E LLO Proof Rules

I Z}.(]U(A,B,U) l_RySyT?A, [X . A]’ [Y . BJ_]
o U Frsa?AS[NST: Al §Fpso?A [XST:B).7
UFrsT?AY [X: (A® B)],?
23 U brsuxr B, [X 0 A]L[X : B]
E '_RVSVT E, [X : (A X B)]
o VEI—RSTE,[XT:A]
U '_RVSVT 3, [X : (A D B)]
o VEI—RSTE,[XT:B]
U '_RVSVT E, [X : (A o) B)]
& E/ Frsrux &, [X : Al g/ Frsrux X,[X : B]
[\; '_RVSVT E, [X : (A&B)]
2D Vbrsr B, [X 2A [XTR: A]
. E '_RVSVT E, [X 7A]
1S EFRUXST?E,[YZA]
' VFrsT?S, [X TA]
i vbrsr ¥
E '_RVSVT E, [X . J_]
1 g '_RVSVT [X : 1]
T g '_RVSVT E, [X . T]
v Ubrsr ¥ [X : A{h(X)/y}]
U Frsr 3, [X :Vy.A]
E| EFRST E,[XvT:A{v/y}]

Ubrst X,[X 1 Jy.A]

Where h is new in the V rules, v 1s new in the 3 rules,
and mgu(A, B,U) returns the composition with U of
a most general unifier of U(A) and U(B). The Y gov-
erning the formula A in the hypothesis of the !S rule
is the union of S, T, and every Z such that [Z : B]
occurs 1n the conclusion.

C LLG Proof Rules D LLV Proof Rules

. U(A) = U(B) I mou LB oA, A, B
U Fr?A, A, BT
W oA S A Y Fp?A B?
Fr S, A b 7, AL v Frra s Ay Fra, B,
Cut S T Boma © VEr7A S, (A® B),?
5 v Fr?AL Y, A v br?A, B,? 3 VZ br ¥,A, B
U Fr7A, S, (A B),7 VY (AX B)
76) U'_TEaAaB @ E'_TE,A
0 Fr S, (A% B) VEr S, (A® B)
. vhr XA vbr 3B . Vi Y B
vhr X, (A® B) vhr X, (A® B) ViEr X (As B)
Fr 5, A N Wi A VY B
& U)) U "rT 4y w T &~
o Fr S, (A B & U S, (AL B)
°n vhbr X,74 A D Vir %74, A
urrT Ea U l_T Ear?A
ubr?s, A Vo
'S S FrrS A 15 prrim A
VLY, 1A
n vhbr X vy
T Fr o, L L S e
S
! vETa 1 T T
" T
T TFr ST
vor T Trr X, T
vbr X, A{A(T)/z}
v vFr X, Ve A v E Fr EaA{h(T)/y}
VS, Yy A
{t/vyor Frugey A{v/z}, B
3 v Fr E,Hl‘A 3 E '_TU{’U} E,A{U/y}

Vi, s, 3y A

A LL Permutabilities

An impermutability R1/R2 is represented in the ta-
ble below on column labeled R1 and row labeled R2.
For example ®/ % is indicated by the numeral 1. A
numeral in the table should be read as “the connec-
tive of this column cannot always permute below the

connective of this row”.

Below the table

are a short

list of examples of sequents which exhibit each imper-
mutability. Impermutability 7 is present in most first-
order logics.
permutabilities.

Classical logic enjoys all other possible

®

%

& | e | D 1|V

3

1

o|lo| o) -

0

0

wl <|H —~| S| #| 3| @

0

O O LN~ O

various examples
(AN B), (At @ BY)
F(A&B), (L@ T), AL, B
(A% B), (At @ B*)
(1A)&A), 7AL

(A(t)t &A(u)h), Fo. Aw)
(At @ B),74

l_
l_
l_
l_
EVy.(A(y) @

B), 3z . A(z)*

B LL Proof Rules

I F7A, A, AT
c FY, A F 7, AL
ut Y7
F7A, 3, A F?A, B, ?
® FTA S, (A© B), 7
x - X, A, B
FS. (A3 B
FY, A -3, B
Y Fx@eB FI,(A40 D)
o FY, A -3, B
S, (A% B)
F 3,74, A
D Y1
7%, A
= S A
N Y
T, L
1 AT
T T T
v FX Ala/a}
TFY Ve A
. F Y, Atz

b))

bl

x.

the context and to pass along the unused part of the
context to the right branch of the ® rule.

