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Abstract

Linear logic, introduced by Girard, is a refinement of classical logic with a natural,
intrinsic accounting of resources. This accounting is made possible by removing
the “structural” rules of contraction and weakening; adding a modal operator; and
adding finer versions of the propositional connectives. Linear logic has fundamental
logical interest and applications to computer science, particularly to Petri nets,
concurrency, storage allocation, garbage collection, and the control structure of logic
programs. In addition, there is a direct correspondence between polynomial-time
computation and proof normalization in a bounded form of linear logic.

In this paper we show that unlike most other propositional (quantifier-free) log-
ics, full propositional linear logic is undecidable. Further, we prove that without the
modal storage operator, which indicates unboundedness of resources, the decision
problem becomes PSPACE-complete. We also establish membership in NP for the
multiplicative fragment, NP-completeness for the multiplicative fragment extended
with unrestricted weakening, and undecidability for fragments of noncommutative
propositional linear logic.
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Chapter 1

Introduction

Linear logic is a refinement of classical logic introduced by Girard [Gir87a]. This
logic has a “resource sensitive” character, reflected in the fact that two assumptions
of a formula A are distinguished from a single assumption of A. In this paper, we
study the decision problem for full propositional linear logic and several natural
fragments. The easiest result to state is that full propositional linear logic is unde-
cidable. We also show that an “intuitionistic” fragment is undecidable, a natural
fragment is PSPACE-complete, and a smaller fragment that is in NP becomes NP-
complete with an additional rule. Before describing these results, we give a short
overview of linear logic by explaining the passage from classical to linear logic.

Formally, linear logic may be derived in three steps from a Gentzen-style sequent
calculus axiomatization of classical logic. The first step is to drop two structural
rules, contraction and weakening. This forces a reexamination of conjunction and
disjunction, leading to two forms of each connective. The third step is to recover
the full expressive power of classical logic by adding two modal operators, ! and ?.
These three steps are described in more detail in the following paragraphs. The
resulting logic is surprisingly natural, from both proof-theoretic and computational
standpoints. In particular, Gentzen-style cut-elimination, a crucial proof-theoretic
property (see [Gen69, GLT89], for example), has been established for linear logic in
[Gir&7a]. This yields consistency and provides a natural computational mechanism
that resembles reduction in lambda calculus (e.g., [HS86, GLT89]).

The derivation of linear logic begins by dropping the structural rules contrac-
tion and weakening, which are an essential part of classical and intuitionistic logic.
Each rule may be applied to either the left or right side of a sequent. On the left,
contraction allows repeated assumptions of some formula to be replaced by a single
assumption of the same formula. This means that a single hypothesis is as good
as any number of duplicates, or, a hypothesis may be “reused” as often as desired.
Contraction on the right also allows duplicates to be dropped, which has essentially
the same effect. Weakening on the left allows us to add irrelevant hypotheses, and,
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on the right, to extend the set of possible conclusions arbitrarily. Since contraction
and weakening make it possible to use an assumption as little or as often as desired,
these rules are responsible for what we may regard as a loss of control over resources
in both classical and intuitionistic logic. Excluding these rules produces a linear
system in which each assumption must be used exactly once, and each conclusion
must follow from the hypotheses. In linear logic, formulas may be regarded as fixed
resources that cannot necessarily be discarded or duplicated without effort.

The second step in deriving linear logic involves the propositional connectives.
Briefly, the change in structural rules leads to two forms of conjunction and disjunc-
tion. The reason for the split is that we must decide whether we require linearity of
the entire conjunction or disjunction, or whether it suffices to have each conjunct or
disjunct alone depend linearly on the surrounding formulas. One form, called ad-
ditive conjunction or disjunction, is informally described as “sharing of resources”
since the two conjuncts or disjuncts may depend on a shared set of hypotheses. In
the other multiplicative form, there is no such sharing. The general situation may be
illustrated by examining two consequences of the pair of linear implications A loB
and AloC'. Intuitively, AloB says that from A we may conclude B, or, in more
computational terms, we have a process that will consume 4 and produce B. Given
the two assumptions A loB and Alo(C', there are two possible conclusions involving
conjunctions of B and C'. Using additive conjunction, written & , we may conclude
Alo(B& (') since from A we are capable of obtaining B and we are capable of
obtaining ¢'. With multiplicative conjunction, written ®, sharing is not allowed.
However, we may obtain B and C' from two separate A’s. This is written symbol-
ically as (A ®@ A)lo(B @ (). One way of describing the distinction is that B& C
indicates a choice between B and C', while B @ C reflects an ability to have both
simultaneously.

The final step in deriving linear logic is to add two modal operators. These are
a storage or reuse operator, !, and a dual consumption operator 7, definable from
! using negation. Intuitively, the formula !'A provides unlimited use of the resource
A and 7B allows the unlimited consumption of B. Using a computational metaphor
that we have found useful and faithful to the logic, we may read 'A as, “the datum
A is stored in the memory and may be referenced an unlimited number of times”.
In deductive terms, if B follows from any number of assumptions of A, then B
follows from the single assumption 'A. A view of ! which suggests the translation of
classical logic into linear logic is that while we do not have contraction and weakening
as structural rules, we may apply contraction and weakening to formulas beginning
with !. Since the basic framework remains linear, unbounded use is allowed only
“locally”, at formulas specifically marked with ! or 7.

The first application of the resource-sensitive aspect of the logic was the devel-
opment of a functional programming language implementation in which garbage
collection was replaced by explicit duplication operations based on linear logic
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[Laf88]. Further studies have demonstrated connections with Petri nets [Asp87,
GG89, MOMS9, AFG90, GGI0] and other models of concurrency [Laf90, AV90].
With regard to concurrency, there is a similarity between proof nets, the inherent
model of computation associated with cut-elimination in multiplicative linear logic
(¢f [Gir87a, Gir87h, DR89, Laf90]), and connection graphs, which were designed
to model connection machine computation [Baw86]. Other applications include
optimization of copying in lazy functional programming language implementation
[GHI0] and analyzing the control structure of logic programs [Cer90, AP90]. A nat-
ural characterization of polynomial time computations can be given in a bounded
version of linear logic [GSS90] obtained by limiting reuse to specified bounds, i.e.,
by bounding the number of references to each datum in memory. Informal intro-
ductions to linear logic may be found in [Gir90, Sce90].

We now summarize the main results of this paper (which were sketched in
[LMSS90]), beginning with the smallest fragment considered. Multiplicative lin-
ear logic contains only linear implication, negation, and the multiplicative forms
of conjunction and disjunction. Recall that these forms require the available re-
source to be partitioned rather than shared. We show that the decision problem
for this fragment is in NP. With unrestricted weakening added, we show that the
multiplicative fragment is NP-complete.

There are two natural fragments extending pure multiplicative linear logic, one
with additive connectives and the other with the ! operator. We show that the
first extension, with additive and multiplicative connectives but not !, is PSPACE-
complete. The proof, by reduction from classical quantified boolean formulas, in-
volves encoding quantifier order using only commutative propositional connectives.
We note here in passing that the fragment with only multiplicative connectives and
the ! operator is at least as hard as the reachability problem for Petri nets (or, equiv-
alently, commutative semi-Thue systems or vector addition systems). This follows
from conservativity properties established in this paper and previous work relating
linear logic and Petri nets. Although reachability is decidable [May81, Kos82], the
best known lower bound is EXPsPACE [Lip76, MMS&2]. A likely upper bound on Petri
net reachability is primitive recursive in the Ackermann function [McA84, Clo86].
We do not know if multiplicative linear logic with ! is decidable.

Finally, we show that provability in full propositional linear logic with additive
and multiplicative connectives and modal storage operator is undecidable. It follows
from this undecidability result that when propositional linear logic is extended with
quantification over propositions, the resulting logic is also undecidable. (Provability
is trivially recursively enumerable, since the proof system is effective.) Undecidabil-
ity also holds for a restricted form called intuitionistic propositional linear logic. In
addition, we establish the undecidability of a noncommutative variant of linear logic

(even without additive connectives), a system that extends the calculus in [Lamb8];
see [Gir89, Yet90].
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Our undecidability proof uses a direct encoding of a form of alternating counter
machines. Qur “and-branching counter machines” resemble the alternating Turing
machines of [CKS81]), but lack a basic operation to test for zero. The basic tran-
sitions of these machines may be axiomatized using the multiplicative and additive
connectives, while the ! operator is needed to allow an instruction to be executed an
arbitrary number of times. Additive connectives are used to encode and-branching,
which is needed to simulate the zero tests of conventional counter machines. As for
the other lower bounds, the bulk of the technical work lies in establishing that the
encoding is faithful, i.e., each deduction in linear logic determines some computa-
tion. Faithfulness is demonstrated using a detailed examination of cut-elimination
in linear logic [Gir87a]. This yields a version of the deduction theorem for linear
logic and various conservativity results of independent interest.

A key insight is that searching for a proof of a certain special form for a given lin-
ear logic sequent corresponds directly to searching for an accepting computation in a
particular machine model. A successful search is exactly an accepting computation.

For propositional linear logic without storage, membership in PSPACE is shown
using a proof bound based on cut-elimination. PSPACE-hardness is demonstrated
by a (log-space) construction of formulas that may be proved only by alternating
between rules that simulate classical universal and existential propositional quan-
tifiers. This construction demonstrates a surprising property of linear logic: the
connectives are sufficient to express synchronization to the point of “sequentiality”.
Undecidability of noncommutative linear logic is proved by encoding the word prob-
lem for semigroups. Unlike our other reductions, this does not require the additive
connectives. Membership in NP for multiplicative linear logic, with or without un-
restricted weakening, is based on a polynomial bound on proof-size resulting from
cut-elimination. With unrestricted weakening, we show NP-completeness by reduc-
tion from the vertex cover problem [GJ79].

A logic that is superficially related to linear logic is propositional relevance logic,
which is proved undecidable in [Urq84]. Like linear logic, relevance logic lacks weak-
ening. However, relevance logic does have unrestricted contraction. In addition,
relevance logic has a distributivity axiom, absent from linear logic. Without the dis-
tributivity axiom, relevance logic becomes decidable [Mey66]. The system with dis-
tributivity also lacks cut-free Gentzen-type formulation. See, for example, [Avr88].
Thus both the motivation and technical properties of linear logic are significantly
different from relevance logic.



Chapter 2

Multiplicative Additive
Propositional Linear Logic is

PSPACE-complete

In this chapter, we analyze the complexity of the fragment of propositional linear
logic without the modal storage operator ! and its dual 7, but including all the
remaining connectives and constants of linear logic.

We begin with some standard definitions. A deduction in propositional linear
logic is a tree, usually presented with the root at the bottom, and the leaves at the
top. Each branch of a deduction is a sequence of applications of the proof rules
given in Appendix B, some of which, such as &, represent branching points in the
deduction tree, some, such as %, which extend the length of a branch, and some,
such as identity, which terminate a branch. The leaves embody the assumptions,
and the root the conclusion. Such a structure is said to be a deduction of the
conclusion from the assumptions. A proof in linear logic is a deduction with no
assumptions. That is, each branch terminates with an application of identity, T,
or 1. One interesting feature of linear logic, as presented in Appendix B, is that
negation is defined, and it is not a connective. In particular, the propositional
literals are assumed to be given in pairs, one positive (written p; for some ¢) and
one negative (written pi).

In this chapter we are concerned with the multiplicative-additive fragment of
linear logic, which we abbreviate as MALL. The logical symbols used in this frag-
ment are multiplicative conjunction (@) and disjunction (% ), additive conjunction
(&) and disjunction (%), and the constants 0, 1, T, and L. MALL formulas and se-
quents contain only these connectives and constants, in addition to the positive and
negative literals. The proof rules of MALL are all of the rules in the Appendix B that
are associated with these connectives and constants. This logic has been studied
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by Girard [Gir87a] and Bellin [Bel90]. While provability for the classical proposi-
tional logic is co-NP-complete, we show below that provability for MALL is PSPACE-
complete.

An important property of the sequent calculus formulation of MALL is cut-
elimination. This property follows from the Theorem A.3 of Appendix A.

Theorem 2.1 Any sequent provable in MALL is provable without the cut rule.

Proof. Since MALL is a fragment of linear logic, we may use the cut-elimination
procedure from Theorem A.3 to convert a MALL proof to a cut-free proof in linear
logic. By the subformula property (Theorem A.4), such a cut-free proof of a MALL
sequent contains only MALL formulas. Since all the rules which apply to MALL
formulas are already in MALL, any cut-free proof of a MALL sequent must already
be a MALL proof. [
Membership in PSPACE is straightforward, given cut elimination, but we include
a short sketch to illustrate the importance of Theorem 2.1. The proof of PSPACE-
hardness is more technical. Proof search in the cut-free sequent calculus is crucial to
the proof. The primitive step in proof search is a reduction, namely the application
of an inference rule to transform a sequent matching the conclusion of the rule
to the collection of sequents given by the corresponding premises of the rule. A
reduction is the inverse of an inference rule, and drives conclusions to premises.
Proof search is the process of constructing a cut-free proof in a bottom-up manner
by nondeterministically applying reductions starting from the conclusion sequent.

2.1 Membership in PSPACE

Theorem 2.2 The provability in MALL of a given sequent can be decided by a
polynomial-space bounded Turing machine.

Proof. By Theorem 2.1, a provable MALL sequent has a cut-free MALL proof. In a
cut-free MALL proof, there are at most two premises to each rule, and each premise is
strictly smaller than the consequent. Therefore, the depth of a cut-free MALL proof
tree is at most linear in the length of the final sequent of the proof. An alternating
Turing machine [CKS81] may guess and check a cut-free proof in linear time, using
OR-branching to nondeterministically guess a reduction in the cut-free proof, and
AND-branching to generate and check the proofs of both premises of a two premise
rule in parallel.

Membership in PSPACE can also be proved without reference to alternation. A
nondeterministic Turing machine can be defined to generate and check a cut-free
sequent proof in a depth-first manner. Given the linear bound on the depth of any
cut-free proof with respect to the size of the conclusion sequent, the search stack
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need contain no more than a linear number of sequents. Since each sequent in a
cut-free proof is no larger than the conclusion sequent, we get a quadratic bound on
the stack size. [

2.2 Informal Outline of PSPACE-hardness of MALL

Since there are a number of technical details to the proof of PspPACE-hardness, we
will illustrate the key intuitions by means of an example; the details of the proof
are given in Section 2.4.

The pspACE-hardness of MALL provability is demonstrated by a transforma-
tion from the validity problem for quantified Boolean formulas (QBY). A quantified
Boolean formula has the (prenex) form Q,, X, ...Q1 Xy M, where

1. each Q); is either V or 4,

2. M is a quantifier-free Boolean matriz containing only the connectives — and
A, and Boolean variables.

A closed QBF contains no free variables. Our conventions in this section are that
G and H range over quantified Boolean formulas; M and N range over quantifier-
free Boolean formulas; U, V, X, Y, Z range over Boolean variables; and I ranges over
truth value assignments. For expository convenience, we refer to quantifier-free
Boolean formulas simply as Boolean formulas.

An assignment I for a set of Boolean variables {Xy,..., X,,} maps each X; to
a truth value from {7, F'}. An assignment is represented by a sequence of Boolean
variables and negated Boolean variables. For example, the assignment X7, X5, X3
maps Xy to T, Xy to F, and X3 to T. The assignment I, X assigns T to X, but
behaves like I, otherwise. If I is an assignment for the free variables in G, we use
the standard notation I = G to indicate that G is valid under I, and write I £ ¢
if I falsifies G. Note that

ITEvX:Gift LXEG and [,-X|EG
I'E3xX:Ggit L XEG o [,-XEG

If G is a QBF and [ is an assignment for the free variables in G, we say G is
valid under I exactly if I |= G. If G is a closed QBF, then G is said to be valid if it
is valid under the empty assignment. The validity of a closed QBF G is represented
as = G. The QBF validity problem is: Given a closed QBF G, is G valid?

We demonstrate the PSPACE-hardness of MALL provability by defining a succinct
encoding of a QBF as a MALL sequent that is provable exactly when the given QBF
is valid.

The transformation of the QBF validity problem to MALL provability takes place
in two steps:
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e Given a quantifier-free Boolean formula M and an assignment I for the free
variables in M, we show that there is a MALL sequent encoding M and I which
is provable exactly when M is valid under /. This essentially demonstrates
that the process of evaluating Boolean functions can be represented by the
process of cut-free proof search in the MALL sequent calculus.

e Given a QBF G and an assignment [ for the free variables in G, there exists
a MALL sequent encoding the quantifier prefix and the Boolean matrix of G
so that the MALL sequent is provable exactly when G is valid under I. The
idea here is to simulate the Boolean quantifiers 3 and V by using the additive
connectives @ and &.

Two-sided vs. one-sided sequents. We use a formulation of MALL with one-
sided sequents to simplify the proofs. In linear logic, a two-sided sequent Ay, ..., 4, -
By, ..., B, has the one-sided form - Af, ..., AL By, ... B,. Thus, aformula A loB
on the left of a two-sided sequent becomes A® B* in a one-sided sequent. Similarly,
the provable two-sided sequent A, AloB F B becomes - AL, A @ B+, B. While
one-sided sequents simplify the technical arguments considerably, the reader might
gain further insight by rewriting parts of our encoding in a two-sided form.

2.2.1 Encoding Boolean Evaluation

The encoding of the Boolean connectives and quantifiers in MALL is described here
by means of an example. The full definition of the encoding appears in Section 2.3.
The encoding from QBF validity to MALL provability makes no use of the MALL
constants. Consider the valid QBF G given by

VXQHXl: _|(_|X1 A X2) A _|(_|X2 A Xl)

The matrix M of G is essentially a restatement of (X; <= Xj). Let H be
the falsifiable formula 34X,V Xy M that is obtained from G by reversing the order
of the quantifiers. It is crucial that the encodings of G and H in MALL respect the
ordering of quantifiers so that the encoding of (G is provable but the encoding of I
is not.

The encoding of the Boolean matrix describes the formula as a circuit with
signals labeled by MALL literals. Let the assignment I be encoded by a sequence of
MALL formulas (1), and [M], be the MALL formula encoding M with output labeled
by the literal a. Then [ = M is encoded by the sequent

= (1), [M]a, a
whereas I [£ M is encoded by
=Ty, [M]a, ™
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Since we are using one-sided sequents, we encode the assignment X;,—X5 by
zi,r9. The MALL literals encoding the assignment are to be seen as the input
signals to the encoding of the Boolean formula.

