a re�nement of classical logic in which no classically falsi�ablesequents are provable. The sequent ` x?1 ;not(x1; a); a is falsi�ed by assigning T tox1 and F to a, while interpreting
 and & as classical conjunction and � and Pas classical disjunction. A sequent is interpreted classically as the disjunction of thesequence of formulas that it contains.The encoding for conjunction, [X^Y]b is given by and(x; y; b) as de�ned below.

12 Decision Problems for Propositional Linear Logicand(x; y; b) = 26664 (x
 y
 b?) �(x?
 y?
 b) �(x
 y?
 b) �(x?
 y
 b) 37775 (2:5)Sequent (2.6) represents X; Y j= (X ^ Y):` x?; y?;and(x; y; b); b: (2:6)Sequent (2.6) has the proof` x?; xI ` y?; yI ` b?; bI
` y?; (y
 b?); b
` x?; y?; (x
 y
 b?); b�` x?; y?;and(x; y; b); bAs with sequent (2.4), the mall sequent representing the false assertion :X; Y j=(X ^ Y) is given by ` x; y?;and(x; y; b); band is not provable since it can be falsi�ed by the classical interpretation assigningF to x and b, and T to y.The next step is to construct the encoding of the Boolean formula M given atthe beginning of this section, from the encodings of the Boolean connectives. Theformula M is thought of as a Boolean circuit with the distinctly labeled signals.The encoding [(:X1 ^X2)]b is given by the formula and(a; x2; b)Pnot(x1; a). Letimplies(x; y; u; v;w) represent the formulanot(v; w)Pand(u; y; v)Pnot(x; u);then implies(x1; x2; a; b; c) is the encoding [:(:X1 ^X2)]c. The literals a, b and care the distinct literals labeling the output signals of the Boolean gates.We now consider the problem that the input signals in M have a fanout greaterthan one. An almost correct encoding in mall of the Boolean formula M is givenby the formulaand(c; f; g)P implies(x1; x2; a; b; c)P implies(x2; x1; d; e; f):The validity of M under the assignment fX1 T;X2 Tg would then berepresented by` x?1 ; x?2 ;and(c; f; g)P implies(x1; x2; a; b; c)P implies(x2; x1; d; e; f); g: (2:7)

Multiplicative Additive Linear Logic 13The following deduction represents one attempt to prove sequent (2.7).` g?; gI ...` x?1 ; x?2 ; implies(x1; x2; a; b; c); c ...` implies(x2; x1; d; e; f); f
` x?1 ; x?2 ; (c
 f); implies(x1; x2; a; b; c); implies(x2; x1; d; e; f)
` x?1 ; x?2 ; (c
 f
 g?); implies(x1; x2; a; b; c); implies(x2; x1; d; e; f); g�` x?1 ; x?2 ;and(c; f; g); implies(x1; x2; a; b; c); implies(x2; x1; d; e; f); g` x?1 ; x?2 ;and(c; f; g)P implies(x1; x2; a; b; c)P implies(x2; x1; d; e; f); gPSince mall lacks a rule of contraction, each of the assignment literals, x?1 andx?2 , can appear in only one premise of a
 rule. As a result, one of the remainingsubgoals in the above deduction lacks the required input literals. We therefore needto be able to explicitly duplicate the assignment literals in the sequent (2.7) to matchthe number of duplicate occurrences of X1 and X2 in M . The formula copy(x1)de�ned as (x1
 (x?1 P x?1))� (x?1
 (x1P x1))serves to duplicate an instance of x1 or x?1 . If M is now encoded asand(c; f; g)Pcopy(x1)Pcopy(x2)P�1P�2where �1 abbreviates implies(x1; x2; a; b; c), and �2 abbreviates implies(x2; x1; d; e; f),the desired deduction of (2.7) can then be constructed.` x1; x?1 I ` x2; x?2 I ` g; g?I ...` x?1 ; x?2 ;�1; c ...` x?1 ; x?2 ;�2; f
` x?1 ; x?1 ; x?2 ; x?2 ; (c
 f);�1;�2
` x?1 ; x?1 ; x?2 ; x?2 ; (c
 f
 g?);�1;�2; g
` x?1 ; x?1 ; x?2 ;and(c; f; g); x2
 (x?2 P x?2);�1;�2; g
` x?1 ; x?2 ;and(c; f; g); x1
 (x?1 P x?1);copy(x2);�1;�2; g�` x?1 ; x?2 ;and(c; f; g);copy(x1);copy(x2);�1;�2; g` x?1 ; x?2 ;and(c; f; g)Pcopy(x1)Pcopy(x2)P�1P�2; gPIn summary, we have informally described the encoding in mall of the evaluationof Boolean formulas under an assignment. The connectives P ;
; and � were usedto represent the truth tables of : and ^, and mall literals were used to represent the\signals" in the Boolean formula. The duplication of input signals forms a crucialpart of the encoding since mall lacks a rule of contraction.

14 Decision Problems for Propositional Linear Logic2.2.2 Encoding Boolean Quanti�cationRecall that G is the formula 8X29X1:M , and H is the formula 9X18X2:M , whereM is :(:X1^X2)^:(:X2^X1). Intuitively, it is useful to separate the encoding ofthe Boolean quanti�er pre�x as separately encoding the individual quanti�ers andthe dependencies between quanti�ers. Given the above encoding for assignmentsand Boolean formulas, an almost correct way to encode Boolean quanti�ers wouldbe to encode 9X1 as the formula (x1 � x?1), and 8X2 as (x2&x?2). The encoding ofG would then be given by the sequent` (x2&x?2); (x1� x?1); [M]g; g:The formula (x1 � x?1) behaves like existential quanti�cation in proof search sincea nondeterministic choice can be made between...` x?1 ;�` (x1 � x?1);�� and ...` x1;�` (x1 � x?1);��according to the assignment (T or F , respectively) to X1 which makes 9X1:Mvalid. Similarly, the rule for reducing (x2&x?2) in a proof behaves like universalquanti�cation requiring proofs of both ` x?2 ;� and ` x2;�....` x?2 ;� ...` x2;� &` (x2&x?2);�However, with this mapping of quanti�ers, the mall encoding of G and H wouldbe identical and provable, but H is not a valid QBF.A correct encoding of 9X18X2:M should ensure that if the encoding is prov-able in mall, then there is a proof in which the choice of a truth value for X1 isindependent of whether X2 is T or F . The order of reductions below show how thechoice of a truth value for 9X1 in a proof of the mall encoding can depend on thequanti�er 8X2. ...` x1; x2;�` (x1 � x?1); x2;�� ...` x?1 ; x?2 ;�` (x1 � x?1); x?2 ;��&` (x1 � x?1); (x2&x?2);�In this ordering of the reductions, (x1�x?1) is reduced di�erently on the x2 andx?2 branches of the proof leading to distinct witnesses for X1 according to whether

Multiplicative Additive Linear Logic 15X2 is T or F . The solution to this quanti�er order problem is to encode the quanti�erdependencies in the mall formula so that if there is any proof, then there is someproof of the encoding in which (x1 � x?1) is reduced below (x2&x?2), thus ensuringthat the truth value of X1 has been chosen independently of the truth value for X2.For this purpose, we introduce new mall atoms q0; q1; q2, and encode 9X18X2:Mas ` q2;q?2
 ((q1P x1)� (q1P x?1));q?1
 ((q0P x2)&(q0P x?2));q?0
 [M]g; gThe idea here is that the quanti�er encoding for 9X1 hides the \key" q1 that isneeded to unlock the quanti�er encoding for 8X2. If we now attempt to violate thequanti�er dependencies, the following would be one possible deduction.` q2; q?2 I ?` q?1 ; q1; x1` q?1 ; q1P x1P` q?1 ; ((q1P x1)� (q1P x?1))�
` q2; q?1 ; q?2
 ((q1P x1)� (q1P x?1)) ...` (q0P x2)&(q0P x?2); q?0
 [M]g; g
` q2; q?2
 ((q1P x1)� (q1P x?1)); q?1
 ((q0P x2)&(q0P x?2)); q?0
 [M]g; gIn the above deduction, we are left with a subgoal of the form ` q?1 ; q1; x1, andsince x1 is not a constant, we cannot reduce this sequent to a mall axiom. (Recallthat mall lacks an unrestricted weakening rule.) Other deductions attempting toviolate the quanti�er ordering also fail. On the other hand, the deduction whichdoes respect the order of the quanti�er encodings can be performed as shown below.The quanti�er encoding for 9X1 provides the key q1 for unlocking the quanti�erencoding of 8X2.` q2; q?2 I ...` q1; x1; q?1
 ((q0P x2)&(q0P x?2)); q?0
 [M]g; g` q1P x1; q?1
 ((q0P x2)&(q0P x?2)); q?0
 [M]g; gP` ((q1P x1)� (q1P x?1)); q?1
 ((q0P x2)&(q0P x?2)); q?0
 [M]g; g�
` q2; q?2
 ((q1P x1)� (q1P x?1)); q?1
 ((q0P x2)&(q0P x?2)); q?0
 [M]g; gThe formal de�nition of the polynomial time encoding of QBF validity in termsof mall provability is given in Section 2.3. In Section 2.4, we demonstrate thecorrectness of the encoding.

16 Decision Problems for Propositional Linear Logic2.3 Formal De�nition of the EncodingFor our purpose, a Boolean formula is constructed from Boolean variables usingthe Boolean connectives : and ^. All quanti�ed variables are assumed to occur inthe matrix. V ar(M) is the set of variables occurring in the Boolean formula M .Overlined syntactic variables such as X and Y range over sets of Boolean variables.The mall sequent encoding a QBF G is represented by �(G). We need to becareful about keeping literals distinct. The annotation \a new" in the de�nitionindicates that the literal a is a freshly chosen one that has not been used elsewherein the encoding.The sequent �(G) consists of the encoding of the QBF [[G]]g, where g labelsthe output signal, the key qn, and the output value g. The de�nition of [[G]]gconstructs the quanti�er encodings by induction on the length of the quanti�erpre�x. The de�nition of [M]g is by induction on the structure ofM , so that [N^P]gis constructed by� choosing the fresh labels a and b for the outputs of subformulas N and P ,respectively� de�ning the relation between a, b, and g by and(a; b; g)� if needed, providing a copying formula for each Boolean variable common toboth N and P� and recursively constructing [N]a and [P]bTo be precise, we provide the following de�nition of the encoding.De�nition 2.3�(G) = ` qn; [[G]]g; g qn; g new[[(8Xi+1:G)]]g = (q?i+1
 ((xi+1P qi)&(x?i+1P qi))); [[G]]g qi+1 new[[(9Xi+1:G)]]g = (q?i+1
 ((xi+1P qi)� (x?i+1P qi))); [[G]]g qi+1 new[[M]]g = (q?0
 [M]g) q0 new[X]g = (x?
 g)� (x
 g?)[:N]g = not(a; g)P [N]a a new[N ^ P]g = 8>>><>>>: and(a; b; g) Pcopyall(V ar(N)\ V ar(P)) P[N]a P[P]b a; b new; V ar(N)\ V ar(P) 6= ;[N ^ P]g = and(a; b; g)P [N]aP [P]b a; b new; V ar(N)\ V ar(P) = ;copyall(X) = PXi2Xcopy(xi)

Multiplicative Additive Linear Logic 17Note that the sequent �(G) contains no mall constants. The complexity ofcomputing �(G) is at most quadratic in the size of G since the encoding function isde�ned inductively over the structure of the formula, and the intersection operationcan be performed in linear time with a bit-vector representation of sets, where thelength of each bit-vector is the number of distinct Boolean variables occurring inG. The cost of constructing the copy formulas at each step in the recursion is alsolinear in the size of G. The cost of each not and and formula is �xed with respectto the representation of the literals, and the literals can be represented with a costthat is logarithmic in the size of G.The encoding may be computed in log-space, although the algorithm describedabove uses more than log-space, because of the work space required to save the set ofvariables that must be copied when encoding a conjunction. The encoding algorithmcould be modi�ed to make a number of passes over the input to determine thenumber of occurrences of each variable and generate the required number of copyformulas. Each pass would use only log-space, and the remainder of the algorithmmay be performed in log-space.2.4 Proof of PSPACE-hardness of MALLThe main theorem is that for any closed QBF G, G is valid if and only if �(G) is aprovable mall sequent. The �rst set of lemmas demonstrates that the encoding ofBoolean formulas works correctly. The second set of lemmas demonstrates that theBoolean quanti�ers have been correctly encoded.If I is a truth value assignment for the Boolean variables X1; : : : ; Xn, then I isencoded as hIi, wherehIi = hX1iI ; : : : ; hXniIhXiiI = (x?i if I(Xi) = Txi; otherwiseIf I is an assignment for a set of variables Y , and X � Y , then I=X is theassignment I restricted to the subsetX, and by abuse of notation I=M is I=V ar(M).The following lemma is stated without proof.Lemma 2.4 Given sets of variables X and Y , and an assignment I for X [Y ,there is a deduction of the sequent ` hIi;copyall(X \ Y);� from the sequent `hI=Xi; hI=Y i;�.Lemma 2.5 Let M be a Boolean formula and I an assignment for the variables inM , then1. if I j=M then ` hIi; [M]g; g

18 Decision Problems for Propositional Linear Logic2. if I 6j=M then ` hIi; [M]g; g?Proof. By induction on the structure of M , as follows. The cases in the proofcorrespond closely to those in the de�nition of [M]g.Base case: M � X . Suppose I(X) = T , then I j= M and hIi = x?. Thefollowing proof can then be constructed, expanding the de�nition of [M]g` x?; xI ` g?; gI
` x?; (x
 g?); g` x?; (x?
 g)� (x
 g?); g�The case when I(X) = F is similarly straightforward.Induction step: There are a number of cases here corresponding to the de�nitionof [M]g. We consider a typical case and leave the remaining ones to the reader.Let M � N ^ P , and suppose that V ar(N) \ V ar(P) 6= ;. Consider the casewhen I=N j= N and I=P 6j= P , so that I 6j= N ^ P . Expanding [M]g, and(a; b; g),and using Lemma 2.4, the following deduction can be constructed.` g; g?I ...` hI=Ni; [N]a; a ...` hI=P i; [P]b; b?
` hI=Ni; hI=P i; (a
 b?); [N]a; [P]b
` hI=Ni; hI=P i; (a
 b?
 g); [N]a; [P]b; g?�` hI=Ni; hI=P i;and(a; b; g); [N]a; [P]b; g?...` hIi;and(a; b; g);copyall(V ar(N)\ V ar(P)); [N]a; [P]b; g?` hIi;and(a; b; g)Pcopyall(V ar(N)\ V ar(P))P [N]aP [P]b; g?PApplying the induction hypothesis to I=N , N , and a, and to I=P , P , and b, wecan establish that the remaining subgoals of the deduction are provable.The remaining subcases in the evaluation of N ^ P are similar, as are the re-maining cases in the induction argument.The next step is to establish the converse of Lemma 2.5. The classical interpre-tation of the mall connectives may be used to give a relatively easy proof. In theclassical interpretation, truth values, T and F , are assigned to the mall atoms, A?is read as classical negation, A
B and A&B are read as classical conjunction, andAPB and A � B are read as classical disjunction. A sequent is interpreted as theclassical disjunction of the formulas contained in it.

Multiplicative Additive Linear Logic 19Lemma 2.6 If `� is a provable mall sequent, then for any assignment of truthvalues to the atoms in �, there exists a formula A in the sequence � such that A istrue under the classical interpretation.Proof. The proof is by a straightforward induction on cut-free mall proofs.Clearly, for axioms ` x; x?, one of x or x? must evaluate to T in a given truthassignment. In the induction case, suppose that the last step in the proof of � is a
-rule of the form ...` B;�1 ...` C;�2
` (B
 C);�1;�2By the induction hypothesis, the sequence B;�1 contains a formula A1, and thesequence C;�2 contains a formula A2, and both A1 and A2 are true. If A1 isdi�erent from B, then A1 occurs in the conclusion sequent yielding the requiredA, and similarly, when A2 is di�erent from C. Otherwise, the formula (B
 C) is(A1
 A2) and is hence true under the classical interpretation of
 as conjunction.The induction arguments corresponding to the other connectives are similar.The main intuition behind Lemma 2.7 is that by appropriately assigning truthvalues to the literals in hIi and [M]g, it is possible to mimic the evaluation of theBoolean formula M under I . Due to our use of one-sided sequents and the formof our encoding, there is exactly one truth value falsifying each formula in hIi and[M]g. This assignment turns out be the appropriate one, i.e., the value of g underthis assignment is T exactly when I j=M . For example, if I is fX Fg and M is:X , then hIi is x? and [M]g is (x
 g)� (x?
 g?). The only falsifying assignmenthere is fx F; g Tg.Lemma 2.7 Let M be a Boolean formula and I be an assignment for the variablesin M . There exists an assignment K of truth values to the atoms in hIi and [M]gsuch that for every formula A in the sequence hIi; [M]g, assignment K falsi�es Aunder the classical interpretation, and K(g) = T i� I j=M .Proof. The proof is by induction on the construction of [M]g. Note that theinduction is parametric in I and g (I and g are universally quanti�ed in the inductionhypothesis), so that when M � (N ^ P), the induction hypothesis on N has I=Nreplacing I and a replacing g, where a labels the output of N .Base case: M � X . Then [M]g = (x?
 g)� (x
 g?). If I j= X , then I(X) = Tand hIi = x?, and hIi is falsi�ed if K assigns T to x. [M]g is falsi�ed if K assignsT to g, and the second part of the conclusion, K(g) = T also follows. If I 6j= X ,then I(X) = F . Let K assign F to x and F to g to falsify both hIi and [M]g. ThenK(g) = F as required.