We show the timings for these procedures on some
theorems and non-theorems in order to demonstrate
the efficacy of the above optimizations. We first
compare these procedures on provable sequents of
the form p*, (3z.¢i(2)), ..., Fr.¢t(2)), (Vz.q1(z)®

gn(z) ® p), for n = 1,2,3,4 e run times are
given to the nearest millisecond on BINProlog on
a Sparcstation 10-41. The Prolog code is anony-
mously FTPable from FTP.CSL.SRI.COM in the file
pub/shankar/mall.pl.

n LLV LLO | LLOpt
1 17 0 0
2 200 0 0
3 10433 17 0
4 [1117383 | 83 17

The table above does not sufficiently emphasize
the utility of LLOpt over LLO since there is a
small overhead cost for LLOpt over LLO. The value
of LLOpt i1s more apparent when the same exper-
iment is attempted with the unprovable sequent
ph, (gl (2)), ., gy (2), (Vo () ©. .. qo(2) @

r), forn=1,2,3,

LLV LLO
33 17
916 1700 83
80783 | 199634 | 1300
- - 33300

LLOpt
0

ENEICE G e

Note that in the case of a failed proof search, LLO
actually performs worse than LLV because both pro-
cedures carry out the same search but LLO has the ad-
ditional overhead of tracking impermutabilities. Note
also that we have deliberately ordered the sequent so
as to trigger the worst backtracking behavior with LLV
in order to compare the worst-case performances of
these procedures. Several further optimizations are
currently being studied.

6 Conclusion

We have presented some optimized proof search
procedures that can be applied to a wide variety of
cut-free sequent calculi. We have presented rigorous
informal arguments for the soundness and complete-
ness of these optimizations. These optimized search
procedures have been naively implemented in Prolog.
The full paper will contain more informative versions
of the proofs and more detailed empirical comparisons
of the various optimizations.

Acknowledgments. We thank Sam Owre, Dale
Miller, Andre Scedrov, Gopalan Nadathur, and James
Harland for their help and guidance, and Serenella
Cerrito for sharing an early draft of her paper [2] with
us.

References
[1] J-M. Andreoli. Logic programming with focusing proofs
in linear logic. Journal of Logic and Computation, 1992.
To appear.

[2] S. Cerrito. Herbrand methods in linear logic. 1992.

[3] C.-L. Chang and R.C-T. Lee. Symbolic Logic and Mechan-
ical Theorem Proving. Academic Press, 1973.

[4] D. Galmiche and G. Perrier. Foundations of proof search
strategies design in linear logic. In Symposium on Logical
Foundations of Computer Science, St. Petersburg, 1994.
To appear.

5] J.-Y. Girard. Linear logic. Theoretical Computer Science,
g
50:1-102, 1987.

[6] J. Herbrand. Investigations in proof theory. In J. van
Heijenoort, editor, From Frege to Gédel: A Sourcebook of
Mathematical Logic, 1879-1931, pages 525-581. Harvard
University Press, Cambridge, MA, 1967. First published
1930.

[7] J.S.Hodas and D. Miller. Logic programmingin a fragment
of intuitionistic linear logic. In Proc. 6-th Annual IEEE
Symposium on Logic in Computer Science, Amsterdam,
pages 32—-42. IEEE Computer Society Press, Los Alamitos,
California, July 1991. Full paper to appear in Information
and Computation.

[8] M. Kanovich. Horn programming in linear logic is NP-
complete. In Proc. 7-th Annual IEEE Symposium on Logic
. Computer Science, Sante Cruz, California, pages 200—
210. IEEE Computer Society Press, Los Alamitos, Califor-
nia, June 1992.

[9] S.C. Kleene. Permutability of inferences in Gentzen’s cal-

culi LK and LJ. Memoirs of the AMS, 1952.
[10] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Deci-

sion problems for propositional linear logic. Annals Pure
Appl. Logic, 56:239-311, 1992. Special Volume dedicated
to the memory of John Myhill.

[11] P. Lincoln and A. Scedrov. First order linear logic without
modalities is NEXPTIME-hard. To Appear in TCS, 1993.
Available using anonymous ftp from host ftp.cis.upenn.edu
and the file pub/papers/scedrov/malll.dvi.

[12] P. Lincoln, A. Scedrov, and N. Shankar. Linearizing in-
tuitionistic implication. In Proc. 6-th Annual IEEE Sym-
postum on Logic in Computer Science, Amsterdam, pages
51-62. IEEE Computer Society Press, Los Alamitos, Cali-
fornia, July 1991. Full paper to appear in Annals of Pure
and Applied Logic.

[13] P. Lincoln and T. Winkler. Constant-Only Multiplicative
Linear Logic is NP-Complete. To Appear in TCS, 1993.

[14] A. Martelli and U. Montanari. An efficient unification al-
gorithm. ACM Trans. on Prog. Lang. and Systems, 4(2),
Feb. 1982.

[15] N. Shankar. Proof search in the intuitionisticsequent calcu-
lus. In D. Kapur, editor, Automated Deduction: CADE-11,
volume 607 of Incs, pages 522—536, Berlin, 1992. Springer-
Verlag.

[16] T. Tammet. Proof search strategies in linear logic. Pro-
gramming Methodology Group Report 70, Chalmers Uni-
versity, 1993.