We first consider the Boolean connectives = and A, then construct the full en-
coding of M. The encoding [-X], of =X with output labeled a is the formula
NOT(z1,a). For literals & and y, the definition of NOT(z,y) is just the representa-
tion of the truth table for negation within MALL, as shown below:

NOT(2,y) = (¢ @ y) B (25 @ y), (2.1)
NOT(z1,a) is simply the linear negation of the formula
(21 1loa™)&(zi Loa)
which is more perspicuous in describing a as the Boolean negation of ;. The sequent
Faq1,NOT(21,a),a (2.2)

encodes the situation where the input X; is F, and asserts (correctly) that the
output =Xy is T.
The sequent (2.2) is easily seen to have the MALLproof

T
1

T
byt Fal,a
F ey, (2 @at),a

D
Fay, (21 @ a) @ (21 @ at),a

Similarly, the sequent (2.3) representing {X; «— T} £ =X is also provable.
F a1, NoT(2q, a), at. (2.3)
On the other hand, the sequent
Fai,NoT(21,a),a (2.4)

asserts (falsely) that {X; — T} = =X;. To see why sequent (2.4) is not provable, we
observe that MALL is a refinement of classical logic in which no classically falsifiable
sequents are provable. The sequent - 21, NOT(21, a), a is falsified by assigning T to
xz1 and F' to a, while interpreting @ and & as classical conjunction and ¢ and %
as classical disjunction. A sequent is interpreted classically as the disjunction of the
sequence of formulas that it contains.

The encoding for conjunction, [X AY], is given by AND(z,y,b) as defined below.
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(zeyabt) @
L L b) P
n= | Oy e 2.5
(zt@yeb)
Sequent (2.6) represents X,Y = (X AY):
Fat,yt, AND(z, y, D), b. (2.6)

Sequent (2.6) has the proof

Fyly FbL b

Fala Fyh(yobh)b
Fetyt (royebl)b,

- xJ-,yJ-,AND(x,y,b),b

As with sequent (2.4), the MALL sequent representing the false assertion =X, Y =
(X ANY)is given by
F o,y AND(2,y,b),b

and is not provable since it can be falsified by the classical interpretation assigning
F tox and b, and T to 3.

The next step is to construct the encoding of the Boolean formula M given at
the beginning of this section, from the encodings of the Boolean connectives. The
formula M is thought of as a Boolean circuit with the distinctly labeled signals.
The encoding [(=X1 A X3)]p is given by the formula AND(a, 22,b) ¥ NOT(21,a). Let
IMPLIES(z, ¥, u, v, w) represent the formula

NOT(v, w) ¥ AND(u, y, v) ¥ NOT(z, u),

then IMPLIES(21, 22, a, b, ¢) is the encoding [=(=X1 A X3)].. The literals a, b and ¢
are the distinct literals labeling the output signals of the Boolean gates.

We now consider the problem that the input signals in M have a fanout greater
than one. An almost correct encoding in MALL of the Boolean formula M is given
by the formula

AND(c, f, g) ¥ IMPLIES(21, Z2, a, b, ¢) ¥ IMPLIES(22, 21, d, €, f).

The validity of M under the assignment {X; — T, Xy — T} would then be
represented by

Fai, x3, AND(c, f, g) X IMPLIES(Z1, 9, a, b, ¢) ¥ IMPLIES(29, 21, d, €, f),g. (2.7)
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The following deduction represents one attempt to prove sequent (2.7).

F i, ay, IMPLIES(2, 29, a,b, ¢), ¢ FIMPLIES(29, 21, d, €, f), f
= gL,gI Fat,ad, (c@ f), IMPLIES(7q, 23, a, b, ¢), IMPLIES(%9, 21, d, €, f)
Fat ey, (c@ f@gl), IMPLIES(2y, 29, @, b, ¢), IMPLIES( 29, 21, d, €, f)’gea
i, 2t AND(c, f, g), IMPLIES(2 1, 9, a, b, ¢), IMPLIES(22, 71, d, €, f), g

Fat, a2y, AND(c, f, ) B IMPLIES(21, 22, a, b, ¢) B IMPLIES(22, 21, d, €, f), g

Since MALL lacks a rule of contraction, each of the assignment literals, #{ and
z3, can appear in only one premise of a @ rule. As a result, one of the remaining
subgoals in the above deduction lacks the required input literals. We therefore need
to be able to explicitly duplicate the assignment literals in the sequent (2.7) to match
the number of duplicate occurrences of Xy and Xy in M. The formula copy(z;)
defined as

(21® (27 B i) & (2 @ (21 ¥ 1))

serves to duplicate an instance of z; or z1. If M is now encoded as
AND(c, f,g) ¥ copy(zy) N copPY(z9) B 71X 7,

where 71 abbreviates IMPLIES(z1, 2, a, b, ¢), and 7 5 abbreviates IMPLIES(23, 21, d, €, f),
the desired deduction of (2.7) can then be constructed.

. I—xf-,x%-,?l,c |_$f'7$%'7?27f
I |_g7gj_ Fw%vvax%vx%v(c®f)v?lv?2 ®
. by, 2y Fat, el et v, (c®@ f@gh), 71,79, 9 .
Fay, et ol et ad, AND(c, f,9), 22@ (25 By ), 71,72, 9 .

- $f‘,$%‘,AND(C, fvg)vxl 2% ($f‘78$f‘)7COPY($2),?17?27g
H $f‘7 $%‘,AND(C, f7g),COPY($1), COPY($2)7 ? 17?279

D

Fai,zy, AND(c, f,9) B coPY(z) B coPY(z2) B 71 74,9

In summary, we have informally described the encoding in MALL of the evaluation
of Boolean formulas under an assignment. The connectives ¥ ,®, and @ were used
to represent the truth tables of — and A, and MALL literals were used to represent the
“signals” in the Boolean formula. The duplication of input signals forms a crucial
part of the encoding since MALL lacks a rule of contraction.
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2.2.2 Encoding Boolean Quantification

Recall that G is the formula VX93X: M, and H is the formula 3XVXs M, where
M is =(= X3 AX2)A—(=XoAX7q). Intuitively, it is useful to separate the encoding of
the Boolean quantifier prefix as separately encoding the individual quantifiers and
the dependencies between quantifiers. Given the above encoding for assignments
and Boolean formulas, an almost correct way to encode Boolean quantifiers would
be to encode 3X as the formula (zy & 21 ), and VX5 as (z9&23 ). The encoding of
G would then be given by the sequent

F (aleay), (a1 @ a7 ), [M]g, 9.

The formula (21 & =1 ) behaves like existential quantification in proof search since
a nondeterministic choice can be made between

Fat,? and Fag,?
— P — &
F oz ai),? F oz ai),?
according to the assignment (7" or F, respectively) to X; which makes 3Xy: M

valid. Similarly, the rule for reducing (z2&x3) in a proof behaves like universal
quantification requiring proofs of both - 23,7 and F 29, 7.

kg, ? F o, ?

F(z2&as),?

However, with this mapping of quantifiers, the MALL encoding of G and H would
be identical and provable, but H is not a valid QBF.

A correct encoding of 3X1VXy: M should ensure that if the encoding is prov-
able in MALL, then there is a proof in which the choice of a truth value for Xy is
independent of whether X5 is T or F. The order of reductions below show how the
choice of a truth value for 4X in a proof of the MALL encoding can depend on the
quantifier V.X5.

Fay,x9,7 I—xf,xé‘,?
D ©®
I—(acl@wf-),wg,? I—(acl@wf-),xé-,? N
F (a1 & xf-), ($2&$%‘)7?

In this ordering of the reductions, (21 @ xi ) is reduced differently on the x5 and
x5 branches of the proof leading to distinct witnesses for X; according to whether
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XsisT or F. The solution to this quantifier order problem is to encode the quantifier
dependencies in the MALL formula so that if there is any proof, then there is some
proof of the encoding in which (z1 & @1) is reduced below (z2& x5 ), thus ensuring
that the truth value of X has been chosen independently of the truth value for X5.
For this purpose, we introduce new MALL atoms qg, g1, g2, and encode XV Xo: M
as
Eog,

6 O (V1) & (@ ¥ ay)),

i @ (907 22)&(g0 ¥ 27)),

Qd_ @ [Mlg, g

The idea here is that the quantifier encoding for 93X hides the “key” ¢ that is
needed to unlock the quantifier encoding for VX5,. If we now attempt to violate the
quantifier dependencies, the following would be one possible deduction.

?
"f]fvf]hﬂﬁl
. "f]fyf]l?gﬂh
Ceb Fab (@)@ (@ eh) :
R CREDEITREY)) F (g0 22)&(q0 N 23), g5 @ [My, g .

Fa2, 05 @ (T 21) B (N 21)), 6 @ ((qo B 22)&(q0 ¥ 27)), g5 @ [M]y, g

In the above deduction, we are left with a subgoal of the form F ¢i, ¢y, 21, and
since z1 is not a constant, we cannot reduce this sequent to a MALL axiom. (Recall
that MALL lacks an unrestricted weakening rule.) Other deductions attempting to
violate the quantifier ordering also fail. On the other hand, the deduction which
does respect the order of the quantifier encodings can be performed as shown below.
The quantifier encoding for X, provides the key ¢; for unlocking the quantifier
encoding of V.Xj.

Fars 21, gt @ (0B 22)&(90 B 23)), g3 @ [M],. 9
. Fa e q @ (90 ¥ w2)&(qo N 2y)), g5 @ [Mg, g
= g2, 45 F (1 Fe) @ (N 2i)), 0 @ (90 Fw2)&(qo N 23)), 45 @ [Mly, g
Fag2 a5 @ (B 2) @ (B at)), a0 @ ((q0 7 22)&(q0 B 237)), g5 @ [M]y, g

x

D
&

The formal definition of the polynomial time encoding of QBF validity in terms
of MALL provability is given in Section 2.3. In Section 2.4, we demonstrate the
correctness of the encoding.
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2.3 Formal Definition of the Encoding

For our purpose, a Boolean formula is constructed from Boolean variables using
the Boolean connectives = and A. All quantified variables are assumed to occur in
the matrix. Var(M) is the set of variables occurring in the Boolean formula M.
Overlined syntactic variables such as X and Y range over sets of Boolean variables.

The mall sequent encoding a QBF G is represented by o(G). We need to be
careful about keeping literals distinct. The annotation “ea new” in the definition
indicates that the literal a is a freshly chosen one that has not been used elsewhere
in the encoding.

The sequent o((G) consists of the encoding of the QBF [G],, where g labels
the output signal, the key ¢,, and the output value g. The definition of [G],
constructs the quantifier encodings by induction on the length of the quantifier
prefix. The definition of [M], is by induction on the structure of M, so that [NAP],
is constructed by

e choosing the fresh labels a and b for the outputs of subformulas N and P,
respectively

e defining the relation between a, b, and ¢ by AND(a, b, g)

e if needed, providing a copying formula for each Boolean variable common to

both N and P
e and recursively constructing [V], and [P],

To be precise, we provide the following definition of the encoding.

Definition 2.3

o(G) = Faqu,[Gly g Gn, g NEW
[(VXiy1: G, (%’L-H @ (x4 ¥ ‘]i)&(wz’LH %)) Gy Gi+1 new

[GXip: )y = (431 @ (21 V) & (255, ¥ ), [Gly  digr new
[M], = (‘]d_ @ [M]yg) 4o new
(Xl = (@ ©9®@og)
[-N], = nNot(a,g)%[N], a new
AND(a,b,g) &
NAP], = copYALL(Var(N)N Var%]\%z 2 a,b new; Var(N) O Var(P) £ 0
[P]

[NAP], = AND(a,b,g)F[N],X[Py b a,b new; Var(N)NVar(P) =10

COPYALL(X) = &y gCopPY(z;)
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Note that the sequent o((G') contains no MALL constants. The complexity of
computing o((G') is at most quadratic in the size of GG since the encoding function is
defined inductively over the structure of the formula, and the intersection operation
can be performed in linear time with a bit-vector representation of sets, where the
length of each bit-vector is the number of distinct Boolean variables occurring in
(. The cost of constructing the coPY formulas at each step in the recursion is also
linear in the size of G. The cost of each NOT and AND formula is fixed with respect
to the representation of the literals, and the literals can be represented with a cost
that is logarithmic in the size of .

The encoding may be computed in log-space, although the algorithm described
above uses more than log-space, because of the work space required to save the set of
variables that must be copied when encoding a conjunction. The encoding algorithm
could be modified to make a number of passes over the input to determine the
number of occurrences of each variable and generate the required number of cory
formulas. Each pass would use only log-space, and the remainder of the algorithm
may be performed in log-space.

2.4 Proof of PSPACE-hardness of MALL

The main theorem is that for any closed QBF G, G is valid if and only if o(G) is a
provable MALL sequent. The first set of lemmas demonstrates that the encoding of
Boolean formulas works correctly. The second set of lemmas demonstrates that the
Boolean quantifiers have been correctly encoded.

If I is a truth value assignment for the Boolean variables Xy,..., X,,, then [ is
encoded as (/), where

I = (X1, (Xn)1
(Xo)r = { z if I(X;) =T

x;, otherwise

If T is an assignment for a set of variables Y, and X C Y, then I/X is the
assignment [ restricted to the subset X, and by abuse of notation I /M is I/Var(M).
The following lemma is stated without proof.

Lemma 2.4 Given sets of variables X and Y, and an assignment I for X UY,
there is a deduction of the sequent & (I, cOPYALL(X NY),? from the sequent t

(LX) {L[Y), 7

Lemma 2.5 Let M be a Boolean formula and I an assignment for the variables in
M, then

1if T'l= M then = (I),[M],, g
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2. if T M then v (I),[M],, g*

Proof. By induction on the structure of M, as follows. The cases in the proof
correspond closely to those in the definition of [M],.

Base case: M = X. Suppose I(X) = T, then I = M and (I) = at. The
following proof can then be constructed, expanding the definition of [M],

I—xJ-,xI I—gJ-,gI®
Fat (z@gh),9
D
Fat (et @g)e(zegt)g

The case when [(X) = F' is similarly straightforward.

Induction step: There are a number of cases here corresponding to the definition
of [M],. We consider a typical case and leave the remaining ones to the reader.
Let M = N A P, and suppose that Var(N)N Var(P) # (. Consider the case
when I/N |= N and I/P £ P, so that [ £ N A P. Expanding [M],, AND(a, b, g),
and using Lemma 2.4, the following deduction can be constructed.
- (/N) N]a (/P [Pl bt
—1I
Fg.9* F{I/N) I/ P), (a® b)), [N]a, [Py
F /N, I/P), (a@ bt @ g), [N [Pl g™
{I/N), {1/ P), aND(a, b, g), [N]a, [Pl g+

®

F (I),aND(a, b, g), COPYALL(V;Lr(N) NVar(P)),[Nla, [Pls, g+
F (I),AND(a, b, g) ¥ copYALL(Var(N)NVar(P)) ¥ [N], ¥ [Py, g+ K

Applying the induction hypothesis to I/N, N, and a, and to I/P, P, and b, we
can establish that the remaining subgoals of the deduction are provable.

The remaining subcases in the evaluation of N A P are similar, as are the re-
maining cases in the induction argument. [

The next step is to establish the converse of Lemma 2.5. The classical interpre-
tation of the MALL connectives may be used to give a relatively easy proof. In the
classical interpretation, truth values, 7' and F, are assigned to the MALL atoms, A+
is read as classical negation, A @ B and A& B are read as classical conjunction, and
AN B and A@ B are read as classical disjunction. A sequent is interpreted as the
classical disjunction of the formulas contained in it.
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Lemma 2.6 If =7 is a provable MALL sequent, then for any assignment of truth
values to the atoms in 7, there exists a formula A in the sequence 7 such that A is
true under the classical interpretation.

Proof. The proof is by a straightforward induction on cut-free MALL proofs.
Clearly, for axioms F z,z%, one of z or 1 must evaluate to T in a given truth
assignment. In the induction case, suppose that the last step in the proof of 7 is a
®Q-tule of the form

FB,7, O,
F(B®C), 71,72

By the induction hypothesis, the sequence B,?; contains a formula A, and the
sequence ', 7, contains a formula A, and both A; and A, are true. If Ay is
different from B, then A; occurs in the conclusion sequent yielding the required
A, and similarly, when A, is different from C. Otherwise, the formula (B @ C') is
(A1 ® Az) and is hence true under the classical interpretation of @ as conjunction.
The induction arguments corresponding to the other connectives are similar. [

The main intuition behind Lemma 2.7 is that by appropriately assigning truth
values to the literals in (I) and [M],, it is possible to mimic the evaluation of the
Boolean formula M under I. Due to our use of one-sided sequents and the form
of our encoding, there is exactly one truth value falsifying each formula in (/) and
[M],. This assignment turns out be the appropriate one, i.e., the value of ¢ under
this assignment is 7" exactly when I |= M. For example, if I is {X «— F} and M is
=X, then (1) is 1 and [M], is (z @ g) @ (2 @ g*). The only falsifying assignment
here is {z — F,g «— T}.

Lemma 2.7 Let M be a Boolean formula and I be an assignment for the variables
in M. There exists an assignment K of truth values to the atoms in (I) and [M],
such that for every formula A in the sequence (I),[M],, assignment K falsifies A
under the classical interpretation, and K(g)="1T iff = M.

Proof.  The proof is by induction on the construction of [M],. Note that the
induction is parametric in [ and g (1 and ¢ are universally quantified in the induction
hypothesis), so that when M = (N A P), the induction hypothesis on N has I/N
replacing I and «a replacing g, where a labels the output of V.

Base case: M = X. Then [M], = (2t @¢)®(z@gt). I X, then [(X)=T
and (I) = 2+, and (I) is falsified if K assigns T to . [M], is falsified if K assigns
T to g, and the second part of the conclusion, K(g) = T also follows. If I |£ X,
then I(X) = F. Let K assign F' to 2 and F to ¢ to falsify both (I) and [M],. Then
K(g) = F as required.
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Induction step: Observe first that the formula corv(z) defined as (z@(2+ % 21))®
(z1 @ (2B x)) is classically false.

When M = =N, the encoding [M], is NoOT(a,g),[N],. By the induction
hypothesis, we have an assignment K falsifying (/),[N], such that Ky(a) = T
iff I = N. Suppose Ki(a) = T, and hence I = N. The formula NOT(a,g) is
(a®g)® (at @ gt). Let K be K {g « F}. Since g does not occur in (I) or [N],,
K agrees with Ky on (I),[N],. The assignment K also falsifies NOT(a,g), thus
falsifying (I),[M],. Note that K(g)= I as required, since I £ M.

If Ki(a) = F, then I = N. Letting K be K;{g — T'} falsifies ({),[M],.