20 Decision Problems for Propositional Linear LogicInduction step: Observe �rst that the formula copy(x) de�ned as (x
(x?P x?))�(x?
 (xP x)) is classically false.When M � :N , the encoding [M]g is not(a; g); [N]a. By the inductionhypothesis, we have an assignment K1 falsifying hIi; [N]a such that K1(a) = Ti� I j= N . Suppose K1(a) = T , and hence I j= N . The formula not(a; g) is(a
 g)� (a?
 g?). Let K be K1fg Fg. Since g does not occur in hIi or [N]a,K agrees with K1 on hIi; [N]a. The assignment K also falsi�es not(a; g), thusfalsifying hIi; [M]g. Note that K(g) = F as required, since I 6j=M .If K1(a) = F , then I 6j= N . Letting K be K1fg Tg falsi�es hIi; [M]g.WhenM � (N ^P), then by the induction hypotheses for N and P , there exists1. K1 falsifying hI=Ni; [N]a such that K1(a) = T i� I=N j= N , and2. K2 falsifying hI=P i; [P]b such that K2(a) = T i� I=P j= PThe encoding hIi is a sequence of literals such that no two distinct literals in hIishare a common atom. Since hI=Ni and hI=P i are subsets of hIi, there is no literal xsuch that x is in hI=Ni and x? is in hI=P i. Formulas [N]a and [P]b have no atoms incommon outside of those in hIi. Then the union of the assignments K1[K2, is stillan assignment, i.e., it assigns a unique truth value to each atom in hIi; [N]a; [P]b.Suppose thatK1(a) = T , and hence I=N j= N , andK2(b) = F , so that I=P 6j= P .Let K be (K1 [K2)fg Fg. Note that g does not occur in hIi, [N]a or [P]b sothat K agrees with K1 on [N]a and with K2 on [P]b. Each disjunct in and(a; b; g)expanded as (a
 b
 g?) �(a?
 b?
 g) �(a
 b?
 g) �(a?
 b
 g)is falsi�ed by K. As already observed, the copy formulas are all classically false,and thus K falsi�es hIi; [M]g. Since in this case, I 6j= N ^ P , the second part of theconclusion is also satis�ed.The remaining cases are similar.Lemma 2.8 If I is an assignment for the variables in a given Boolean formula M ,then1. if ` hIi; [M]g; g is provable, I j= M2. if ` hIi; [M]g; g? is provable, I 6j=M .Proof. By Lemma 2.6, we know that if ` hIi; [M]g; g is provable, then no assign-ment can simultaneously falsify hIi, [M]g, and g under the classical interpretation.

Multiplicative Additive Linear Logic 21By Lemma 2.7, we can �nd an assignment K which falsi�es hIi and [M]g such thatK(g) = T i� I j=M . Since K cannot also falsify g, K(g) = T and hence I j=M .Similarly, when ` hIi; [M]g; g? is provable, we can, by Lemmas 2.7 and 2.6, �ndan assignment K such that K(g) = F and as a consequence, I 6j= M .Lemma 2.9 ` hIi; [M]g; g is provable i� I j=M .Proof. Follows immediately from Lemmas 2.5 and 2.8.So far, we have demonstrated the correctness of the encoding of the Booleanmatrix of a given quanti�ed Boolean formula. The remainder of the proof dealswith the encoding of Boolean quanti�ers. The next lemma states the crucial reasonwhy the mall encoding of quanti�ers is faithful to the quanti�er orderings. Asobserved in Section 2.2.2, the goal is to ensure that in any successful proof search,the ith quanti�er encoding is reduced after, i.e, above, the reduction of the (i+1)stquanti�er encoding in any cut-free proof. To achieve this, we need to argue thatthe key qi needed to unlock the ith quanti�er encoding is only made available whenthe (i+ 1)st quanti�er encoding has been reduced. In order for the ith quanti�erencoding, which has the form q?i
 Ui, to be reduced before the (i+ 1)st quanti�erencoding, a subgoal of the form ` q?i ;� would have to be provable. The onlyoccurrences of qi are in the subformula Ui+1 given by (qiP xi+1) � (qiP x?i+1), where� may be either � or &. If Ui+1 occurs in �, then the only occurrences of qi in �are as immediate arguments to a P . By exploiting the absence of an unrestrictedweakening rule in mall, it can be shown that in the absence of constants, ` q?i ;� isnot provable when all of the occurrences of qi in � appear as immediate argumentsto P . Therefore, regardless of whether Ui+1 occurs in �, the sequent ` q?i ;� wouldnot be provable, thus making it impossible to reduce the ith quanti�er encodingbelow the (i+ 1)st quanti�er encoding in a cut-free proof.Lemma 2.10 If q is a positive or negative literal and the sequent ` q;� containsno constants, then ` q;� is provable only if either � � q? or � contains at least oneoccurrence of a subformula either of the form q? � A, or the form A � q?, where �may be either �, &, or
.Proof. We �x � to be either �, &, or
 for this proof. The proof is by inductionon cut-free mall proofs of ` q;�. In the base case, for a cut-free proof of depth 0,the sequent ` q;� must be a mall axiom, and � � q? holds.In the induction step, when in the given cut-free proof of ` q;�, the conclusionsequent is derived by an application of either a
, & or a � rule, then at least onepremise must be of the form ` q;�. We know by the induction hypothesis for theproof of ` q;�, either � = q? or � either contains a subformula of the form q? �A,or the form A � q?. In either case, � contains one of the forms, q? �A or A � q?.

22 Decision Problems for Propositional Linear LogicIf in the cut-free proof of ` q;�, the conclusion sequent is derived by an appli-cation of the P rule, the premise sequent must be of the form ` q;�, where � isnot a single formula, Then by the induction hypothesis on the proof of ` q;�, thesequence � must contain one of the forms, q? �A or A � q?. Since every subformulaof � is a subformula of � as well, � must also contain one of the forms q? � A orA � q?.The following lemma demonstrates the correctness of the mall encoding ofBoolean quanti�ers. Each Qi in the statement below is either 8 or 9.Lemma 2.11 (Main Induction) Let M be a Boolean formula in the variablesX1; : : : ; Xn, then for anym, 0 � m � n, and assignment I for Xm+1; : : : ; Xn, the re-lation I j= QmXm : : :Q1X1:M holds i� the sequent ` qm; hIi; [[QmXm : : :Q1X1:M]]g; gis provable in mall.Proof. The proof is by induction onm between 0 and n. Note that I is universallyquanti�ed in the induction hypothesis.Base case): Here m = 0. Then [[M]]g � q?0
 [M]g, and we can easily constructthe following deduction of the required conclusion ` q0; hI0i; [[M]]g; g.` q0; q?0 I ...` hIi; [M]g; g
` hIi; q0; q?0
 [M]g; gThe proof of the remaining subgoal ` hIi; [G]g; g, follows from Lemma 2.5.Base case (: The deduction shown above is the only possible one in a cut-freeproof of ` hIi; q0; q?0
 [M]g; g since q?0
 [G] is the only compound formula in theconclusion. So if ` hIi; q0; q?0
 [M]g; g is provable, by Theorem 2.1, it must have acut-free proof containing a proof of ` hIi; [M]g; g. By Lemma 2.8, we get I j=M .Induction step): Assume 0 < m � n. LetG abbreviate Qm�1Xm�1 : : :Q1X1:M .We must prove the lemma for QmXmG. If Qm � 9, then[[QmXm:G]]g = (q?m
 ((xmP qm�1)� (x?mP qm�1))); [[G]]gIf I j= 9Xm:G, then either I;Xm j= G or I;:Xm j= G. In the former case, thefollowing deduction of the required conclusion can be constructed.` qm; q?mI ...` hIi; x?m; qm�1; [[G]]g; g` hIi; ((xmP qm�1)� (x?mP qm�1)); [[G]]g; g�
` hIi; qm; (q?m
 ((xmP qm�1)� (x?mP qm�1))); [[G]]g; g

Multiplicative Additive Linear Logic 23Since hI;Xmi = hIi; x?m, the induction hypothesis can be applied to show that theremaining subgoal of the above deduction is provable.When I;:Xm j= G, the proof construction only di�ers from the above one onthe � rule corresponding to the quanti�er encoding.If Qm � 8, then[[8Xm:G]]g = (q?m
 ((xmP qm�1)&(x?mP qm�1))); [[G]]gSince I j= 8Xm:G, it follows that I;X j= G and I;:X j= G. The following deductioncan be constructed.` qm; q?mI ...` hIi; xm; qm�1; [[G]]g; g ...` hIi; x?m; qm�1; [[G]]g; g &` hIi; ((xmP qm�1)&(x?mP qm�1)); [[G]]g; g
` hIi; qm; (q?m
 ((xmP qm�1)&(x?mP qm�1)); [[G]]g; gSince hI;Xmi is hIi; x?m and hI;:Xmi is hIi; xm, the two remaining subgoals in thededuction are provable by the induction hypotheses.Induction step(: This is the critical step in the proof. We are given thatm > 0and that the conclusion sequent ` qm; hIi; [[QmXm : : :Q1X1:M]]g; g is provable. The-orem 2.1 can be applied to construct a cut-free proof of ` qm; hIi; [[QmXm : : :Q1X1:M]]g; g.We show that this cut-free proof respects the quanti�er ordering, i.e., the reductionof the encoding of QmXm occurs below any other step in the proof.It is easy to see that every formula in the multiset [[QmXm : : :Q1X1:M]]g is of theform q?i
Ai, for 0 � i � m, with A0 � [M]g, and Aj+1 � ((xj+1P qj)�(x?j+1P qj)).The connective written as � can be either & or �. The formulas q?i
Ai are the onlycompound formulas in the conclusion sequent ` qm; hIi; [[QmXm : : :Q1X1:M]]g; g.From the mall rules, it is clear that the only applicable reduction in a cut-freeproof search would be an application of the
-rule. Hence for some k, we canpartition the formulas other than q?k
 Ak in the conclusion sequent into � and �to get a deduction of the conclusion sequent of the following form....` �; q?k ...` Ak;�
` �; (q?k
Ak);�Suppose for the sake of deriving a contradiction that k < m. Recall that thereare no constants in the encoding. The formula q?k+1
 Ak+1 must either occur in �or �, and de�nitely not in both. Since the only occurrences of qk are within Ak+1,by Lemma 2.10, if q?k+1
 Ak+1 occurs in �, then we cannot complete the proof

24 Decision Problems for Propositional Linear Logic` qk ;�. Thus we assume q?k+1
 Ak+1 occurs in �. It is easy to see by inspectionof the form of Ak+1 that the only occurrences of qk in Ak+1 have the form qk � Bor the form B � qk, where � is either �, &, or
. Therefore, again by Lemma 2.10,` q?k ;� is not provable.Thus it follows that k 6< m.When k = m, we can apply Lemma 2.10 to infer that � � qm, since otherwise,� would not contain any occurrences of qm as immediate arguments to
, & or �.If Qm � 9, this yields the deduction` qm; q?mI ...` hIi; ((xmP qm�1)� (x?mP qm�1)); [[Qm�1Xm�1 : : :Q0X0:M]]g; g
` hIi; qm; (q?m
 ((xmP qm�1)� (x?mP qm�1)); [[Qm�1Xm�1 : : :Q0X0:M]]g; gFor the same reason as before, the remaining subgoal cannot be reduced by applyingthe
-rule to a formula q?i
Ai since all of the occurrences of qi remain as immediatearguments to P . The only possible reduction then is to \unwind" the quanti�erencoding for QmXm as in the (() direction of the proof until qm�1 is introduced asa sequent formula. If the left � reduction is applied in the given cut-free proof, wehave ...` hIi; xm; qm�1; [[Qm�1Xm�1 : : :Q0X0:M]]g; g` hIi; (xmP qm�1); [[Qm�1Xm�1 : : :Q0X0:M]]g; gP` hIi; ((xmP qm�1)� (x?mP qm�1)); [[Qm�1Xm�1 : : :Q0X0:M]]g; g�Then by the induction hypothesis applied to the proof of the sequent` hIi; xm; qm�1; [[Qm�1Xm�1 : : :Q0X0:M]]g; gwe get I;:Xm j= Qm�1Xm�1 : : :Q0X0:M , and hence I j= 9XmQm�1Xm�1 : : :Q0X0:M .The argument is similar when the right � reduction is applied in the givencut-free proof.The proof when Qm � 8 is also similar.When m = n in Lemma 2.11, it follows that a closed QBF G is valid i� �(G) isprovable in mall. Since � is a log-space encoding of a given QBF, the �nal resultbelow follows immediately from Theorems 2.11 and 2.2.Theorem 2.12 mall provability is pspace-complete.With two-sided sequents, the intuitionistic fragment of mall constrains theright-hand side of the sequent to contain at most one formula. A two-sided re-formulation of the above proof could be carried out entirely within the intuitionisticfragment of mall, showing that intuitionistic mall is also pspace-complete.

Chapter 3Propositional Linear Logic isUndecidableIn the previous chapter, the decision problem for mall was shown to be pspace-complete. We now show that if nonlogical (mall) axioms are added to mall, thedecision problem becomes recursively unsolvable. We also show that nonlogicalmall axioms may be encoded in full propositional linear logic without nonlogicalaxioms, and thus we have the result that full propositional linear logic is undecidable.The proof of undecidability consists of a reduction from the halting problem fora form of counter machine to a decision problem in linear logic. In more detail,we begin by extending propositional linear logic with theories whose (nonlogical)axioms may be used any number of times in a proof. We then describe a form ofand -branching two-counter machine with an undecidable halting problem and showhow to encode these machines in propositional linear logic with theories. Since theaxioms of our theories must have a special form, we are able to show the faithfulnessof this encoding using a natural form of cut-elimination in the presence of nonlogicalaxioms. To illustrate the encoding of two-counter machines, we present an examplesimulation of a simple computation in Section 3.6. On �rst reading, the readermay wish to jump ahead to that section since it demonstrates the basic mechanismused in the undecidability proof. Also, the crucial cut-standardization step used inthis section relies heavily on the cut-elimination procedure for linear logic withoutnonlogical axioms, �rst sketched by Girard in [Gir87a]. We give a very explicitproof of cut-elimination for full propositional linear logic in Appendix A, whichsome readers may �nd helpful to skim before continuing.The key to our encoding of an undecidable problem in linear logic is the combi-nation of three powerful mechanisms: resource accumulation, arbitrary reuse, andand-branching. In linear logic, ` A;A is very di�erent from ` A, and this allowsus to represent counters in unary. Inde�nitely reusable formulas such as ?(B��C),25

26 Decision Problems for Propositional Linear Logic(or axioms of the form ` B?; C) may be used to implement machine instructions.Note that the ? operator is used here to indicate a reusable resource, since we areworking with one-sided sequents. If we were to express an axiom as a formula onthe left-hand side of the ` in a two-sided presentation of linear logic, we would use! to express the unlimited potential for reuse of instructions.The operator & may be used to test a conjunction of properties of the simulatedmachine, such as whether a counter is zero, and if the rest of the computationcan continue normally. Together this machinery is enough to encode recursivelyunsolvable problems in linear sequents.3.1 Overview� We de�ne linear logic theories, and prove a cut-standardization theorem forlinear logic augmented with theories in Lemma 3.1.� We prove theories are sound and faithful to a pure linear logic translation inLemmas 3.3 and 3.2.� We describe and-branching two counter machines, and note that their haltingproblem is unsolvable by reduction from standard two counter machines inLemma 3.4.� We demonstrate an encoding of our automata into linear logic theories, andprove that the encoding is sound and faithful in Lemmas 3.5 and 3.6.� We present an example computation, showing the correspondence between theautomaton and the (standardized) linear logic proof.� We combine these lemmas to obtain our main result in Theorem 3.7.3.2 Linear Logic Augmented With TheoriesEssentially, a theory is a set of nonlogical axioms (sequents) that may occur as leavesof a proof tree. The use of theories described here is an extension of earlier work onmultiplicative theories [GG89, MOM89].We de�ne a positive literal to be one of the given propositional symbols pi. Anegative literal is one of the p?i symbols. An atomic formula is any positive ornegative literal.For the theories of interest here, an axiom may be any linear logic sequent of theform ` C; p?i1; p?i2; :::; p?in, where C is a mall formula (a linear logic formula without !or ?) and the remainder of the sequent is made up of negative literals. For example,the sequents ` p1; p?2 , ` (p1
 p2); p?2 , ` (p1P p1), and ` p?1 ; p?2 may all be axioms.

