
E LLO Proof RulesI mgu(A;B;U)U `R;S;T ?�; [X : A]; [Y : B?]
 WU `R;S;T ?�;�; [XST : A] VW `R;S;T ?�; [XST : B];�VU `R;S;T ?�;�; [X : (A
 B)];�P VU `R;S[X;T �; [X : A]; [X : B]VU `R;S;T �; [X : (A P B)]� VU `R;S;T �; [XT : A]VU `R;S;T �; [X : (A �B)]� VU `R;S;T �; [XT : B]VU `R;S;T �; [X : (A �B)]& WU `R;S;T[X �; [X : A] VW `R;S;T[X �; [X : B]VU `R;S;T �; [X : (A&B)]?D VU `R;S;T �; [X :?A]; [XTR : A]VU `R;S;T �; [X :?A]!S VU `R[X;S;T ?�; [Y : A]VU `R;S;T ?�; [X :!A]? VU `R;S;T �VU `R;S;T �; [X : ?]1 UU `R;S;T [X : 1]> UU `R;S;T �; [X : >]8 VU `R;S;T �; [X : Afh(X)=yg]VU `R;S;T �; [X : 8y:A]9 VU `R;S;T �; [XvT : Afv=yg]VU `R;S;T �; [X : 9y:A]Where h is new in the 8 rules, v is new in the 9 rules,and mgu(A;B;U ) returns the composition with U ofa most general uni�er of U (A) and U (B). The Y gov-erning the formula A in the hypothesis of the !S ruleis the union of S, T , and every Z such that [Z : B]occurs in the conclusion.



C LLG Proof RulesI U (A) � U (B)U `T?�; A;B?Cut U `T �; A U `T �; A?U `T �;�
 U `T ?�;�; A U `T?�; B;�U `T?�;�; (A
 B);�P U `T �; A;BU `T �; (A P B)� U `T �; A U `T �; BU `T �; (A� B) U `T �; (A� B)& U `T �; A U `T �; BU `T �; (A&B)?D U `T �; ?A;AU `T �; ?A!S U `T ?�; AU `T ?�; !A? U `T �U `T �;?1 U `T?�; 1> U `T �;>8 U `T �; Afh(T )=xgU `T �; 8x:A9 ft=vg�U `T[fvg Afv=xg;�U `T �; 9x:A

D LLV Proof RulesI mgu(A;B;U)U `T ?�; A;B?
 WU `T ?�;�; A VW `T?�; B;�VU `T?�;�; (A
B);�P VU `T �; A;BVU `T �; (A P B)� VU `T �; AVU `T �; (A�B)� VU `T �; BVU `T �; (A�B)& WU `T �; A VW `T �; BVU `T �; (A&B)?D VU `T �; ?A;AVU `T �; ?A!S VU `T?�; AVU `T ?�; !A? VU `T �VU `T �;?1 UU `T 1> UU `T �;>8 VU `T �; Afh(T )=ygVU `T �; 8y:A9 VU `T[fvg �; Afv=ygVU `T �; 9y:A



A LL PermutabilitiesAn impermutabilityR1=R2 is represented in the ta-ble below on column labeled R1 and row labeled R2.For example 
= P is indicated by the numeral 1. Anumeral in the table should be read as \the connec-tive of this column cannot always permute below theconnective of this row". Below the table are a shortlist of examples of sequents which exhibit each imper-mutability. Impermutability 7 is present in most �rst-order logics. Classical logic enjoys all other possiblepermutabilities.
 P & � ?D ! ? 8 9
 0P 1 0& 2 3 4 0 5?D! 6? 08 0 79 00 various examples1 ` (A P B); (A? 
B?)2 ` (A&B); (? 
>); A?; B?3 ` (A&B); (A? � B?)4 ` ((!A)&A); ?A?5 ` (A(t)?&A(u)?); 9x:A(x)6 `!(A? �B); ?A7 ` 8y:(A(y) � B); 9x:A(x)?