When M = (N AP), then by the induction hypotheses for N and P, there exists

1. K, falsifying (I/N),[N], such that Ky(a) =T iff /N = N, and
2. K, falsifying (I/P),[P], such that Ky(a) =T iff I/P E P

The encoding (I) is a sequence of literals such that no two distinct literals in (/)
share a common atom. Since (//N) and (I /P) are subsets of (I), there is no literal =
such that x isin (I/N) and 21 is in (I/P). Formulas [N], and [P], have no atoms in
common outside of those in (/). Then the union of the assignments Ky U Ky, is still
an assignment, i.e., it assigns a unique truth value to each atom in (I),[N]a, [P]s.
Suppose that Ky(a) =T, and hence I/N |= N,and Ky(b) = F,sothat I/P [£ P.

Let K be (K1 U K3){g — F}. Note that ¢ does not occur in (I), [N], or [P] so
that K agrees with K; on [N], and with K3 on [P],. Each disjunct in AND(a, b, g)
expanded as

(a@b@gt) &

(at@bt@g) &

(a@b@9g) @

(at@beyg)

is falsified by K. As already observed, the copry formulas are all classically false,
and thus K falsifies (I),[M],. Since in this case, I £ N A P, the second part of the
conclusion is also satisfied.

The remaining cases are similar. [

Lemma 2.8 If I is an assignment for the variables in a given Boolean formula M,
then

1. if = (I),[M],, g is provable, I |= M

2. if = (I),[M]y,, g+ is provable, I [~ M.

Proof. By Lemma 2.6, we know that if - (), [M],, ¢ is provable, then no assign-
ment can simultaneously falsify (I), [M],, and ¢ under the classical interpretation.
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By Lemma 2.7, we can find an assignment K which falsifies (/) and [M], such that

K(g)=T iff I = M. Since K cannot also falsify ¢, K(g) =T and hence I |= M.
Similarly, when F (I),[M],, g* is provable, we can, by Lemmas 2.7 and 2.6, find

an assignment K such that K(g) = I and as a consequence, [ £ M. [

Lemma 2.9 + (I),[M],, g is provable iff [ |= M.

Proof. Follows immediately from Lemmas 2.5 and 2.8. ]

So far, we have demonstrated the correctness of the encoding of the Boolean
matrix of a given quantified Boolean formula. The remainder of the proof deals
with the encoding of Boolean quantifiers. The next lemma states the crucial reason
why the MALL encoding of quantifiers is faithful to the quantifier orderings. As
observed in Section 2.2.2, the goal is to ensure that in any successful proof search,
the ¢th quantifier encoding is reduced after, i.e, above, the reduction of the (74 1)st
quantifier encoding in any cut-free proof. To achieve this, we need to argue that
the key ¢; needed to unlock the ¢th quantifier encoding is only made available when
the (¢ + 1)st quantifier encoding has been reduced. In order for the ith quantifier
encoding, which has the form ¢! @ U;, to be reduced before the (i + 1)st quantifier
encoding, a subgoal of the form F ¢&,? would have to be provable. The only
occurrences of ¢; are in the subformula U;;1 given by (¢; ¥ 2;41) 0 (¢ % xzﬁ_l), where
o may be either & or &. If U;41 occurs in 7, then the only occurrences of ¢; in ?
are as immediate arguments to a 4. By exploiting the absence of an unrestricted
weakening rule in MALL, it can be shown that in the absence of constants, - ¢, 7 is
not provable when all of the occurrences of ¢; in 7 appear as immediate arguments
to % . Therefore, regardless of whether U;y occurs in 7, the sequent - ¢, 7 would
not be provable, thus making it impossible to reduce the ¢th quantifier encoding
below the (¢ + 1)st quantifier encoding in a cut-free proof.

Lemma 2.10 If q is a positive or negative literal and the sequent & ¢,7 contains
no constants, then & ¢,? is provable only if either 7 = g% or ? contains at least one
occurrence of a subformula either of the form ¢t o A, or the form Ao q*, where o
may be either ©, &, or ®.

Proof. We fix o to be either @, &, or ® for this proof. The proof is by induction
on cut-free MALL proofs of ¢, 7. In the base case, for a cut-free proof of depth 0,
the sequent F ¢, ? must be a MALL axiom, and ? = ¢ holds.

In the induction step, when in the given cut-free proof of - ¢, 7, the conclusion
sequent is derived by an application of either a @, & or a @ rule, then at least one
premise must be of the form F ¢, A. We know by the induction hypothesis for the
proof of F ¢, A, either A = ¢ or A either contains a subformula of the form ¢t o A,
or the form A o ¢t. In either case, ? contains one of the forms, ¢* o A or Ao ¢*.
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If in the cut-free proof of - ¢, 7, the conclusion sequent is derived by an appli-
cation of the @ rule, the premise sequent must be of the form F ¢, A, where A is
not a single formula, Then by the induction hypothesis on the proof of - ¢, A, the
sequence A must contain one of the forms, ¢* o A or Aog*t. Since every subformula
of A is a subformula of ? as well, ? must also contain one of the forms ¢* o A or
Aoq*t. ]

The following lemma demonstrates the correctness of the MALL encoding of
Boolean quantifiers. Each @); in the statement below is either ¥V or 4.

Lemma 2.11 (Main Induction) Let M be a Boolean formula in the variables
X1,..., X, then for anym, 0 < m < n, and assignment I for X, 11,..., X, the re-
lation I |= Qm Xy, ... Q1 X1 M holds iff the sequentt gy, (1), [Qn X .. . Q1 X1 M]y, g
is provable in MALL.

Proof. The proofis by induction on m between 0 and n. Note that I is universally
quantified in the induction hypothesis.

Base case =: Here m = 0. Then [M], = ¢> @ [M],, and we can easily construct
the following deduction of the required conclusion F ¢, (Io), [M],, g.

I :
|_(]07(]d' <I>7[M]g7g

l_
+ <I>7q07qd_ ® [M]gvg
The proof of the remaining subgoal - (1), [(],, g, follows from Lemma 2.5.

®

Base case <=:  The deduction shown above is the only possible one in a cut-free
proof of = (I}, qo, g5 @ [M],, g since gz @ [G] is the only compound formula in the
conclusion. So if F (I), qo, ¢ @ [M],, g is provable, by Theorem 2.1, it must have a
cut-free proof containing a proof of - (I),[M],, g. By Lemma 2.8, we get I = M.

Induction step =:  Assume 0 < m < n. Let G abbreviate Q,,, 11 X, 11...Q1 X1 M.
We must prove the lemma for @), X,,G. If @,, = 3, then

If I = 3X,: G, then either I, X,, = G or I,-X,, = G. In the former case, the
following deduction of the required conclusion can be constructed.

I H <I>7$7Jﬁvqu_17[[G]]gvg @
l_(vaqTJﬁ + I>7(($m?8(ImJ_1)@($TJﬁ?qunJ-l))v[[G]]gvg ®
= <I>7 Ums (f]i & ((xm ?8 QmJ_l) S (ny;L ?8 QmJ_l)))v [[G]]g7g
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Since (I, X,,,) = (I}, z;, the induction hypothesis can be applied to show that the
remaining subgoal of the above deduction is provable.

When I,-X,, E G, the proof construction only differs from the above one on
the @ rule corresponding to the quantifier encoding.

IfQ,, =V, then

VX0 Gllg = (45 @ (2 Grns1) (7 Gr11)), Gl

Since I = VX,,: G, it follows that I, X |= G and I,-X |= GG. The following deduction
can be constructed.

I = <I>7$m7qu_17[[G]]gvg = <I>7$7Jﬁvqu_17[[G]]gvg &
= G, 4k (), (@0 g 110)& (25 Y ¢n11)): [Glgy 9
+ <I>7 Gm.s (q7J7’_L ® (($m ?8 QmJ_l)&(xrjﬁ ?8 QmJ_l))7 [[G]]97 g

Since (I, X,,.) is (I), 2% and (I,=X,,) is (I}, 2,,, the two remaining subgoals in the
deduction are provable by the induction hypotheses.

Induction step <=:  This is the critical step in the proof. We are given that m > 0
and that the conclusion sequent & ¢, (1), [Qm X, . .. Q1X5: M],, ¢ is provable. The-
orem 2.1 can be applied to construct a cut-free proofof - ¢, (1), [Qn X .. . Q1 X1: M],, g.
We show that this cut-free proof respects the quantifier ordering, i.e., the reduction
of the encoding of @,,, X, occurs below any other step in the proof.

It is easy to see that every formula in the multiset [Q,, X, . . . Q1 X1: M], is of the
form ¢;-® Ay, for 0 < i < m, with Ag = [M]y, and Ajy1 = (241 ¥ g5)0 (27, B q5)).
The connective written as o can be either & or @. The formulas qZ»J- ® A; are the only
compound formulas in the conclusion sequent & ¢, (I}, [QnXy, ... Q1 X1 My, g.
From the MALL rules, it is clear that the only applicable reduction in a cut-free
proof search would be an application of the ®-rule. Hence for some k, we can
partition the formulas other than ¢ @ Ay in the conclusion sequent into ? and A
to get a deduction of the conclusion sequent of the following form.

F72gE R ARA
=7 (g @ Ar), A

Suppose for the sake of deriving a contradiction that k& < m. Recall that there
are no constants in the encoding. The formula ‘]kL-H & Ag4q1 must either occur in ?
or A, and definitely not in both. Since the only occurrences of ¢; are within Agyq,
by Lemma 2.10, if q,i‘_l_l & Apy1 occurs in A, then we cannot complete the proof
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F gz,?7. Thus we assume q,i‘_l_l & Apy1 occurs in 7. It is easy to see by inspection
of the form of Ayy; that the only occurrences of ¢; in Agyq1 have the form ¢ o B
or the form B o g, where o is either @, &, or ®. Therefore, again by Lemma 2.10,
+ q,ﬂ‘,? is not provable.

Thus it follows that k £ m.

When k£ = m, we can apply Lemma 2.10 to infer that 7 = ¢,,, since otherwise,
? would not contain any occurrences of ¢, as immediate arguments to ®, & or .

If ,, = 4, this yields the deduction

F Gm qTJﬁ = <I>7 ((xm ?8 QmJ_l) S%) ($TJ;L 78 QmJ_l))v [[QmJ_leJ_l .. -QOXO: M]]gvg ®
=), qm,s (%Lz @ ((Tm D Gmir) (wi B 4p11)), [QmirXmir ... QoXo: My, ¢

For the same reason as before, the remaining subgoal cannot be reduced by applying
the ®-rule to a formula qZ»J- ® A; since all of the occurrences of ¢; remain as immediate
arguments to 4. The only possible reduction then is to “unwind” the quantifier
encoding for Q,,, X,,, as in the («=) direction of the proof until ¢,, 11 is introduced as
a sequent formula. If the left @ reduction is applied in the given cut-free proof, we
have

- <I>7$M7QmJ_17[[QmJ_1XmJ_1 ---QoXo:M]]ghq 5
FD) (2D i)y [Qmii X - QoXo: My, g .
D), (2m D mit) B (25 B 1)), [@miiXmir - - QoXo: My, g

Then by the induction hypothesis applied to the proof of the sequent

= <I>7 TmsGm L1, [[QmJ_leJ_l .. -QOXO: M]]gyg

weget [,=X,, | Qi1 Xmit---QoXo: M, and hence I |= 3X,,Q 11 Xmi1 - . QoXo:
The argument is similar when the right & reduction is applied in the given
cut-free proof.
The proof when (), =V is also similar. [
When m = n in Lemma 2.11, it follows that a closed QBF G is valid iff 6(G) is
provable in MALL. Since o is a log-space encoding of a given QBF, the final result

below follows immediately from Theorems 2.11 and 2.2.
Theorem 2.12 MALL provability is PSPACE-complete.

With two-sided sequents, the intuitionistic fragment of MALL constrains the
right-hand side of the sequent to contain at most one formula. A two-sided re-
formulation of the above proof could be carried out entirely within the intuitionistic
fragment of MALL, showing that intuitionistic MALL is also PSPACE-complete.



Chapter 3

Propositional Linear Logic is

Undecidable

In the previous chapter, the decision problem for MALL was shown to be PSPACE-
complete. We now show that if nonlogical (MALL) axioms are added to MALL, the
decision problem becomes recursively unsolvable. We also show that nonlogical
MALL axioms may be encoded in full propositional linear logic without nonlogical
axioms, and thus we have the result that full propositional linear logic is undecidable.

The proof of undecidability consists of a reduction from the halting problem for
a form of counter machine to a decision problem in linear logic. In more detail,
we begin by extending propositional linear logic with theories whose (nonlogical)
axioms may be used any number of times in a proof. We then describe a form of
and-branching two-counter machine with an undecidable halting problem and show
how to encode these machines in propositional linear logic with theories. Since the
axioms of our theories must have a special form, we are able to show the faithfulness
of this encoding using a natural form of cut-elimination in the presence of nonlogical
axioms. To illustrate the encoding of two-counter machines, we present an example
simulation of a simple computation in Section 3.6. On first reading, the reader
may wish to jump ahead to that section since it demonstrates the basic mechanism
used in the undecidability proof. Also, the crucial cut-standardization step used in
this section relies heavily on the cut-elimination procedure for linear logic without
nonlogical axioms, first sketched by Girard in [Gir87a]. We give a very explicit
proof of cut-elimination for full propositional linear logic in Appendix A, which
some readers may find helpful to skim before continuing.

The key to our encoding of an undecidable problem in linear logic is the combi-
nation of three powerful mechanisms: resource accumulation, arbitrary reuse, and
and-branching. In linear logic, = A, A is very different from + A, and this allows
us to represent counters in unary. Indefinitely reusable formulas such as 7(Blo('),

25
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(or axioms of the form - BL () may be used to implement machine instructions.
Note that the 7 operator is used here to indicate a reusable resource, since we are
working with one-sided sequents. If we were to express an axiom as a formula on
the left-hand side of the - in a two-sided presentation of linear logic, we would use
! to express the unlimited potential for reuse of instructions.

The operator & may be used to test a conjunction of properties of the simulated
machine, such as whether a counter is zero, and if the rest of the computation
can continue normally. Together this machinery is enough to encode recursively
unsolvable problems in linear sequents.

3.1 Overview

o We define linear logic theories, and prove a cut-standardization theorem for
linear logic augmented with theories in Lemma 3.1.

o We prove theories are sound and faithful to a pure linear logic translation in
Lemmas 3.3 and 3.2.

o We describe and-branching two counter machines, and note that their halting
problem is unsolvable by reduction from standard two counter machines in
Lemma 3.4.

e We demonstrate an encoding of our automata into linear logic theories, and
prove that the encoding is sound and faithful in Lemmas 3.5 and 3.6.

o We present an example computation, showing the correspondence between the
automaton and the (standardized) linear logic proof.

o We combine these lemmas to obtain our main result in Theorem 3.7.

3.2 Linear Logic Augmented With Theories

Essentially, a theory is a set of nonlogical axioms (sequents) that may occur as leaves
of a proof tree. The use of theories described here is an extension of earlier work on
multiplicative theories [GG89, MOMS89].

We define a positive literal to be one of the given propositional symbols p;. A
negative literal is one of the p symbols. An atomic formula is any positive or
negative literal.

For the theories of interest here, an aziom may be any linear logic sequent of the
form - C, pi,pt, e pf;l, where C'is a MALL formula (a linear logic formula without !
or 7) and the remainder of the sequent is made up of negative literals. For example,
the sequents - py, py, = (p1 @ p2), p3, b (p1 B p1), and - pi, py may all be axioms.
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However, i pq, p1 and - (p1 @ p2), ps may not be axioms. We use this restriction on
axioms to achieve strict control over the shape of a proof, as described in Lemma 3.1.
Some of this control is lost if the definition of theory is generalized, although for
some applications the weaker available results would be sufficient.

Any finite set of axioms is a theory. We consider only finite theories so that
theories may be encoded as formulas of linear logic. For any theory T, we say that
a sequent F 7 is provable in T exactly when we are able to derive = 7 using the
standard set of linear logic proof rules, in combination with axioms from 7. Thus
each axiom of T is treated as a reusable sequent which may occur as a leaf of a
proof tree. For notational convenience, in the case that the axiom F ? occurs in the

theory T, we will write

F7r

A directed cut is one where at least one premise is an axiom F C pi,pt, e pf;l in
T, and C'is the cut-formula in that axiom. We call any axiom premise of a directed
cut where the cut-formula in that axiom is not a negative literal a principal aziom of
that directed cut. By definition, all directed cuts have at least one principal axiom.
A cut between two axioms is always directed, and if the cut-formula of such a cut
is non-atomic, that cut has two principal axioms. A directed or standardized proof
is a proof with all cuts directed.

When theories are added to linear logic the cut-elimination Theorem A.3 no
longer holds, due to the added axioms which may participate directly in cuts. How-

ever, we do obtain the following result:

Lemma 3.1 (Cut Standardization) If there is a proof of 7  in theory T,
then there is a directed proof of + 7  in theory T.

Proof. We modify the cut-elimination procedure defined in Appendix A in
two ways. First we alter the definition of degree to ignore the measure of directed
cuts. Formally, we say that if a cut is directed, its degree is zero. Second, we modify
the procedure given in Lemma A.1 to handle the extra cases brought about by the
presence of axioms. We must allow all the reductions as stated in Appendix A to
apply to the case when one of the premises is an axiom, but we need not introduce
any truly novel reductions.

We will follow the notation used in Appendix A, where Cutx* is used to ambigu-
ously refer to the Cut rule or the extra rule of inference introduced in the appendix
called Cut!. Also, we will define all the formulas which appear in an axiom to be
principal in that application of the axiom.

In Appendix A most of the reductions are given for some specific derivation
versus any possible derivation. For example, all the non-principal cases are stated
for any derivation of the “other” hypothesis of Cut*. Similarly, the Identity and T



28 Decision Problems for Propositional Linear Logic

rules are stated for any derivation of the “other” hypothesis. We simply now state
that even if the other derivation involves an axiom, the reduction still applies.

For example, if the last rule applied in the left hypothesis is ®, and the last rule
in the right hypothesis is an axiom, we apply the following transformation:

: : : i
® T — Cut
Y, (C®B),Ap F?,pf‘nt FYC FB,A,?
Y, (C@B),A,T 3, (C® B),A,?

This is simply a special case of the reduction given in case A.1.1 in Appendix A.
Also, as a second example, the reduction given for Identity is applicable even to
the axiom case:

I T
= piyp TP cn = F7opit
=7 pt '

Again, this is simply a special case of the reduction given in Appendix A.
As a third and final example of specializations of reductions given in the ap-
pendix, the T rule also applies to axioms:

T T
. ?2 i
"T,E,pZ l_-vpz Cut
FT,%,7

— FT,5,7'

This is also simply a special case of the reduction given in the appendix.

Now, some simple analysis is required to show that there are no new cases of
principal cuts involving axioms. If the cut in question is already directed, the cut
has degree zero, by our modified definition, and thus we are done. Otherwise,
by definition of axiom we know that the cut-formula is a negative atomic literal.
There are only two rules where an atomic literal may be principal: Identity and T.
However, both of these cases are handled by existent reductions (restated above).
One should also note that since any cut involving two axioms must be directed, we
needn’t provide a reduction for that case.