Propositional Linear Logic is Undecidable 27However, ` p1; p1 and ` (p1
 p2); p3 may not be axioms. We use this restriction onaxioms to achieve strict control over the shape of a proof, as described in Lemma 3.1.Some of this control is lost if the de�nition of theory is generalized, although forsome applications the weaker available results would be su�cient.Any �nite set of axioms is a theory. We consider only �nite theories so thattheories may be encoded as formulas of linear logic. For any theory T , we say thata sequent ` � is provable in T exactly when we are able to derive ` � using thestandard set of linear logic proof rules, in combination with axioms from T . Thuseach axiom of T is treated as a reusable sequent which may occur as a leaf of aproof tree. For notational convenience, in the case that the axiom ` � occurs in thetheory T , we will write ` �TA directed cut is one where at least one premise is an axiom ` C; p?i1; p?i2 ; :::; p?in inT , and C is the cut-formula in that axiom. We call any axiom premise of a directedcut where the cut-formula in that axiom is not a negative literal a principal axiom ofthat directed cut. By de�nition, all directed cuts have at least one principal axiom.A cut between two axioms is always directed, and if the cut-formula of such a cutis non-atomic, that cut has two principal axioms. A directed or standardized proofis a proof with all cuts directed.When theories are added to linear logic the cut-elimination Theorem A.3 nolonger holds, due to the added axioms which may participate directly in cuts. How-ever, we do obtain the following result:Lemma 3.1 (Cut Standardization) If there is a proof of ` � in theory T ,then there is a directed proof of ` � in theory T .Proof. We modify the cut-elimination procedure de�ned in Appendix A intwo ways. First we alter the de�nition of degree to ignore the measure of directedcuts. Formally, we say that if a cut is directed, its degree is zero. Second, we modifythe procedure given in Lemma A.1 to handle the extra cases brought about by thepresence of axioms. We must allow all the reductions as stated in Appendix A toapply to the case when one of the premises is an axiom, but we need not introduceany truly novel reductions.We will follow the notation used in Appendix A, where Cut� is used to ambigu-ously refer to the Cut rule or the extra rule of inference introduced in the appendixcalled Cut!. Also, we will de�ne all the formulas which appear in an axiom to beprincipal in that application of the axiom.In Appendix A most of the reductions are given for some speci�c derivationversus any possible derivation. For example, all the non-principal cases are statedfor any derivation of the \other" hypothesis of Cut�. Similarly, the Identity and >

28 Decision Problems for Propositional Linear Logicrules are stated for any derivation of the \other" hypothesis. We simply now statethat even if the other derivation involves an axiom, the reduction still applies.For example, if the last rule applied in the left hypothesis is
, and the last rulein the right hypothesis is an axiom, we apply the following transformation:...` �; C ...` B;�; pi
` �; (C
B);�; pi ` �; p?i TCut` �; (C
B);�;� =) ...` �; C ...` B;�; pi ` �; p?i TCut` B;�;�
` �; (C
 B);�;�This is simply a special case of the reduction given in case A.1.1 in Appendix A.Also, as a second example, the reduction given for Identity is applicable even tothe axiom case: ` pi; p?i I ` �; p?i TCut` �; p?i =) ` �; p?i TAgain, this is simply a special case of the reduction given in Appendix A.As a third and �nal example of specializations of reductions given in the ap-pendix, the > rule also applies to axioms:` >;�; pi> ` �; p?i TCut` >;�;� =) ` >;�;�>This is also simply a special case of the reduction given in the appendix.Now, some simple analysis is required to show that there are no new cases ofprincipal cuts involving axioms. If the cut in question is already directed, the cuthas degree zero, by our modi�ed de�nition, and thus we are done. Otherwise,by de�nition of axiom we know that the cut-formula is a negative atomic literal.There are only two rules where an atomic literal may be principal: Identity and >.However, both of these cases are handled by existent reductions (restated above).One should also note that since any cut involving two axioms must be directed, weneedn't provide a reduction for that case.This completes the discussion of the modi�cations to Lemma A.1 necessary tohandle nonlogical axioms. Fortunately, Lemma A.2 and Theorem A.3 then followwithout modi�cation (although the de�nition of degree has changed somewhat).Therefore, given any proof of a sequent ` � in theory T , we can construct adirected proof of ` � in theory T .The cut-elimination procedure in Appendix A introduces a new rule of inferencecalled Cut!. If we generalized axioms to allow ? and ! formulas in axioms, we wouldhave to generalize the notion of directed proof to include cases involving Cut!, and

Propositional Linear Logic is Undecidable 29a post processing step would be required to transform all directed Cut!s into asequence of contractions followed by a single directed Cut, or perhaps simply intoa sequence of Cuts. In any event, our axioms are restricted to mall formulas sothat any cut involving an axiom is always an application of Cut, never of Cut!.3.3 Coding Theories in FormulasIn the next few sections, we show that adding nonlogical axioms to mall increasesthe di�culty of deciding if a sequent is provable from pspace to undecidable. How-ever, we �rst show that adding nonlogical axioms to full propositional linear logicdoes not increase its expressive power, or the di�culty of its decision problem. Toaccomplish this we show how to encode nonlogical axioms in full propositional linearlogic, and then prove that the translation is sound and faithful.We de�ne the translation [T] of a theory T with k axioms into a multiset of purelinear logic formulas by[ft1; t2; � � � ; tkg] =?[t1]; ?[t2]; � � � ; ?[tk]where [ti] is de�ned for each axiom ti as follows:[` C; p?a ; p?b ; :::; p?z] �= (CP p?a P p?b P � � � P p?z)? = (C?
 pa
 pb
 � � �
 pz)Note that the p?j 's are negative literals, and that since linear logic is commutative,we needn't be concerned with the order of formulas in an axiom. Thus each axiombecomes a reusable formula, where the parity of the subformulas of the axiom havebeen inverted in the formula.Intuitively, it should be clear that for any theory T , the sequent ` � should beprovable in theory T if and only if ` [T];� is provable without nonlogical axioms.However, due to the unusual nature of linear logic, we will present the proof indetail.Lemma 3.2 (Theory)) For any �nite set of axioms T , ` � is provable intheory T only if ` [T];� is provable without nonlogical axioms.Proof. Given some proof of ` � in theory T , we have a linear logic proof treewith axioms of T at some leaves. For each leaf of the proof tree of the form ` �,where ` � is some axiom ti, we replace that leaf with a small proof of ` [T];�.This proof tree will be constructed from the proof tree for ` [ti];�, and then oneapplication of dereliction leaves us with `?[ti];�. Since each formula in [T] beginswith ?, we may weaken in the remainder of [T], and thus with some number ofweakening steps we have ` [T];�. For example, if there are k axioms, and ` � is

30 Decision Problems for Propositional Linear Logicthe axiom t1 =` q?1 ; (q2
 a), then we know [t1] = q1
 (q?2 P a?). We then performthe following transformation:` q?1 ; (q2
 a)T =) ` q1; q?1 I ` q?2 ; q2I ` a?; aI
` q?2 ; (q2
 a); a?` (a?P q?2); (q2
 a)P
` q?1 ; q1
 (q?2 P a?); (q2
 a)?D` q?1 ; ?[t1]; (q2
 a)`?[t1]; ?[t2]; q?1 ; (q2
 a)?W?W...`?[t1]; ?[t2]; :::?[tk�1]; q?1 ; (q2
 a)?W?W` [T]; q?1 ; (q2
 a)For each leaf sequent which was originally an application of identity, we weakenin all the ?[ti] formulas:` pi; p?i I =) ` pi; p?i I`?[t1]; pi; p?i ?W`?[t1]; ?[t2]; pi; p?i ?W?W...`?[t1]; ?[t2]; :::?[tk�1]; pi; p?i ?W?W` [T]; pi; p?iWe then continue by adding [T] to every sequent in the entire proof tree. Atevery application of
 and Cut, we extend the proof tree with an extra copy of theconclusion sequent of the binary rule, to which we add an extra copy of [T]. Thenwe extend the proof further, adding one contraction step for each ?[ti] between thatsequent and the original conclusion of that binary rule....` �; A ...` B;�
` �; (A
 B);� =) ...` [T];�; A ...` [T]; B;�
` [T];�; (A
 B);�; [T]?C...` [T];�; (A
B);�?CThus we have given a construction which builds a proof of ` [T];� without anynonlogical axioms from a given proof of ` � using axioms from T .

Propositional Linear Logic is Undecidable 31Lemma 3.3 (Theory () For any �nite set of axioms T , ` � is provable intheory T if ` [T];� is provable without nonlogical axioms.Proof. For each axiom ti �` C; p?a ; p?b ; :::; p?z , we may prove !([ti]?) �!(CP p?a P p?b P � � � P p?z) by several applications of P and one application of !S,as follows. ` C; p?a ; p?b ; � � � ; p?z PT` (CP p?a); p?b ; � � � ; p?z P` (CP p?a P p?b); � � � ; p?z P...` (CP p?a P p?b P � � � P p?z)!SP`!(CP p?a P p?b P � � � P p?z)By cutting this proof against a given proof of ` [T];�, we obtain a proof of `[T � ftig];�, where T � ftig is the multiset di�erence of T and ftig....`!([t1]?) ...`!([t2]?) ...`!([tk]?) ...` [T];� Cut` [ft1; � � � ; tk�1g]�...`?([t1]); ?([t2]);� Cut`?([t1]);� Cut` �Thus by induction on the number of axioms, we can derive ` � in theory T .We have just shown how a decision problem for mall with the addition of non-logical axioms may be encoded in full propositional linear logic without nonlogicalaxioms. Thus the upcoming proof of undecidability of mall with nonlogical axiomswill yield undecidability for full propositional linear logic.3.4 And-Branching Two Counter Machines WithoutZero-TestIn this section we describe nondeterministic two counter machines with and -branchingbut without a zero-test instruction. We show that these machines have a recursivelyunsolvable halting problem, and then we will show how the halting problem for thesemachines may be encoded as a decision problem in mall, with nonlogical axiomscorresponding to the machine instructions.

32 Decision Problems for Propositional Linear LogicThe machines described here are similar to standard two counter machines exceptfor the lack of an explicit zero test transition, and the addition of \fork" transitions.Intuitively, Qi Fork Qj ; Qk is an instruction which allows a machine in state Qi tocontinue computation from both states Qj and Qk , each computation continuingwith the current counter values. For brevity in the following proofs, we emphasizetwo counter machines. However, there is no intrinsic reason to restrict the machinesto two counters. All of our arguments and results generalize easily to N counters,for N � 2. Formally, an And-Branching Two Counter Machine Without Zero-Test,or acm for short, is given by a �nite set Q of states, a �nite set � of transitions, anddistinguished initial and �nal states, QI and QF , as described below.An instantaneous description, or ID, of an acm M is a �nite list of orderedtriples hQi; A; Bi, where Qi 2 Q, and A and B are natural numbers, each corre-sponding to a counter of the machine. Intuitively, a list of triples represents a setof machine con�gurations. One may think of an acm state as some sort of parallelcomputation which terminates successfully only if all its concurrent computationfragments terminate successfully.We de�ne the accepting triple as hQF ; 0; 0i. We also de�ne an accepting ID asany ID where every element of the ID is the accepting triple. That is, every and-branch of the computation has reached an accepting triple. We say that an acm Maccepts from an ID s if and only if there is some computation from s to an acceptingID. It is essential for our encoding in linear logic that both counters be zero in allelements of an accepting ID.The set � may contain transitions of the following form:(Qi Increment A Qj) takinghQi; A; Bi to hQj ; A+ 1; Bi(Qi Increment B Qj) takinghQi; A; Bi to hQj ; A; B + 1i(Qi Decrement A Qj) takinghQi; A+ 1; Bi to hQj ; A; Bi(Qi Decrement B Qj) takinghQi; A; B + 1i to hQj ; A; Bi(Qi Fork Qj ; Qk) takinghQi; A; Bi to (hQj ; A; Bi, hQk; A; Bi)where Qi; Qj; and Qk are states in Q. The Decrement instructions only apply ifthe appropriate counter is not zero, while the Increment and Fork instructionsare always enabled from the proper state.For example, the single transition Qi Increment A Qj takes an acm from ID:f� � � ; hQi; A; Bi; � � �g to ID: f� � � ; hQj; A+ 1; Bi; � � �g

Propositional Linear Logic is Undecidable 333.4.1 Two Counter MachinesStandard two counter machines have a �nite set of states, Q, a �nite set of transi-tions, �, a distinguished initial state QI , and a set of �nal states F [Min61, HU79].An instantaneous description of the state of a two counter machine is given by atriple hQi; A; Bi, which consists of the current state, and the values of two counters,A and B. The transitions in � are of four kinds:(Qi Increment A Qj) taking hQi; A; Bi to hQj ; A+ 1; Bi(Qi Increment B Qj) taking hQi; A; Bi to hQj ; A; B + 1i(Qi Decrement A Qj) taking hQi; A+ 1; Bi to hQj ; A+ 1; Bi(Qi Decrement B Qj) taking hQi; A; B + 1i to hQj ; A; B + 1i(Qi Zero-Test A Qj) taking hQi; 0; Bi to hQj; 0; Bi(Qi Zero-Test B Qj) taking hQi; A; 0i to hQj ; A; 0iA two counter machine accepts if it is able to reach any one of the �nal states inthe set F with both counters at zero. It is important that these machines have aZero-Test instruction since the halting problem becomes decidable otherwise, byobvious reduction to the word problem in commutative semi-Thue systems, whichis decidable [MM82]. Since Zero-Test is the most di�cult to encode in linear logic,we concentrate on a machine with and-branching, which provides a basic mechanismpowerful enough to simulate Zero-Test, but which is more easily simulated in linearlogic.Using two counter machines, we show that acm's have an undecidable haltingproblem.Lemma 3.4 It is undecidable whether an and-branching two counter machine with-out zero-test accepts from ID fhQI ; 0; 0ig. This remains so if the transition relationof the machine is restricted so that there are no outgoing transitions from the �nalstate.Proof. Since acm's may simulate zero-test with and-branching, acm's aresu�ciently powerful to simulate two counter machines, for which the halting problemis known to be recursively unsolvable [Min61, Lam61]. We will give a constructionfrom standard two counter machines to acms, and argue that the construction issound and faithful. This construction and the proof of its soundness is routine, andits steps should be familiar to anyone versed in automata theory. In our simulationof the test for zero instruction of two counter machines, we make essential use ofthe fact that all branches of computation terminate with both counters set to zero.Given a nondeterministic two counter machine M we �rst construct an equiva-lent two counter machine M 0 with a unique �nal state QF which has no outgoingtransitions. One simply adds two new states, QD and QF to M 0, and for each

34 Decision Problems for Propositional Linear LogicQf 2 F of M , one adds the instructions (Qf Increment A QD) and (QD Decre-ment A QF). Note that one may simply look at these new transitions as a singlenondeterministic step from each old �nal state to the new (unique) �nal state, whichhas no outgoing transitions. However, since there is no general \silent" move, wemake the transition in two steps.We claim without proof thatM andM 0 accept the same set of input values, andare therefore equivalent machines.From a nondeterministic two counter machineM 0 with unique �nal state withoutoutgoing transitions, we construct an acmM 00 as follows. The acmM 00 will have thesame set of states, and same initial and �nal states as M 0. The transition functionofM 00 is built by �rst taking all the Increment and Decrement instructions fromthe transition function of M 0. We then add two new states to M 00, ZA and ZB,which are used to test for zero in each of the two counters. For ZA, we add twoinstructions, (ZA Decrement B ZA), and (ZA Fork QF , QF), to the transitionfunction of M 00. Similarly for ZB, we add (ZB Decrement A ZB), and (ZB ForkQF , QF). Then for each Zero-Test instruction of M 0 of the form(Qi Zero-Test A Qj)we add one instruction to M 00: (Qi Fork Qj ; ZA):An important feature of M 00 is that once a zero testing or �nal state is entered,no con�guration of that branch of computation may ever leave that set of states.More speci�cally, where M 0 would test for zero, M 00 will fork into two \parallel"computations. One continues in the \same" state as M 0 would have if the Zero-Test had succeeded, and the other branch \veri�es" that the counter is indeed zero.While the second branch may change the value of one of the counters (the counterwhich is not being tested), this cannot a�ect the values of the counters in the \main"branch of computation. Further, the zero-testing branch of computation never entersany states other than zero-test states or the �nal state. This holds because thereare no outgoing transitions from the �nal state whatsoever, and the only transitionsfrom the two zero testing states either loop back to that state or move directly tothe �nal state. Also note that any branch of an acmM 00 computation which arrivesat the state ZA may be part of a terminating computation if and only if the counterA is zero when the machine reaches that state. This can be seen by observing thatonce arriving in ZA, there is no possibility of modi�cations to the counter A. TheDecrement B transition from ZA to itself allows M 00 to loop and decrement thecounter B arbitrarily. In particular it is possible for B to be decremented to thevalue 0. Since QF has no outgoing transitions, the Fork instruction which movesfrom ZA to QF and QF allows this branch of computation to terminate correctly

Propositional Linear Logic is Undecidable 35if and only if both counters are zero when it is executed. Since we are consideringnondeterministic acms, it is possible for a branch of computation which reaches ZAto terminate if and only if the A counter is zero when it reaches ZA. Similarly, anybranch of computation reaching ZB reaches an accepting ID if and only if the Bcounter is zero.We claim that there is a halting computation for the given two counter machineM 0 if and only if there is one for the constructed acm M 00. This is proven by twosimulations.The and-branching machine M 00 may mimic the original two counter machinein the performance of any instruction, by following any Increment of M 0 withthe corresponding Increment instruction, and a Decrement with the correspond-ing Decrement. When M 0 executes a Zero-Test A instruction, M 00 forks o� anand branch which veri�es that the counter A is in fact zero, and the other branchcontinues to follow the computation of M 0.For the converse simulation, there is always at most one and-branch of any M 00computation which corresponds to a non�nal, non-zero-testing state in the originalmachine. There may be many and branches of the computation which are in statesZA, ZB, and QF , but at most one and branch is in any other state. Thus, M 0may mimic M 00 by following the branch of acm computation which does not enterZA, ZB , or QF until the �nal step of computation, when it enters QF . For everyIncrement and Decrement instruction in the accepting computation of M 00, M 0may performs the corresponding instruction. Every Fork instruction executed byM 00 from a non�nal, non-zero-testing state corresponds to a Zero-Test instructionin M 0, and by the above observation, if M 00 forks into state ZA, then M 00 acceptsonly if the counter A is zero (and similarly for ZB and the counter B). Since weare assuming an accepting M 00 computation, we know that M 0 may execute thecorresponding Zero-Test instruction successfully.3.5 From Machines to LogicWe give a translation from acms to linear logic with theories and show that oursequent translation of a machine in a particular state is provable in linear logic ifand only if the acm halts from that state. In fact, our translation uses only mallformulas and theories, thus with the use of our earlier encoding, Lemma 3.2 andLemma 3.3, we will have our result for propositional linear logic without nonlogicalaxioms. Since an instantaneous description of an acm is given by a list of triples, itis somewhat delicate to state the induction we will use to prove soundness.We have already seen how the linear connective & may be used to achieve and-branching in the proof of pspace-completeness of mall. We now make use of that,along with some other machinery, to simulate acm computations.