At the cost of duplicating the proof of H B, A. For
structural reasons, this kind of duplication of sub-
proofs can only arise when a binary (2-premise) rule
is permuted above another binary rule.

Since the permutation of binary steps can intro-
duce duplication of subproofs, the permutation of bad
proofs into good ones must be done carefully to achieve
termination. In the first stage of the procedure, the
binary high steps are permuted above the injured V
steps, with the highest binary high step first, so that
no high binary steps below an injured V are duplicated
in the process. All the high binary steps can be elimi-
nated in this manner, but this might create duplicates
of the injured V steps or the low steps. Next, we per-
mute all the low binary steps below the bad 3 step,
with the lowest low steps first in order to avoid du-
plication of the low binary steps. This last step could
create copies of the bad 3 step. The only remaining
high and low steps are unary steps. It is easy to per-
mute these unary steps so that we get an LL proof of
g Frsr (Jx.A),7 that does not contain any bad 3
steps. No bad 3 steps are introduced by these per-
mutations since each permutation preserves the con-
sistency of the strict partial ordering derived from the
LLO proof.

Given an LLO sequent g Frst 7, let g Frst 7

represent the LL sequent
F V(A1),...,V(Ay), for each [X; : A;] in 7, where
B represents the result of replacing each Herbrand
term of the form h;(...) in B by the corresponding
eigenvariable @;. The following lemmas are proved by
induction on LLO proofs.

Lemma 4.2 Given any idempotent substitution U,
and an LLO proof of %; Frst 7, there is a strict
partial ordering on the steps wn this proof respecting
the subformula property, the eigenvariable condition,
and the impermutabilities in this proof.

Lemma 4.3 An LLO proof ofg Frst 7 can be
transformed to an LL proof ofg Frsr 7 with no bad

d steps but with possible violations of the eigenvariable
condition.

The soundness theorem is an easy consequence of
the above lemma.

Theorem 4.4 If 7 does not contain any Herbrand
functions or variables, then an LLO proof of ¥; FrsT
? can be transformed to an LL proof of Frst 7.

The soundness argument as outlined above 1s quite
general and applies to any cut-free sequent calculus
with the subformula property and conventional quan-
tifier rules.

4.1 Other Cut-Free Sequent Calculi

One can generate a dynamic skolemization system
along the lines of LLV for many other sequent cal-
culi. For sequent calculi with cut-elimination theorem,
subformula property, and the usual quantifier rules,
one can replace the quantifier rules with the quantifier

rules of LLV, decorate every sequent with set of gov-
erning variables, and input and output unifiers, and
allow unification at any identity-like rules (that is, any
rules requiring two formulas to be identical). The re-
sulting LLV-like system replaces the guesswork of the
usual existential rule with unification. Thus any cut-
free first-order sequent system with the subformula
property, the usual quantifier rules, and some finite
depth bound on the sequent proof tree is decidable.
Note that full linear logic (with 1,?), relevance logic,
first-order intuitionistic logic, and first-order classi-
cal logic, do not exhibit a finite depth bound on se-
quent proofs, due to the contraction rule. However, a
proof system like LLV may still be of direct interest
when considering logic programming in non-classical
sequent systems.

It is also straightfoward to generate an optimized
sequent system along the lines of LLO for any first-
order cut-free sequent-calculi with the subformula
property and the usual quantifier rules. The pro-
cess begins with the analysis of the propositional per-
mutabilities (such as displayed in Appendix A for lin-
ear logic). Then for each R2 rule (rules which do not
always permute upward) a list of variables is created
(like the R,S, and T for 15, ¥, and & in LLO). Then for
each rule R2, for each rule R1 that does not permute
below R2, the R2 variables are added to the governing
variables of the subformulas of the principal formula.
A system generated in this way will have no quantifier
impermutabilities.

5 Implementation

We have implemented Prolog proof search pro-
cedures for the constant-free multiplicative-additive
fragments of LLV, LLO, and a version of LLO called
LLOpt where we have optimized the backtracking
to exploit some propositional permutabilities. These
optimizations are similar to those proposed by An-
dreoli [1], Galmiche and Perrier [4], Hodas and
Miller [7], and Tammet [16]. The combination of LLO
with optimizations based on propositional permutabil-
ities is a delicate matter. The usual optimization is
that if we have a rule R2 that is always permutable be-
low any other rule, then 1t is safe to apply this rule im-
mediately in the proof search. In the context of LLO,
this would mean that for an impermutability R1/R2,
the Herbrand variables governing R2 would always
govern R1 so that proof attempts that might have
succeeded with R1 below R2 now fail because of the
occur check. For instance, given the provable sequent
E Qep(e) ¥ g(x)), v (0 (Vg () © (Sg(y)). the

proof search fails if the 4 step occurs below all
the ® steps.