This completes the discussion of the modifications to Lemma A.l necessary to
handle nonlogical axioms. Fortunately, Lemma A.2 and Theorem A.3 then follow
without modification (although the definition of degree has changed somewhat).

Therefore, given any proof of a sequent = 7 in theory 7', we can construct a
directed proof of - 7 in theory T. [

The cut-elimination procedure in Appendix A introduces a new rule of inference
called Cut!. If we generalized axioms to allow 7 and ! formulas in axioms, we would
have to generalize the notion of directed proof to include cases involving Cut!, and
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a post processing step would be required to transform all directed Cutl!s into a
sequence of contractions followed by a single directed Cut, or perhaps simply into
a sequence of Cuts. In any event, our axioms are restricted to MALL formulas so
that any cut involving an axiom is always an application of Cut, never of Cut!.

3.3 Coding Theories in Formulas

In the next few sections, we show that adding nonlogical axioms to MALL increases
the difficulty of deciding if a sequent is provable from PSPACE to undecidable. How-
ever, we first show that adding nonlogical axioms to full propositional linear logic
does not increase its expressive power, or the difficulty of its decision problem. To
accomplish this we show how to encode nonlogical axioms in full propositional linear
logic, and then prove that the translation is sound and faithful.

We define the translation [T'] of a theory T' with k axioms into a multiset of pure
linear logic formulas by

[{t1,t2, -5t 3] =200], 2t - - 7]tk]

where [t;] is defined for each axiom ¢; as follows:

[FCphpits e pE 1 2 (CBpESpES - Bph)t = (Cr@pa @@ D p.)

Note that the pj-’s are negative literals, and that since linear logic is commutative,
we needn’t be concerned with the order of formulas in an axiom. Thus each axiom
becomes a reusable formula, where the parity of the subformulas of the axiom have
been inverted in the formula.

Intuitively, it should be clear that for any theory T, the sequent - 7 should be
provable in theory T if and only if - [T],? is provable without nonlogical axioms.
However, due to the unusual nature of linear logic, we will present the proof in
detail.

Lemma 3.2 (Theory =) For any finite set of axioms T, & 7 is provable in
theory T only if ©F[T],7 is provable without nonlogical axioms.

Proof. Given some proof of = 7 in theory T, we have a linear logic proof tree
with axioms of T at some leaves. For each leaf of the proof tree of the form - A,
where = A is some axiom t;, we replace that leaf with a small proof of F [T], A.
This proof tree will be constructed from the proof tree for & [¢;], A, and then one
application of dereliction leaves us with F?[¢;],7. Since each formula in [1] begins
with 7, we may weaken in the remainder of [T], and thus with some number of
weakening steps we have - [T], A. For example, if there are k axioms, and - A is
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the axiom t; =F ¢i, (¢2 @ a), then we know [t;] = q1 @ (g5 & al). We then perform
the following transformation:

- q%—,qgl - aJ-,aI
Far, (e @a),at
Fasgt FatBa), (o a)yg
Fat g @ (g3 Fat), (@@ a),,
F L (poa = ol (o)
F2t], ?te], 41 (02 @ @)

T
1

: W
F2t], 2], ki) g1 (g2 @ @),
+ [T]7 Qf_v (f]z & a)

For each leaf sequent which was originally an application of identity, we weaken
in all the ?[t;] formulas:

T
= opi, p

— W
l_?[tlL Pis pZJ_

W
E?0eq], 20t .
I—pnpiﬂ = [ta], [‘2]’])“])2 "W

—TW
F2lt), Pte), - Mtkan], pis p; W

We then continue by adding [T] to every sequent in the entire proof tree. At
every application of ® and Cut, we extend the proof tree with an extra copy of the
conclusion sequent of the binary rule, to which we add an extra copy of [T]. Then
we extend the proof further, adding one contraction step for each ?[t;] between that
sequent and the original conclusion of that binary rule.

: : (17,5, A FTLB A
FY, A FBA = FIT], %, (A® B), A, [T],,
X, (A® B), A :
7C

T, %, (A® B), A

Thus we have given a construction which builds a proof of - [T'],? without any
nonlogical axioms from a given proof of - 7 using axioms from 7. [
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Lemma 3.3 (Theory <) For any finite set of axioms T, F 7 is provable in
theory T if +[T],?7 is provable without nonlogical axioms.

Proof. For each axiom t; =F C,pl, pi,...,pt, we may prove !([t;]*) =
HCRpLt X pt D --- ¥ pl) by several applications of % and one application of !S,

as follows.
T

|_C7sz1_7p[f_7"'7p£;_
= (Cygpi_)7plf_77pj_7?
(O par W)t

z
S

FCBprBpt N - Bph)
FNCN ptBpt N - Fpt)

By cutting this proof against a given proof of - [T],?, we obtain a proof of F
[T L {t;}], 7, where T' L {t;} is the multiset difference of T" and {t;}.

I—!([t:k]L) F [T:],?

Cut
Etn, stk Y
R PEDIEDT
L
() (). "
F?
Thus by induction on the number of axioms, we can derive - 7 in theory T. [

We have just shown how a decision problem for MALL with the addition of non-
logical axioms may be encoded in full propositional linear logic without nonlogical
axioms. Thus the upcoming proof of undecidability of MALL with nonlogical axioms
will yield undecidability for full propositional linear logic.

3.4 And-Branching Two Counter Machines Without
Zero-Test

In this section we describe nondeterministic two counter machines with and-branching
but without a zero-test instruction. We show that these machines have a recursively
unsolvable halting problem, and then we will show how the halting problem for these
machines may be encoded as a decision problem in MALL, with nonlogical axioms
corresponding to the machine instructions.
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The machines described here are similar to standard two counter machines except
for the lack of an explicit zero test transition, and the addition of “fork” transitions.
Intuitively, Q; Fork (Q;,Qy is an instruction which allows a machine in state (); to
continue computation from both states (); and ()i, each computation continuing
with the current counter values. For brevity in the following proofs, we emphasize
two counter machines. However, there is no intrinsic reason to restrict the machines
to two counters. All of our arguments and results generalize easily to N counters,
for N > 2. Formally, an And-Branching Two Counter Machine Without Zero-Test,
or AcM for short, is given by a finite set () of states, a finite set ¢ of transitions, and
distinguished initial and final states, )5 and Q. as described below.

An instantaneous description, or 1D, of an AcM M is a finite list of ordered
triples (Q;, A, B), where (); € ), and A and B are natural numbers, each corre-
sponding to a counter of the machine. Intuitively, a list of triples represents a set
of machine configurations. One may think of an AcM state as some sort of parallel
computation which terminates successfully only if all its concurrent computation
fragments terminate successfully.

We define the accepting triple as (Qr,0,0). We also define an accepting 1D as
any ID where every element of the ID is the accepting triple. That is, every and-
branch of the computation has reached an accepting triple. We say that an aAcm M
accepts from an 1D s if and only if there is some computation from s to an accepting
ID. It is essential for our encoding in linear logic that both counters be zero in all
elements of an accepting ID.

The set § may contain transitions of the following form:

(@i Increment A ();) taking
(Qi A, B) to (Qj, A+ 1, B)
(@i Increment B @);) taking
(Qis A, B) to (@, A, B+ 1)
(Q: Decrement A ();) taking
(@i, A+ 1,B) to (@, 4, B)
(Q: Decrement B ();) taking
<Qi7 A7 B+ 1> to <Qj7 A7 B>
(Q: Fork Q;, Q) taking
<Qi7 A, B> to (<Qj7 A7 B>7 <Qk7 A7 B>)

where );,Q);, and ) are states in (). The Decrement instructions only apply if
the appropriate counter is not zero, while the Increment and Fork instructions
are always enabled from the proper state.

For example, the single transition (); Increment A (); takes an Acm from ID:

{0 Qi A, B), - to 1D {---(Qj, A+ 1, B), -}
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3.4.1 Two Counter Machines

Standard two counter machines have a finite set of states, (J, a finite set of transi-
tions, 0, a distinguished initial state @7, and a set of final states ' [Min61, HU79].
An instantaneous description of the state of a two counter machine is given by a
triple (@i, A, B), which consists of the current state, and the values of two counters,
A and B. The transitions in ¢ are of four kinds:

(@i Increment A @;) taking (Q;, A, B) to (Q;,A+1,B)
(@i Increment B Q);) taking (Q;, A, B) to (Q;,A,B+ 1)
(Q; Decrement A ();) taking (Q;,A+1,B)to(Q;,A+1,B)
(Qi; Decrement B @;) taking (Q;,A,B+1)to(Q;,A,B+1)
(Qi Zero-Test A ();) taking (Q;,0,B) to (Q;,0,B)
(Qi Zero-Test B ();) taking (Q;, 4,0) to (Q;, A,0)

A two counter machine accepts if it is able to reach any one of the final states in
the set I with both counters at zero. It is important that these machines have a
Zero-Test instruction since the halting problem becomes decidable otherwise, by
obvious reduction to the word problem in commutative semi-Thue systems, which
is decidable [MM82]. Since Zero-Test is the most difficult to encode in linear logic,
we concentrate on a machine with and-branching, which provides a basic mechanism
powerful enough to simulate Zero-Test, but which is more easily simulated in linear
logic.

Using two counter machines, we show that AcM’s have an undecidable halting
problem.

Lemma 3.4 It is undecidable whether an and-branching two counter machine with-
out zero-test accepts from ID {(Q,0,0)}. This remains so if the transition relation
of the machine is restricted so that there are no outgoing transitions from the final
state.

Proof. Since AcM’s may simulate zero-test with and-branching, ACM’s are
sufficiently powerful to simulate two counter machines, for which the halting problem
is known to be recursively unsolvable [Min61, Lam61]. We will give a construction
from standard two counter machines to AcMs, and argue that the construction is
sound and faithful. This construction and the proof of its soundness is routine, and
its steps should be familiar to anyone versed in automata theory. In our simulation
of the test for zero instruction of two counter machines, we make essential use of
the fact that all branches of computation terminate with both counters set to zero.

Given a nondeterministic two counter machine M we first construct an equiva-
lent two counter machine M’ with a unique final state @ which has no outgoing
transitions. One simply adds two new states, @p and Qp to M’, and for each



34 Decision Problems for Propositional Linear Logic

Qf € F of M, one adds the instructions (Q); Increment A ()p) and (Qp Decre-
ment A @Qr). Note that one may simply look at these new transitions as a single
nondeterministic step from each old final state to the new (unique) final state, which
has no outgoing transitions. However, since there is no general “silent” move, we
make the transition in two steps.

We claim without proof that M and M’ accept the same set of input values, and
are therefore equivalent machines.

From a nondeterministic two counter machine M’ with unique final state without
outgoing transitions, we construct an AcM M” as follows. The acm M" will have the
same set of states, and same initial and final states as M’. The transition function
of M" is built by first taking all the Increment and Decrement instructions from
the transition function of M’. We then add two new states to M", Z, and Zg,
which are used to test for zero in each of the two counters. For Z4, we add two
instructions, (74 Decrement B Z4), and (74 Fork Qp, QF), to the transition
function of M”. Similarly for Zg, we add (Zp Decrement A Zg), and (Zp Fork
Qr, Qr). Then for each Zero-Test instruction of M’ of the form

(Qi Zero-Test A Q);)

we add one instruction to M"':

(Qi Fork Q;, Zy).

An important feature of M" is that once a zero testing or final state is entered,
no configuration of that branch of computation may ever leave that set of states.
More specifically, where M’ would test for zero, M"” will fork into two “parallel”
computations. One continues in the “same” state as M’ would have if the Zero-
Test had succeeded, and the other branch “verifies” that the counter is indeed zero.
While the second branch may change the value of one of the counters (the counter
which is not being tested), this cannot affect the values of the counters in the “main”
branch of computation. Further, the zero-testing branch of computation never enters
any states other than zero-test states or the final state. This holds because there
are no outgoing transitions from the final state whatsoever, and the only transitions
from the two zero testing states either loop back to that state or move directly to
the final state. Also note that any branch of an AcM M" computation which arrives
at the state Z4 may be part of a terminating computation if and only if the counter
A is zero when the machine reaches that state. This can be seen by observing that
once arriving in Z4, there is no possibility of modifications to the counter A. The
Decrement B transition from Z4 to itself allows M” to loop and decrement the
counter B arbitrarily. In particular it is possible for B to be decremented to the
value 0. Since @r has no outgoing transitions, the Fork instruction which moves
from Z4 to QF and Qg allows this branch of computation to terminate correctly
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if and only if both counters are zero when it is executed. Since we are considering
nondeterministic ACMs, it is possible for a branch of computation which reaches Z 4
to terminate if and only if the A counter is zero when it reaches Z 4. Similarly, any
branch of computation reaching Zp reaches an accepting ID if and only if the B
counter is zero.

We claim that there is a halting computation for the given two counter machine
M’ if and only if there is one for the constructed aAcm M". This is proven by two
simulations.

The and-branching machine M” may mimic the original two counter machine
in the performance of any instruction, by following any Increment of M’ with
the corresponding Increment instruction, and a Decrement with the correspond-
ing Decrement. When M’ executes a Zero-Test A instruction, M" forks off an
and branch which verifies that the counter A is in fact zero, and the other branch
continues to follow the computation of M’.

For the converse simulation, there is always at most one and-branch of any M"
computation which corresponds to a nonfinal, non-zero-testing state in the original
machine. There may be many and branches of the computation which are in states
Za, Zg, and Qp, but at most one and branch is in any other state. Thus, M’
may mimic M” by following the branch of AcM computation which does not enter
Z4, Zg, or Qp until the final step of computation, when it enters Qr. For every
Increment and Decrement instruction in the accepting computation of M", M’
may performs the corresponding instruction. Every Fork instruction executed by
M" from a nonfinal, non-zero-testing state corresponds to a Zero-Test instruction
in M', and by the above observation, if M" forks into state Z4, then M" accepts
only if the counter A is zero (and similarly for Zp and the counter B). Since we
are assuming an accepting M” computation, we know that M’ may execute the
corresponding Zero-Test instruction successfully. [

3.5 From Machines to Logic

We give a translation from AcMs to linear logic with theories and show that our
sequent translation of a machine in a particular state is provable in linear logic if
and only if the AcM halts from that state. In fact, our translation uses only MALL
formulas and theories, thus with the use of our earlier encoding, Lemma 3.2 and
Lemma 3.3, we will have our result for propositional linear logic without nonlogical
axioms. Since an instantaneous description of an ACM is given by a list of triples, it
is somewhat delicate to state the induction we will use to prove soundness.

We have already seen how the linear connective & may be used to achieve and-
branching in the proof of PSPACE-completeness of MALL. We now make use of that,
along with some other machinery, to simulate ACM computations.
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Given an aAcM M = (Q, 4, Q1, Qr) we first define a set of propositions:

{¢:1Q: € QY J{d1Qi € Q) | U{a,a*,b,0*}

We then define the linear logic theory corresponding to the transition relation ¢ as
the set of axioms determined as follows:

Q; Increment A Q; — F gt (¢;@a)
Q; Increment B Q; — g, (¢;@0)
Q; Decrement A (); — qt,at, q;
Q; Decrement B Q; +— gt bt g
Qi Fork Q;,Qr — Fq'.(q; % q)

Using linear implication, the (@); Increment B ();) transition may be viewed as
F ¢ lo(q; @b), i.e., from state @;, move to state ¢); and add one to counter B. The
other axioms in this translation may also be viewed in this way.

We will write C'™ to indicate a sequence of n C’s, separated by commas, as
follows: .

A
2T 0O

Since p* is an atomic symbol, the notation pJ‘3 will be used for (p)3, which is

simply pt, p*, pt.

Given a triple (Q;, z,y) of an AcM, we define the translation 0((Q;, z,y)) by:

A z
0(<Q27$7y>) = l_qz'J_vaJ_ 7bJ_y7(ZF

Thus all sequents which correspond to ACM triples have exactly one positive literal,
qr, some number of ats, and bts, the multiplicity of which correspond to the values
of the two counters of the ACM in unary, and exactly one other negative literal,
which corresponds to the state of the Acm.

The translation of an AcM ID is simply the set of translations of the elements of
the ID:

0({E17 E27 T Em}) = {0(E1)7 0(E2)7 ) G(Em)}
We claim that an acm M accepts from ID s if and only if every element of 6(s) is

provable in the theory corresponding to the transition function of the machine. We
prove each half of this equivalence in separate lemmas.

Lemma 3.5 (Machine =) An and-branching counter machine M accepts from
ID s only if every sequent in 6(s) is provable in the theory derived from M.

Proof. Given a halting computation of an AcM machine M from s we claim we
can build a proof of every sequent in 6(s) in the theory derived from M.
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M accepts from s only if there is some finite sequence of transitions from this
ID to an accepting I1D. We proceed by induction on the length of that sequence of
transitions.

If there are no transitions in the sequence, then by the definition of accepting
ID, s consists entirely of (Qf,0,0). We must show that the sequent

0 0
Fq#vaL 7bJ_ y qF

is provable in linear logic. This is immediate: we have 0 A’s and 0 B’s, that is, none
at all. Thus by one application of identity per sequent F ¢, gr, we have our proof.

If there is at least one transition in the sequence, we have to show that 6(s) is
provable. Since M accepts from ID {---(Q;, A, B)---}, and there is at least one
transition in the sequence, we know that there is some transition in M such that
ID — ID', and M accepts from ID’. We assume by induction that there is a linear
logic proof which corresponds to the accepting computation for 1D’

We now perform case analysis on the type of transition. There are five dif-
ferent types of instructions: Increment A or B, Decrement A or B, and Fork.
Since the two increment and two decrement instructions are nearly identical, we will
concentrate only on the cases concerning the counter A.

Q; Increment A ();: In this case, the first step in the halting computation has
the form

@A B) ) —={-(Q,A+1,B)-- ]

We assume by induction that we have a proof of ((Q;, A+1,B)) =+ q]J«‘7 aJ‘AH, bJ‘B7 qF.

We extend this proof into a proof of 8((Q;, A, BY) =F ¢, aJ-A, bJ-B7 gr by adding
a cut with an axiom, as follows.

L J_A-I—l J_B
H (]] y @ ) b y qF

— T
Fat (g @a) (gt at), et bt gp
F gt at? pt?

x

Cut

y4F

Note that the axiom I ¢, (¢; @a) is precisely the translation of the transition taken
by the machine, and therefore is an axiom of the theory.

Q; Increment B ();:  Analogous to above.