36 Decision Problems for Propositional Linear LogicGiven an acm M = hQ; �;QI; QF i we �rst de�ne a set of propositions:fqijQi 2 Qg [fq?i jQi 2 Qg [fa; a?; b; b?gWe then de�ne the linear logic theory corresponding to the transition relation � asthe set of axioms determined as follows:Qi Increment A Qj 7! ` q?i ; (qj
 a)Qi Increment B Qj 7! ` q?i ; (qj
 b)Qi Decrement A Qj 7! ` q?i ; a?; qjQi Decrement B Qj 7! ` q?i ; b?; qjQi Fork Qj ; Qk 7! ` q?i ; (qj � qk)Using linear implication, the (Qi Increment B Qj) transition may be viewed as` qi��(qj
 b), i.e., from state Qi, move to state Qj and add one to counter B. Theother axioms in this translation may also be viewed in this way.We will write Cn to indicate a sequence of n C's, separated by commas, asfollows: Cn �= nz }| {C;C; � � � ; CSince p? is an atomic symbol, the notation p?3 will be used for (p?)3, which issimply p?; p?; p?.Given a triple hQi; x; yi of an acm, we de�ne the translation �(hQi; x; yi) by:�(hQi; x; yi) �= ` q?i ; a?x; b?y ; qFThus all sequents which correspond to acm triples have exactly one positive literal,qF , some number of a?s, and b?s, the multiplicity of which correspond to the valuesof the two counters of the acm in unary, and exactly one other negative literal,which corresponds to the state of the acm.The translation of an acm ID is simply the set of translations of the elements ofthe ID: �(fE1; E2; � � � ; Emg) = f�(E1); �(E2); � � � ; �(Em)gWe claim that an acm M accepts from ID s if and only if every element of �(s) isprovable in the theory corresponding to the transition function of the machine. Weprove each half of this equivalence in separate lemmas.Lemma 3.5 (Machine)) An and-branching counter machine M accepts fromID s only if every sequent in �(s) is provable in the theory derived from M .Proof. Given a halting computation of an acm machine M from s we claim wecan build a proof of every sequent in �(s) in the theory derived from M .

Propositional Linear Logic is Undecidable 37M accepts from s only if there is some �nite sequence of transitions from thisID to an accepting ID. We proceed by induction on the length of that sequence oftransitions.If there are no transitions in the sequence, then by the de�nition of acceptingID, s consists entirely of hQF ; 0; 0i. We must show that the sequent` q?F ; a?0; b?0; qFis provable in linear logic. This is immediate: we have 0 A's and 0 B's, that is, noneat all. Thus by one application of identity per sequent ` q?F ; qF , we have our proof.If there is at least one transition in the sequence, we have to show that �(s) isprovable. Since M accepts from ID f� � � hQi; A; Bi � � �g, and there is at least onetransition in the sequence, we know that there is some transition in M such thatID! ID0, andM accepts from ID0. We assume by induction that there is a linearlogic proof which corresponds to the accepting computation for ID0.We now perform case analysis on the type of transition. There are �ve dif-ferent types of instructions: Increment A or B, Decrement A or B, and Fork.Since the two increment and two decrement instructions are nearly identical, we willconcentrate only on the cases concerning the counter A.Qi Increment A Qj: In this case, the �rst step in the halting computation hasthe form f� � � hQi; A; Bi � � �g ! f� � � hQj ; A+ 1; Bi � � �gWe assume by induction that we have a proof of �(hQj ; A+1; Bi) =` q?j ; a?A+1; b?B; qF .We extend this proof into a proof of �(hQi; A; Bi) =` q?i ; a?A; b?B ; qF by addinga cut with an axiom, as follows.` q?i ; (qj
 a)T ...` q?j ; a?A+1; b?B ; qF` (q?j P a?); a?A; b?B; qF PCut` q?i ; a?A; b?B; qFNote that the axiom ` q?i ; (qj
a) is precisely the translation of the transition takenby the machine, and therefore is an axiom of the theory.Qi Increment B Qj : Analogous to above.

38 Decision Problems for Propositional Linear LogicQi Decrement A Qj: Since the A counter of the machine must be positive forthis instruction to apply, we know that the halting computation begins with thetransition f� � � hQi; A+ 1; Bi � � �g ! f� � � hQj ; A; Bi � � �gWe assume by induction that we have a proof of ` q?j ; a?A; b?B ; qF . As in theIncrement A case, we extend this to a proof of ` q?i ; a?A+1; b?B ; qF by adding acut with the axiom corresponding to the transition taken by the machine.` q?i ; a?; qjT ...` q?j ; a?A; b?B ; qF Cut` q?i ; a?A+1; b?B; qFQi Decrement B Qj: Analogous to above.Qi Fork Qj ; Qk: Here, the halting computation begins with the stepf� � � hQi; A; Bi � � �g ! f� � � hQj; A; Bi; hQk; A; Bi � � �gWe assume by induction that we have a proof of ` q?j ; a?A; b?B ; qF ,and of ` q?k ; a?A; b?B ; qF , and we extend those proofs into a proof of ` q?i ; a?A; b?B ; qF .` q?i ; (qj � qk)T ...` q?j ; a?A; b?B; qF ...` q?k ; a?A; b?B; qF &` (q?j &q?k); a?A; b?B; qF Cut` q?i ; a?A; b?B; qFHere ` q?i ; (qj � qk) is the axiom which corresponds to the fork instruction.Lemma 3.6 (Machine () An and-branching counter machine M accepts fromID s if every sequent in the set �(s) is provable in the theory derived from M .Proof.Given a set of proofs of the elements of �(s) in the theory derived from M , weclaim that a halting computation of the acmM from state s can be extracted fromthose proofs. We achieve this with the aid of the cut standardization Lemma 3.1,which in this case leaves cuts in the proof only where they correspond to applicationsof acm instructions. We may thus simply read the description of the computationfrom the standardized proof.

Propositional Linear Logic is Undecidable 39By Lemma 3.1, it su�ces to consider standardized proofs. We show that a set ofstandardized proofs of �(s) may be mimicked by the acmM to produce an acceptingcomputation from state s.This proof is by induction on the sum of the sizes (number of proof rules applied)of standardized proofs. Since an acm state is given by a �nite set of triples, andall proofs are �nite, we know that this measure is well founded. We assume thatany smaller set of proofs which all end in conclusions which correspond to a triplehQi; A; Bi can be simulated by machine M .We consider the proof of a single element of �(s) at a time.If s = f� � � hQi; x; yi � � �g, then �(s) = f� � � ` q?i ; a?x; b?y ; qF � � �g.We assume that we are given a proof of each element of the set �(s), and weanalyze one of the proofs, all of which end in a conclusion corresponding to a machinetriple hQi; x; yi. ...` q?i ; a?x; b?y ; qFSince this sequent is simply a list of atomic propositions, the only linear logicrules which can apply to any such sequent are identity, some axiom, and cut.Identity is only applicable when both x and y are zero, and qi = qF . In thiscase, ` q?F ; qF already corresponds to the accepting triple hQF ; 0; 0i.The only axioms which are identical to a sequent in �(s) are those which corre-spond to some � which is a decrement instruction that ends in qF . In this case, sinceeach decrement axiom in [�] contains exactly one occurrence of a? or b?, x = 1 andy = 0, or x = 0 and y = 1. In either case, the acm machine M need only performthe decrement instruction �, and this branch of computation reaches an acceptingtriple.The �nal possibility is cut, and by our standardization procedure, we knowthat one hypothesis of that cut is an axiom from the theory derived from M , andfurthermore that the cut-formula in that axiom is not a negative literal.Since there are only �ve types of instructions in an acm; Increment A or B,Decrement A or B, and Fork, there are only �ve di�erent types of axioms in atheory derived from any acm M . We now perform case analysis on the type ofaxiom that was last applied in a proof.` q?i ; (qj
 a): If the last axiom applied is of the form ` q?i ; (qj
 a), then itcorresponds to an Increment A instruction, and by standardization, we know thecut-formula must be (qj
 a) in the axiom, and that the proof must look like` q?i ; (qj
 a)T ...` (q?j P a?); a?x; b?y ; qF Cut` q?i ; a?x; b?y ; qF

40 Decision Problems for Propositional Linear LogicSince each other linear logic rule besides P , cut, identity, or axiom introduces somesymbol which does not occur in ` (q?j P a?); a?x; b?y ; qF , the derivation of thissequent must end in one of these rules. Furthermore, there are two formulas inthis sequent which are not negative literals, so this sequent is not derivable usingonly an axiom. Identity could not lead to this sequent, since the sequent containsa non-atomic formula. By our standardization procedure, we know that each cutmust involve an axiom from the theory, and the cut-formula in the axiom is not anegative literal. Inspecting the various types of axioms in the theory derived fromM , we see that all axioms contain one top level negative atomic formula q?i for somei. Since q?i cannot be a directed cut-formula in a principal axiom, it must appear inthe conclusion of that application of cut. However, there is no such top level qi inthe sequent in question. Thus this sequent may only be derived by the applicationof the P rule. Therefore, we know the derivation must have the form:` q?i ; (qj
 a)T ...` q?j ; a?x+1; b?y ; qF` (q?j P a?); a?x; b?y ; qF PCut` q?i ; a?x; b?y ; qFWe know that the proof of ` q?j ; a?x+1; b?y ; qF may be simulated by the acm byinduction, since it is the sequent �(hQj ; x + 1; yi), which corresponds to the triplehQj ; x+ 1; yi, and has a proof in linear logic of smaller size.Therefore the machineM may emulate this proof by performing the acm instruc-tion corresponding to the axiom used (in this case an Increment A instruction),and then continuing as dictated by the inductive case.` q?i ; (qj
 a): Analogous arguments apply.` q?i ; a?; qj: If the last axiom applied is ` q?i ; a?; qj , which corresponds to aDecrement A instruction, then by standardization, we know the cut-formula mustbe qj in the axiom, and that the proof must be of the form` q?i ; a?; qjT ...` q?j ; a?x; b?y ; qF Cut` q?i ; a?x+1; b?y; qFBy induction, the proof of ` q?j ; a?x; b?y ; qF can be simulated, since it is the sequent�(hQj ; x; yi), which corresponds to the triple hQj ; x; yi, and has a shorter proof inlinear logic.Therefore the machineM may emulate this proof by performing the acm instruc-tion corresponding to the axiom used (in this case a Decrement A instruction),and then continuing as dictated by the inductive case.

Propositional Linear Logic is Undecidable 41` q?i ; a?; qj: Analogous arguments apply.` q?i ; (qj � qk): If the last axiom applied is ` q?i ; (qj � qk), which correspondsto a Fork instruction, then by standardization, we know the cut-formula must be(qj � qk) in the axiom, and that the proof must look like` q?i ; (qj � qk)T ...` (q?j &q?k); a?x; b?y ; qF Cut` q?i ; a?x; b?y ; qFSince each other linear logic rule besides &, cut, identity, or axiom introduces somesymbol which does not occur in ` (q?j &q?k); a?x; b?y ; qF , the derivation of this se-quent must end in one of these rules. Furthermore, there are two formulas in thesequent which are not negative literals, so this sequent is not derivable using onlyan axiom. Identity could not lead to this sequent, since the sequent contains a non-atomic formula. By our standardization procedure, we know that each cut mustinvolve an axiom from the theory, and the cut-formula in the axiom is not a nega-tive literal. Inspecting the various types of axioms in the theory derived from M ,we see that all axioms contain one top level negative atomic formula q?i for some i.Since q?i cannot be the cut-formula in a principal axiom of a directed cut, it mustappear in the conclusion of that application of cut. However, there is no such toplevel qi in the sequent in question. Thus this sequent may only be derived by theapplication of the & rule. Thus we know the derivation to be of the form:` q?i ; (qj � qk)T ...` q?j ; a?x; b?y ; qF ...` q?k ; a?x; b?y ; qF &` (q?j &q?k); a?x; b?y ; qF Cut` q?i ; a?x; b?y ; qFThe proofs of ` q?j ; a?x; b?y ; qF and ` q?k ; a?x; b?y ; qF can be simulated on the ma-chine by induction, since one is a sequent which corresponds to the triple hQj; x; yi,the other corresponds to hQk; x; yi, and each has a proof in linear logic of smallersize.Therefore the machine M may emulate this proof by performing the acm in-struction corresponding to the axiom used (in this case a Fork instruction), andthen continuing as dictated by the two inductive cases.From Lemmas 3.4, 3.2, 3.3, 3.5, and 3.6 of this section, we easily obtain ourmain result:Theorem 3.7 The provability problem for propositional linear logic is recursivelyunsolvable.

42 Decision Problems for Propositional Linear LogicAs mentioned earlier, linear logic, like classical logic, has an intuitionistic frag-ment. Brie
y, the intuitionistic fragment is restricted so that there is only onepositive formula in any sequent. In fact, the entire construction above was carriedout in intuitionistic linear logic, and thus the undecidability result also holds forthis logic.In any theory derived from an acm M , there is only one positive formula in anytheory axiom. Also, throughout a directed proof of �(s) in such a theory, the onlypositive atom which appears outside a theory axiom is qF . Thus any directed proofof �(s) in a theory derived from M is in the intuitionistic fragment of linear logic,and along with a conservativity result not proven here, we have the following:Corollary 3.8 The provability problem for propositional intuitionistic linear logicis recursively unsolvable.In the proof of this corollary we make use of the conservativity property of fulllinear logic over the intuitionistic fragment for any sequents occuring in a directedproof of a translation of an acm machine con�guration. This conservativity is aweaker property than full conservativity since sequents in such a directed proofhave a special form. In particular, they have no constants, and the right hand sideis always a single formula.3.6 Example ComputationThis section is intended to give an overview of the mechanisms we have de�nedabove, and lend some insight into our undecidability result, stated above. We presenta simple computation of an ordinary two counter machine with zero-test instruction,a corresponding acm computation, and a corresponding linear logic proof.Repeating from the introduction, a key insight is that searching for a directedproof of a linear logic sequent in a theory is analogous to searching for an acceptingacm computation. A successful search is exactly an accepting computation.Suppose the transition relation � of a standard two counter machine with zero-test consists of the following:�1 : : = QI Increment A Q2�2 : : = Q3 Decrement A QF�3 : : = Q2 Zero-Test B Q3The machine may perform the following transitions, where an instantaneous descrip-tion of a two counter machine is given by the triple consisting of Qj , the currentstate, and the values of counters A and B.hQI ; 0; 0i �1�!hQ2; 1; 0i �3�! hQ3; 1; 0i �2�!hQF ; 0; 0i

Propositional Linear Logic is Undecidable 43This computation starts in state QI , increments the A counter and steps to stateQ2. Then it tests the B counter for zero, and moves to Q3, where it then decrementsthe A counter, moves to QF , and accepts.The transition relation � may be transformed into a transition relation �0 foran equivalent and-branching two counter machine without zero-test. The modi�edrelation �0 (shown on the left below), may then be encoded as a linear logic theory(shown on the right): Transitions�01 : : = QI Increment A Q2�02 : : = Q3 Decrement A QF�03 : : = Q2 Fork ZB ; Q3�04 : : = ZB Decrement A ZB�05 : : = ZB Fork QF ; QF Theory Axioms` q?I ; (q2
 a)` q?3 ; a?; qF` q?2 ; (zB � q3)` z?B ; a?; zB` z?B ; (qF � qF)Notice how the �rst two transitions (�1 and �2) of the standard two counter machineare preserved in the translation from � to �0. Also, the Zero-Test instruction �3 isencoded as three acm transitions | �03, �04, and �05. The transition �03 is a fork toa special state ZB , and one other state, Q3. The two extra transitions, �04 and �05,force the computation branch starting in state ZB to verify that counter B is zero.Given the above transitions, the and-branching machine without zero-test may thenperform these moves:fhQI ; 0; 0ig �01�!fhQ2; 1; 0ig �03�!fhZB; 1; 0i; hQ3; 1; 0ig �04�!fhZB; 0; 0i; hQ3; 1; 0ig �05�!fhQF ; 0; 0i; hQF ; 0; 0i; hQ3; 1; 0ig �02�!fhQF ; 0; 0i; hQF ; 0; 0i; hQF ; 0; 0igNote that an instantaneous description of this and-branching machine is a list oftriples, and the machine accepts if and only if it is able to reach hQF ; 0; 0i in allbranches of its computation. This particular computation starts in state QI , in-crements the A counter and steps to state Q2. Then it forks into two separatecomputations; one which veri�es that the B counter is zero, and the other whichproceeds to state Q3. The B counter is zero, so the proof of that branch proceeds bydecrementing the A counter to zero, and jumping to the �nal state QF . The otherbranch from state Q3 simply decrements A and moves to QF . Thus all branches ofthe computation terminate in the �nal state with both counters at zero, resultingin an accepting computation.The linear logic proof corresponding to this computation is displayed in Fig-ures 3.1 and 3.2, and is explained in the following paragraphs. In these proofs, eachapplication of a theory axiom corresponds to one step of acm computation. Werepresent the values of the acm counters in unary by copies of the formulas a? andb?. In this example the B counter is always zero, so there are no occurrences of b?.