B LL Proof RulesI `?�; A;A?Cut ` �; A ` �; A?` �;�
 `?�;�; A `?�; B;�`?�;�; (A
B);�P ` �; A;B` �; (A P B)� ` �; A ` �; B` �; (A�B) ` �; (A�B)& ` �; A ` �; B` �; (A&B)?D ` �; ?A;A` �; ?A!S `?�; A`?�; !A? ` �` �;?1 `?�; 1> ` �;>8 ` �; Afa=xg` �; 8x:A9 ` �; Aft=xg` �; 9x:A



the context and to pass along the unused part of thecontext to the right branch of the 
 rule.We show the timings for these procedures on sometheorems and non-theorems in order to demonstratethe e�cacy of the above optimizations. We �rstcompare these procedures on provable sequents ofthe form ` p?; (9x:q?1 (x)); : : : ; (9x:q?n (x)); (8x:q1(x)
: : : qn(x) 
 p), for n = 1; 2; 3; 4. The run times aregiven to the nearest millisecond on BINProlog ona Sparcstation 10-41. The Prolog code is anony-mously FTPable from FTP.CSL.SRI.COM in the �lepub/shankar/mall.pl.n LLV LLO LLOpt1 17 0 02 200 0 03 10433 17 04 1117383 83 17The table above does not su�ciently emphasizethe utility of LLOpt over LLO since there is asmall overhead cost for LLOpt over LLO. The valueof LLOpt is more apparent when the same exper-iment is attempted with the unprovable sequent `p?; (9x:q?1 (x)); : : : ; (9x:q?n (x)); (8x:q1(x)
 : : : qn(x)
r), for n = 1; 2; 3; 4.n LLV LLO LLOpt1 33 17 02 916 1700 833 80783 199634 13004 - - 33300Note that in the case of a failed proof search, LLOactually performs worse than LLV because both pro-cedures carry out the same search but LLO has the ad-ditional overhead of tracking impermutabilities. Notealso that we have deliberately ordered the sequent soas to trigger the worst backtracking behavior with LLVin order to compare the worst-case performances ofthese procedures. Several further optimizations arecurrently being studied.6 ConclusionWe have presented some optimized proof searchprocedures that can be applied to a wide variety ofcut-free sequent calculi. We have presented rigorousinformal arguments for the soundness and complete-ness of these optimizations. These optimized searchprocedures have been naively implemented in Prolog.The full paper will contain more informative versionsof the proofs and more detailed empirical comparisonsof the various optimizations.Acknowledgments. We thank Sam Owre, DaleMiller, Andre Scedrov, Gopalan Nadathur, and JamesHarland for their help and guidance, and SerenellaCerrito for sharing an early draft of her paper [2] withus.

References[1] J.-M. Andreoli. Logic programming with focusing proofsin linear logic. Journal of Logic and Computation, 1992.To appear.[2] S. Cerrito. Herbrand methods in linear logic. 1992.[3] C.-L. Chang and R.C-T. Lee. Symbolic Logic and Mechan-ical Theorem Proving. Academic Press, 1973.[4] D. Galmiche and G. Perrier. Foundations of proof searchstrategies design in linear logic. In Symposium on LogicalFoundations of Computer Science, St. Petersburg, 1994.To appear.[5] J.-Y. Girard. Linear logic. Theoretical Computer Science,50:1{102, 1987.[6] J. Herbrand. Investigations in proof theory. In J. vanHeijenoort, editor, From Frege to G�odel: A Sourcebook ofMathematical Logic, 1879{1931, pages 525{581. HarvardUniversity Press, Cambridge, MA, 1967. First published1930.[7] J.S. Hodas and D. Miller. Logic programming in a fragmentof intuitionistic linear logic. In Proc. 6-th Annual IEEESymposium on Logic in Computer Science, Amsterdam,pages 32{42. IEEE Computer Society Press, Los Alamitos,California, July 1991. Full paper to appear in Informationand Computation.[8] M. Kanovich. Horn programming in linear logic is NP-complete. In Proc. 7-th Annual IEEE Symposium on Logicin Computer Science, Santa Cruz, California, pages 200{210. IEEE Computer Society Press, Los Alamitos, Califor-nia, June 1992.[9] S.C. Kleene. Permutability of inferences in Gentzen's cal-culi LK and LJ. Memoirs of the AMS, 1952.[10] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Deci-sion problems for propositional linear logic. Annals PureAppl. Logic, 56:239{311, 1992. Special Volume dedicatedto the memory of John Myhill.[11] P. Lincoln and A. Scedrov. First order linear logic withoutmodalities is NEXPTIME-hard. To Appear in TCS, 1993.Available using anonymous ftp from host ftp.cis.upenn.eduand the �le pub/papers/scedrov/mall1.dvi.[12] P. Lincoln, A. Scedrov, and N. Shankar. Linearizing in-tuitionistic implication. In Proc. 6-th Annual IEEE Sym-posium on Logic in Computer Science, Amsterdam, pages51{62. IEEE Computer Society Press, Los Alamitos, Cali-fornia, July 1991. Full paper to appear in Annals of Pureand Applied Logic.[13] P. Lincoln and T. Winkler. Constant-Only MultiplicativeLinear Logic is NP-Complete. To Appear in TCS, 1993.[14] A. Martelli and U. Montanari. An e�cient uni�cation al-gorithm. ACM Trans. on Prog. Lang. and Systems, 4(2),Feb. 1982.[15] N. Shankar. Proof search in the intuitionisticsequent calcu-lus. In D. Kapur, editor,Automated Deduction: CADE-11,volume 607 of lncs, pages 522{536, Berlin, 1992. Springer-Verlag.[16] T. Tammet. Proof search strategies in linear logic. Pro-gramming Methodology Group Report 70, Chalmers Uni-versity, 1993.