The LLO search procedure backtracks on all the
rules. We can optimize this to avoid backtracking on
%, V, and & rules provided there is backtracking on
applications of the 3 rule. The % and V steps can
be applied immediately, but immediate reductions of
the & steps could lead to larger proofs. The most
significant optimization is in the treatment of the ®
rule. LLO tries all possible partitions of the context,
whereas it turns out to be far more effective to al-
low the left branch of the rule to use up some part of

variables; and 7', the & Herbrand variables. In addi-
tion, each sequent formula is decorated with the Her-
brand variables that govern it. The quantifier rules
have the form

VkrsT D [XT A{u/ac}]3
E '_RysyT F, [X : (Ell’A)]

Vrrsr DX A{h(X)/}]
Vst DX : (Vo.4))

where v and h are new. The 3 rule encodes the fact
that the formula A is governed by the newly intro-
duced Herbrand variable v and by those Herbrand
variables that govern any & connective that is an-
alyzed below the 3 steps, thus encoding the imper-
mutability 3/ & . The ¥ rule is more straightforward.
The other rules similarly encode the various imper-
mutabilities by suitably augmenting either the sets R,
S, or T, or the variable sets that are local to the se-
quent formulas.

The completeness of LLO is established by the fol-
lowing lemma which can be proved by induction on
LLV proofs.

Theorem 4.1 Let 7 be of the form Ay, ..., A,.

If LLV proves g o 7, then for any
R, ST X1,..., X, CT,

there exists a W such that LLO proves I[/]V Frsr [X7:
Al]a RS [Xn : An]

v

We outline the soundness argument, and refer to a
forthcoming full paper for the details. To prove the
soundness of LLO, we need to show that when the
LLO proof search succeeds and returns a unifier V,
then the original goal sequent is provable in LL. The
main obstacle is that if LLO proves a sequent, the re-
sulting “proof” can contain violations of the eigenvari-
able condition in the following sense: the conclusion
g Frsr [X @ (V&.A)],7 of a V step introducing the
Herbrand function h can be such that V(?) contains
occurrences of A. This must be because some Her-
brand variable v in 7 is introduced by an 3 step that
occurs below the ¥ step introducing h, where V(v)
contains h. Let such an 3 step be labeled bad, and let
a proof containing bad 3 steps be labeled a bad proof.
We clearly need to permute the order of such quanti-
fier steps in order to rid the given LLO proof of bad 3
steps to construct an LL proof.

We will be constructing the LL proof by induction
on the structure of the given LLO proof. The LL
proof is constructed by applying permutations to the
LL subproofs obtained from the induction hypothesis.
We therefore need to keep track of which inference
steps in the constructed LL proof remain permutable.
This information i1s actually implicit in the original
LLO proof. We therefore set up a correspondence be-
tween the steps in the LLO proof and those in the re-
sulting LL proof. This many-to-many correspondence
is preserved by the permutations. It is possible to ob-
tain a strict partial ordering on the steps in the given
LLO proof so that step @1 < @2 if and only if one of
the following is true in the LLO proof:

1. @1 occurs below @2 and @2/Q1 is an LL imper-
mutability.

2. The principle formula of ()2 is a subformula of
Q1.

3. Q1 18 a ¥ step introducing Herbrand function h,
and @2 1s an 3 step introducing Herbrand variable
v, where V(v) contains A.

4. There is some @3 such that Q1 < @3 and Q3 <
Q2.

We show that it is possible to construct an LL proof
from a given LLO proof that is consistent with the
above strict partial ordering so that any steps @1’ and
2" in the LL proof corresponding to Q1 and Q2 in the
LLO proof, 2’ occurs below Q1" whenever Q1 < Q2.
Furthermore, if @1’ and (2’ in the LL proof are such
that we have for the corresponding steps in the LLO
proof that Q1 £ @2, then @1’ is permutable above 2’
in the LL proof. Note that an LL proof consistent
with the strict partial ordering does not contain any
bad 3 steps.

In constructing the LL proof by induction on struc-
ture of the given LLO proof, we only examine the case
when the concluding inference in the LLO proof is an
3 step since the other cases are straightforward. We
therefore suppose that we are given an LLO proof of
the form

II
VFRsT A{U/l’}vra
U brsr (3w.A),T

where the concluding 3 step is bad in that V(v) con-
tains occurrences of Herbrand functions introduced by
Y steps in II. We label the latter V steps as injured by
the bad 3 step. By induction, we can construct an LL
proof II’ from II that is consistent with the strict par-
tial ordering derived from the LLO proof and hence,
does not contain any bad 3 steps. Every proof step
Q' in T (corresponding to @ in IT) that occurs above
this bad 3 step and below any corresponding injured V
step is either permutable below the bad 3 step (a low
step) or above the injured V step (a high step), since
otherwise, we would have a cycle in the LLO proof of
the form V < 3 < @ < V thus violating the strictness
of the partial order. It is clear that the high steps
must be permuted above the injured V steps, and the
low steps and the injured V steps must be permuted
below the bad 3 step. In performing the above permu-
tations, it should be noted that certain permutations
introduce copies of subproofs. For example, the per-
mutation of a ® step above a & step copies one of the
subproofs of the ® step. For example, proofs of the
form