44 Decision Problems for Propositional Linear LogicThe proof shown in Figure 3.1 of ` z?B ; a?; qF in the above linear logic theorycorresponds to the acm verifying that the B counter is zero. Reading the proofbottom up, it begins with a directed cut. The sequent ` z?B ; qF is left as an inter-mediate step. The next step is to use another directed cut, and after applicationof the & rule, we have two sequents left to prove: ` q?F ; qF and ` q?F ; qF . Both ofthese correspond to the acm triple hQF ; 0; 0i which is the accepting triple, and areprovable by the identity rule. If we had attempted to prove this sequent with someoccurrences of b?, we would be unable to complete the proof.` z?B ; a?; zB�04 ` z?B ; (qF � qF)�05 ` q?F ; qF I ` q?F ; qF I&` (q?F & q?F); qF Cut` z?B ; qF Cut` z?B ; a?; qFFigure 3.1: Zero-test proof` q?I ; (q2
 a)�01 ` q?2 ; (zB � q3)�03 ...` z?B ; a?; qF ` q?3 ; a?; qF �02 ` q?F ; qF ICut` q?3 ; a?; qF &` (z?B & q?3); a?; qF Cut` q?2 ; a?; qF` (q?2 P a?); qF P Cut` q?I ; qFFigure 3.2: Proof corresponding to computationThe proof shown in Figure 3.2 of ` q?I ; qF in the same theory demonstrates theremainder of the acmmachinery. The lowermost introduction of a theory axiom, cut,and P together correspond to the application of the increment instruction �01. Thatis, the q?I has been \traded in" for q?2 along with a?. The application of a directedcut and & correspond to the fork instruction, �03 which requires that both branchesof the proof be successful in the same way that and-branching machines requireall branches to reach an accepting con�guration. The elided proof of ` z?B ; a?; qFappears in Figure 3.1, and corresponds to the veri�cation that the B counter is zero.The application of cut and identity correspond to the �nal decrement instruction ofthe computation, and complete the proof.

Chapter 4Noncommutative PropositionalLinear LogicThe following may be called the unrestricted exchange rule:E ` �;�; A` �; A;�Since sequents are treated as multisets of formulas in linear logic, the E rule isimplicitly present in full linear logic. This structural rule allows sequents to bepermuted arbitrarily, making linear logic a commutative logic. More speci�cally,` (A
B)��(B
A) is derivable in linear logic using exchange, as are the analogoussequents for all the other binary connectives of linear logic (P , �, &). Sincesequents are considered to be implicitly commutative, the E rule does not explicitlyappear in proofs or lists of proof rules for linear logic. However, the absence of theE rule (treating sequents as lists of formulas) drasticly alters the set of provablesequents in linear logic. In fact, without the exchange rule, ` (A
 B)��(B
 A) isnot derivable. Thus the E rule forces
 (and other connectives) to be commutative.Noncommutative propositional linear logic is linear logic where the unrestrictedexchange rule is omitted, or equivalently, where sequents are treated as being listsinstead of multisets. This entire family of logics is quite speculative, ad hoc, andmost formulations are original to this paper. Thus one should not take too seriouslyany of the results of this chapter.The family of noncommutative linear logics may be derived from linear logicby treating sequents as lists of formulas, instead of multisets. Thus the order offormulas in a sequent becomes important. However, the immediate resulting systemis unsatisfying in that the reusable formulas (those marked by ?) are exactly the oneswhich can be contracted and weakened in linear logic, and thus should be permittedthe freedom of exchange, even in the noncommutative versions of linear logic.45

46 Decision Problems for Propositional Linear LogicThere are a whole family of logics which could result from various additions ofrestricted exchange to noncommutative linear logic. The main point of di�erencewithin this family is the exact formulation of the rules of inference. However, mostmembers of this family of logics have an undecidable provability problem.In fact, the multiplicative and reuse operators are su�cient to encode undecid-able problems in most of these logics. In other words, the constants and additiveconnectives are not necessary in order to simulate a Turing machine in noncommu-tative linear logic, although they appear to be necessary in (commutative) linearlogic. Below we present the detailed proof of undecidability for a particular logic wewill call ncl, which is actually the multiplicative and reuse fragment of a memberof the noncommutative linear logic family.David Yetter [Yet90] has also studied a variant of noncommutative linear logic.In his work, he considered a system with two new modalities, k and K, whichare related to ? and !. The k modality essentially marks those formulas which arefree to be permuted, despite the noncommutativity of the logic in general. Thereusable formulas (marked with ?) are allowed to permute, but are also allowedthe freedom of contraction and weakening, while the k and K formulas are not.We �nd no compelling reason for these extra connectives, except to facilitate theencoding of (commutative) linear logic in noncommutative linear logic by pre�xingevery subformula with k or K. Based on our results below, other encodings oflinear logic into noncommutative linear logic without k and K exist. Thus we donot include any new connectives or modalities in our logics presented below, andallow only the reusable ? formulas to permute.We now focus on one particular member of the family of noncommutative linearlogics. This logic will include only the multiplicative and reuse connectives of linearlogic, excluding the additives. In order to mesh smoothly with the earlier chapterswe will use the proof rules as presented in Appendix B, but add two new rules, onewhich allows ? formulas to permute, and one which allows an entire sequent to be\rotated". Thus one may think of a sequent as a circular list of formulas. We callthis logic ncl for \circular logic".4.1 NCL Proof RulesThe system ncl includes the I, Cut,
; P ; ?W; ?C; ?D, and !S rules of linear logic,with each sequent treated as a circular list of formulas instead of as a multiset. Thefollowing two rules of inference are also included in ncl:?E ` �;�; ?A` �; ?A;� ` �; A` A;� RThese rules allow one to permute and exchange the reusable (?) formulas arbitrarily,and to rotate the entire sequent of reusable and non-reusable formulas. As our

Noncommutative Propositional Linear Logic 47previous discussions of linear logic accepted exchange as \part of the system" byconsidering sequents to be multisets of formulas, we will now consider the exchangerules ?E and R implicitly, by regarding sequents as circular lists of linear logicformulas.4.2 NCL is UndecidableWe will show the word problem for semi-Thue systems has a straightforward en-coding in ncl. Since we have already shown that full linear logic is undecidable,the fact that full noncommutative linear logic is undecidable is not too surprising.But since ncl is a fragment of noncommutative linear logic which does not containthe additive connectives, the earlier construction of and-branching two-counter ma-chines in full linear logic would fail in ncl. However, the and-branching used in thatconstruction was required in order to encode zero-test in a commutative setting. Ina noncommutative setting a zero test operation may be encoded easily without anysort of and-branching. This situation is analogous to that for commutative versusnoncommutative semi-Thue systems, where the noncommutative version allows theencoding of a zero test leading to undecidability, whereas the commutative versionis unable to simulate zero test and has been shown to be decidable [Kos82]. In fact,since ncl closely resembles semi-Thue systems, we will demonstrate undecidabilityof ncl by a reduction from semi-Thue systems.Although the reduction is simple, the proof of its correctness requires someelaborate machinery. In particular the proof of cut-elimination given in Appendix Ahas been given in such a way that it applies to ncl as well as linear logic.Lemma 4.1 (Cut Elimination Revisited) If there is a proof of sequent ` � inncl, then there is a cut-free proof of ` � in ncl.Proof. The cut-elimination theorem for full linear logic in Appendix A is presentedin a way which gives a cut elimination procedure for ncl. The only violations ofthe list-ordering of rules are those which correspond to the permutation of reusableformulas, such as in the case of principal cuts of
 versus !S. However, these casesare legal ncl cut proof steps, since we are assuming the ncl proof rules ?E and Rare built in to the ncl system. Thus the cut-elimination procedure for full linearlogic may be employed to remove cuts from ncl proofs.Corollary 4.2 (Subformula Property Revisited) Any formula in any cut-freencl proof of ` � is a subformula of �.Proof. Immediate.

48 Decision Problems for Propositional Linear Logic4.3 NCL TheoriesWe will de�ne theories as for the commutative case (see Section 3.2), and show thatcut-standardization (see Lemma 3.1) again holds in this logic.Formally, a ncl axiom may be any ncl sequent of the form ` C; p?i1; p?i2 ; :::; p?in,where C is any ncl formula not including modal operators (? or !), and the remain-der of the sequent is made up of negative literals. Any �nite set of ncl axioms is ancl theory. For any theory T , we say that a sequent ` � is provable in T exactlywhen we are able to derive ` � using the standard set of ncl proof rules and nclaxioms from T . Thus each axiom of T is treated as a reusable sequent which mayoccur as a leaf of a proof tree. As before we will write ` �T for a leaf sequent whichis a member of the theory T .We recall the de�nition of a directed cut: a directed cut is one where at leastone premise is an axiom ` C; p?i1; p?i2 ; :::; p?in in T , and C is the cut-formula in thataxiom. We call any axiom premise of a directed cut where the cut-formula in thataxiom is not a negative literal a principal axiom of that directed cut. By de�nition,all directed cuts have at least one principal axiom. A cut between two axioms isalways directed, and if the cut-formula of such a cut is non-atomic, that cut has twoprincipal axioms. A directed or standardized proof is a proof with all cuts directed.Lemma 4.3 (ncl Cut Standardization) If there is a proof of ` � in theoryT in ncl, then there is a directed proof of ` � in theory T in ncl.Proof. The proof of cut-standardization in full linear logic (Lemma 3.1)applies to this case with little modi�cation. In fact there are fewer cases here sincethe constants and additive connectives are not present in ncl.The earlier translation from theories into pure linear logic is also a translationof ncl theories into pure ncl. For convenience, we repeat the de�nition here: Thetranslation [T] of a ncl theory T with k axioms is the list of ncl formulas:[ft1; t2; � � � ; tkg] =?[t1]; ?[t2]; � � � ; ?[tk]where [ti] is de�ned for each axiom ti as follows:[` C; p?a ; p?b ; :::; p?z] �= (CP p?a P p?b P � � � P p?z)? = (pz
 � � �
 pb
 pa
 C?)Note that the p?j 's are negative literals.Lemma 4.4 (ncl Theory)) For any �nite set of axioms T , ` � is provablein theory T only if ` [T];� is provable.Proof. The proof of Lemma 3.2 carries over to ncl without modi�cation, sincethe ?E and R rules are considered implicit.

Noncommutative Propositional Linear Logic 49Lemma 4.5 (ncl Theory () For any �nite set of axioms T , ` � is provablein theory T if ` [T];� is provable.Proof. Similarly, the proof of Lemma (3.3 given earlier applies here withoutmodi�cation in the system where the ?E;R rules are considered part of the nclsystem.4.3.1 Semi-Thue SystemsA semi-Thue system T over alphabet � is a set of pairs hx! yi, where x and y arestrings over �. Each pair in T is called a production, and we use them as rewriterules. We call x the left hand side and y the right hand side of a production hx! yi.U rewrites to V in system T with a production hg ! g0i if U and V are words over�, and there exist possibly null words r and s such that U = rgs and V = rg0s. Wewrite U=)Vif U rewrites to V using some production. We use the notationU=)�Vif there exists a (possibly empty) sequence of words U1; � � � ; Un such thatU=)U1=)U2=) � � �=)Un=)VThe word problem for a semi-Thue system T the problem of determining, for agiven pair of words U and V , whether or not U=)�V in system T . This problem isknown to be undecidable [Pos47]. The problem remains undecidable if we add thecondition that V be a singleton (word of length one) n such that n does not occurin U or in the right hand side of any production, and only appears as a singletonon the left hand side of productions. This restriction is analogous to requiring thata Turing machine have a unique �nal state without any outgoing transitions. Thesemi-Thue word problem also remains undecidable if there is a special end markersymbol m which is preserved by any rules which involve it except rules involving n.That is, the initial word U begins with a symbol m which does not occur anywhereelse in U , and every rule in which m appears is of the form hmwi ! mwji or is ofthe form hmwi ! ni for some words wi and wj not containing m. This restrictionis analogous to requiring that a Turing machine have only a one-way in�nite tape.To show that the above restrictions preserve undecidability it su�ces to give atransformation from a general word problem to a word problem of the restrictedclass. Speci�cally, given a word problem from U to V , with set of productions T ,we may add the production mV ! n where m and n are new symbols which areadded to �. We then ask the new word problem from mU to n (with the new and

50 Decision Problems for Propositional Linear Logicthe original productions), in the alphabet � [fm;ng. This problem is solvable ifand only if the original problem is. However this new problem is of the restrictedclass de�ned above.4.4 From Semi-Thue Systems to Noncommutative Lin-ear LogicWe overload the de�nition of translation [] to include the case of words | thetranslation of a word [ab � � �z] is the list of ncl formulas p?a ; p?b ; � � � ; p?z . We alsode�ne [ab � � �z]? to be the ncl formula pz
 � � �
 pb
 pa. Finally, as a notationalconvenience, we let
(�) designate ambiguously any formula which could be derivedfrom � by applications of the P rule. In other words,
(�) is the result of replacingsome number of commas separating formulas in � by P .Given a Semi-Thue system T = fha1 ! b1i; ha2 ! b2i � � � hak ! bkig, we de�nethe ncl theory derived from T as the following set of sequents:` [a1]; [b1]?` [a2]; [b2]?...` [ak]; [bk]?For a word problem P consisting of the pair U , V we de�ne the translation �(P) ofthis problem into a ncl sequent as: ` [U]; [V]?Now, we show that the word problem P is solvable within system T if and onlyif the translation �(P) is provable in the theory derived from T . We state the twoparts of the equivalence as Lemmas 4.6 and 4.7.Lemma 4.6 The word problem P is solvable in the semi-Thue system T only if�(P) is provable in the theory derived from T .Proof. We proceed by induction on the length of the derivation of U=)�V .If the derivation is trivial, that is U � V , then we must show that the sequent` [V]; [V]?is provable. Since we assume the word problem has the restricted form with Va singleton, this sequent actually has the form ` [n]; [n]?, which by de�nition ofnotation is ` p?n ; pn. This is provable by identity.

Noncommutative Propositional Linear Logic 51Suppose the derivation of U=)�V is a nonempty sequence:U=)U1=)U2=) � � �=)Un=)V:Since U=)U1, there is some rule hg ! g0i in T , and possibly null words r ands such that [U] = [rgs] = p?r1 � � �p?rip?g1 � � �p?gjp?s1 � � �p?sk[U]? = [rgs]? = [s]?[g]?[r]?[U1] = [rg0s] = p?r1 � � �p?rip?g01 � � �p?g0hp?s1 � � �p?sk[U1]? = [rg0s]? = [s]?[g0]?[r]?By induction we assume that we have a proof of ` [U1]; [V]?, and construct fromthis a proof of the following form:` [g]; [g0]?T ...` [r]; [g0]; [s]; [V]?` [r];
([g0]); [s]; [V]?PP...` [r];
([g0]); [s]; [V]?PCut` [r]; [g]; [s]; [V]?In this partial deduction there are as many applications of the P rule as there areseparate formulas in [g0]. This is because each application of P replaces a commaby a P in the
([g0]) formula.The following concrete example illustrates the intended simulation. Assume thatthe �rst rule applied in the sequence of reductions is hcd! xyi. Then g in the aboveschema is cd, and g0 is xy. Also, [g] is p?c ; p?d , [g0] is p?x ; p?y , and
([g0]) is (p?x P p?y).Also assume that r is mab, s is ef , and [V]? is pn.` p?c ; p?d ; (py
 px)T ...` p?m; p?a ; p?b ; p?x ; p?y ; p?e ; p?f ; pn` p?m; p?a ; p?b ; (p?x P p?y); p?e ; p?f ; pnPCut` p?m; p?a ; p?b ; p?c ; p?d ; p?e ; p?f ; pnThus, by induction, given a sequence of reductions which solves a word problem,we may simulate the solution in ncl.Lemma 4.7 The word problem P is solvable with productions T if �(P) is provablein the theory derived from T .

52 Decision Problems for Propositional Linear LogicProof. We remember that the target word V of the word problem is a singletonand that there is a special marker symbolm at the beginning of U which is preservedby all the productions in T .The construction of a rewrite sequence begins with any proof of �(P), and thenproduces a directed proof by cut-elimination. We may read any directed proof of�(P) as a solution to the word problem P , since each directed cut correspondsdirectly to the application of one reduction in the semi-Thue system.In more detail, given a proof which ends in a sequent ` � where ` � is equal to�(P), possibly with some of the commas in �(P) replaced with P , we apply the nclcut-standardization Lemma 4.3, and obtain a directed proof of ` �. We now proveby induction on the length of the directed proof that this proof may be mimickedby the corresponding semi-Thue system.In the case that ` � is equal to ` [V]; [V]?, (for example, this proof may bea single application of the identity rule) then the solution to the word problem istrivial, i.e., no productions are required, since U � V .In the induction step, ` � cannot be provable with the identity rule. Inspectingthe other rules of ncl, we see that
 and the ? and ! rules are inapplicable, sincethe conclusion sequent does not contain any occurrences of
, ?, or !. If P is thelast rule applied in the proof, then we appeal to the induction hypothesis, sincethen we simply have replaced fewer commas with P . The only remaining case isCut, and by cut-standardization, we know one hypothesis is an axiom, and thecut-formula in that axiom is not a negative literal. Inspecting the axioms in thetheory corresponding to the productions of a semi-Thue system, we see that thecut-formula must always be a formula [g0]?. This formula is built up from positiveliterals connected by
. The cut-formula in the other hypothesis then must be builtfrom negative literals connected by P .Since the start marker m on the initial word U is preserved by each productionin T , we know that the ncl theory derived from T has a special property: thetranslation pm of m may not be a subformula of the cut-formula of a directed cutunless it also appears in the �rst non-principal position following the cut-formulain the axiom. Thus the start marker participates in a directed cut if and only if itis the �rst symbol in the sequence of symbols replaced by the cut. It follows thatthe translation pm of the start marker is preserved in any directed proof of any wellformed word problem. This allows us to conclude that no rule is applied \aroundthe end" of a word through some convoluted use of the rotation rule, and thusthat the semi-Thue system may mimic the ncl proof by applying the correspondingproduction to the string. By induction, we have our result.Theorem 4.8 The provability problem for ncl is recursively unsolvable.Corollary 4.9 The provability problem for ncl augmented with the additive (& and�) and constant (?, 1, and >) rules is recursively unsolvable.