38 Decision Problems for Propositional Linear Logic

Q); Decrement A ();:  Since the A counter of the machine must be positive for
this instruction to apply, we know that the halting computation begins with the
transition

@A+ 1L,B) -} = A (@A, B) -

We assume by induction that we have a proof of qj‘,aJ‘A,bJ‘B,qF. As in the
Increment A case, we extend this to a proof of - ¢, aJ‘AH, bJ‘B7 qr by adding a

cut with the axiom corresponding to the transition taken by the machine.

——T A B
l_qu_7aJ_7qj |_q]4_7aj_ 7bJ_ yqF

L J_A-I—l J_B
+ q;,a ’ b y qF

Cut

(); Decrement B ();:  Analogous to above.

Q; Fork ();,(Q)x:  Here, the halting computation begins with the step
{<Q“A7B>} — {“‘<Qj,A7B>7<Qk7A7B>“‘}

We assume by induction that we have a proof of - q]J«-7 aJ-A, bJ-B7 qr,

and of - q,ﬂ‘, aJ‘A, bJ‘B7 qr, and we extend those proofs into a proof of - ¢, aJ‘A, bJ‘B7

qr -
A B A B
|_q]4_7aj_ 7bJ_ yqF l_q]i_vaJ_ 7bJ_ yqF
—T T A B
Fqg—v(qj@(ﬂc) + (qjj'_&qli_)vaj_ 7bJ_ y qF Cut
gty at bt g
Here = ¢, (¢; & qx) is the axiom which corresponds to the fork instruction. [

Lemma 3.6 (Machine <) An and-branching counter machine M accepts from
ID s if every sequent in the set 8(s) is provable in the theory derived from M.

Proof.

Given a set of proofs of the elements of #(s) in the theory derived from M, we
claim that a halting computation of the acM M from state s can be extracted from
those proofs. We achieve this with the aid of the cut standardization Lemma 3.1,
which in this case leaves cuts in the proof only where they correspond to applications
of ACM instructions. We may thus simply read the description of the computation
from the standardized proof.



Propositional Linear Logic is Undecidable 39

By Lemma 3.1, it suffices to consider standardized proofs. We show that a set of
standardized proofs of §(s) may be mimicked by the AcMm M to produce an accepting
computation from state s.

This proof is by induction on the sum of the sizes (number of proof rules applied)
of standardized proofs. Since an ACM state is given by a finite set of triples, and
all proofs are finite, we know that this measure is well founded. We assume that
any smaller set of proofs which all end in conclusions which correspond to a triple
(Q;, A, B) can be simulated by machine M.

We consider the proof of a single element of §(s) at a time.

Ifs={-(Qix,y)--}, then 8(s) = {---Fqg-, at", 0+ qp ---}.

We assume that we are given a proof of each element of the set 6(s), and we
analyze one of the proofs, all of which end in a conclusion corresponding to a machine

triple (Q;, z,y).

H qZ'J_v ava bJ_yv qr

Since this sequent is simply a list of atomic propositions, the only linear logic
rules which can apply to any such sequent are identity, some axiom, and cut.

Identity is only applicable when both = and y are zero, and ¢; = ¢g. In this
case, F ¢, qp already corresponds to the accepting triple (@, 0,0).

The only axioms which are identical to a sequent in 6(s) are those which corre-
spond to some § which is a decrement instruction that ends in ¢z. In this case, since
each decrement axiom in [§] contains exactly one occurrence of at or b, z = 1 and
y=0,or x =0 and y = 1. In either case, the AcM machine M need only perform
the decrement instruction 4, and this branch of computation reaches an accepting
triple.

The final possibility is cut, and by our standardization procedure, we know
that one hypothesis of that cut is an axiom from the theory derived from M, and
furthermore that the cut-formula in that axiom is not a negative literal.

Since there are only five types of instructions in an AcM; Increment A or B,
Decrement A or B, and Fork, there are only five different types of axioms in a
theory derived from any acm M. We now perform case analysis on the type of
axiom that was last applied in a proof.

F ¢, (q; @ a): If the last axiom applied is of the form F ¢, (¢; ® a), then it
corresponds to an Increment A instruction, and by standardization, we know the
cut-formula must be (¢; @ a) in the axiom, and that the proof must look like

—T -
Fat (g @a)  F(gFFat), et 0t gp

T 1% ;19 Cut
'_ina 7b y qF
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Since each other linear logic rule besides %, cut, identity, or axiom introduces some
symbol which does not occur in (qj‘%’aJ‘),aJ‘x,bJ‘y,qF, the derivation of this
sequent must end in one of these rules. Furthermore, there are two formulas in
this sequent which are not negative literals, so this sequent is not derivable using
only an axiom. Identity could not lead to this sequent, since the sequent contains
a non-atomic formula. By our standardization procedure, we know that each cut
must involve an axiom from the theory, and the cut-formula in the axiom is not a
negative literal. Inspecting the various types of axioms in the theory derived from
M, we see that all axioms contain one top level negative atomic formula ¢ for some
i. Since ¢i cannot be a directed cut-formula in a principal axiom, it must appear in
the conclusion of that application of cut. However, there is no such top level ¢; in
the sequent in question. Thus this sequent may only be derived by the application
of the @ rule. Therefore, we know the derivation must have the form:

+1
T H q]J'_7aJ_$ 7bJ_y7(ZF
gt (g @a) (g Fat),at b qp

H qJ_ aJ_QUv bJ_y7 qr

7 !

x

Cut

We know that the proof of - qj‘, aJ‘xH, b, ¢r may be simulated by the acMm by

induction, since it is the sequent 6((Q;, = + 1,y)), which corresponds to the triple
(Q;,z+ 1,y), and has a proof in linear logic of smaller size.

Therefore the machine M may emulate this proof by performing the AcM instruc-
tion corresponding to the axiom used (in this case an Increment A instruction),
and then continuing as dictated by the inductive case.

F g, (¢; @ a): Analogous arguments apply.

+ qf‘,aJ‘,qj: If the last axiom applied is qf‘,aJ‘,qj, which corresponds to a
Decrement A instruction, then by standardization, we know the cut-formula must
be g; in the axiom, and that the proof must be of the form

- T N
I—qf,a%% |_q]4_7aj_l’7bj_y7qF

1 1o+l .y
'_ina 7b y qF

Cut

By induction, the proof of - q]J«‘7 at” b gr can be simulated, since it is the sequent

0((Q;,x,y)), which corresponds to the triple (@Q);,z,y), and has a shorter proof in
linear logic.

Therefore the machine M may emulate this proof by performing the AcM instruc-
tion corresponding to the axiom used (in this case a Decrement A instruction),
and then continuing as dictated by the inductive case.
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Fqt,at, ¢;: Analogous arguments apply.

F g, (q; & qi): If the last axiom applied is F ¢}, (¢; & qx), which corresponds
to a Fork instruction, then by standardization, we know the cut-formula must be
(¢; @ qx) in the axiom, and that the proof must look like

Fat (g P ) F(gi&atd), et b gp

T 1% ;10 Cut
'_ina 7b y qF

Since each other linear logic rule besides &, cut, identity, or axiom introduces some
symbol which does not occur in F (qj‘&q,i‘), at”, b, qp, the derivation of this se-
quent must end in one of these rules. Furthermore, there are two formulas in the
sequent which are not negative literals, so this sequent is not derivable using only
an axiom. Identity could not lead to this sequent, since the sequent contains a non-
atomic formula. By our standardization procedure, we know that each cut must
involve an axiom from the theory, and the cut-formula in the axiom is not a nega-
tive literal. Inspecting the various types of axioms in the theory derived from M,
we see that all axioms contain one top level negative atomic formula ¢ for some 1.
Since ¢ cannot be the cut-formula in a principal axiom of a directed cut, it must
appear in the conclusion of that application of cut. However, there is no such top
level ¢; in the sequent in question. Thus this sequent may only be derived by the
application of the & rule. Thus we know the derivation to be of the form:

T l_q]J'_7aJ_$7bJ_y7qF l_q]i_7aL$7bJ_y7qF
Fat (4@ ar) F (gt &), a0 qp
H qz'J_vavabJ_y7QF

&

Cut

The proofs of - q]J«-7 at’ btY gp and - q,i-, at’ b+Y gr can be simulated on the ma-
chine by induction, since one is a sequent which corresponds to the triple (Q;, z,y),
the other corresponds to (Qk, z,y), and each has a proof in linear logic of smaller
size.

Therefore the machine M may emulate this proof by performing the AcMm in-
struction corresponding to the axiom used (in this case a Fork instruction), and
then continuing as dictated by the two inductive cases. [

From Lemmas 3.4, 3.2, 3.3, 3.5, and 3.6 of this section, we easily obtain our
main result:

Theorem 3.7 The provability problem for propositional linear logic is recursively
unsolvable.
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As mentioned earlier, linear logic, like classical logic, has an intuitionistic frag-
ment. Briefly, the intuitionistic fragment is restricted so that there is only one
positive formula in any sequent. In fact, the entire construction above was carried
out in intuitionistic linear logic, and thus the undecidability result also holds for
this logic.

In any theory derived from an AcM M, there is only one positive formula in any
theory axiom. Also, throughout a directed proof of 8(s) in such a theory, the only
positive atom which appears outside a theory axiom is gr. Thus any directed proof
of 6(s) in a theory derived from M is in the intuitionistic fragment of linear logic,
and along with a conservativity result not proven here, we have the following;:

Corollary 3.8 The provability problem for propositional intuitionistic linear logic
is recursively unsolvable.

In the proof of this corollary we make use of the conservativity property of full
linear logic over the intuitionistic fragment for any sequents occuring in a directed
proof of a translation of an ACM machine configuration. This conservativity is a
weaker property than full conservativity since sequents in such a directed proof
have a special form. In particular, they have no constants, and the right hand side
is always a single formula.

3.6 Example Computation

This section is intended to give an overview of the mechanisms we have defined
above, and lend some insight into our undecidability result, stated above. We present
a simple computation of an ordinary two counter machine with zero-test instruction,
a corresponding ACM computation, and a corresponding linear logic proof.

Repeating from the introduction, a key insight is that searching for a directed
proof of a linear logic sequent in a theory is analogous to searching for an accepting
ACM computation. A successful search is exactly an accepting computation.

Suppose the transition relation § of a standard two counter machine with zero-
test consists of the following;:

01 ::= Q7 Increment A ()
b9 ::= (3 Decrement A Qp
03 ::= Qo Zero-Test B ()3

The machine may perform the following transitions, where an instantaneous descrip-
tion of a two counter machine is given by the triple consisting of ();, the current
state, and the values of counters A and B.

<QI7 07 0> f1_> <Q27 17 0> f3_> <Q37 17 0> f2_> <QF7 07 0>
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This computation starts in state ()7, increments the A counter and steps to state
Q2. Then it tests the B counter for zero, and moves to ()3, where it then decrements
the A counter, moves to Qr, and accepts.

The transition relation § may be transformed into a transition relation ¢’ for
an equivalent and-branching two counter machine without zero-test. The modified
relation ¢’ (shown on the left below), may then be encoded as a linear logic theory
(shown on the right):

Transitions Theory Axioms
§ ::= QrIncrement AQ, Fqf,(2®a)
&) = (@3 Decrement A Qp F ¢, at,qr
&5 = @2 Fork 75,0Q)s -y, (2B @ ¢3)
" i1:= Zp Decrement A Zp F z3,at, zp
6y ::= Zp Fork Qr,QF - 25, (qF @ qr)

Notice how the first two transitions (J; and dz) of the standard two counter machine
are preserved in the translation from & to ¢’. Also, the Zero-Test instruction &3 is
encoded as three AcM transitions — 8%, &), and 5. The transition 65 is a fork to
a special state Zp, and one other state, (J3. The two extra transitions, 6} and &{,
force the computation branch starting in state Zpg to verify that counter B is zero.
Given the above transitions, the and-branching machine without zero-test may then
perform these moves:

(Qr,0,00} L {(Qs, 1,00} 2 {(Z, 1, 0), Qs 1, 00} £ {(Z5,0,0),(Qs, 1,00} L2
{<QF7 0, 0>7 <QF7 0, 0>7 <Q37 1, 0>}f2_> {<QF7 0, 0>7 <QF7 0, 0>7 <QF7 0, 0>}

Note that an instantaneous description of this and-branching machine is a list of
triples, and the machine accepts if and only if it is able to reach (Qr,0,0) in all
branches of its computation. This particular computation starts in state (J, in-
crements the A counter and steps to state (). Then it forks into two separate
computations; one which verifies that the B counter is zero, and the other which
proceeds to state (J3. The B counter is zero, so the proof of that branch proceeds by
decrementing the A counter to zero, and jumping to the final state Qp. The other
branch from state ()3 simply decrements A and moves to (Jr. Thus all branches of
the computation terminate in the final state with both counters at zero, resulting
in an accepting computation.

The linear logic proof corresponding to this computation is displayed in Fig-
ures 3.1 and 3.2, and is explained in the following paragraphs. In these proofs, each
application of a theory axiom corresponds to one step of ACM computation. We
represent the values of the ACM counters in unary by copies of the formulas a* and
bt. In this example the B counter is always zero, so there are no occurrences of bt.
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The proof shown in Figure 3.1 of F z%,at, ¢z in the above linear logic theory
corresponds to the AcM verifying that the B counter is zero. Reading the proof
bottom up, it begins with a directed cut. The sequent b 2z, ¢r is left as an inter-
mediate step. The next step is to use another directed cut, and after application
of the & rule, we have two sequents left to prove: - ¢f, ¢r and & ¢f, gr. Both of
these correspond to the AcM triple (Qr,0,0) which is the accepting triple, and are
provable by the identity rule. If we had attempted to prove this sequent with some
occurrences of b+, we would be unable to complete the proof.

I
"f]z%vf]F "f]z%vf]F&
, g lerdar)® = (95 & g5). qF
Fzh,at, 2p® F2g, qr

Cut

Cut

T
l_ZBva yqF

Figure 3.1: Zero-test proof

! T

l_qii_7aJ_7QF2 "f]z%vf]F

Cut
/ Fzg,at,qp Fgs,at, g N
Fay. (2@ q3)U3 - (Zﬁ &q3),at,qr Cut
/ -y, at.qr
i (o) g Vat)ar .
-t ar

Figure 3.2: Proof corresponding to computation

The proof shown in Figure 3.2 of q}‘, gr in the same theory demonstrates the
remainder of the ACM machinery. The lowermost introduction of a theory axiom, cut,
and % together correspond to the application of the increment instruction §{. That
is, the qF has been “traded in” for g3 along with a*. The application of a directed
cut and & correspond to the fork instruction, 85 which requires that both branches
of the proof be successful in the same way that and-branching machines require
all branches to reach an accepting configuration. The elided proof of - 2z, at, qp
appears in Figure 3.1, and corresponds to the verification that the B counter is zero.
The application of cut and identity correspond to the final decrement instruction of
the computation, and complete the proof.



Chapter 4

Noncommutative Propositional
Linear Logic

The following may be called the unrestricted exchange rule:

E FX. 7, A

FX,A?
Since sequents are treated as multisets of formulas in linear logic, the E rule is
implicitly present in full linear logic. This structural rule allows sequents to be
permuted arbitrarily, making linear logic a commutative logic. More specifically,
F(A®B)lo(B® A) is derivable in linear logic using exchange, as are the analogous
sequents for all the other binary connectives of linear logic (%, &, & ). Since
sequents are considered to be implicitly commutative, the E rule does not explicitly
appear in proofs or lists of proof rules for linear logic. However, the absence of the
E rule (treating sequents as lists of formulas) drasticly alters the set of provable
sequents in linear logic. In fact, without the exchange rule, - (A ® B)lo(B® A) is
not derivable. Thus the E rule forces @ (and other connectives) to be commutative.

Noncommutative propositional linear logic is linear logic where the unrestricted
exchange rule is omitted, or equivalently, where sequents are treated as being lists
instead of multisets. This entire family of logics is quite speculative, ad hoc, and
most formulations are original to this paper. Thus one should not take too seriously
any of the results of this chapter.

The family of noncommutative linear logics may be derived from linear logic
by treating sequents as lists of formulas, instead of multisets. Thus the order of
formulas in a sequent becomes important. However, the immediate resulting system
is unsatisfying in that the reusable formulas (those marked by 7) are exactly the ones
which can be contracted and weakened in linear logic, and thus should be permitted
the freedom of exchange, even in the noncommutative versions of linear logic.

45



46 Decision Problems for Propositional Linear Logic

There are a whole family of logics which could result from various additions of
restricted exchange to noncommutative linear logic. The main point of difference
within this family is the exact formulation of the rules of inference. However, most
members of this family of logics have an undecidable provability problem.

In fact, the multiplicative and reuse operators are sufficient to encode undecid-
able problems in most of these logics. In other words, the constants and additive
connectives are not necessary in order to simulate a Turing machine in noncommu-
tative linear logic, although they appear to be necessary in (commutative) linear
logic. Below we present the detailed proof of undecidability for a particular logic we
will call NcL, which is actually the multiplicative and reuse fragment of a member
of the noncommutative linear logic family.

David Yetter [Yet90] has also studied a variant of noncommutative linear logic.
In his work, he considered a system with two new modalities, & and K, which
are related to ? and !. The k& modality essentially marks those formulas which are
free to be permuted, despite the noncommutativity of the logic in general. The
reusable formulas (marked with ?) are allowed to permute, but are also allowed
the freedom of contraction and weakening, while the & and K formulas are not.
We find no compelling reason for these extra connectives, except to facilitate the
encoding of (commutative) linear logic in noncommutative linear logic by prefixing
every subformula with k& or K. Based on our results below, other encodings of
linear logic into noncommutative linear logic without k& and K exist. Thus we do
not include any new connectives or modalities in our logics presented below, and
allow only the reusable ? formulas to permute.

We now focus on one particular member of the family of noncommutative linear
logics. This logic will include only the multiplicative and reuse connectives of linear
logic, excluding the additives. In order to mesh smoothly with the earlier chapters
we will use the proof rules as presented in Appendix B, but add two new rules, one
which allows ? formulas to permute, and one which allows an entire sequent to be
“rotated”. Thus one may think of a sequent as a circular list of formulas. We call
this logic NCL for “circular logic”.

4.1 NCL Proof Rules

The system NcL includes the I, Cut, ®, ¥, W, 7C, 7D, and 1S rules of linear logic,
with each sequent treated as a circular list of formulas instead of as a multiset. The
following two rules of inference are also included in NCL:

7,574 F7,A

? R N S IR R
S A7

These rules allow one to permute and exchange the reusable (?) formulas arbitrarily,
and to rotate the entire sequent of reusable and non-reusable formulas. As our
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previous discussions of linear logic accepted exchange as “part of the system” by
considering sequents to be multisets of formulas, we will now consider the exchange
rules 7E and R implicitly, by regarding sequents as circular lists of linear logic
formulas.