At the cost of duplicating the proof of ` B;�. Forstructural reasons, this kind of duplication of sub-proofs can only arise when a binary (2-premise) ruleis permuted above another binary rule.Since the permutation of binary steps can intro-duce duplication of subproofs, the permutation of badproofs into good ones must be done carefully to achievetermination. In the �rst stage of the procedure, thebinary high steps are permuted above the injured 8steps, with the highest binary high step �rst, so thatno high binary steps below an injured 8 are duplicatedin the process. All the high binary steps can be elimi-nated in this manner, but this might create duplicatesof the injured 8 steps or the low steps. Next, we per-mute all the low binary steps below the bad 9 step,with the lowest low steps �rst in order to avoid du-plication of the low binary steps. This last step couldcreate copies of the bad 9 step. The only remaininghigh and low steps are unary steps. It is easy to per-mute these unary steps so that we get an LL proof ofVU `R;S;T (9x:A);� that does not contain any bad 9steps. No bad 9 steps are introduced by these per-mutations since each permutation preserves the con-sistency of the strict partial ordering derived from theLLO proof.Given an LLO sequent VU `R;S;T �, let VU `R;S;T �represent the LL sequent` V (A1); : : : ; V (An), for each [Xi : Ai] in �, whereB represents the result of replacing each Herbrandterm of the form hi(: : :) in B by the correspondingeigenvariable ai. The following lemmas are proved byinduction on LLO proofs.Lemma 4.2 Given any idempotent substitution U ,and an LLO proof of VU `R;S;T �, there is a strictpartial ordering on the steps in this proof respectingthe subformula property, the eigenvariable condition,and the impermutabilities in this proof.Lemma 4.3 An LLO proof of VU `R;S;T � can betransformed to an LL proof of VU `R;S;T � with no bad9 steps but with possible violations of the eigenvariablecondition.The soundness theorem is an easy consequence ofthe above lemma.Theorem 4.4 If � does not contain any Herbrandfunctions or variables, then an LLO proof of VU `R;S;T� can be transformed to an LL proof of VU `R;S;T �.The soundness argument as outlined above is quitegeneral and applies to any cut-free sequent calculuswith the subformula property and conventional quan-ti�er rules.4.1 Other Cut-Free Sequent CalculiOne can generate a dynamic skolemization systemalong the lines of LLV for many other sequent cal-culi. For sequent calculi with cut-elimination theorem,subformula property, and the usual quanti�er rules,one can replace the quanti�er rules with the quanti�er