Noncommutative Propositional Linear Logic 53This corollary follows from the theorem by a conservativity result which is easilyderived from the cut-elimination and subformula properties of ncl.4.5 Other Noncommutative LogicsAs mentioned previously, there is a family of logics which share a strong resemblanceto ncl. All of the ones we can sensibly imagine have undecidable decision problems.In all formulations of noncommutative linear logic the key rule is
. In a sensewhich we make more precise later, the constants and additive connectives of linearlogic are inherently commutative. Also, the P rule follows the
 rule in its commu-tativity. Thus noncommutative linear logic is quite sensitive to the exact formulationof
. However, there are some minor variations on the syntactic presentation of theother proof rules which �rst bear some notice.4.5.1 Rotate Rule versus EmbeddingOne motivation for the particular formulation of ncl studied in the previous section(in particular, the introduction of the R rule) is so that we may make use of thesame formulation of linear logic rules given in Appendix B, and refer to the previ-ously demonstrated lemmas about linear logic with as little modi�cation as possible.Without the R rule we would have to modify the formulation of other rules, suchas the P rule, to allow its application within a sequent, instead of requiring itsapplication at one end of a sequent. To see this, compare the original version of Pon the left with the modi�ed version on the right below:P ` �; A; B` �; (APB) ` �; A; B;�` �; (APB);� P 2We will call the P 2 rule the embedded equivalent of the P rule. The use of P 2 innoncommutative linear logic without the R rule directly corresponds to the use ofP in ncl with R rule considered part of the system. We will use encl to stand forthe system derived from ncl by removing the R rule, and replacing all other rulesby their embedded equivalents, and adding a symmetric identity rule.Lemma 4.10 A sequent ` � is provable in ncl if and only if it is provable in Encl.This lemma follows by induction on the length of proofs, and from this lemmawe obtain undecidability for this system.Corollary 4.11 The provability problem for ncl without the R rule, and with everyother rule replaced by its embedded equivalent is recursively unsolvable.

54 Decision Problems for Propositional Linear Logic4.5.2 NCL without ?EThe earlier proof of undecidability fails in ncl without the ?E rule, since some of therequisite lemmas about theories fail. However, we may omit this rule, and replace?C with the following ?C2 rule to restore our results, and many other properties ofnoncommutative linear logic.?C ` �; ?A; ?A` �; ?A ` �; ?A;�; ?A` �;�; ?A ?C2This contraction rule essentially states that what may be proven from two not nec-essarily contiguous assumptions of a reusable formula, may be proven from oneassumption of that reusable formula. It is the case that the ?C2 rule is derivablefrom the ?E and ?C rules in ncl.Lemma 4.12 A sequent ` � is provable in ncl if and only if it is provable in nclwithout the ?E rule, and with the ?C rule replaced by ?C2.This lemma may be proven by induction on the length of proofs. Essentially,in ncl one may contract and then exchange the reusable formula to any desiredposition, while in the other system one may contract the formula directly into posi-tion. On the other hand, to permute a reusable formula in ncl, one simply appliesexchange, while in the other system one must contract the formula into position,and then weaken away the formula in its previous position. Using this lemma, wemay obtain the following undecidability result.Corollary 4.13 The provability problem for ncl without the ?E rule, and with the?C rule replaced by ?C2 rule is recursively unsolvable.4.5.3 Alternate
There are two quite reasonable versions of the
 rule in noncommutative linear logic,one as used above de�ned in Appendix B, and the other using a di�erent sequentorder in the conclusion:
 ` �; A ` B;�` �; (A
B);� ` �; A ` �; B` �;�; (A
B)
2The two formulations are equivalent in the presence of unrestricted exchange (com-mutative linear logic), but are subtlely di�erent in the context of noncommutativelinear logic. In a noncommutative linear logic with
 replaced by
2, the de�-nition of negation must change. In particular, the negation of the multiplicativeconnectives would be de�ned as follows:(A
B)? �= A?PB? (APB)? �= A?
 B?

Noncommutative Propositional Linear Logic 55We de�ne the translation �(�) of a sequent � to be the sequent � with alloccurrences of formulas of the form A
 B replaced by B
 A.Lemma 4.14 A sequent ` � is provable in ncl if and only if �(�) is provable inncl with the
 rule replaced by the
2 ruleLemma 4.15 A sequent ` �(�) is provable in ncl if and only if � is provable inncl with the
 rule replaced by the
2 ruleThis lemma follows by induction on the height of proofs.Lemma 4.16 The provability problem for ncl with the
 rule replaced by the
2rule and alternate de�nition of negation is recursively unsolvable.This lemma follows from the above two, which simply state that by reversingthe order of all tensor (
) formulas, we pass from ncl to this new logic, and backagain. Thus a decision procedure for one implies a decision procedure for the other,and by Lemma 4.8, we know there is no decision procedure for ncl.4.5.4 Mix and MatchThe above modi�cations of ncl do not interfere with cut-elimination, nor with thebasic undecidability result for ncl. It is also the case that even in combination theabove three modi�cations, (R versus embedding, ?E versus ?C2, and
 versus
2)do not interact. That is, any combination of these modications retains the characterof ncl, including the properties of being undecidable, and having a cut-eliminationtheorem.4.6 Degenerate Noncommutative Linear LogicsSome variations on the ncl system are not as benign as the above. In fact, it is mucheasier to create nonsense than a coherent logic by altering proof rules haphazardly.The main focus of this section is to consider plausible but degenerate variantsof the rules based on interleaving the circular orders of hypotheses.4.6.1 Intermingling
At �rst glance, it might seem interesting to study the systems obtained when binaryrules in ncl are replaced with rules which allow intermingling of the hypotheses inthe conclusion. For example,
3 ` �; A ` B;�` �; (A
B) where � is some interleaving of � and �

56 Decision Problems for Propositional Linear LogicSomewhat surprisingly, the system obtained by replacing
 with
3 in ncl is equiv-alent to a commutative version of ncl.Lemma 4.17 A sequent ` � is provable in the system obtained by replacing
 by
3 in ncl if and only if that sequent is provable in the system obtained by addingthe unrestricted exchange rule to ncl.This lemma follows by induction on the length of cut-free proofs. Formally, weneed a cut-elimination procedure for both logics. The cut-elimination procedure forfull linear logic su�ces to eliminate cuts from ncl with unrestricted exchange. Cut-elimination for ncl with
 replaced by
3 is possible to prove directly, although theprincipal
3 versus P case is quite di�cult. Cut-elimination in this case may beaccomplished with the addition of an \intermingling cut" rule which along with thenonintermingling cut rule may be eliminated from any proof. The key reason thislemma holds is that
 and P are the only binary connectives of ncl and allowing(A
B) to be equivalent to (B
A) in this context causes (APB) to be equivalentto (BPA).Corollary 4.18 A sequent ` � is provable in the system obtained by replacing
by
3 in ncl augmented with additives and constants if and only if that sequentis provable in the system obtained by adding the unrestricted exchange rule to nclaugmented with additives and constants.This corollary follows from the fact that the constants and additive connectivesare inherently commutative, and may be proven by induction on the length of proofs.4.6.2 Intermingling CutA problem similar to that which occurs with
3 arises if we allow the Cut rule tointerleave its conclusion. De�ne Cut2:Cut2 ` �; A ` �; A?` � where � is some interleaving of � and �As for the previous alteration, the system ncl with Cut replaced by Cut2 wouldbe commutative. We can achieve the e�ect of the unrestricted exchange rule usingthe Cut2 rule: ...` �;�; A ...` A;A? Cut2` �; A;�Note that for any formula A, there is always a proof of ` A;A? in noncommutative(as well as commutative) linear logic. The above partial deduction shows that

Noncommutative Propositional Linear Logic 57unrestricted exchange may be simulated in noncommutative linear logic with Cutreplaced by Cut2. Somewhat more concretely, the following shows a deduction ofa sequent which is not derivable in ncl:` p1; p?1 I ` p2; p?2 I
` p1; (p?1
 p?2); p2 ` p1; p?1 ICut2` (p?1
 p?2); p1; p2Notice in the �nal conclusion that p1 and p2 have changed places, in a way impossiblewithout the use of the Cut2 rule in ncl. Thus using Cut2 we could prove anysequent which is provable in the commutative fragment of linear logic correspondingto ncl. However, it would be impossible to prove some such sequents in ncl withoutCut2, and thus cut-elimination fails in this logic.However, since there is a proof of a sequent in this logic if and only if there is aproof of that sequent in (commutative) linear logic, we may as well use linear logic,which does have a cut-elimination theorem.

Chapter 5The Multiplicative FragmentWe now consider the fragment of linear logic which includes only the multiplicativeconnectives. In Section 5.1, we show that the decision problem for this fragment isin np, and in Section 5.2 we show that the multiplicative fragment with a rule ofunrestricted weakening is np-complete.5.1 MultiplicativesWe have two results which characterize the complexity of this fragment incompletely.The exact complexity of this fragment is one of the signi�cant open problems. Inshort, we �nd that this fragment is in np, and if we introduce the structural rule ofunrestricted weakening into this fragment, it becomes np-complete.The pure multiplicative fragment (without additive connectives or storage oper-ators) is the simplest fragment of linear logic that we have investigated.Theorem 5.1 Multiplicative linear logic is in np.Proof. The proof is straightforward: Each connective in the conclusion sequent isthe principal connective in exactly one proof step in any cut-free proof, thus givinga polynomial bound on the size of cut-free proofs. Thus the entire proof may beguessed in polynomial time.5.2 Direct LogicWe have been unable to prove the multiplicative fragment of linear logic np-complete.We now believe that this may be di�cult, due to the lack of redundancy in this prob-lem statement [GJ79]. As part of our investigation of the need to discard arbitraryresources to achieve np-completeness, we studied propositional multiplicative linearlogic with unrestricted weakening, but without contraction. We will call this direct58

The Multiplicative Fragment 59logic or dl, as it is similar to the direct logic of [KW84]. dl is also considered inconsiderable detail in Bellin [Bel90]. The rules for this system are the identity andcut rules, the rules for the multiplicatives, constants, and the structural rule W ofunrestricted weakening. W ` �` A;�We �rst demonstrate cut-elimination for dl, yielding consistency, which willfacilitate our later proof of NP-completeness.Lemma 5.2 A sequent is provable in dl if and only if it is provable in dl withoutusing the cut rule.Proof. This lemma, as the cut-elimination theorem for full linear logic, is provenby giving a cut-elimination procedure. This procedure takes any proof as input, andproduces a cut-free proof of the same sequent.We modify the procedure given in Appendix A. More speci�cally, we modifythe procedure given in Lemma A.1 to handle the extra cases brought about by thepresence of weakening, and we de�ne the formula A in the above presentation ofWto be the principal formula of W.Thus we need to present two reductions, one in the case that the cut formula isprincipal, and in case it is not principal.We will follow the notation used in Appendix A, where Cut� is used to ambigu-ously refer to the Cut rule or the extra rule of inference introduced in the appendixcalled Cut!.First, we consider the non-principal W case:...` �; A` �; A; BW ...` �; A? Cut�` �;�; B =) ...` �; A ...` �; A? Cut�` �;�` �;�; BWThe above reduction is very similar to the case of non-principal ?W.In the case of principal W, we have the following reduction:...` �` �; AW ...` �; A? Cut�` �;� =) ...` �W...` �;�W

60 Decision Problems for Propositional Linear LogicBy combining these two reductions with the procedure given in Lemma A.1, wehave a cut-reduction lemma for dl.Fortunately, Lemma A.2 and Theorem A.3 then follow without modi�cation.Formally, we must show that although the lemmas in Appendix A apply to full linearlogic, they would not take a proof in dl into a proof outside dl. By inspection ofthe reductions used for the subset of the connectives of dl, we see that this holds.Therefore, given any dl proof of sequent ` � in theory T , we can construct acut-free proof of ` � in theory T .Lemma 5.3 The provability problem for dl is in np.Proof. The membership in np of the provability problem for dl follows from apolynomial bound on the size of cut-free dl proofs. Each subformula occurrence inthe conclusion is analyzed in at most one rule application in any cut-free proof of thatconclusion. Thus, given a provable sequent, it is possible to nondeterministicallygenerate and check a cut-free proof in polynomial time.The proof of the np-hardness of provability for dl is obtained by a transformationfrom the Vertex Cover problem which can be stated as: Given a graph G = (V;E)and a bound k, �nd a subset U of k or fewer vertices from V such that every edge inE is incident on some vertex in U . Given an instance of the Vertex Cover problem,we construct
(V;E; k), a dl sequent which is provable exactly when (V;E) has avertex cover of fewer than k vertices. Let deg(v; E) denote the degree of vertex v,i.e., the number of edges in E incident on v. The de�nition of
 is given by
(V;E; k) = `mk ; �(V;E); �(E)�(V;E) = P v2V (m?
 (x?v P : : : P x?v| {z }deg(v;E)))�(E) =
(u;v)2E(xuP xv)For example, given V = fa; b; c; dg and E = f(a; b); (c; d); (b; c)g, and k = 2, thesequent
(V;E; k) is` m;m;m?
 x?a ; m?
 (x?b P x?b); m?
 (x?c P x?c); m?
 x?d ;(xaP xb)
 (xcP xd)
 (xbP xc)A vertex cover in this example is obviously fb; cg. The corresponding deductionin dl of
(V;E; k) can be constructed in stages. In the �rst stage, the formulaencoding vertices a and d are weakened and the formulas encoding vertices b and c

The Multiplicative Fragment 61are reduced as shown below.` m;m?I `m;m?I ...` x?b ; x?b ; x?c ; x?c ; �(E)` x?b ; x?b ; (x?c P x?c); �(E)P` (x?b P x?b); (x?c P x?c); �(E)P
`m; (x?b P x?b); m?
 (xcP xc); �(E)
`m;m;m?
 (x?b P x?b); m?
 (x?c P x?c); �(E)`m;m;m?
 x?a ; m?
 (x?b P x?b); m?
 (x?c P x?c); m?
 x?d ; �(E)WThe remaining subgoal in the above deduction can be proved in the next stage.The vertex literals corresponding to the vertex cover can be paired o� with literalsin the edge encodings to demonstrate that there is at least one vertex literal for eachedge. ` x?b ; xbI` x?b ; xa; xbW` x?b ; (xaP xb)P ` x?c ; xcI` x?c ; xc; xdW` x?c (xcP xd)P ` x?b ; xbI` x?b ; x?c ; xb; xcW` x?b ; x?c ; (xbP xc)P
` x?b ; x?c ; x?c ; (xcP xd)
 (xbP xc)
` x?b ; x?b ; x?c ; x?c ; (xaP xb)
 (xcP xd)
 (xbP xc)The next three lemmas are stated without proof. They are used in the proofof Lemma 5.7 to establish that when a vertex cover for V ,E, and k exists, then
(V;E; k) is provable.Lemma 5.4 If l � k, then there exists a deduction of `mk;� from ` ml;�.Lemma 5.5 Given V , E, and U � V , let � be the multiset containing deg(u;E)occurrences of x?u for each u in U , and let l be jU j. There is a deduction of `ml; �(V;E);� from ` �;�.Lemma 5.6 If � is a multiset of literals such that for each (u; v) in E, there is adistinct occurrence of either x?u or x?v in �, then ` �; �(E) is provable.Lemma 5.7 If G = (V;E) has a vertex cover U of k or fewer vertices, then
(V;E; k) has a dl proof.Proof. Let l = jU j be the cardinality of U . By Lemma 5.4 and the de�ni-tion of
, the required conclusion, ` mk; �(V;E); �(E), can be deduced from `ml; �(V;E); �(E). Let � be the multiset of literals containing deg(u;E) occurrences

62 Decision Problems for Propositional Linear Logicof x?u for each u in U . By Lemma 5.5, there is a deduction of ` ml; �(V;E); �(E)from ` �; �(E). Since deg(u;E) is the number of occurrences of xu in �(E), thesequent ` �; �(E) is provable by Lemma 5.6.Lemma 5.8 states some straightforward properties about weakening, and is givenbelow without proof (see [Bel90], page 138). A formula occurrence is said to beweakened in a proof if it is the principal formula of an application of the weakeningrule. The lemma essentially captures the idea that if all subformulas of a formulaoccurrence are weakened, then the formula itself can be weakened instead; and ifeven a single conjunct in a conjunction is weakened, then the entire conjunction canbe weakened instead. Lemma 5.8 is used repeatedly in the proof of Theorem 5.9 tomaximize the size of any formulas that are weakened in a proof.Lemma 5.8 For any proof � in dl of a sequent ` �, one can obtain a proof � of` � such that1. for any formula occurrence (A
 B), neither A nor B is weakened in �2. for any formula occurrence (APB), A and B are not both weakened in �, and3. any weakening of formula occurrences in � occurs below any application ofnon-weakening rules in �.Lemma 5.9 Given a graph G = (V;E) and a bound k, if
(V;E; k) is provable indl then G has a vertex cover of size less than k.Proof. Given a proof of
(V;E; k), �rst take the set U of vertices u such that` xu; x?u is an axiom in the proof of
(V;E; k). There are two possible ways inwhich U might not be a vertex cover. One way is if for some edge encoded by(xv P xw), neither xv nor xw appears in an axiom. Then the literals xu and xv musthave been subformulas of some weakened formulas. By Lemma 5.8 the given proofcan be transformed to one in which both xu and xv are not weakened, and neitheris (xuP xv) since it is a conjunct. Therefore the entire edge encoding �(E) wouldhave to be weakened below any non-weakening rules, and as a result ` mk; �(V;E)would have to be provable. Since ` mk ; �(V;E) contains no positive occurrencesof literals xv for v in V , a proof of ` mk ; �(V;E) cannot contain axioms of theform ` xv; x?v . Again, by Lemma 5.8, each formula in �(V;E) must be weakenedbelow any application of logical rules. Such a proof would contain a deduction of` mk. However, ` mk is unprovable for any k, contradicting the assumption that`
(V;E; k) is provable.The only remaining way in which the set U with l = jU j might fail to be a vertexcover is if l > k. The negative literals x?v in axioms ` xv; x?v only occur in theformulas in �(V;E). By Lemma 5.8, the given proof can be transformed to a proof� in which l of the formulas in �(V;E) are not weakened, because each formula in

The Multiplicative Fragment 63�(V;E) contributes at most one vertex to the set U . Since each unweakened formulain �(V;E) is of the form m?
A for some A, Lemma 5.8 implies that � contains atleast l axioms of the form ` m;m?. However, there are only k positive occurrencesof the literal m in the conclusion sequent `
(V;E; k), and each occurrence canappear in at most one axiom of the form ` m;m?, thus contradicting the claim thatl > k.Therefore, the construction of U from a dl proof of `
(V;E; k) does yield avertex cover for G = (V;E) of size bounded by k.The encoding
 transforming an instance of the Vertex Cover problem to theprovability of a dl sequent is clearly of polynomial complexity. Together, Lem-mas 5.7 and 5.9 yield the following result.Theorem 5.10 Multiplicative linear logic with unrestricted weakening is np-complete.In this reduction, weakening appears essential since an edge may be coveredby selecting one endpoint or both, and weakening allows both cases to succeed.Only with additives would it be possible to encode such behavior in linear logic,and including the additives would take dl out of np. In fact, dl with additiveconnectives becomes pspace-complete.