FACY FADY
FA,C&D,S
FA®B,C&D,T, A

FB,A
®

can be permuted to the form
FACTY FBA FAD,Y FBA
FA®B,C,%,A FA®B,D,%,A
FAQB,C&LD,%,A

In LLG, the parameter U is given as an input sub-
stitution to the proof search and augmented at every
I step. We next introduce another variant LLV where
we add another parameter, an output substitution V,
so that a sequent in LLV has the form }; +7 7. The
Id rule now has the form
— 1d

U IT, A,B+
provided V is a unifier for A and B under the sub-
stitution . The binary rules for ® and & are also

modified so that a rule of the form FL2 = FI2 becomes

Wirlh "TFz
VI—TF

The quantifier rules in LLV have the form:

E '_TU{’U} A{U/l’}vra E Fr A{h(T)/l’},Fv
U Er (3w.A),T Vbr (V2.4),D

where v and h are new. For a complete list of proof
rules, see Appendix D.

Lemma 3.2 If LLV proves ¥,y br 7, then it proves

Vibr 7.

Theorem 3.3
1. If LLG proves v Fr 7, then for some V, LLV
proves ¢; Vbr?

2. If LLV provesg Fr 7, then for some W, LLG
proves w bp 7.

3.1 Complexity Results

Using LLV, the multiplicative-additive fragment of
first-order linear logic (MALL1) can be shown to be
decidable in NEXPTIME. This follows from the fact
that any MALL1 proof has a depth that is bounded
by the number of connectives in the conclusion. This
means that the number of axiom nodes in such a proof
is bounded by an exponential in the size of the con-
clusion. Since LLV introduces a Herbrand term of
the form h(T') for each universal quantifier in the con-
clusion, where T is itself bounded by the number of
existential quantifiers in the conclusion, each axiom
sequent is at most quadratic in the size of conclusion.
Since unification is linear [14], one can build a non-
deterministic procedure to guess and check a proof in
time that 1s exponential in the size of the conclusion.
Lincoln and Scedrov [11] have shown that the decid-
ability of MALL1 is NEXPTIME-hard so we now have
a tight bound on the complexity.

Theorem 3.4 MALLI is NEXPTIME-complete.

The multiplicative fragment of first-order linear
logic (MLL1) can be shown to be decidable in NP by
the same method. The number of axiom nodes in
a MLLI proof is linear in the size of the conclusion,
and each axiom node in the search has size at most
quadratic in the size of the conclusion. This results in
a tight bound since the propositional fragment MLL
is NP-complete [8].

Theorem 3.5 MLL1 is NP-complete.

4 An Optimization

We now present an optimization of LLV called LLO
that exploits the permutabilities of linear logic. As is
clear from the table in Appendix A, there are only a
few pairs of impermutable rules in LL. A rule R1 is
said to be impermutable below R2, that is R1/R2, if
there is a 7 such that the principal formulas of R1 and
R2 occur as distinct formulas in 7, but - 7 can only
be proved with R2 below R1. Otherwise, R1 is said
to be permutable below R2, or equivalently, R2 is per-
mutable above R1. One way to exploit the permutabil-
ities is to restrict the backtracking in proof search to
those rules that might not permute below others [1].
As we have already seen, the permutabilities can also
be used to reduce the dependencies between Herbrand
variables and Herbrand functions. For any imper-
mutability R1/R2, if an R2 step occurs below an Rl
step in the proof search, then the Herbrand variables
governing the principal formula of the R2 step should
also govern the principal formula of the R1 step. A
Herbrand variable introduced in place of the existen-
tial quantifier in (3x.A) also governs all subformulas of
A in the proof. A Herbrand variable governs a formula
if it dominates all the Herbrand functions replacing
universal quantifiers in subformulas of the given for-
mula in the proof.

In LLV, a universal quantifier is replaced by an ap-
plication of a new Herbrand function to all the Her-
brand variables that happen to have been introduced
at that point in the proof. The point of the opti-
mized system LLO is to reduce the set of Herbrand
variables used in this construction to only those Her-
brand variables which necessarily govern the universal
formula. In a formula like (3z.P(z)) & (Yy.PL(y))
a possible LLO proof proceeds by reducing %, then
3, and then V. This proof is not acceptable in LLV,
as the Herbrand variable replacing x would appear in
the term replacing y, causing occur-check failure of
unification. However, LLO 1s sensitive to the fact that
the Herbrand variable replacing = does not govern the
universal term. The key property is that the LLO
proof could have been carried out in such a way that
the existential formula was reduced above the univer-
sal one. Another way to view this is that the LLV
impermutability 3/V has been eliminated in LLO.