4.2 NCL i1s Undecidable

We will show the word problem for semi-Thue systems has a straightforward en-
coding in NCL. Since we have already shown that full linear logic is undecidable,
the fact that full noncommutative linear logic is undecidable is not too surprising.
But since NCL is a fragment of noncommutative linear logic which does not contain
the additive connectives, the earlier construction of and-branching two-counter ma-
chines in full linear logic would fail in NCL. However, the and-branching used in that
construction was required in order to encode zero-test in a commutative setting. In
a noncommutative setting a zero test operation may be encoded easily without any
sort of and-branching. This situation is analogous to that for commutative versus
noncommutative semi-Thue systems, where the noncommutative version allows the
encoding of a zero test leading to undecidability, whereas the commutative version
is unable to simulate zero test and has been shown to be decidable [Kos82]. In fact,
since NCL closely resembles semi-Thue systems, we will demonstrate undecidability
of NCL by a reduction from semi-Thue systems.

Although the reduction is simple, the proof of its correctness requires some
elaborate machinery. In particular the proof of cut-elimination given in Appendix A
has been given in such a way that it applies to NCL as well as linear logic.

Lemma 4.1 (Cut Elimination Revisited) If there is a proof of sequent =7 in
NCL, then there is a cut-free proof of =7 in NCL.

Proof. The cut-elimination theorem for full linear logic in Appendix A is presented
in a way which gives a cut elimination procedure for NcL. The only violations of
the list-ordering of rules are those which correspond to the permutation of reusable
formulas, such as in the case of principal cuts of @ versus !S. However, these cases
are legal NCL cut proof steps, since we are assuming the NCL proof rules TE and R
are built in to the NcL system. Thus the cut-elimination procedure for full linear
logic may be employed to remove cuts from NCL proofs. [

Corollary 4.2 (Subformula Property Revisited) Any formula in any cut-free
NCL proof of F 1 is a subformula of 7.

Proof. Immediate. n
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4.3 NCL Theories

We will define theories as for the commutative case (see Section 3.2), and show that
cut-standardization (see Lemma 3.1) again holds in this logic.

Formally, a NCL aziom may be any NCL sequent of the form - C| pi,pt, ...,pf‘n,
where (' is any NCL formula not including modal operators (? or !), and the remain-
der of the sequent is made up of negative literals. Any finite set of NCL axioms is a
NCL theory. For any theory T, we say that a sequent F 7 is provable in T exactly
when we are able to derive = 7 using the standard set of NCL proof rules and NCL

axioms from T'. Thus each axiom of T is treated as a reusable sequent which may

occur as a leaf of a proof tree. As before we will write WT for a leaf sequent which
is a member of the theory T.

We recall the definition of a directed cut: a directed cut is one where at least
one premise is an axiom F ), pi,pt, ...,pf‘n in T, and (' is the cut-formula in that
axiom. We call any axiom premise of a directed cut where the cut-formula in that
axiom is not a negative literal a principal aziom of that directed cut. By definition,
all directed cuts have at least one principal axiom. A cut between two axioms is
always directed, and if the cut-formula of such a cut is non-atomic, that cut has two
principal axioms. A directed or standardized proof is a proof with all cuts directed.

Lemma 4.3 (NcL Cut Standardization) If there is a proof of + 7  in theory
T in NCL, then there is a directed proof of F 7  in theory T in NCL.

Proof. The proof of cut-standardization in full linear logic (Lemma 3.1)
applies to this case with little modification. In fact there are fewer cases here since
the constants and additive connectives are not present in NCL. [

The earlier translation from theories into pure linear logic is also a translation
of NCL theories into pure NCL. For convenience, we repeat the definition here: The
translation [T] of a NCL theory 7" with k axioms is the list of NCL formulas:

[{tlv ISTRRRE tk}] :?[tl]v ?[tQ]v Ty ?[tk]
where [t;] is defined for each axiom ¢; as follows:
[l_Cvpi_7plﬂ_7 7pj—] é (Cygpi_?gpg_?g e ?gpj—)J_ = (pz UK ®Pb ®pa ®CL)
Note that the pj"s are negative literals.

Lemma 4.4 (NcL Theory =) For any finite set of axioms T, F 7 is provable
in theory T only if +[T],7 is provable.

Proof. The proof of Lemma 3.2 carries over to NCL without modification, since
the 7E and R rules are considered implicit. [
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Lemma 4.5 (NcL Theory <) For any finite set of axioms T, F 7 is provable
in theory T if F[T],?7 is provable.

Proof. Similarly, the proof of Lemma <« 3.3 given earlier applies here without
modification in the system where the 7E, R rules are considered part of the NCL
system. ]

4.3.1 Semi-Thue Systems

A semi-Thue system T over alphabet ¥ is a set of pairs (¢ — y), where z and y are
strings over Y. Fach pair in 7T is called a production, and we use them as rewrite
rules. We call z the left hand side and y the right hand side of a production (xz — y).
U rewrites to V in system 7 with a production (¢ — ¢’) if U and V are words over
Y., and there exist possibly null words r and s such that U = rgs and V = r¢’s. We
write

U=V

if U rewrites to V using some production. We use the notation
U=*V
if there exists a (possibly empty) sequence of words Uy, - -, U, such that
V= —=U— = U,—=V

The word problem for a semi-Thue system 7 the problem of determining, for a
given pair of words U and V', whether or not U="*V in system 7. This problem is
known to be undecidable [Pos47]. The problem remains undecidable if we add the
condition that V' be a singleton (word of length one) n such that n does not occur
in U or in the right hand side of any production, and only appears as a singleton
on the left hand side of productions. This restriction is analogous to requiring that
a Turing machine have a unique final state without any outgoing transitions. The
semi-Thue word problem also remains undecidable if there is a special end marker
symbol m which is preserved by any rules which involve it except rules involving n.
That is, the initial word U begins with a symbol m which does not occur anywhere
else in U, and every rule in which m appears is of the form (mw; — mw;) or is of
the form (mw; — n) for some words w; and w; not containing m. This restriction
is analogous to requiring that a Turing machine have only a one-way infinite tape.

To show that the above restrictions preserve undecidability it suffices to give a
transformation from a general word problem to a word problem of the restricted
class. Specifically, given a word problem from U to V, with set of productions 7,
we may add the production mV — n where m and n are new symbols which are
added to X. We then ask the new word problem from mU to n (with the new and
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the original productions), in the alphabet ¥ U {m,n}. This problem is solvable if
and only if the original problem is. However this new problem is of the restricted
class defined above.

4.4 From Semi-Thue Systems to Noncommutative Lin-

ear Logic
We overload the definition of translation [ | to include the case of words — the
translation of a word [ab---z] is the list of NcL formulas pi‘,pj‘, -, pt. We also

define [ab---2]* to be the NcL formula p. @ --- @ p, @ p,. Finally, as a notational
convenience, we let (7 ) designate ambiguously any formula which could be derived
from 7 by applications of the % rule. In other words, v(?7) is the result of replacing
some number of commas separating formulas in 7 by % .

Given a Semi-Thue system 7 = {(a; — b1), (ag — b2) - - - (ar, — bi)}, we define
the NcL theory derived from T as the following set of sequents:

- [aq], [b1]*
F [as], [ba]*
- [ax), [bi]*

For a word problem P consisting of the pair U, V we define the translation 7(P) of
this problem into a NCL sequent as:

=0, VI

Now, we show that the word problem P is solvable within system 7 if and only
if the translation 7(P) is provable in the theory derived from 7. We state the two
parts of the equivalence as Lemmas 4.6 and 4.7.

Lemma 4.6 The word problem P is solvable in the semi-Thue system T only if
7(P) is provable in the theory derived from T.

Proof. We proceed by induction on the length of the derivation of U=*V.
If the derivation is trivial, that is U = V', then we must show that the sequent

=vILvIt

is provable. Since we assume the word problem has the restricted form with V
a singleton, this sequent actually has the form  [n], [n]t, which by definition of
notation is - p-, p,. This is provable by identity.
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Suppose the derivation of U=="V is a nonempty sequence:
l=U=lU= - = U,=V.

Since U=Uy, there is some rule (¢ — ¢’) in T, and possibly null words r and
s such that

[U] [rgs] = P bGPy P Pa
(U] = [rgslt = [s]*g]H[r]*

(1] = [rg's] = pi...pipz...pap;...psi
[ = [rg's]t = [s1Mg1M )"

By induction we assume that we have a proof of  [U],[V]+, and construct from
this a proof of the following form:

In this partial deduction there are as many applications of the % rule as there are
separate formulas in [¢']. This is because each application of % replaces a comma
by a % in the y([¢]) formula.

The following concrete example illustrates the intended simulation. Assume that
the first rule applied in the sequence of reductions is (¢d — xy). Then g in the above
schema is cd, and ¢’ is zy. Also, [g] is pt, pT, [¢'] is p;-,p;-, and v([¢']) is (pr 78’]);-).
Also assume that r is mab, s is ef, and [V]* is p,.

= Dins Das Py P Dy s Dy PF s P
T 3
Fodopg (py @pe) F g pE oy (PED P pE pF P out
= Pis D P D2 D P PF P

Thus, by induction, given a sequence of reductions which solves a word problem,
we may simulate the solution in NCL. [

Lemma 4.7 The word problem P is solvable with productions T if T(P) is provable
in the theory derived from T .



52 Decision Problems for Propositional Linear Logic

Proof. Weremember that the target word V' of the word problem is a singleton
and that thereis a special marker symbol m at the beginning of U which is preserved
by all the productions in 7.

The construction of a rewrite sequence begins with any proof of 7(P), and then
produces a directed proof by cut-elimination. We may read any directed proof of
7(P) as a solution to the word problem P, since each directed cut corresponds
directly to the application of one reduction in the semi-Thue system.

In more detail, given a proof which ends in a sequent 7 where - 7 is equal to
7(P), possibly with some of the commas in 7(P) replaced with %, we apply the NcL
cut-standardization Lemma 4.3, and obtain a directed proof of - 7. We now prove
by induction on the length of the directed proof that this proof may be mimicked
by the corresponding semi-Thue system.

In the case that = ? is equal to - [V],[V]t, (for example, this proof may be
a single application of the identity rule) then the solution to the word problem is
trivial, i.e., no productions are required, since U = V.

In the induction step, = 7 cannot be provable with the identity rule. Inspecting
the other rules of NcL, we see that ® and the 7 and ! rules are inapplicable, since
the conclusion sequent does not contain any occurrences of ®, 7, or I. If & is the
last rule applied in the proof, then we appeal to the induction hypothesis, since
then we simply have replaced fewer commas with %4'. The only remaining case is
Cut, and by cut-standardization, we know one hypothesis is an axiom, and the
cut-formula in that axiom is not a negative literal. Inspecting the axioms in the
theory corresponding to the productions of a semi-Thue system, we see that the
cut-formula must always be a formula [¢/]*. This formula is built up from positive
literals connected by ®. The cut-formula in the other hypothesis then must be built
from negative literals connected by % .

Since the start marker m on the initial word U is preserved by each production
in 7, we know that the NcL theory derived from 7 has a special property: the
translation p,, of m may not be a subformula of the cut-formula of a directed cut
unless it also appears in the first non-principal position following the cut-formula
in the axiom. Thus the start marker participates in a directed cut if and only if it
is the first symbol in the sequence of symbols replaced by the cut. It follows that
the translation p,, of the start marker is preserved in any directed proof of any well
formed word problem. This allows us to conclude that no rule is applied “around
the end” of a word through some convoluted use of the rotation rule, and thus
that the semi-Thue system may mimic the NCL proof by applying the corresponding
production to the string. By induction, we have our result. [

Theorem 4.8 The provability problem for NCL is recursively unsolvable.

Corollary 4.9 The provability problem for NCL augmented with the additive (& and
@) and constant (L, 1, and T ) rules is recursively unsolvable.
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This corollary follows from the theorem by a conservativity result which is easily
derived from the cut-elimination and subformula properties of NCL.

4.5 Other Noncommutative Logics

As mentioned previously, there is a family of logics which share a strong resemblance
to NCL. All of the ones we can sensibly imagine have undecidable decision problems.

In all formulations of noncommutative linear logic the key rule is ®. In a sense
which we make more precise later, the constants and additive connectives of linear
logic are inherently commutative. Also, the % rule follows the ® rule in its commu-
tativity. Thus noncommutative linear logic is quite sensitive to the exact formulation
of ®. However, there are some minor variations on the syntactic presentation of the
other proof rules which first bear some notice.

4.5.1 Rotate Rule versus Embedding

One motivation for the particular formulation of NCL studied in the previous section
(in particular, the introduction of the R rule) is so that we may make use of the
same formulation of linear logic rules given in Appendix B, and refer to the previ-
ously demonstrated lemmas about linear logic with as little modification as possible.
Without the R rule we would have to modify the formulation of other rules, such
as the @ rule, to allow its application within a sequent, instead of requiring its
application at one end of a sequent. To see this, compare the original version of %
on the left with the modified version on the right below:

Y, A, B Y, A, B,?

Y FSAvB) T (ANB)T

X2

We will call the %' 2 rule the embedded equivalent of the % rule. The use of 42 in
noncommutative linear logic without the R rule directly corresponds to the use of
X in NcL with R rule considered part of the system. We will use ENCL to stand for
the system derived from NCL by removing the R rule, and replacing all other rules
by their embedded equivalents, and adding a symmetric identity rule.

Lemma 4.10 A sequentt 7 is provable in NCL if and only if it is provable in ENCL.

This lemma follows by induction on the length of proofs, and from this lemma
we obtain undecidability for this system.

Corollary 4.11 The provability problem for NCL without the R rule, and with every
other rule replaced by its embedded equivalent is recursively unsolvable.
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4.5.2 NCL without 7E

The earlier proof of undecidability fails in NCL without the ?E rule, since some of the
requisite lemmas about theories fail. However, we may omit this rule, and replace
?7C with the following 7C2 rule to restore our results, and many other properties of
noncommutative linear logic.

Y, 74,74 FX,74,7,74
ESEY 7,74

7C 1C2

This contraction rule essentially states that what may be proven from two not nec-
essarily contiguous assumptions of a reusable formula, may be proven from one
assumption of that reusable formula. It is the case that the ?C2 rule is derivable
from the ?E and ?C rules in NCL.

Lemma 4.12 A sequent =7 is provable in NCL if and only if it is provable in NCL
without the TE rule, and with the ?C rule replaced by 7C2.

This lemma may be proven by induction on the length of proofs. Essentially,
in NCL one may contract and then exchange the reusable formula to any desired
position, while in the other system one may contract the formula directly into posi-
tion. On the other hand, to permute a reusable formula in NCL, one simply applies
exchange, while in the other system one must contract the formula into position,
and then weaken away the formula in its previous position. Using this lemma, we
may obtain the following undecidability result.

Corollary 4.13 The provability problem for NCL without the TE rule, and with the
?C rule replaced by TC2 rule is recursively unsolvable.

4.5.3 Alternate ®

There are two quite reasonable versions of the @ rule in noncommutative linear logic,
one as used above defined in Appendix B, and the other using a different sequent
order in the conclusion:

-3, A - B,? YA :
FX,(A® B),? FX,7,(A® B)

2

The two formulations are equivalent in the presence of unrestricted exchange (com-
mutative linear logic), but are subtlely different in the context of noncommutative
linear logic. In a noncommutative linear logic with @ replaced by ®2, the defi-
nition of negation must change. In particular, the negation of the multiplicative
connectives would be defined as follows:

(A@B)* £ ALxBL (AXB)t 2 Atg Bt
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We define the translation o(?7) of a sequent ? to be the sequent 7 with all
occurrences of formulas of the form A ® B replaced by B ® A.

Lemma 4.14 A sequent = 7 is provable in NCL if and only if o(?) is provable in
NCL with the ® rule replaced by the 2 rule

Lemma 4.15 A sequent = o(?) is provable in NCL if and only if 7 is provable in
NCL with the ® rule replaced by the 2 rule

This lemma follows by induction on the height of proofs.

Lemma 4.16 The provability problem for NcL with the @ rule replaced by the @2
rule and alternate definition of negation is recursively unsolvable.

This lemma follows from the above two, which simply state that by reversing
the order of all tensor (®) formulas, we pass from NCL to this new logic, and back
again. Thus a decision procedure for one implies a decision procedure for the other,
and by Lemma 4.8, we know there is no decision procedure for NCL.

4.5.4 Mix and Match

The above modifications of NCL do not interfere with cut-elimination, nor with the
basic undecidability result for NCL. It is also the case that even in combination the
above three modifications, (R versus embedding, 7E versus 7C2, and @ versus ®2)
do not interact. That is, any combination of these modications retains the character
of NCL, including the properties of being undecidable, and having a cut-elimination
theorem.

4.6 Degenerate Noncommutative Linear Logics

Some variations on the NCL system are not as benign as the above. In fact, it is much
easier to create nonsense than a coherent logic by altering proof rules haphazardly.

The main focus of this section is to consider plausible but degenerate variants
of the rules based on interleaving the circular orders of hypotheses.

4.6.1 Intermingling @

At first glance, it might seem interesting to study the systems obtained when binary
rules in NCL are replaced with rules which allow intermingling of the hypotheses in
the conclusion. For example,

Y, A - B,?
A, (A® B)

®3

where A is some interleaving of 3 and ?
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Somewhat surprisingly, the system obtained by replacing @ with ®3 in NCL is equiv-
alent to a commutative version of NCL.

Lemma 4.17 A sequent = 7 is provable in the system obtained by replacing ® by
®38 in NCL if and only if that sequent is provable in the system obtained by adding
the unrestricted exchange rule to NCL.

This lemma follows by induction on the length of cut-free proofs. Formally, we
need a cut-elimination procedure for both logics. The cut-elimination procedure for
full linear logic suffices to eliminate cuts from NCL with unrestricted exchange. Cut-
elimination for NCL with @ replaced by @3 is possible to prove directly, although the
principal ©3 versus 4 case is quite difficult. Cut-elimination in this case may be
accomplished with the addition of an “intermingling cut” rule which along with the
nonintermingling cut rule may be eliminated from any proof. The key reason this
lemma holds is that ® and % are the only binary connectives of NcL and allowing
(A® B) to be equivalent to (B ® A) in this context causes (A% B) to be equivalent
to (BY A).

Corollary 4.18 A sequent & 7 is provable in the system obtained by replacing
by ®3 in NCL augmented with additives and constants if and only if that sequent
is provable in the system obtained by adding the unrestricted exchange rule to NCL
augmented with additives and constants.

This corollary follows from the fact that the constants and additive connectives
are inherently commutative, and may be proven by induction on the length of proofs.