Chapter 6ConclusionWe have investigated the complexity of the provability problem for several frag-ments of propositional linear logic. Our most signi�cant results are that provabil-ity for full propositional linear logic is undecidable, but that provability becomespspace-complete when the modal storage operator is removed. One may view theseresults in terms of the non-modal multiplicative-additive linear logic as the factsthat provability in this logic without non-logical axioms is pspace-complete, andwith non-logical axioms provability becomes undecidable. In fact, even if the non-logical axioms are of an extremely restricted class, the provability problem remainsundecidable.These results point out the greater complexity inherent in linear logic, whencompared with classical or intuitionistic logic. This extra complexity is the priceone should expect to pay in a logic as detailed, or as speci�c, as linear logic. Infact, we show that linear logic is a computational logic. That is, linear logic can ex-actly represent computations, to the point where not only is there a correspondencebetween derivable conclusions and machine con�gurations that eventually reach anaccepting state, but there is an exact correspondence between (standardized) proofsand accepting computations.We have also shown that provability for the non-commutative fragment of linearlogic (even without additive connectives) is also undecidable. Finally, we showthat the decision problem for the multiplicative fragment is in np, and becomesnp-complete in the presence of unrestricted weakening.Although we have gained some insight into the expressive power and combi-natorial properties of propositional linear logic, some open problems remain. Wehave been unable to establish tight bounds for the multiplicative fragment or settlethe decidability of the multiplicatives with the ! operator. This seems particularlydi�cult, since a positive solution would involve an extension of the reachability al-gorithm for Petri nets. The other open problem of interest to us is the decidabilityof various fragments of linear logic without the modal operators ? and !, and without64

Conclusion 65non-logical axioms, extended with propositional quanti�ers.AcknowledgementsWe would like to thank the Stanford Center for Study of Language and Information,and the SRI Computer Science Laboratory for supportive working environments.Thanks also to Jean-Yves Girard, Alasdair Urquhart, Gian Luigi Bellin, and Grig-ori Mints for stimulating discussion and correspondence. Tim Winkler of the SRIComputer Science Laboratory helped with the typesetting of the P connective.David Israel, Peter Neumann, and Narciso Mart�i-Oliet carefully read drafts of thereport and provided several constructive comments.Patrick Lincoln is supported by an AT&T Bell Laboratories graduate fellow-ship and by the SRI Computer Science Laboratory (summers of 1989 and 1990).John Mitchell is supported by an NSF PYI Award, matching funds from DigitalEquipment Corporation, Powell Foundation, Xerox Corporation; NSF grant CCR-8814921, and Wallace F. and Lucille M. Davis Faculty Scholarship. Andre Scedrovis partially supported by NSF Grant CCR-87-05596, by ONR Grant NOOO14-88-K-0635 and by the 1987 Young Scientist Award from the Natural Sciences Associ-ation of the University of Pennsylvania. During his 1989-90 sabbatical at Stanford,Scedrov was also partially supported by Mitchell's PYI-related funds. NatarajanShankar is supported by the SRI Computer Science Laboratory.

Bibliography[AFG90] A. Asperti, G.-L. Ferrari, and R. Gorrieri. Implicative formulae in the`proofs as computations' analogy. In Proc. 17-th ACM Symp. on Prin-ciples of Programming Languages, San Francisco, pages 59{71, January1990.[AP90] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes withbuilt-in inheritance. In Proc. 7-th International Conference on LogicProgramming, Jerusalem, May 1990.[Asp87] A. Asperti. A logic for concurrency. Technical report, Dipartimento diInformatica, Universit�a di Pisa, 1987.[AV90] S. Abramsky and S. Vickers. Quantales, observational logic, and processsemantics. Preprint, January 1990.[Avr88] A. Avron. The semantics and proof theory of linear logic. TheoreticalComputer Science, 57:161{184, 1988.[Baw86] A. Bawden. Connection graphs. In Proc. ACM Symp. on Lisp and Func-tional Programming, pages 258{265, 1986.[Bel90] G. Bellin. Mechanizing Proof Theory: Resource-Aware Logics and Proof-Transformations to Extract Implicit Information. PhD thesis, StanfordUniversity, 1990.[Cer90] S. Cerrito. A linear semantics for allowed logic programs. In Proc. 5thIEEE Symp. on Logic in Computer Science, Philadelphia, June 1990.[CKS81] A.K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journalof the ACM, 28(1):114{133, 1981.[Clo86] P. Clote. On the �nite containment problem for Petri nets. TheoreticalComputer Science, 43:99{105, 1986.66

Conclusion 67[DR89] V. Danos and L. Regnier. The structure of multiplicatives. Archive forMathematical Logic, 28:181{203, 1989.[Gen69] G. Gentzen. Collected Works. Edited by M.E. Szabo. North-Holland,Amsterdam, 1969.[GG89] C.A. Gunter and V. Gehlot. Nets as tensor theories. In G. De Michelis,editor, Proc. 10-th International Conference on Application and Theoryof Petri Nets, Bonn, pages 174{191, 1989.[GG90] V. Gehlot and C.A. Gunter. Normal process representatives. In Proc.5-th IEEE Symp. on Logic in Computer Science, Philadelphia, June 1990.[GH90] J.C. Guzman and P. Hudak. Single-threaded polymorphic lambda calcu-lus. In Proc. 5-th IEEE Symp. on Logic in Computer Science, Philadel-phia, June 1990.[Gir87a] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.[Gir87b] J.-Y. Girard. Multiplicatives. Rendiconti del Seminario Matematico dell'Universit�a e Politecnico Torino, Special Issue on Logic and ComputerScience, pages 11{33, 1987.[Gir89] J.-Y. Girard. Towards a geometry of interaction. In: ContemporaryMath. 92, Amer. Math. Soc., 1989. 69-108.[Gir90] J.-Y. Girard. La logique lin�eaire. Pour La Science, �Edition Francaise deScienti�c American, 150:74{85, April 1990.[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guideto the Theory of NP-Completeness. W.H. Freeman and Co., 1979.[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. CambrigeTracts in Theoretical Computer Science, Cambridge University Press,1989.[GSS90] J.-Y. Girard, A. Scedrov, and P.J. Scott. Bounded linear logic: A mod-ular approach to polynomial time computability. In Proc. Math. Sci.Institute Workshop on Feasible Mathematics, Cornell University, June,1988. Birkhauser, 1990.[HS86] J.R. Hindley and J.P. Seldin. Introduction to Combinators and LambdaCalculus. London Mathematical Society Student Texts, Cambridge Uni-versity Press, 1986.

68 Decision Problems for Propositional Linear Logic[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languagesand Computation. Addison-Wesley Publishing Company, 1979.[Kos82] S.R. Kosaraju. Decidability of reachability in vector addition systems. InProc. 14-th ACM Symp. on Theory of Computing, pages 267{281, 1982.[KW84] J. Ketonen and R. Weyhrauch. A decidable fragment of predicate calcu-lus. Theoretical Computer Science, 32, 1984.[Laf88] Y. Lafont. The linear abstract machine. Theoretical Computer Science,59:157{180, 1988.[Laf90] Y. Lafont. Interaction nets. In Proc. 17-th ACM Symp. on Principles ofProgramming Languages, San Francisco, pages 95{108, January 1990.[Lam58] J. Lambek. The mathematics of sentence structure. Amer. Math.Monthly, 65:154{169, 1958.[Lam61] J. Lambek. How to program an in�nite abacus. Canadian Math. Bulletin,4:295{302, 1961.[Lip76] R. Lipton. The reachability problem is exponential-space hard. TechnicalReport 62, Department of Computer Science, Yale University, January1976.[LMSS90] P. Lincoln, J.C. Mitchell, A. Scedrov, and N. Shankar. Decision problemsfor propositional linear logic. In Proc. 31st IEEE Symp. on Foundationsof Computer Science, pages 662{671, 1990.[May81] E.W. Mayr. An algorithm for the general Petri net reachability problem.In Proc. 13-th ACM Symp. on Theory of Computing, Milwaukee, pages238{246, 1981.[McA84] K. McAloon. Petri nets and large sets. Theoretical Computer Science,32:173{183, 1984.[Mey66] R.K. Meyer. Topics in Modal and Many-Valued Logic. PhD thesis, Uni-versity of Pittsburgh, 1966.[Min61] M. Minsky. Recursive unsolvability of Post's problem of `tag' andother topics in the theory of Turing machines. Annals of Mathematics,74:3:437{455, 1961.[MM82] E. Mayr and A. Meyer. The complexity of the word problems for com-mutative semigroups and polynomial ideals. Advances in Mathematics,46:305{329, 1982.

Conclusion 69[MOM89] N. Mart�i-Oliet and J. Meseguer. From Petri nets to linear logic. In:Springer LNCS 389, ed. by D.H. Pitt et al., 1989. 313-340.[Pos47] E.L. Post. Recursive unsolvability of a problem of Thue. Journal ofSymbolic Logic, 12:1{11, 1947.[Sce90] A. Scedrov. A brief guide to linear logic. Bulletin of the European Assoc.for Theoretical Computer Science, 41:154{165, June 1990.[Urq84] A. Urquhart. The undecidability of entailment and relevant implication.Journal of Symbolic Logic, 49:1059{1073, 1984.[Yet90] D.N. Yetter. Quantales and (noncommutative) linear logic. Journal ofSymbolic Logic, 55:41{64, 1990.

Appendix ACut EliminationThe cut-elimination theorem, in general, states that whatever can be proven in thefull version of a logic may also be proven without the use of the cut rule. Thistheorem is fundamental to linear logic, and was proven by Girard shortly afterthe introduction of the logic by presenting a cut-elimination procedure for proofnets [Gir87a]. In our proof of undecidability, we make use of the syntax, or exactform of a cut-elimination procedure for the sequent calculus formulation of linearlogic. Since Girard demonstrated the correspondence between proof nets and thesequent calculus presentation of linear logic, we could have relied on Girard's proofof cut-elimination. However, for the purposes of our undecidability proof, and otherresults, it is much more clear to present a cut-elimination procedure native to thesequent calculus.The following demonstration of the cut-elimination theorem consists of a linearlogic proof normalization procedure which slowly eliminates cuts from any linearlogic proof. The procedure may greatly increase the size of the proof, although ofcourse it will still be a proof of the same sequent. For technical reasons, we add aderived rule of inference, Cut!, which simpli�es the proof of termination. We thengive a set of reductions which apply to proofs which end in Cut or Cut!, and usingthese we eliminate all uses of Cut and Cut! from a proof.The proof structure is very close to the well known proofs of cut-elimination inclassical logic [GLT89], but is complicated by the extra information which must bepreserved in a linear proof. The Cut! rule de�ned below is reminiscent of Gentzen'sMIX rule [Gen69], and serves the same purpose, which is to package together in-ference rules. As in Gentzen's work, we add this extra rule, and then show that it(along with Cut) may be eliminated entirely from any proof. Thus we show thatthis new rule and Cut are redundant in linear logic.Let us begin with some de�nitions. First, we de�ne the following new rule ofinference, 70

Cut Elimination 71Cut! ` �; (?A)n ` �; !A?` �;� n � 1(?A)n is meant to denote a multiset of formulas. For example, (?A)3 =?A; ?A; ?A.As stated in the side condition, the Cut! rule is only applicable when n is at least 1.This rule of inference is derivable; that is, it may be simulated by several applicationsof contraction (?C) on the left hypothesis and then one application of the standardCut rule. The original Cut rule and Cut! coincide when n = 1. Adding thisextra derived rule of inference simpli�es the termination argument substantially bypackaging together some number of contractions with the cut that eliminates thecontracted formula. This package is only opened when the contracted formulas areactually used with the application of the ?D rule, thrown away by the ?W rule, orsplit into two packages by the
 and Cut� rules. We will use the symbol \Cut�"as a general term for the original Cut rule and the new Cut! rule ambiguously.We will call a formula which appears in a hypothesis of an application of Cutor Cut!, but which does not occur in the conclusion a cut-formula. In the list oflinear logic rules in Appendix B the cut-formulas in the Cut rule are the formulasnamed A and A?, and in the Cut! rule above, the cut-formulas are ?A and !A?.We also de�ne the degree of a Cut or Cut! to be the number of symbols in itscut-formulas. For concreteness, we de�ne here what is meant by number of symbols.We will consider each propositional symbol pi to be a single symbol. We also considerthe negation of each propositional symbol pi? to be a single symbol. Finally, wecount each connective and constant,
; P ;�;&; ?; !; 1;?; 0;>, as a single symbol,but do not count parentheses. It is important to note that negation is de�ned, andtherefore is not a connective. This method of accounting has the pleasant propertythat any linear logic formula A and its negation A? have exactly the same number ofsymbols. (One may prove this by simple induction on the structure of the formulaA). Thus it does not matter which cut-formula we count when determining thedegree of a cut. We also de�ne the degree of a proof to be the maximum degree ofany cut in the proof, or zero if there are no cuts.The principal formula of an application of an inference rule is usually de�ned tobe any formula which is introduced by that rule. For example, the formula (A
B) isthe principal formula of the
 rule, since that is the formula which is introduced bythat rule. We follow the standard convention of considering the contracted formulain an application of ?C principal, even though it is not introduced by the rule. Forconvenience, we extend the notion of principal formula in the following nonstandardways. We will consider any formula beginning with ? appearing in the conclusion ofthe !S,
, Cut, or Cut! rules to be principal. By this de�nition all formulas in theconclusion of !S are principal, and the only rule in which a formula beginning with! may be principal is !S. This de�nition of principal formula simpli�es the structureof the following proof somewhat.

72 Decision Problems for Propositional Linear LogicOperationally, the cut-elimination procedure de�ned below �rst �nds one of the\highest" cuts of maximal degree in the proof. That is, an application ofCut� (Cutor Cut!) for which all applications of Cut� in the derivation of either hypothesis isof smaller degree. Then a reduction is applied to that occurrence of Cut�, whichsimpli�es or eliminates it, although it may replicate some other portions of theoriginal proof. We iterate this procedure to remove all cuts of some degree, andthen iterate the entire procedure to eliminate all cuts. In this way, any linear logicproof may be normalized into one without any uses of the Cut or Cut! rules, at thepossible expense of an (worse than) exponential blowup in the size of the resultingproof tree.Technically, we begin with a lemma which constitutes the heart of the proof ofcut-elimination. Although the proof of this lemma is rather lengthy, the reasoningis straightforward, and the remainder of the proof of cut-elimination is quite simple.Lemma A.1 (Reduce One Cut) Given a proof of the sequent ` � in linear logicwhich ends in an application of Cut� of degree d > 0, and where the degree of theproofs of both hypothesis is less than d, we may construct a proof of ` � in linearlogic of degree less than d.Proof. By induction on the number of proof rules applied in the derivation of` �.Given a derivation which ends in a Cut�, we perform case analysis on the ruleswhich were applied immediately above the Cut�. One of the following cases mustapply to any such derivation:1. The cut-formula is not principal in one or both hypotheses.2. The cut-formula is principal in both hypotheses.In each case we will provide a reduction, which may eliminate the cut entirely, orreplace it with one or two smaller cuts. Since this is a proof by induction on the sizeof a derivation, one may view this proof as a procedure which pushes applications ofCut� of large degree up a derivation. Informally, this procedure pushes applicationsof Cut� up through proof rules where the cut-formula is non-principal, until thecritical point is reached where the cut-formula is principal in both hypotheses. InGirard's proof of cut-elimination for linear logic using proof nets, the non-principalcases are circumvented by following proof links. In both approaches, however, theprincipal cases require signi�cant detailed analysis.A.1 Cut of non-principal formulasIf the derivation of a hypothesis ends in a rule yielding a non-principal cut-formula,then the rule must be one of the following:
, P , �, &, ?W, ?C, ?D, ?, >, or