This optimization is important because proof
search may succeed more quickly on true theorems as
there are fewer failures of unification, and thus it is
more likely in nondeterministic proof search, to find
a successful proof. For example, in the pure multi-
plicative fragment, all quantifier rules can be applied
immediately. This is in contrast to LLV where one
must try all possible orderings of the quantifier rules.

One way to track the dependencies between im-
permutable rules is to maintain a set of Herbrand
variables corresponding to every pair of impermutable
rules. Since only three rules 1S, %, and & occur in the
R2 position of any LL impermutabilities of the form
R1/R2, where R1 is not 1S, it is sufficient to maintain
three sets of variables R, S, and T', and treat 1S spe-
cially. A sequent in LLO therefore consists of the two
substitutions U and V', and three sets of variables: R,
the set of 1S Herbrand variables, S, the &4 Herbrand

oo
1 Fat(v),q(e)]
Fpl,p F (3z.qt(z)),q(c)
Fpt, (Qzgt (), q(c) @p
Fpt, (Fe.gt (), (Vya(y) @ p)
Fpt & (gt (2)), (Vya(y) @ p)

The above form of dynamic Skolemization is still inef-
ficient since it is not flexible relative to the permutabil-
ities of the sequent calculus. For instance, it permits
a similar proof search (shown below) with a slightly
different order of the rules to fail.

14 unify fails
Fplp Fat(v),q(h(v))
Fpt gt (v),q(h(v) @ p
Fpt gt (v), (Yy.a(y) @ p)
Fpt, (3z.qt (), (Vvq(y) @ p)
Fpt ¥ (3r.95(2)), (Vv.a(y) ® p)
By paying attention to the permutabilities, it is pos-
sible to obtain an optimized form of dynamic Skolem-
ization where even the latter order of proof search can
succeed. In this case, the 3 rule is clearly permutable
above the V rule so that the Herbrand function intro-
duced in place of the V quantifier need not depend on

the Herbrand variable replacing the 3 quantifier. The
resulting “proof” has the form:

{v =<}
Folo W .
'_pJ_qu_(U)v ()
Fpt, gt (@), (Vy. () P) :
Fot, (Fegt (), (Vy.a(y) @ p)

)
bpt ¥ (3r.gt(2), (Yya(y) @ p)
The point here is that even though the unifier is such
that the proof search violates the eigenvariable con-
dition, it is possible to permute the steps so as to
obtain a valid proof. By thus allowing more of the
search paths to succeed, it is possible to reduce the
need for backtracking in proof search. We can also
check that the same optimized procedure applied to

F (Jz.pt B gt (2)), (Vy.q9(y)) @ p does fail.

unify fails
i Fat(v),q(h(v))
Folp Fat (), (Vya(v))
Fot et (v), (Yya(v) @ p
Fpt & gt (v), (Yyq(y) @ p
F(@ept ¥ gt (2)), (Vya(v) @ p
Here, since the 3 quantifier governs the % which is
not permutable above the @ governing the V, the Her-
brand function introduced for the V is dominated by
the Herbrand variable replacing the 3.
The completeness of both dynamic Skolemization

and 1ts optimization are straightforward since if there
is a proof of the given conjecture, then both search

procedures can succeed by nondeterministically apply-
ing the inference rules in the same order as the given
proof. The soundness of the optimization is some-
what more delicate since it succeeds even when the
order of inference rules in the search could violate the
eigenvariable condition. We present these search pro-
cedures and demonstrate their soundness and com-
pleteness. For concreteness, these theorems will be
stated in terms of linear logic, but their generalization
to other cut-free sequent calculi will be apparent from
the proofs. We also obtain complexity results for some
first-order fragments of linear logic.

3 Linear Logic

We will be assuming the basic terminology of
sequent calculus, linear logic, and unification the-
ory [3, 5]. We will only be dealing with idempotent
substitutions U so that U(U(t)) = U(¢t), for any t.
The composition of substitutions will be such that
(UoV)(t) = U(V(t), for any t. A substitution U
is less general than V', in symbols U < V| if and only
if there exists a W such that [/ = WoV. As our start-
ing point, we use a small variant of linear logic shown
in Appendix B where the weakening rule is built into
the axiom rule, and the contraction rule is built into
the dereliction and ® rules. It is easy to see that the
modified system is equivalent to the more conventional
presentation of linear logic.