rules of LLV, decorate every sequent with set of gov-erning variables, and input and output uni�ers, andallow uni�cation at any identity-like rules (that is, anyrules requiring two formulas to be identical). The re-sulting LLV-like system replaces the guesswork of theusual existential rule with uni�cation. Thus any cut-free �rst-order sequent system with the subformulaproperty, the usual quanti�er rules, and some �nitedepth bound on the sequent proof tree is decidable.Note that full linear logic (with !,?), relevance logic,�rst-order intuitionistic logic, and �rst-order classi-cal logic, do not exhibit a �nite depth bound on se-quent proofs, due to the contraction rule. However, aproof system like LLV may still be of direct interestwhen considering logic programming in non-classicalsequent systems.It is also straightfoward to generate an optimizedsequent system along the lines of LLO for any �rst-order cut-free sequent-calculi with the subformulaproperty and the usual quanti�er rules. The pro-cess begins with the analysis of the propositional per-mutabilities (such as displayed in Appendix A for lin-ear logic). Then for each R2 rule (rules which do notalways permute upward) a list of variables is created(like the R,S, and T for !S, P, and & in LLO). Then foreach rule R2, for each rule R1 that does not permutebelow R2, the R2 variables are added to the governingvariables of the subformulas of the principal formula.A system generated in this way will have no quanti�erimpermutabilities.5 ImplementationWe have implemented Prolog proof search pro-cedures for the constant-free multiplicative-additivefragments of LLV, LLO, and a version of LLO calledLLOpt where we have optimized the backtrackingto exploit some propositional permutabilities. Theseoptimizations are similar to those proposed by An-dreoli [1], Galmiche and Perrier [4], Hodas andMiller [7], and Tammet [16]. The combination of LLOwith optimizations based on propositional permutabil-ities is a delicate matter. The usual optimization isthat if we have a rule R2 that is always permutable be-low any other rule, then it is safe to apply this rule im-mediately in the proof search. In the context of LLO,this would mean that for an impermutability R1/R2,the Herbrand variables governing R2 would alwaysgovern R1 so that proof attempts that might havesucceeded with R1 below R2 now fail because of theoccur check. For instance, given the provable sequent` (9x:p(x) P q(x)); r; (r?
 (8y:p?(y)
 (?q(y)))), theLLO proof search fails if the P step occurs below allthe 
 steps.The LLO search procedure backtracks on all therules. We can optimize this to avoid backtracking onP, 8, and & rules provided there is backtracking onapplications of the 9 rule. The P and 8 steps canbe applied immediately, but immediate reductions ofthe & steps could lead to larger proofs. The mostsigni�cant optimization is in the treatment of the 
rule. LLO tries all possible partitions of the context,whereas it turns out to be far more e�ective to al-low the left branch of the rule to use up some part of



variables, and T , the & Herbrand variables. In addi-tion, each sequent formula is decorated with the Her-brand variables that govern it. The quanti�er ruleshave the form VU `R;S;T �; [XvT : Afv=xg]9VU `R;S;T �; [X : (9x:A)]VU `R;S;T �; [X : Afh(X)=xg]8VU `R;S;T �; [X : (8x:A)]where v and h are new. The 9 rule encodes the factthat the formula A is governed by the newly intro-duced Herbrand variable v and by those Herbrandvariables that govern any & connective that is an-alyzed below the 9 steps, thus encoding the imper-mutability 9=& . The 8 rule is more straightforward.The other rules similarly encode the various imper-mutabilities by suitably augmenting either the sets R,S, or T , or the variable sets that are local to the se-quent formulas.The completeness of LLO is established by the fol-lowing lemma which can be proved by induction onLLV proofs.Theorem 4.1 Let � be of the form A1; : : : ; An.If LLV proves VU `T 0 �, then for anyR;S; T;X1; : : : ; Xn � T 0,there exists a W such that LLO proves WU `R;S;T [X1 :A1]; : : : ; [Xn : An].We outline the soundness argument, and refer to aforthcoming full paper for the details. To prove thesoundness of LLO, we need to show that when theLLO proof search succeeds and returns a uni�er V ,then the original goal sequent is provable in LL. Themain obstacle is that if LLO proves a sequent, the re-sulting \proof" can contain violations of the eigenvari-able condition in the following sense: the conclusionVU `R;S;T [X : (8x:A)];� of a 8 step introducing theHerbrand function h can be such that V (�) containsoccurrences of h. This must be because some Her-brand variable v in � is introduced by an 9 step thatoccurs below the 8 step introducing h, where V (v)contains h. Let such an 9 step be labeled bad , and leta proof containing bad 9 steps be labeled a bad proof.We clearly need to permute the order of such quanti-�er steps in order to rid the given LLO proof of bad 9steps to construct an LL proof.We will be constructing the LL proof by inductionon the structure of the given LLO proof. The LLproof is constructed by applying permutations to theLL subproofs obtained from the induction hypothesis.We therefore need to keep track of which inferencesteps in the constructed LL proof remain permutable.This information is actually implicit in the originalLLO proof. We therefore set up a correspondence be-tween the steps in the LLO proof and those in the re-sulting LL proof. This many-to-many correspondenceis preserved by the permutations. It is possible to ob-tain a strict partial ordering on the steps in the givenLLO proof so that step Q1 < Q2 if and only if one ofthe following is true in the LLO proof:

1. Q1 occurs below Q2 and Q2=Q1 is an LL imper-mutability.2. The principle formula of Q2 is a subformula ofQ1.3. Q1 is a 8 step introducing Herbrand function h,andQ2 is an 9 step introducing Herbrand variablev, where V (v) contains h.4. There is some Q3 such that Q1 < Q3 and Q3 <Q2.We show that it is possible to construct an LL prooffrom a given LLO proof that is consistent with theabove strict partial ordering so that any steps Q10 andQ20 in the LL proof corresponding to Q1 and Q2 in theLLO proof, Q20 occurs below Q10 whenever Q1 < Q2.Furthermore, if Q10 and Q20 in the LL proof are suchthat we have for the corresponding steps in the LLOproof that Q1 6< Q2, then Q10 is permutable above Q20in the LL proof. Note that an LL proof consistentwith the strict partial ordering does not contain anybad 9 steps.In constructing the LL proof by induction on struc-ture of the given LLO proof, we only examine the casewhen the concluding inference in the LLO proof is an9 step since the other cases are straightforward. Wetherefore suppose that we are given an LLO proof ofthe form �VU `R;S;T Afv=xg;�9VU `R;S;T (9x:A);�where the concluding 9 step is bad in that V (v) con-tains occurrences of Herbrand functions introduced by8 steps in �. We label the latter 8 steps as injured bythe bad 9 step. By induction, we can construct an LLproof �0 from � that is consistent with the strict par-tial ordering derived from the LLO proof and hence,does not contain any bad 9 steps. Every proof stepQ0 in �0 (corresponding to Q in �) that occurs abovethis bad 9 step and below any corresponding injured 8step is either permutable below the bad 9 step (a lowstep) or above the injured 8 step (a high step), sinceotherwise, we would have a cycle in the LLO proof ofthe form 8 < 9 < Q < 8 thus violating the strictnessof the partial order. It is clear that the high stepsmust be permuted above the injured 8 steps, and thelow steps and the injured 8 steps must be permutedbelow the bad 9 step. In performing the above permu-tations, it should be noted that certain permutationsintroduce copies of subproofs. For example, the per-mutation of a 
 step above a & step copies one of thesubproofs of the 
 step. For example, proofs of theform ` A;C;� ` A;D;� &` A;C&D;� ` B;� 
` A 
B;C&D;�;�can be permuted to the form` A;C;� ` B;� 
` A
 B;C;�;� ` A;D;� ` B;� 
` A
 B;D;�;� &` A 
B;C&D;�;�



In LLG, the parameter U is given as an input sub-stitution to the proof search and augmented at every9 step. We next introduce another variant LLV wherewe add another parameter, an output substitution V ,so that a sequent in LLV has the form VU `T �. TheId rule now has the formVU `T ?�;A;B?Idprovided V is a uni�er for A and B under the sub-stitution U . The binary rules for 
 and & are alsomodi�ed so that a rule of the form `�1 `�2`� becomesWU `T �1 VW `T �2VU `T � :The quanti�er rules in LLV have the form:VU `T[fvg Afv=xg;�9VU `T (9x:A);� VU `T Afh(T )=xg;�8VU `T (8x:A);�where v and h are new. For a complete list of proofrules, see Appendix D.Lemma 3.2 If LLV proves VU1�U `T �, then it provesVU `T �.Theorem 3.31. If LLG proves U `T �, then for some V , LLVproves VU `T �.2. If LLV proves VU `T �, then for some W, LLGproves W `T �.3.1 Complexity ResultsUsing LLV, the multiplicative-additive fragment of�rst-order linear logic (MALL1) can be shown to bedecidable in nexptime. This follows from the factthat any MALL1 proof has a depth that is boundedby the number of connectives in the conclusion. Thismeans that the number of axiom nodes in such a proofis bounded by an exponential in the size of the con-clusion. Since LLV introduces a Herbrand term ofthe form h(T ) for each universal quanti�er in the con-clusion, where T is itself bounded by the number ofexistential quanti�ers in the conclusion, each axiomsequent is at most quadratic in the size of conclusion.Since uni�cation is linear [14], one can build a non-deterministic procedure to guess and check a proof intime that is exponential in the size of the conclusion.Lincoln and Scedrov [11] have shown that the decid-ability of MALL1 is nexptime-hard so we now havea tight bound on the complexity.Theorem 3.4 MALL1 is nexptime-complete.The multiplicative fragment of �rst-order linearlogic (MLL1) can be shown to be decidable in np bythe same method. The number of axiom nodes ina MLL1 proof is linear in the size of the conclusion,and each axiom node in the search has size at mostquadratic in the size of the conclusion. This results ina tight bound since the propositional fragment MLLis np-complete [8].Theorem 3.5 MLL1 is np-complete.