Cut Elimination 73Cut�. The rules I, !S, and 1 are absent since those rules have no non-principalformulas in their conclusions. The later analysis of principal formula cuts considersthese three cases.A.1.1
If the last rule applied in one hypothesis is
, the cut-formula is not the mainformula introduced by that application of
, and the cut-formula does not beginwith ?, then we may propagate the Cut� upward, through the application of
:...` �; A ...` B;�; C
` �; (A
 B);�; C ...` �; C? Cut` �; (A
B);�;� =) ...` �; A ...` B;�; C ...` �; C? Cut` B;�;�
` �; (A
B);�;�For the rules such as
 with two hypotheses, we give the reduction for the case wherethe non-principal cut-formula appears in the right hand hypothesis of the
 rule,and appears in one speci�c position in that sequent. The symmetric case of the cut-formula appearing in the left hand hypothesis is very similar, and is always omitted.Since some notion of exchange is built-in to the system, sequents are consideredmultisets. Thus the exact position of formulas in sequents is unimportant. (Notethat in noncommutative linear logic the relative position becomes vitally important.)The proof ending in Cut after this transformation is smaller than the originalproof, since the entire proof of ` �; A, and the last application of
 are no longerabove theCut. Thus by induction on the size of proofs, we can construct the desiredproof of degree less than d.Note that the Cut! rule only applies to formulas which begin with ?, and thusthis reduction, which is only used if the cut-formula does not begin with ?, appliesonly to Cut and not to Cut!. Thus, we have disambiguated this case, and writeonly of Cut, where we present tranformations later in terms of Cut�, in order tocover both possibilities simultaneously. The reduction given later (in Section A.2.9)handles the case of Cut!.A.1.2 PIf the last rule applied in one hypothesis is P , and the cut-formula is not the mainformula introduced by that application of P , then we may propagate the Cut�

74 Decision Problems for Propositional Linear Logicupward, through the application of P :...` �; A; B; C` �; (APB); CP ...` �; C? Cut�` �; (APB);� =) ...` �; A; B; C ...` �; C? Cut�` �; A; B;�` �; (APB);�PAgain, the proof above the Cut� is smaller after this transformation, and thusby induction we have our result.A.1.3 �Applications of Cut� involving the two symmetric � rules (where the cut-formulais not principle, that is, not introduced by this application of �) may be eliminatedin similar ways: ...` �; A; C` �; (A� B); C� ...` �; C? Cut�` �; (A�B);� =) ...` �; A; C ...` �; C? Cut�` �; A;�` �; (A� B);��The second case of this rule is the same except the conclusion would contain theformula (B � A), instead of the formula (A�B) seen above.A.1.4 &It is the elimination of this type of cut (among others) which may lead to an expo-nential blowup in the size of cut-free proofs. The only other cut-elimination stepswhich may lead to a proof expansion are those involving !S....` �; A; C ...` �; B; C &` �; (A&B); C ...` �; C? Cut�` �; (A&B);�+...` �; A; C ...` �; C? Cut�` �; A;� ...` �; B; C ...` �; C? Cut�` �; B;� &` �; (A&B);�

Cut Elimination 75The increase in proof size comes from replicating the entire proof tree above` �; C?. Note that even though there are now two cuts instead of one, we mayassume that both may be reduced in degree to less than d by induction on the sizeof the derivations. That is, there are fewer proof rules applied above each Cut�than there were above the single application of Cut� originally.A.1.5 ?WFor this and the remaining cases, we omit discussion and simply indicate the reduc-tion: ...` �; A` �; A; ?B?W ...` �; A? Cut�` �;�; ?B =) ...` �; A ...` �; A? Cut�` �;�` �;�; ?B?WA.1.6 ?C ...` �; A; ?B; ?B?C` �; A; ?B ...` �; A? Cut�` �;�; ?B =) ...` �; A; ?B; ?B ...` �; A? Cut�` �;�; ?B; ?B?C` �;�; ?BA.1.7 ?D ...` �; A; B` �; A; ?B?D ...` �; A? Cut�` �;�; ?B =) ...` �; A; B ...` �; A? Cut�` �;�; B` �;�; ?B?DA.1.8 ? ...` �; A` �; A;?? ...` �; A? Cut�` �;�;? =) ...` �; A ...` �; A? Cut�` �;�` �;�;??

76 Decision Problems for Propositional Linear LogicA.1.9 > ` �; A;>> ...` �; A? Cut�` �;�;> =) ` �;�;>>A.1.10 CutIf the proof of one hypothesis ends in Cut�, then we know that it has degree lessthan d. If the cut-formula of the lower degree d application of Cut� begins with ?,then it is considered principal (by de�nition) in the upper application of Cut�, andwill be handled in Section A.2.8. Otherwise, we know the formula does not beginwith ?, and thus the lower Cut� must actually be Cut....` �; A; C ...` �; C? Cut�` �; A;� ...` �; A? Cut` �;�;� =) ...` �; A; C ...` �; A? Cut` �;�; C ...` �; C? Cut�` �;�;�Here we know that the number of symbols in the formula A is d, and the numberof symbols in the formula C is less than d. Thus by induction we know that we canconstruct a proof of degree less than d of ` �;�; C, and from that we can constructour desired proof of ` �;�;�.A.2 Cut of principal formulasIf the proof of each hypothesis ends in a rule with the cut formula as its principalformula, then the two last rules above the cut must be one of these combinations: Iversus any,
 versus P , � versus &, ?W versus !S, ?C versus !S, ?D versus !S, !Sversus !S, Cut� versus !S,
 versus !S, or ? versus 1. Note that since there is nointroduction rule for 0, the > rule cannot participate in a cut of principal formulas.Since all formulas in the conclusion of !S are considered principal, the analysis of !Sat this stage of the proof is rather complex.In many of these cases, we know that the Cut! rule is inapplicable, since thecut-formula has just been introduced, and it does not begin with a ?. When weknow this, we will disambiguate the reduction, and show the applications of Cutand Cut! separately.

Cut Elimination 77A.2.1 I versus anyIf the last rule applied in either hypothesis is I (identity), then regardless of therule applied in the other hypothesis we may remove the cut, and the application ofidentity: ` pi; p?i I ...` pi;� Cut` pi;� =) ...` pi;�Note that the identity axiom only applies to atomic propositions, and thus weknow that Cut! is inapplicable.A.2.2
 versus P ...` �; A ...` B;�
` �; (A
B);� ...` �; B?; A?` �; (B?PA?)PCut` �;�;�+...` �; A ...` B;� ...` �; B?; A? Cut` �;�; A? Cut` �;�;�In this case, as in most of the principal formula cut-elimination steps, we need notappeal to the induction hypothesis of this lemma. We have eliminated the Cut ofdegree d, and replaced it with two applications of Cut of degree smaller than d.A.2.3 & versus �...` �; A ...` �; B &` �; (A&B) ...` �; A?` �; (A? �B?)�Cut` �;� =) ...` �; A ...` �; A? Cut` �;�The symmetric case of � is similar. Again, we need not appeal to the inductionhypothesis, and the cut-formula does not begin with ?, and thus we know that Cut!does not apply.

78 Decision Problems for Propositional Linear LogicA.2.4 ?W versus !SFor this and subsequent cases involving !S, `packaging' is a useful analogy. We buildpackages containing a number of contractions and a single Cut! when we reduceprincipal cases involving ?C versus !S. We shrink the package in cases of ?W versus!S, and we actually use the contents of the package as cases of ?D versus !S. We letpackages pass by each other at cases of !S versus !S, and at cases of Cut! versus !Sand of
 versus !S we break one package into two.For this case, ?W versus !S, there are two possibilities, depending on whetherthe cut in question eliminates more than one occurrence of the cut-formula from theweakened sequent. Informally, the possibilities turn on whether there is only onething in the package. If so, we don't need the package. If there are more things inthe package, we shrink the package.In the �rst possibility, the cut eliminates the one occurrence of the cut-formulaintroduced by the ?W rule, and thus this application of cut may be eliminatedentirely: ...` �` �; ?A?W ...`?�; A?`?�; !A?!SCut�` �; ?� =) ...` �?W...` �; ?�?WHowever, the second possibility, where the Cut� is actually a Cut! and eliminatesmore than one occurrence of the cut-formula from the weakened sequent, we performthe following reduction:...` �; (?A)n�1?W` �; (?A)n ...`?�; A?`?�; !A?!SCut!` �; ?� =) ...` �; (?A)n�1 ...`?�; A?`?�; !A?!SCut!` �; ?�In the �rst possibility we have our result immediately, since the Cut� has beeneliminated. In the second possibility, we appeal to the induction hypothesis.A.2.5 ?C versus !SIn this case we make critical use of theCut! rule. Without this extra rule of inferencethis reduction is especially di�cult to formulate correctly, and the induction required

Cut Elimination 79is complicated. ...` �; ?A; ?A?C` �; ?A ...`?�; A?`?�; !A?!SCut�` �; ?� =) ...` �; ?A; ?A ...`?�; A?`?�; !A?!SCut!` �; ?�Here we know that the cut-formula begins with a ?, and thus Cut! may apply toit. We thus produce a Cut! regardless of whether the original Cut� was a Cut ora Cut!.A.2.6 ?D versus !SAs for the previous ?W versus !S case, here we have two cases, depending on whetherthe Cut� in question eliminates more than one occurrence of the cut-formula fromthe derelicted sequent. Again, informally, the two cases turn on the size of thepackage. If there is only one thing in the package, we simple make use of it, andthrow away the wrapping. If there are more thing in the package, we take one out,and move the smaller package along its way.In the �rst case, the cut eliminates the one occurrence of the cut-formula intro-duced by the ?D rule, and thus the following reduction applies:...` �; A` �; ?A?D ...`?�; A?`?�; !A?!SCut�` �; ?�+...` �; A ...`?�; A? Cut` �; ?�However, in the second case, where the cut is actually a Cut! and eliminates morethan one occurrence of the cut-formula from the derelicted sequent, we perform the

80 Decision Problems for Propositional Linear Logicfollowing reduction:...` �; ?An�1; A?D` �; ?An ...`?�; A?`?�; !A?!SCut!` �; ?� =) ...` �; ?An�1; A ...`?�; A?`?�; !A?!SCut!` �; ?�; A ...`?�; A? Cut` �; ?�; ?�?C...` �; ?�?CNote that the second case requires the duplication of the proof above the applicationof !S. Since A has fewer symbols than ?A, the lower Cut in the second case is ofdegree smaller than d. By induction, we may assume that the upper application ofCut! is reducible in degree.A.2.7 !S versus !S...`?�; ?A;B`?�; ?A; !B!S ...`?�; A?`?�; !A?!SCut�`?�; ?�; !B =) ...`?�; ?A;B ...`?�; A?`?�; !A?!SCut�`?�; ?�; B`?�; ?�; !B!SHere we appeal to the induction hypothesis to produce a proof degree less thand of `?�; ?�; B, and then construct the desired proof from that.A.2.8 Cut� versus !SThere are two possibilities here, which correspond to whether it is necessary to splita package into two pieces. The case where the package needs to be split is one ofthe most tricky aspects of the entire cut-elimination procedure.If the lower application of Cut� is applied to formulas which may all be found inone hypothesis of the upper application of Cut�, then we apply the same reduction

Cut Elimination 81as in the non-principal Cut case (Section A.1.10):...` �; A ...` �; (?C)n; A? Cut�` �;�; (?C)n ...`?�; C?`?�; !C?!SCut�` �;�; ?�+...` �; A ...` �; (?C)n; A? ...`?�; C?`?�; !C?!SCut�` �; ?�; A? Cut�` �;�; ?�In the more complex case, when the cut-formulas descend from both hypotheses ofthe upper Cut�,we use the following reduction:...` �; ?Cm; A ...` �; ?Cn; A? Cut�` �;�; ?Cn+m ...`?�; C?`?�; !C?!SCut!` �;�; ?�+...` �; ?Cm; A ...`?�; C?`?�; !C?!SCut!` �; ?�; A ...` �; ?Cn; A? ...`?�; C?`?�; !C?!SCut!` �; ?�; A? Cut�` �; ?�;�; ?�;?C...` �;�; ?�;?CA.2.9
 versus !SThere are two possibilities here, which correspond to whether it is necessary to splita package into two pieces. The case where the package needs to be split is again oneof the most tricky aspects of the entire cut-elimination procedure.If Cut� is applied to formulas which may all be found in one hypothesis of
,

82 Decision Problems for Propositional Linear Logicthen we apply the same reduction as in the non-principal
 case (Section A.1.1):...` �; A ...` B;�; (?C)n
` �; (A
 B);�; (?C)n ...`?�; C?`?�; !C?!SCut�` �; (A
B);�; ?�+...` �; A ...` B;�; (?C)n ...`?�; C?`?�; !C?!SCut�` B;�; ?�
` �; (A
B);�; ?�In the more complex case, when the cut-formulas descend from both hypotheses of
, we use the following reduction to push the cut above the
 rule....` �; ?Cm; A ...` B;�; ?Cn
` �; (A
 B);�; ?Cn+m ...`?�; C?`?�; !C?!SCut!` �; (A
B);�; ?�+...` �; ?Cm; A ...`?�; C?`?�; !C?!SCut!` �; ?�; A ...` B;�; ?Cn ...`?�; C?`?�; !C?!SCut!` B;�; ?�
` �; ?�; (A
B);�; ?�?C...` �; (A
B);�; ?�?CA.2.10 ? versus 1 ` 11 ...` �` ?;�?Cut` � =) ...` �Again, we know that the Cut� involved here is Cut, since the formula 1 wasjust introduced.

Cut Elimination 83This exhausts all the cases.Thus, we have a procedure which given a proof which ends in Cut� of degree d,and which has no applications of Cut� in the proof of either hypothesis of degreegreater than or equal to d, produces a proof of degree less than d.Lemma A.2 (Lower-Degree-Cuts) If a sequent is provable in linear logic witha proof of degree d > 0, then it is provable in linear logic with a proof of degree lessthan d.Proof. By induction on the height of the derivation tree of the conclusion, weshow that given any proof of degree d of ` � in propositional linear logic, we may�nd a (possibly much larger) proof of ` � in linear logic of degree less than d.We examine the proof of ` �. Since the degree of this proof is greater thanzero, there must be some Cut� in the proof. If the last rule is not Cut�, then byinduction we may form proofs of its hypotheses of degree less than d. Applying thesame rule to the resulting reduced degree hypotheses produces the desired proof ofdegree less than d.In the case that the last rule is Cut�, we have the following situation for some� and � which together (in multiset union) make up �:...` �; A ...` �; A? Cut�` � where � [� = �By induction, we can produce proofs of ` �; A and ` �; A? of degree less thand. By a single application of Lemma A.1 to the resulting proof constructed fromthe modi�ed hypotheses, we obtain a proof of ` � of degree less than d.Theorem A.3 (Cut-Elimination) If a sequent is provable in linear logic, then itis provable in linear logic without using the Cut rule.Proof. By induction on the degree of the assumed proof. We may applyLemma A.2 at each inductive step, and at the base case the degree of the proof iszero, so therefore by de�nition of proof degree there are no cuts, and we have ourdesired cut-free proof.Note that the proof can explode hyperexponentially in size during the cut-elimination process.A.3 Subformula PropertyAbove we have demonstrated that all cuts may be eliminated from a proof, atthe possible expense of increasing the size of the proof hyperexponentially. This

84 Decision Problems for Propositional Linear Logicnormalization is worthwhile, however, since it grants one various kinds of controlover the form of proofs of given sequents. One of the �nest forms of control, andhistorically the most important, is the subformula property.The class of subformulas of a given formula or sequent is de�ned by the following:A is a subformula of A. If A is a subformula of B, then A is also a subformula ofthe following formulas: ?B, !B, B
 C, C
 B, BPC, CPB, B��C, and C��B.If A is a subformula of B, then A is also a subformula of the sequent ` �1; B;�2.Corollary A.4 (Subformula Property) Any formula in any cut-free proof of `� is a subformula of �.Proof. Each rule of linear logic except Cut has the property that everysubformula of the hypotheses is also a subformula of the conclusion. For example,in the
 rule, any subformula of either hypothesis is either a subformula of �1; A; B;or �2. However, any such subformula is also a subformula of the conclusion. In fact,we may have \added" a subformula: (A
B) is a subformula of the conclusion, butmight not be a subformula of the hypotheses.Therefore, by induction on the size of proofs, we have that any subformula ofany step of a cut-free proof of a sequent is a subformula of the original sequent.It is easy to see that the subformula property is not true of proofs with cut: thesubformulas A and A? in the hypotheses of cut might not appear in the conclusion.

Appendix BPropositional Linear LogicProof RulesA linear logic sequent is a ` followed by a multiset of linear logic formulas. Note thatin standard presentations of sequent calculi, sequents are often built from sets offormulas, where we use multisets here. This di�erence is crucial. We assume a set ofpropositions pi given, along with their associated negations, p?i . Below we give theinference rules for the linear sequent calculus, along with the de�nition of negationand implication. The reader should note that negation is a de�ned concept, not anoperator.The following notational conventions are followed throughout this paper:pi Positive propositional literalp?i Negative propositional literalA;B;C Arbitrary formulas�;�;� Arbitrary multisets of formulasThus the identity rule (I below) is restricted to atomic formulas, although in factthe identity rule for arbitrary formulas (` A;A?) is derivable in this system. Fornotational convenience, it is usually assumed that �� and
 associate to the right,and that
 has higher precedence than ��. The notation ?� is used to denote amultiset of formulas which all begin with ?. The English names for the rules givenbelow are identity, cut, tensor, par, plus, with, weakening, contraction, dereliction,storage, bottom, one, and top, respectively. Note that there is no rule for the 0constant. 85

86 Decision Problems for Propositional Linear LogicI ` pi; pi?Cut ` �; A ` �; A?` �;�
 ` �; A ` B;�` �; (A
B);�P ` �; A; B` �; (APB)� ` �; A ` �; B` �; (A� B) ` �; (A� B)& ` �; A ` �; B` �; (A&B)?W ` �` �; ?A?C ` �; ?A; ?A` �; ?A?D ` �; A` �; ?A!S `?�; A`?�; !A? ` �` �;?1 ` 1> ` �;>

Proof Rules 87Linear negation is de�ned as follows:(pi)? �= p?i(p?i)? �= pi(A
 B)? �= B? PA?(APB)? �= B?
 A?(A� B)? �= A?&B?(A&B)? �= A? �B?(!A)? �= ?A?(?A)? �= !A?(1)? �= ?(?)? �= 1(0)? �= >(>)? �= 0Linear implication, ��, is de�ned as follows:A��B �= A?PB