4.6.2 Intermingling Cut

A problem similar to that which occurs with ®3 arises if we allow the Cut rule to
interleave its conclusion. Define Cut2:

Y, A -7, AL
A

Cut2 where A is some interleaving of ¥ and ?

As for the previous alteration, the system NCL with Cut replaced by Cut2 would
be commutative. We can achieve the effect of the unrestricted exchange rule using
the Cut2 rule:

FY,7,A R A AL
Y, A7

Cut2

Note that for any formula A, there is always a proof of - A, A in noncommutative
(as well as commutative) linear logic. The above partial deduction shows that
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unrestricted exchange may be simulated in noncommutative linear logic with Cut
replaced by Cut2. Somewhat more concretely, the following shows a deduction of
a sequent which is not derivable in NCL:

I I
Fpupr Fpaps )

FpL (@ pr)pe et
= (pt @), p1y 2

Notice in the final conclusion that p; and p, have changed places, in a way impossible
without the use of the Cut2 rule in NcL. Thus using Cut2 we could prove any
sequent which is provable in the commutative fragment of linear logic corresponding
to NCcL. However, it would be impossible to prove some such sequents in NCL without
Cut2, and thus cut-elimination fails in this logic.

However, since there is a proof of a sequent in this logic if and only if there is a
proof of that sequent in (commutative) linear logic, we may as well use linear logic,
which does have a cut-elimination theorem.



Chapter 5

The Multiplicative Fragment

We now consider the fragment of linear logic which includes only the multiplicative
connectives. In Section 5.1, we show that the decision problem for this fragment is
in NP, and in Section 5.2 we show that the multiplicative fragment with a rule of
unrestricted weakening is NP-complete.

5.1 Multiplicatives

We have two results which characterize the complexity of this fragment incompletely.
The exact complexity of this fragment is one of the significant open problems. In
short, we find that this fragment is in NP, and if we introduce the structural rule of
unrestricted weakening into this fragment, it becomes NP-complete.

The pure multiplicative fragment (without additive connectives or storage oper-
ators) is the simplest fragment of linear logic that we have investigated.

Theorem 5.1 Multiplicative linear logic is in NP.

Proof. The proof is straightforward: Each connective in the conclusion sequent is
the principal connective in exactly one proof step in any cut-free proof, thus giving
a polynomial bound on the size of cut-free proofs. Thus the entire proof may be
guessed in polynomial time. [

5.2 Direct Logic

We have been unable to prove the multiplicative fragment of linear logic NP-complete.
We now believe that this may be difficult, due to the lack of redundancy in this prob-
lem statement [GJ79]. As part of our investigation of the need to discard arbitrary
resources to achieve NP-completeness, we studied propositional multiplicative linear
logic with unrestricted weakening, but without contraction. We will call this direct
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logic or DL, as it is similar to the direct logic of [KW84]. DL is also considered in
considerable detail in Bellin [Bel90]. The rules for this system are the identity and
cut rules, the rules for the multiplicatives, constants, and the structural rule W of
unrestricted weakening.

F X
w =
FAY
We first demonstrate cut-elimination for DL, yielding consistency, which will
facilitate our later proof of NP-completeness.

Lemma 5.2 A sequent is provable in DL if and only if it is provable in DL without
using the cut rule.

Proof. This lemma, as the cut-elimination theorem for full linear logic, is proven
by giving a cut-elimination procedure. This procedure takes any proof as input, and
produces a cut-free proof of the same sequent.

We modify the procedure given in Appendix A. More specifically, we modify
the procedure given in Lemma A.1 to handle the extra cases brought about by the
presence of weakening, and we define the formula A4 in the above presentation of W
to be the principal formula of W.

Thus we need to present two reductions, one in the case that the cut formula is
principal, and in case it is not principal.

We will follow the notation used in Appendix A, where Cutx* is used to ambigu-
ously refer to the Cut rule or the extra rule of inference introduced in the appendix
called Cut!.

First, we consider the non-principal W case:

Y, A : FY, A F7, AL

. : — Cut*
FY A, BY +7,4L S "
Cutx W
FY.7. B FY.7. B

The above reduction is very similar to the case of non-principal ?W.
In the case of principal W, we have the following reduction:

FX EYw
Fe, AV b7,AL :
Cutx
ik FoTY
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By combining these two reductions with the procedure given in Lemma A.1, we
have a cut-reduction lemma for DL.

Fortunately, Lemma A.2 and Theorem A.3 then follow without modification.
Formally, we must show that although the lemmas in Appendix A apply to full linear
logic, they would not take a proof in DL into a proof outside DL. By inspection of
the reductions used for the subset of the connectives of DL, we see that this holds.

Therefore, given any DL proof of sequent — 7 in theory T, we can construct a
cut-free proof of = 7 in theory T. [

Lemma 5.3 The provability problem for DL is in NP.

Proof. The membership in Np of the provability problem for pL follows from a
polynomial bound on the size of cut-free DL proofs. Each subformula occurrence in
the conclusion is analyzed in at most one rule application in any cut-free proof of that
conclusion. Thus, given a provable sequent, it is possible to nondeterministically
generate and check a cut-free proof in polynomial time. [

The proof of the Np-hardness of provability for DL is obtained by a transformation
from the Vertex Cover problem which can be stated as: Given a graph G = (V, F)
and a bound k, find a subset U of k or fewer vertices from V such that every edge in
F is incident on some vertex in U. Given an instance of the Vertex Cover problem,
we construct y(V, E, k), a DL sequent which is provable exactly when (V, ') has a
vertex cover of fewer than k vertices. Let deg(v, E') denote the degree of vertex v,
i.e., the number of edges in F incident on v. The definition of v is given by

v(V,E,k) = Fm* ¢(V,E) e(E)
OV, E) = Nyev(m™ @2y ¥ ... Nay))
N— —

deg(v,E)
6(Ey) = ®(u,u)€E($u ¥ $U)

For example, given V = {a,b,c,d} and F = {(a,b),(¢,d),(b,c)}, and k = 2, the
sequent y(V, k) is

Fom,m,
mt @y, mt @ (ep Vo), mt @ (ef Fab), mt @ ey,
(2o ap) @ (2 Fag) @ (xp V)

A vertex cover in this example is obviously {b,c}. The corresponding deduction
in pL of y(V, E k) can be constructed in stages. In the first stage, the formula
encoding vertices ¢ and d are weakened and the formulas encoding vertices b and ¢



The Multiplicative Fragment 61

are reduced as shown below.

Fad, ol ot ol o(F)
+ xé-,wé-,(xé—%’xé—),e(E)yg
+ m,mJ-I + (xé-%’wé-),(wé—%’xé—),e(E)yg
WI Fm, (e Bat),mt @ (2. B a.),e(E)
Fmym,mt @ (o Fab),mt @ (zr Nal), e(F)

Fm,m,mt@at, mt @ (@t Nad),m+ @ (eFBal),mt @at, (F)

The remaining subgoal in the above deduction can be proved in the next stage.
The vertex literals corresponding to the vertex cover can be paired off with literals
in the edge encodings to demonstrate that there is at least one vertex literal for each
edge.

I — 1
. Fal . Fap, @
- —_—W
T W
by, @ Fal oz, xy Faib, ok, ap, .
T w L ¥ T .1 3
F oy, Ta, T Fat(z.Yag) Fapy, el (ep B ae)
I ¥ L 1 1
Fapy, (v X ap) Fay,er, a0, (2. ¥ ag) @ (xp ¥ xe)

Fat el et ol (2, V) @ (2. B wg) @ (0, B w,)

The next three lemmas are stated without proof. They are used in the proof
of Lemma 5.7 to establish that when a vertex cover for V,F, and k exists, then
v(V, E, k) is provable.

Lemma 5.4 Ifl < k, then there exists a deduction of = mF, 7 from Fmt, 7.

Lemma 5.5 Given V, FE, and U C V', let 7 be the multiset containing deg(u, F)
occurrences of xt for each w in U, and let | be |U|. There is a deduction of +

mt, o(V, E), A from =7, A.

Lemma 5.6 If 7 is a multiset of literals such that for each (u,v) in F, there is a

distinct occurrence of either x- or xl in 7, then =7, ¢(F) is provable.

Lemma 5.7 If G = (V,F) has a vertex cover U of k or fewer vertices, then
v(V, E,k) has a DL proof.

Proof.  Let [ = |U| be the cardinality of U. By Lemma 5.4 and the defini-
tion of v, the required conclusion, F m*, #(V, E),e(F), can be deduced from -
m!, ¢(V, E),e(E). Let 7 be the multiset of literals containing deg(u, F) occurrences
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of xt for each w in U. By Lemma 5.5, there is a deduction of = m!, ¢(V, F), (F)
from & 7, ¢(F). Since deg(u, E) is the number of occurrences of z, in ¢(£), the
sequent - 7, ¢(F) is provable by Lemma 5.6. [

Lemma 5.8 states some straightforward properties about weakening, and is given
below without proof (see [Bel90], page 138). A formula occurrence is said to be
weakened in a proof if it is the principal formula of an application of the weakening
rule. The lemma essentially captures the idea that if all subformulas of a formula
occurrence are weakened, then the formula itself can be weakened instead; and if
even a single conjunct in a conjunction is weakened, then the entire conjunction can
be weakened instead. Lemma 5.8 is used repeatedly in the proof of Theorem 5.9 to
maximize the size of any formulas that are weakened in a proof.

Lemma 5.8 For any proof © in DL of a sequent = 7, one can obtain a proof 8 of
F 7 such that

1. for any formula occurrence (A @ B), neither A nor B is weakened in 0
2. for any formula occurrence (A% B), A and B are not both weakened in 8, and

3. any weakening of formula occurrences in T occurs below any application of
non-weakening rules in 6.

Lemma 5.9 Given a graph G = (V, F) and a bound k, if v(V, E, k) is provable in
DL then G has a vertex cover of size less than k.

Proof. Given a proof of y(V, E k), first take the set U of vertices u such that
F 2y, 2L is an axiom in the proof of v(V, E, k). There are two possible ways in
which U might not be a vertex cover. One way is if for some edge encoded by
(2, % xy), neither z, nor z,, appears in an axiom. Then the literals z,, and z, must
have been subformulas of some weakened formulas. By Lemma 5.8 the given proof
can be transformed to one in which both z, and z, are not weakened, and neither
is (2, N x,) since it is a conjunct. Therefore the entire edge encoding ¢(£) would
have to be weakened below any non-weakening rules, and as a result = m*, ¢(V, F)
would have to be provable. Since F m*, ¢(V, ) contains no positive occurrences
of literals z, for v in V, a proof of - m* #(V, E) cannot contain axioms of the
form - z,,x1. Again, by Lemma 5.8, each formula in ¢(V, ') must be weakened
below any application of logical rules. Such a proof would contain a deduction of
F mF. However, F m” is unprovable for any k, contradicting the assumption that
F~(V, E, k) is provable.

The only remaining way in which the set U with [ = |U| might fail to be a vertex
cover is if [ > k. The negative literals 2 in axioms F z,,2} only occur in the
formulas in ¢(V, F). By Lemma 5.8, the given proof can be transformed to a proof
¢ in which [ of the formulas in ¢(V, F) are not weakened, because each formula in
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o(V, E) contributes at most one vertex to the set U. Since each unweakened formula
in #(V, E) is of the form m* @ A for some A, Lemma 5.8 implies that # contains at
least [ axioms of the form F m, mt. However, there are only k positive occurrences
of the literal m in the conclusion sequent - v(V, E, k), and each occurrence can
appear in at most one axiom of the form F m, m*, thus contradicting the claim that
[>F.

Therefore, the construction of U from a DL proof of = v(V, E, k) does yield a
vertex cover for GG = (V, I) of size bounded by k. L]

The encoding v transforming an instance of the Vertex Cover problem to the
provability of a DL sequent is clearly of polynomial complexity. Together, Lem-
mas 5.7 and 5.9 yield the following result.

Theorem 5.10 Multiplicative linear logic with unrestricted weakening is NP-complete.

In this reduction, weakening appears essential since an edge may be covered
by selecting one endpoint or both, and weakening allows both cases to succeed.
Only with additives would it be possible to encode such behavior in linear logic,
and including the additives would take DL out of Np. In fact, pL with additive
connectives becomes PSPACE-complete.



Chapter 6

Conclusion

We have investigated the complexity of the provability problem for several frag-
ments of propositional linear logic. Our most significant results are that provabil-
ity for full propositional linear logic is undecidable, but that provability becomes
PSPACE-complete when the modal storage operator is removed. One may view these
results in terms of the non-modal multiplicative-additive linear logic as the facts
that provability in this logic without non-logical axioms is PSPACE-complete, and
with non-logical axioms provability becomes undecidable. In fact, even if the non-
logical axioms are of an extremely restricted class, the provability problem remains
undecidable.

These results point out the greater complexity inherent in linear logic, when
compared with classical or intuitionistic logic. This extra complexity is the price
one should expect to pay in a logic as detailed, or as specific, as linear logic. In
fact, we show that linear logic is a computational logic. That is, linear logic can ex-
actly represent computations, to the point where not only is there a correspondence
between derivable conclusions and machine configurations that eventually reach an
accepting state, but there is an exact correspondence between (standardized) proofs
and accepting computations.

We have also shown that provability for the non-commutative fragment of linear
logic (even without additive connectives) is also undecidable. Finally, we show
that the decision problem for the multiplicative fragment is in NP, and becomes
NP-complete in the presence of unrestricted weakening.

Although we have gained some insight into the expressive power and combi-
natorial properties of propositional linear logic, some open problems remain. We
have been unable to establish tight bounds for the multiplicative fragment or settle
the decidability of the multiplicatives with the ! operator. This seems particularly
difficult, since a positive solution would involve an extension of the reachability al-
gorithm for Petri nets. The other open problem of interest to us is the decidability
of various fragments of linear logic without the modal operators ? and !, and without

64



Conclusion 65

non-logical axioms, extended with propositional quantifiers.
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Appendix A

Cut Elimination

The cut-elimination theorem, in general, states that whatever can be proven in the
full version of a logic may also be proven without the use of the cut rule. This
theorem is fundamental to linear logic, and was proven by Girard shortly after
the introduction of the logic by presenting a cut-elimination procedure for proof
nets [Gir87al. In our proof of undecidability, we make use of the syntax, or exact
form of a cut-elimination procedure for the sequent calculus formulation of linear
logic. Since Girard demonstrated the correspondence between proof nets and the
sequent calculus presentation of linear logic, we could have relied on Girard’s proof
of cut-elimination. However, for the purposes of our undecidability proof, and other
results, it is much more clear to present a cut-elimination procedure native to the
sequent calculus.

The following demonstration of the cut-elimination theorem consists of a linear
logic proof normalization procedure which slowly eliminates cuts from any linear
logic proof. The procedure may greatly increase the size of the proof, although of
course it will still be a proof of the same sequent. For technical reasons, we add a
derived rule of inference, Cut!, which simplifies the proof of termination. We then
give a set of reductions which apply to proofs which end in Cut or Cut!, and using
these we eliminate all uses of Cut and Cut! from a proof.

The proof structure is very close to the well known proofs of cut-elimination in
classical logic [GLT89], but is complicated by the extra information which must be
preserved in a linear proof. The Cut! rule defined below is reminiscent of Gentzen’s
MIX rule [Gen69], and serves the same purpose, which is to package together in-
ference rules. As in Gentzen’s work, we add this extra rule, and then show that it
(along with Cut) may be eliminated entirely from any proof. Thus we show that
this new rule and Cut are redundant in linear logic.

Let us begin with some definitions. First, we define the following new rule of
inference,
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-3, (7A)" - A 1AL

1
Cut! SN

n>1

(7A)™ is meant to denote a multiset of formulas. For example, (7A4)> =7A4,7A,7A.
As stated in the side condition, the Cut! rule is only applicable when n is at least 1.
This rule of inference is derivable; that is, it may be simulated by several applications
of contraction (?C) on the left hypothesis and then one application of the standard
Cut rule. The original Cut rule and Cut! coincide when n = 1. Adding this
extra derived rule of inference simplifies the termination argument substantially by
packaging together some number of contractions with the cut that eliminates the
contracted formula. This package is only opened when the contracted formulas are
actually used with the application of the ?D rule, thrown away by the TW rule, or
split into two packages by the @ and Cutx* rules. We will use the symbol “Cut«”
as a general term for the original Cut rule and the new Cut! rule ambiguously.

We will call a formula which appears in a hypothesis of an application of Cut
or Cut!, but which does not occur in the conclusion a cut-formula. In the list of
linear logic rules in Appendix B the cut-formulas in the Cut rule are the formulas
named A and A+, and in the Cut! rule above, the cut-formulas are 74 and 'A*.

We also define the degree of a Cut or Cut! to be the number of symbols in its
cut-formulas. For concreteness, we define here what is meant by number of symbols.
We will consider each propositional symbol p; to be a single symbol. We also consider
the negation of each propositional symbol p;t to be a single symbol. Finally, we
count each connective and constant, ®, ¥ ,®,&,?,1,1, 1,0, T, as a single symbol,
but do not count parentheses. It is important to note that negation is defined, and
therefore is not a connective. This method of accounting has the pleasant property
that any linear logic formula A and its negation A+ have exactly the same number of
symbols. (One may prove this by simple induction on the structure of the formula
A). Thus it does not matter which cut-formula we count when determining the
degree of a cut. We also define the degree of a proof to be the maximum degree of
any cut in the proof, or zero if there are no cuts.

The principal formula of an application of an inference rule is usually defined to
be any formula which is introduced by that rule. For example, the formula (A® B) is
the principal formula of the ® rule, since that is the formula which is introduced by
that rule. We follow the standard convention of considering the contracted formula
in an application of 7C' principal, even though it is not introduced by the rule. For
convenience, we extend the notion of principal formula in the following nonstandard
ways. We will consider any formula beginning with ? appearing in the conclusion of
the !S, ®, Cut, or Cut! rules to be principal. By this definition all formulas in the
conclusion of !S are principal, and the only rule in which a formula beginning with
! may be principal is !S. This definition of principal formula simplifies the structure
of the following proof somewhat.
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Operationally, the cut-elimination procedure defined below first finds one of the
“highest” cuts of maximal degree in the proof. That is, an application of Cut* (Cut
or Cut!) for which all applications of Cutx in the derivation of either hypothesis is
of smaller degree. Then a reduction is applied to that occurrence of Cutx, which
simplifies or eliminates it, although it may replicate some other portions of the
original proof. We iterate this procedure to remove all cuts of some degree, and
then iterate the entire procedure to eliminate all cuts. In this way, any linear logic
proof may be normalized into one without any uses of the Cut or Cut! rules, at the
possible expense of an (worse than) exponential blowup in the size of the resulting
proof tree.