4 An OptimizationWe now present an optimization of LLV called LLOthat exploits the permutabilities of linear logic. As isclear from the table in Appendix A, there are only afew pairs of impermutable rules in LL. A rule R1 issaid to be impermutable below R2, that is R1/R2, ifthere is a � such that the principal formulas of R1 andR2 occur as distinct formulas in �, but ` � can onlybe proved with R2 below R1. Otherwise, R1 is saidto be permutable below R2, or equivalently, R2 is per-mutable above R1. One way to exploit the permutabil-ities is to restrict the backtracking in proof search tothose rules that might not permute below others [1].As we have already seen, the permutabilities can alsobe used to reduce the dependencies between Herbrandvariables and Herbrand functions. For any imper-mutability R1/R2, if an R2 step occurs below an R1step in the proof search, then the Herbrand variablesgoverning the principal formula of the R2 step shouldalso govern the principal formula of the R1 step. AHerbrand variable introduced in place of the existen-tial quanti�er in (9x:A) also governs all subformulas ofA in the proof. A Herbrand variable governs a formulaif it dominates all the Herbrand functions replacinguniversal quanti�ers in subformulas of the given for-mula in the proof.In LLV, a universal quanti�er is replaced by an ap-plication of a new Herbrand function to all the Her-brand variables that happen to have been introducedat that point in the proof. The point of the opti-mized system LLO is to reduce the set of Herbrandvariables used in this construction to only those Her-brand variables which necessarily govern the universalformula. In a formula like (9x:P (x)) P (8y:P?(y))a possible LLO proof proceeds by reducing P, then9, and then 8. This proof is not acceptable in LLV,as the Herbrand variable replacing x would appear inthe term replacing y, causing occur-check failure ofuni�cation. However, LLO is sensitive to the fact thatthe Herbrand variable replacing x does not govern theuniversal term. The key property is that the LLOproof could have been carried out in such a way thatthe existential formula was reduced above the univer-sal one. Another way to view this is that the LLVimpermutability 9=8 has been eliminated in LLO.This optimization is important because proofsearch may succeed more quickly on true theorems asthere are fewer failures of uni�cation, and thus it ismore likely in nondeterministic proof search, to �nda successful proof. For example, in the pure multi-plicative fragment, all quanti�er rules can be appliedimmediately. This is in contrast to LLV where onemust try all possible orderings of the quanti�er rules.One way to track the dependencies between im-permutable rules is to maintain a set of Herbrandvariables corresponding to every pair of impermutablerules. Since only three rules !S, P, and & occur in theR2 position of any LL impermutabilities of the formR1/R2, where R1 is not !S, it is su�cient to maintainthree sets of variables R, S, and T , and treat !S spe-cially. A sequent in LLO therefore consists of the twosubstitutions U and V , and three sets of variables: R,the set of !S Herbrand variables, S, the P Herbrand