We then modify LL slightly to obtain LLG where
each sequent additionally contains a list of free vari-
ables T and a substitution U, and the quantifier and
Identity rules are modified. The 3 and V rules have
the form

{t/v}oU FTU{0} A{v/ﬂb’},lﬂ3
U l_T (HZ’A),F

v b A{W(T)/=}, T,
U l_T (Vl’A),F

where v is a new? Herbrand variable, i is a new Her-
brand function, and if 7' = {vy, .. vn} then h(T) is
h(v1,...,vn) so that each v; in T dominates h. The
Id rule 1s also modified as

U(4) = U(B)
—Id
U |_T 1_1_‘7A7BJ_

where A and B are atomic. The other rules remain
unchanged and preserve the parameters U and 7" from
conclusion to premises. For a complete list of proof
rules, see Appendix C. The system LLG is introduced
only as a step leading to LLV and LLO, which are the
systems of real interest.

Let the eigenvariables in LL
be labeled ay,...,an,... and the Herbrand functions
in LLG be hy,..., hy,.... The notation ? denotes the
result of replacing every term of the form A;(...) in 7
by the corresponding a;.

Lemma 3.1 If T contains all the free Herbrand vari-
ables in 7, then LL proves = U(?) if and only if LLG

proves y Fp 7.

2By a new Herbrand variable or Herbrand function, we mean
one that does not occur in the input substitution U, the gov-
erning Herbrand variables T', or in any of the formulas in the
conclusion sequent of the rule.

search. The general ideas are illustrated with the spe-
cific case of linear logic because, as is well known,
it 1s possible to embed many logics into linear logic
while preserving the structure of proofs [5, 12]. We
present a series of proof search procedures for lin-
ear logic culminating in one where the permutability
properties of linear logic are exploited to introduce an
optimized form of dynamic Skolemization' that sig-
nificantly reduces the amount of nondeterminism in
the proof search. The optimization of the quantifier
steps in the proof can be very effectively combined
with other optimizations that are also based on per-
mutability. We also present the performance results of
a Prolog implementation of these search procedures.

The sequent proof search paradigm was previ-
ously used to analyze various fragments of propo-
sitional linear logic to show the undecidability of
propositional linear logic, the PSPACE-completeness of
multiplicative-additive linear logic (MALL), and the
NP-completeness of multiplicative linear logic (MLL)
with unrestricted weakening [10]. Using similar tech-
niques, Kanovich showed that multiplicative linear
logic is NP-complete [8]. Lincoln and Winkler demon-
strated NpP-completeness of MLL using only the con-
stants [13]. Lincoln and Scedrov had previously shown
this fragment of linear logic to be NEXPTIME-hard [11].
By extending this proof search paradigm, we are able
to show here that the first-order version of MALL is
decidable in NEXPTIME. We also observe that first-
order MLL is NP-complete and hence of the same com-
plexity as its propositional counterpart.

The naive form of dynamic Skolemization has been
studied by a number of authors. Cerrito [2] presents a
related system for linear logic. Shankar [15] presents
an optimized form of dynamic Skolemization for the
intuitionistic sequent calculus LJ. In this paper, we
generalize this technique to arbitrary cut-free sequent
calculi with the subformula property and conventional
quantifier rules. We also provide rigorous proofs of the
soundness and completeness of this procedure for the
specific case of linear logic. These proofs can easily be
adapted for other cut-free sequent calculi. Finally, we
present experimental evidence that the proof systems
discussed here directly lead to efficient proof search
procedures for linear logic.

2 Proof Search Examples from Linear
Logic

Using the proof rules for linear logic given in Ap-
pendix B and the standard definition of linear nega-
tion, we can illustrate the relevant ideas underlying
sequent proof search. A specific instance of a proof
rule is called a step. First consider the example of the
linear sequent = (pt % ¢1) % (¢ @ p). This sequent
has only one possible cut-free proof, namely

1The use of Herbrand functions in proof search is colloquially
called Skolemization.

Id Id
Fpt,p Fqt,q
1 L ®
Fp9=,9@py
Fpt B gt a@py
Fpt % q¢t) T (g®p)

By the subformula property of cut-free proofs, the %
step must be the lowest one in the proof. For the next
step of the search, we have a choice between the % rule
and the ® rule. It is easy to see that an application
of the ® rule at this point causes the proof search to
fail, whereas the search succeeds with the application
of the @ rule below the ® rule. This shows that the
® step cannot always be permuted below the 4 step.

Next, consider a first-order variant of the above ex-
ample that is not a theorem:

F (Jz.gt(z) B pt), (Vy.q(y)) @ p. We have already
seen that in any proof of such a formula, the % step
must occur below the ® step. By the subformula prop-
erty, the 3 step must occur below the % step and the
Y step must occur above the ® step. The only likely
proof is the following:

o ERCTON

Fpt,p Fat(e), (Vy.q(y))
Fptiat(e), (Vya(y) @ p
Fpt % gt(e),(Vya(y)) @ p

F(Fzpt ¥ gt (z)), (Vya(y) @p

This proof clearly violates the eigenvariable condi-
tion because the parameter generalized in the V step
appears free in the conclusion of the step. Note
that static Skolemization on the conclusion of this
proof causes the proof search to (erroneously) suc-
ceed. The Skolemized form of the conclusion is F
pt B ¢ (v), ¢(c) @ p, which is easily proved in propo-
sitional linear logic when ¢ instantiates v. With the
naive form of dynamic Skolemization where quanti-
fiers are replaced by Herbrand variables or functions
during the proof search, the proof search rightly fails,
as shown below.