Technically, we begin with a lemma which constitutes the heart of the proof of
cut-elimination. Although the proof of this lemma is rather lengthy, the reasoning
is straightforward, and the remainder of the proof of cut-elimination is quite simple.

Lemma A.1 (Reduce One Cut) Given a proof of the sequent =7 in linear logic
which ends in an application of Cut* of degree d > 0, and where the degree of the
proofs of both hypothesis is less than d, we may construct a proof of = 7 in linear
logic of degree less than d.

Proof. By induction on the number of proof rules applied in the derivation of
F7.

Given a derivation which ends in a Cut*, we perform case analysis on the rules
which were applied immediately above the Cutx. One of the following cases must
apply to any such derivation:

1. The cut-formula is not principal in one or both hypotheses.

2. The cut-formula is principal in both hypotheses.

In each case we will provide a reduction, which may eliminate the cut entirely, or
replace it with one or two smaller cuts. Since this is a proof by induction on the size
of a derivation, one may view this proof as a procedure which pushes applications of
Cutx of large degree up a derivation. Informally, this procedure pushes applications
of Cutx up through proof rules where the cut-formula is non-principal, until the
critical point is reached where the cut-formula is principal in both hypotheses. In
Girard’s proof of cut-elimination for linear logic using proof nets, the non-principal
cases are circumvented by following proof links. In both approaches, however, the
principal cases require significant detailed analysis.

A.1 Cut of non-principal formulas

If the derivation of a hypothesis ends in a rule yielding a non-principal cut-formula,
then the rule must be one of the following: @, X, §, &, W, ?C, D, 1, T, or
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Cut*. The rules I, !S, and 1 are absent since those rules have no non-principal
formulas in their conclusions. The later analysis of principal formula cuts considers
these three cases.

All ®

If the last rule applied in one hypothesis is ®, the cut-formula is not the main
formula introduced by that application of ®, and the cut-formula does not begin
with 7, then we may propagate the Cutx upward, through the application of ®:

S, A FBAC : : FB,AC  F?7,Ct
® : — . Cut
Y, (A® B),A,C Fret Y, A - B,A,? i
Y, (A® B),A,? Y, (A® B),A,?

For the rules such as ® with two hypotheses, we give the reduction for the case where
the non-principal cut-formula appears in the right hand hypothesis of the @ rule,
and appears in one specific position in that sequent. The symmetric case of the cut-
formula appearing in the left hand hypothesis is very similar, and is always omitted.
Since some notion of exchange is built-in to the system, sequents are considered
multisets. Thus the exact position of formulas in sequents is unimportant. (Note
that in noncommutative linear logic the relative position becomes vitally important.)

The proof ending in Cut after this transformation is smaller than the original
proof, since the entire proof of - X, A, and the last application of ® are no longer
above the Cut. Thus by induction on the size of proofs, we can construct the desired
proof of degree less than d.

Note that the Cut! rule only applies to formulas which begin with 7, and thus
this reduction, which is only used if the cut-formula does not begin with 7, applies
only to Cut and not to Cut!. Thus, we have disambiguated this case, and write
only of Cut, where we present tranformations later in terms of Cutx, in order to
cover both possibilities simultaneously. The reduction given later (in Section A.2.9)
handles the case of Cut!.

Al2 %

If the last rule applied in one hypothesis is %', and the cut-formula is not the main
formula introduced by that application of %', then we may propagate the Cutx
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upward, through the application of %':

FY,A,B,C : FY,A,B,C F7,0t
e ° 2 Cutx
FY, (A% B),C chLCt FY, A, B,?
-5, (A3 B),? S, (AN B), 7

Again, the proof above the Cutx is smaller after this transformation, and thus
by induction we have our result.

Al13 &

Applications of Cutx involving the two symmetric & rules (where the cut-formula
is not principle, that is, not introduced by this application of &) may be eliminated
in similar ways:

FY,AC : FY,AC R?,0%
@ 1 2 r‘ut*
FL.(49B),C" Fr.ct Y, A, 7
FE.(AD B),? FE, (A3 B), 7"

The second case of this rule is the same except the conclusion would contain the
formula (B & A), instead of the formula (A & B) seen above.

Al4 &

It is the elimination of this type of cut (among others) which may lead to an expo-
nential blowup in the size of cut-free proofs. The only other cut-elimination steps
which may lead to a proof expansion are those involving !S.

FY,AC FXB.C :
F 3, (A&B), C 7,0t
F 3, (A&B),?
4

Cutx*

FY,AC FT,0t Y, B,C F?,Ct
Cutx* Cutx*

Y, A7 Y, B,?
- Y, (A&B),?
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The increase in proof size comes from replicating the entire proof tree above
F 7,Ct. Note that even though there are now two cuts instead of one, we may
assume that both may be reduced in degree to less than d by induction on the size
of the derivations. That is, there are fewer proof rules applied above each Cutx

than there were above the single application of Cutx originally.

Al5 W
For this and the remaining cases, we omit discussion and simply indicate the reduc-
tion:
F3,A : F3,A F7, A+
2w : Cutx
FX ATB F7, A+ F3,7
Cutx W
F3,7.7B F3,7,7B
A.l1.6 7C
FY,ATB "B, : X, A7B,7B F7, A+ Cut
FX, A8 AT F¥,7,7B, 7B,
F3,7,7B F3,7,7B
A.1.7 D
FY,A B FY, A B F7, AL
9D : Cutx
X, A7TB F7,AL F3,7.B
F3,7,7B F3,7,7B
Al1.8 L
F3,A : 3 A F7, AL
I : Cutx
FX, A L F7,AL F3,7
Cutx* n
FX 7,1 FX 7,1
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Al19 T

FY AT k7oAt = Fu T T

Cutx
X7, T

A.1.10 Cut

If the proof of one hypothesis ends in Cut*, then we know that it has degree less
than d. If the cut-formula of the lower degree d application of Cutx begins with 7,
then it is considered principal (by definition) in the upper application of Cut«, and
will be handled in Section A.2.8. Otherwise, we know the formula does not begin
with 7, and thus the lower Cut* must actually be Cut.

YA C ROt : Y, A,C FA, A :
Cutx* — Cut
-3, A7 - A, AL 3, A C B e
Cut Cutx
BN BN

Here we know that the number of symbols in the formula A is d, and the number
of symbols in the formula C is less than d. Thus by induction we know that we can
construct a proof of degree less than d of - X, A, C', and from that we can construct
our desired proof of F X, A, 7.

A.2 Cut of principal formulas

If the proof of each hypothesis ends in a rule with the cut formula as its principal
formula, then the two last rules above the cut must be one of these combinations: 1
versus any, @ versus 9, @ versus &, TW versus 'S, 7C versus !S, 7D versus !S,!S
versus !S, Cutx versus !S, @ versus !S, or L versus 1. Note that since there is no
introduction rule for 0, the T rule cannot participate in a cut of principal formulas.
Since all formulas in the conclusion of !S are considered principal, the analysis of !S
at this stage of the proof is rather complex.

In many of these cases, we know that the Cut! rule is inapplicable, since the
cut-formula has just been introduced, and it does not begin with a 7. When we
know this, we will disambiguate the reduction, and show the applications of Cut
and Cut! separately.
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A.2.1 1 versus any

If the last rule applied in either hypothesis is I (identity), then regardless of the
rule applied in the other hypothesis we may remove the cut, and the application of
identity:

.l .9 .
Fpopr Fpnt LT ot
Eopi,?

Note that the identity axiom only applies to atomic propositions, and thus we
know that Cut! is inapplicable.

A.2.2 @& versus &

FY,A I—B,A@ F?,Bt At

3
1 1
FY,(A® B),A Fr(BEYAL)
Y7, A
\
: FB,A I—?,BL,ALFt
FY, A F7,A At
Cut
F?7,A,%

In this case, as in most of the principal formula cut-elimination steps, we need not
appeal to the induction hypothesis of this lemma. We have eliminated the Cut of
degree d, and replaced it with two applications of Cut of degree smaller than d.

A.2.3 & versus @

FSA ES B -7, AL
-3, (AL B) 7. (AL o BL)®
-y, 7

FX, A I—?,ALF
Cut F3,7

ut

The symmetric case of @ is similar. Again, we need not appeal to the induction
hypothesis, and the cut-formula does not begin with ?, and thus we know that Cut!
does not apply.
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A.2.4 ?W versus !S

For this and subsequent cases involving !S, ‘packaging’ is a useful analogy. We build
packages containing a number of contractions and a single Cut! when we reduce
principal cases involving 7C versus !S. We shrink the package in cases of TW versus
IS, and we actually use the contents of the package as cases of 7D versus !S. We let
packages pass by each other at cases of IS versus !S, and at cases of Cut! versus !S
and of ® versus !S we break one package into two.

For this case, TW versus !S, there are two possibilities, depending on whether
the cut in question eliminates more than one occurrence of the cut-formula from the
weakened sequent. Informally, the possibilities turn on whether there is only one
thing in the package. If so, we don’t need the package. If there are more things in
the package, we shrink the package.

In the first possibility, the cut eliminates the one occurrence of the cut-formula
introduced by the ?W rule, and thus this application of cut may be eliminated
entirely:

Y F77, AL EYow
- "W ——————IS = .
FX,7A F77,1AL :

Cutx
X, 77 ! Fyo o v

However, the second possibility, where the Cutx* is actually a Cut! and eliminates
more than one occurrence of the cut-formula from the weakened sequent, we perform
the following reduction:

Fy, (At T AL : 77, AL
A TS T fw Ayt pmaals
’ ’ Cut! ! ! Cut!
-3, 17 -3, 17

In the first possibility we have our result immediately, since the Cutx* has been
eliminated. In the second possibility, we appeal to the induction hypothesis.

A.2.5 7C versus !S

In this case we make critical use of the Cut! rule. Without this extra rule of inference
this reduction is especially difficult to formulate correctly, and the induction required
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is complicated.

R 24, FLAT : 77, AL
FY.7A . FrraALle EY.?A A ETT AL
) ’ Cutx ? ? ’ Cut!
ST ST

Here we know that the cut-formula begins with a 7, and thus Cut! may apply to
it. We thus produce a Cut! regardless of whether the original Cutx was a Cut or
a Cut!.

A.2.6 7D versus !S

As for the previous 7W versus !S case, here we have two cases, depending on whether
the Cutx in question eliminates more than one occurrence of the cut-formula from
the derelicted sequent. Again, informally, the two cases turn on the size of the
package. If there is only one thing in the package, we simple make use of it, and
throw away the wrapping. If there are more thing in the package, we take one out,
and move the smaller package along its way.

In the first case, the cut eliminates the one occurrence of the cut-formula intro-
duced by the ?D rule, and thus the following reduction applies:

YA 27, AL
—=—<'D oo 7S
FX, 74 F77,1AL
! ! Cutx
ST

4

YA R AL
-, 77

ut

However, in the second case, where the cut is actually a Cut! and eliminates more
than one occurrence of the cut-formula from the derelicted sequent, we perform the
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following reduction:

I—??;AL

: o EYoAnL A AL :
C 1 .
ey At A PAT - 2,77, A " Al
n H LR ) O
- 3,4 P A Fx. 77,7 "
X, 77 — ¢
Fy,77°¢

Note that the second case requires the duplication of the proof above the application
of !S. Since A has fewer symbols than 7A, the lower Cut in the second case is of
degree smaller than d. By induction, we may assume that the upper application of
Cut! is reducible in degree.

A.2.7 IS versus !S

77 AL

LN, 74, B R, A : A
mls W!S — |_727?A7B |_777'AJ‘ Cut
utx
bk T s 73,77, B
%7718 s
A RINY )

Here we appeal to the induction hypothesis to produce a proof degree less than
d of F7%,77, B, and then construct the desired proof from that.

A.2.8 Cutx* versus !S

There are two possibilities here, which correspond to whether it is necessary to split
a package into two pieces. The case where the package needs to be split is one of
the most tricky aspects of the entire cut-elimination procedure.

If the lower application of Cutx is applied to formulas which may all be found in
one hypothesis of the upper application of Cut*, then we apply the same reduction
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as in the non-principal Cut case (Section A.1.10):

FX, A FA,(7C)", AL 77, C+

Cutx 1S
-, A, (70)" 710
EESWNER,
I3
: RNt
: FA,(2C) AL T ICE t
FY,A FA, 77, AL .
FYLA, 7 w

In the more complex case, when the cut-formulas descend from both hypotheses of
the upper Cutx,we use the following reduction:

FS2Cm A bAoAt o RO
F XA, 0 v Erer®
Cut!
BN,
I3
: RNert : RNt
Fyocmo A Fraces F A0 AL e

Cut! Cut!

Fy 7 A F AL 77, AL .

RN

Fy A 77, ©

A.2.9 & versus !S

There are two possibilities here, which correspond to whether it is necessary to split
a package into two pieces. The case where the package needs to be split is again one
of the most tricky aspects of the entire cut-elimination procedure.

If Cutx is applied to formulas which may all be found in one hypothesis of &,
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then we apply the same reduction as in the non-principal @ case (Section A.1.1):

FX, A FBACO" L

-3, (A® B), A, (1C) F77,10L°
-3, (A2 B), A, 17
4
RN
: - B, A, (20)" I—??,!CL!SC t
-3, A - B.A, 17 )

Y, (A® B),A, 77

In the more complex case, when the cut-formulas descend from both hypotheses of
®, we use the following reduction to push the cut above the @ rule.

FSICTA R BAIC R
F Y, (A® B), A, 1C™ I 0L

Cut!
Y, (A®B),A, 77
I
RN : RN
FY20m A FIT0T L FBAIC P ICT .
FY,77,A ' - B,A,7? ®'
F3.17, (A0 B) AT,
: 7C
FY,(A®B), A, 77
A.2.10 1 versus 1
-7 :
_ - — :
F1* FL7+ 2
Cut
-7

Again, we know that the Cutx involved here is Cut, since the formula 1 was
just introduced.
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This exhausts all the cases. [

Thus, we have a procedure which given a proof which ends in Cut* of degree d,
and which has no applications of Cut* in the proof of either hypothesis of degree
greater than or equal to d, produces a proof of degree less than d.

Lemma A.2 (Lower-Degree-Cuts) If a sequent is provable in linear logic with
a proof of degree d > 0, then it is provable in linear logic with a proof of degree less
than d.

Proof. By induction on the height of the derivation tree of the conclusion, we
show that given any proof of degree d of 7 in propositional linear logic, we may
find a (possibly much larger) proof of - 7 in linear logic of degree less than d.

We examine the proof of F 7. Since the degree of this proof is greater than
zero, there must be some Cut# in the proof. If the last rule is not Cutx, then by
induction we may form proofs of its hypotheses of degree less than d. Applying the
same rule to the resulting reduced degree hypotheses produces the desired proof of
degree less than d.

In the case that the last rule is Cut*, we have the following situation for some
Y and A which together (in multiset union) make up ?:

|—257A I—A;AJ- where YUA =7
Cutsx
F7

By induction, we can produce proofs of - X, A and F A, AL of degree less than
d. By a single application of Lemma A.l to the resulting proof constructed from
the modified hypotheses, we obtain a proof of =7 of degree less than d. [

Theorem A.3 (Cut-Elimination) If a sequent is provable in linear logic, then it
is provable in linear logic without using the Cut rule.

Proof. By induction on the degree of the assumed proof. We may apply
Lemma A.2 at each inductive step, and at the base case the degree of the proof is
zero, so therefore by definition of proof degree there are no cuts, and we have our
desired cut-free proof. [

Note that the proof can explode hyperexponentially in size during the cut-
elimination process.

A.3 Subformula Property

Above we have demonstrated that all cuts may be eliminated from a proof, at
the possible expense of increasing the size of the proof hyperexponentially. This
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normalization is worthwhile, however, since it grants one various kinds of control
over the form of proofs of given sequents. One of the finest forms of control, and
historically the most important, is the subformula property.

The class of subformulas of a given formula or sequent is defined by the following:
A is a subformula of A. If A is a subformula of B, then A is also a subformula of
the following formulas: 7B, !B, B C,C® B, BX¥C,CX® B, Blo(, and C'1oB.
If A is a subformula of B, then A is also a subformula of the sequent 7, B, 7.

Corollary A.4 (Subformula Property) Any formula in any cut-free proof of b
? is a subformula of 7.

Proof. Each rule of linear logic except Cut has the property that every
subformula of the hypotheses is also a subformula of the conclusion. For example,
in the ® rule, any subformula of either hypothesis is either a subformula of ¥, A, B,
or Yo. However, any such subformula is also a subformula of the conclusion. In fact,
we may have “added” a subformula: (A® B) is a subformula of the conclusion, but
might not be a subformula of the hypotheses.

Therefore, by induction on the size of proofs, we have that any subformula of
any step of a cut-free proof of a sequent is a subformula of the original sequent. m

It is easy to see that the subformula property is not true of proofs with cut: the
subformulas A and A+ in the hypotheses of cut might not appear in the conclusion.



Appendix B

Propositional Linear Logic

Proof Rules

A linear logic sequent is a - followed by a multiset of linear logic formulas. Note that
in standard presentations of sequent calculi, sequents are often built from sets of
formulas, where we use multisets here. This difference is crucial. We assume a set of
propositions p; given, along with their associated negations, p;. Below we give the
inference rules for the linear sequent calculus, along with the definition of negation
and implication. The reader should note that negation is a defined concept, not an
operator.

The following notational conventions are followed throughout this paper:

i Positive propositional literal

pi Negative propositional literal
A B, C Arbitrary formulas
,1,A Arbitrary multisets of formulas

Thus the identity rule (I below) is restricted to atomic formulas, although in fact
the identity rule for arbitrary formulas (- A, AL) is derivable in this system. For
notational convenience, it is usually assumed that lo and ® associate to the right,
and that @ has higher precedence than lo. The notation 7Y is used to denote a
multiset of formulas which all begin with 7. The English names for the rules given
below are identity, cut, tensor, par, plus, with, weakening, contraction, dereliction,
storage, bottom, one, and top, respectively. Note that there is no rule for the 0
constant.
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Fopiopit

Y, A -7, AL
Fy,7

Y, A - B,?
Y, (A® B),?

Y, A, B
- Y, (AD B)

Y, A -, B

FY, (A% B) FY, (A% B)

YA -y, B
¥, (A& B)

oy
Yy, 7A

Y, 74,74
ESEY

Y, A
S

73, A
7%, 1A

Y
Fy, L

F1

FX, T



Proof Rules

Linear negation is defined as follows:

(p)t = pt
(bt 2 p
(A@ B+ £ Biyat
(AXB)L 2 Blgat
(AeB)t 2 ALgBL
(A& B)r £ Ata Bt
(1AL 2 24t
(74 2 14t
(- 2 1
(Lt 21
(0t = T
(T 2 0

Linear implication, lo, is defined as follows:

AloB 2 A% B
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