` p?; pId fv cg` q?(v); q(c)` (9x:q?(x)); q(c)9
` p?; (9x:q?(x)); q(c)
 p` p?; (9x:q?(x)); (8y:q(y)
 p)8` p? P (9x:q?(x)); (8y:q(y)
 p)PThe above form of dynamic Skolemization is still inef-�cient since it is not 
exible relative to the permutabil-ities of the sequent calculus. For instance, it permitsa similar proof search (shown below) with a slightlydi�erent order of the rules to fail.` p?; pId unify fails` q?(v); q(h(v)) 
` p?; q?(v); q(h(v))
 p` p?; q?(v); (8y:q(y)
 p)8` p?; (9x:q?(x)); (8y:q(y)
 p)9` p? P (9x:q?(x)); (8y:q(y)
 p)PBy paying attention to the permutabilities, it is pos-sible to obtain an optimized form of dynamic Skolem-ization where even the latter order of proof search cansucceed. In this case, the 9 rule is clearly permutableabove the 8 rule so that the Herbrand function intro-duced in place of the 8 quanti�er need not depend onthe Herbrand variable replacing the 9 quanti�er. Theresulting \proof" has the form:` p?; pId fv cg` q?(v); q(c) 
` p?; q?(v); q(c)
 p` p?; q?(v)); (8y:q(y)
 p)8` p?; (9x:q?(x)); (8y:q(y)
 p)9` p? P (9x:q?(x)); (8y:q(y)
 p)PThe point here is that even though the uni�er is suchthat the proof search violates the eigenvariable con-dition, it is possible to permute the steps so as toobtain a valid proof. By thus allowing more of thesearch paths to succeed, it is possible to reduce theneed for backtracking in proof search. We can alsocheck that the same optimized procedure applied to` (9x:p? P q?(x)); (8y:q(y)) 
 p does fail.` p?; pId unify fails` q?(v); q(h(v))` q?(v); (8y:q(y))8
` p?; q?(v); (8y:q(y))
 p` p? P q?(v); (8y:q(y))
 pP` (9x:p? P q?(x)); (8y:q(y))
 p9Here, since the 9 quanti�er governs the P which isnot permutable above the 
 governing the 8, the Her-brand function introduced for the 8 is dominated bythe Herbrand variable replacing the 9.The completeness of both dynamic Skolemizationand its optimization are straightforward since if thereis a proof of the given conjecture, then both search

procedures can succeed by nondeterministically apply-ing the inference rules in the same order as the givenproof. The soundness of the optimization is some-what more delicate since it succeeds even when theorder of inference rules in the search could violate theeigenvariable condition. We present these search pro-cedures and demonstrate their soundness and com-pleteness. For concreteness, these theorems will bestated in terms of linear logic, but their generalizationto other cut-free sequent calculi will be apparent fromthe proofs. We also obtain complexity results for some�rst-order fragments of linear logic.3 Linear LogicWe will be assuming the basic terminology ofsequent calculus, linear logic, and uni�cation the-ory [3, 5]. We will only be dealing with idempotentsubstitutions U so that U (U (t)) = U (t), for any t.The composition of substitutions will be such that(U � V )(t) = U (V (t)), for any t. A substitution Uis less general than V , in symbols U < V , if and onlyif there exists aW such that U = W �V . As our start-ing point, we use a small variant of linear logic shownin Appendix B where the weakening rule is built intothe axiom rule, and the contraction rule is built intothe dereliction and 
 rules. It is easy to see that themodi�ed system is equivalent to the more conventionalpresentation of linear logic.We then modify LL slightly to obtain LLG whereeach sequent additionally contains a list of free vari-ables T and a substitution U , and the quanti�er andIdentity rules are modi�ed. The 9 and 8 rules havethe formft=vg�U `T[fvg Afv=xg;�9U `T (9x:A);� U `T Afh(T )=xg;�8U `T (8x:A);�where v is a new2 Herbrand variable, h is a new Her-brand function, and if T = fv1; : : : ; vng, then h(T ) ish(v1; : : : ; vn) so that each vi in T dominates h. TheId rule is also modi�ed asU(A) � U(B)U `T ?�;A; B?Idwhere A and B are atomic. The other rules remainunchanged and preserve the parameters U and T fromconclusion to premises. For a complete list of proofrules, see Appendix C. The system LLG is introducedonly as a step leading to LLV and LLO, which are thesystems of real interest.Let the eigenvariables in LLbe labeled a1; : : : ; an; : : : and the Herbrand functionsin LLG be h1; : : : ; hn; : : :. The notation � denotes theresult of replacing every term of the form hi(: : :) in �by the corresponding ai.Lemma 3.1 If T contains all the free Herbrand vari-ables in �, then LL proves ` U (�) if and only if LLGproves U `T �.2By a new Herbrand variable or Herbrand function, we meanone that does not occur in the input substitution U , the gov-erning Herbrand variables T , or in any of the formulas in theconclusion sequent of the rule.