unify fails

Fgt(v), q(h(v))

Folp Fat(v), (vya(v)
Fptia(o)t, (Vya(y) @ p
Fpt F gt (v), (Vya(y) ®p

F(Fzpt ¥ gt (z)), (Vya(y) @p

Note that the Herbrand variable v dominates the Her-
brand function h since v is introduced below h in
the search. The occurs check at the unification fails
indicating a potential transgression of the eigenvari-
able condition. We can also successfully apply dy-
namic Skolemization to the positive example, - pt 2%

(Fz.q*(2)), (Yy.q(y) © p).

Proof Search in First-order Linear Logic
and Other Cut-free Sequent Calculi

Reprint from: Ninth Annual IEEE Symposium on Logic in Computer Science (LICS’94) to be
held in Paris, France, July 4-8 1994.
Also appears in SRI Technical Report CSL-93-11.

P. D. Lincoln*

lincoln@csl.sri.com

N. Shankar*

shankar@csl.sri.com

SRI International Computer Science Laboratory
333 Ravenswood Ave
Menlo Park CA 94025 USA

Abstract

We present a general framework for proof search in
first-order cut-free sequent calculi and apply it to the
specific case of linear logic. In this framework, Her-
brand functions are used to encode universal quantifi-
cation, and unification is used to instantiate existential
quantifiers so that the eigenvariable conditions are re-
spected. We present an optimization of this procedure
that exploits the permutabilities of the subject logic.
We prove the soundness and completeness of several
related proof search procedures. This proof search
framework is used to show that provability for first-
order MALL is in NEXPTIME, and first-order MLL is
in NP. Performance comparisons based on Prolog im-
plementations of the procedures are also given. The
optimization of the quantifier steps in proof search can
be combined effectively with a number of other opti-
mizations that are also based on permutability.

1 Introduction

Since proofs contain more information than the the-
orems they prove, the main challenge for automated
reasoning is one of automatically finding proofs rather
than merely proving theorems. We are therefore more
interested in automated proof search than in auto-
mated theorem proving. Simply stated, the problem
of proof search is to find a proof for a given conjecture.

There 1s a very simple but impractical approach to
proof search: guess a formal proof of the given conjec-
ture and check whether it is a correct proof. This ap-
proach is too nondeterministic. For example, it leaves
open the choice of the formalism in which the proof
i1s to be generated. We restrict our attention to se-
quent calculi since most logics can be formalized this
way, and sequent calculi have certain structural ad-
vantages from the point of view of mechanization. We
concentrate on cut-free sequent calculi so as to remove
any guesswork regarding the choice of cut formulas.
Most sequent calculi do exhibit cut-elimination theo-
rems so that no theorems are lost by this restriction,

*Work supported under NSF Grant CCR-9224858

even though some useful and compact proofs are typi-
cally ruled out. The latter disadvantage is outweighed
by the ease with which cut-free sequent calculi can be
mechanized.

The next level of nondeterminism is in the guess-
ing of the term instantiating an existential quantifier.
By employing Herbrand functions and unification, this
guesswork can be eliminated. The Herbrand theo-
rem [6] states that a formula A of first-order logic can
be transformed into a quantifier-free formula Ay such
that A is provable if and only if some finite disjunction
of instances of A can be proved in classical proposi-
tional logic. The Herbrand theorem yields an effective
semi-decision procedure for classical first-order logic,
but cannot be applied directly to most logics, includ-
ing intuitionistic, linear, and modal logics, which typ-
ically lack the transformations needed to convert A
to Agr. The proof search procedures described in this
paper eliminate the guesswork in the quantifier rules
even in the absence of a Herbrand theorem.

The final level of nondeterminism in proof search
has to do with the order in which the inference rules
are applied. It is possible for the proof search to suc-
ceed with one ordering of the rules, and fail with some
other ordering. A proof search procedure might there-
fore backtrack in order to try all possible orderings of
the applicable proof rules. The relative ordering of
the quantifier rules in a proof is particularly impor-
tant because the rule of universal generalization must
obey the eigenvariable condition. In many sequent
calculi, the relative order of the structural and propo-
sitional rules is also crucial to the success of an at-
tempted proof search. The permutability theorems [9]
of a sequent calculus indicate when the relative order
of two inference rules can be permuted without invali-
dating a proof. These permutabilities can be exploited
to reduce the nondeterminism in the ordering of proof
rules.

This paper studies the optimizations that can be
applied to proof search in the general setting of cut-
free sequent calculi. The point of these optimiza-
tions is to reduce the amount of backtracking in proof