search. The general ideas are illustrated with the spe-ci�c case of linear logic because, as is well known,it is possible to embed many logics into linear logicwhile preserving the structure of proofs [5, 12]. Wepresent a series of proof search procedures for lin-ear logic culminating in one where the permutabilityproperties of linear logic are exploited to introduce anoptimized form of dynamic Skolemization1 that sig-ni�cantly reduces the amount of nondeterminism inthe proof search. The optimization of the quanti�ersteps in the proof can be very e�ectively combinedwith other optimizations that are also based on per-mutability. We also present the performance results ofa Prolog implementation of these search procedures.The sequent proof search paradigm was previ-ously used to analyze various fragments of propo-sitional linear logic to show the undecidability ofpropositional linear logic, the pspace-completeness ofmultiplicative-additive linear logic (MALL), and thenp-completeness of multiplicative linear logic (MLL)with unrestricted weakening [10]. Using similar tech-niques, Kanovich showed that multiplicative linearlogic is np-complete [8]. Lincoln and Winkler demon-strated np-completeness of MLL using only the con-stants [13]. Lincoln and Scedrov had previously shownthis fragment of linear logic to be nexptime-hard [11].By extending this proof search paradigm, we are ableto show here that the �rst-order version of MALL isdecidable in nexptime. We also observe that �rst-order MLL is np-complete and hence of the same com-plexity as its propositional counterpart.The naive form of dynamic Skolemization has beenstudied by a number of authors. Cerrito [2] presents arelated system for linear logic. Shankar [15] presentsan optimized form of dynamic Skolemization for theintuitionistic sequent calculus LJ . In this paper, wegeneralize this technique to arbitrary cut-free sequentcalculi with the subformula property and conventionalquanti�er rules. We also provide rigorous proofs of thesoundness and completeness of this procedure for thespeci�c case of linear logic. These proofs can easily beadapted for other cut-free sequent calculi. Finally, wepresent experimental evidence that the proof systemsdiscussed here directly lead to e�cient proof searchprocedures for linear logic.2 Proof Search Examples from LinearLogicUsing the proof rules for linear logic given in Ap-pendix B and the standard de�nition of linear nega-tion, we can illustrate the relevant ideas underlyingsequent proof search. A speci�c instance of a proofrule is called a step. First consider the example of thelinear sequent ` (p? P q?) P (q 
 p). This sequenthas only one possible cut-free proof, namely1The use of Herbrand functions in proof search is colloquiallycalled Skolemization.

` p?; pId ` q?; qId
` p?; q?; q 
 pP` p? P q?; q 
 pP` (p? P q?) P (q 
 p)By the subformula property of cut-free proofs, the Pstep must be the lowest one in the proof. For the nextstep of the search, we have a choice between the P ruleand the 
 rule. It is easy to see that an applicationof the 
 rule at this point causes the proof search tofail, whereas the search succeeds with the applicationof the P rule below the 
 rule. This shows that the
 step cannot always be permuted below the P step.Next, consider a �rst-order variant of the above ex-ample that is not a theorem:` (9x:q?(x) P p?); (8y:q(y)) 
 p. We have alreadyseen that in any proof of such a formula, the P stepmust occur below the 
 step. By the subformula prop-erty, the 9 step must occur below the P step and the8 step must occur above the 
 step. The only likelyproof is the following:` p?; pId ` q?(c); q(c)Id` q?(c); (8y:q(y))8
` p?; q?(c); (8y:q(y))
 p` p? P q?(c); (8y:q(y))
 pP` (9x:p? P q?(x)); (8y:q(y))
 p9This proof clearly violates the eigenvariable condi-tion because the parameter generalized in the 8 stepappears free in the conclusion of the step. Notethat static Skolemization on the conclusion of thisproof causes the proof search to (erroneously) suc-ceed. The Skolemized form of the conclusion is `p? P q?(v); q(c) 
 p, which is easily proved in propo-sitional linear logic when c instantiates v. With thenaive form of dynamic Skolemization where quanti-�ers are replaced by Herbrand variables or functionsduring the proof search, the proof search rightly fails,as shown below.` p?; pId unify fails` q?(v); q(h(v))` q?(v); (8y:q(y))8
` p?; q(v)?; (8y:q(y))
 p` p? P q?(v); (8y:q(y))
 pP` (9x:p? P q?(x)); (8y:q(y))
 p9Note that the Herbrand variable v dominates the Her-brand function h since v is introduced below h inthe search. The occurs check at the uni�cation failsindicating a potential transgression of the eigenvari-able condition. We can also successfully apply dy-namic Skolemization to the positive example, ` p? P(9x:q?(x)); (8y:q(y) 
 p).



Proof Search in First-order Linear Logicand Other Cut-free Sequent CalculiReprint from: Ninth Annual IEEE Symposium on Logic in Computer Science (LICS'94) to beheld in Paris, France, July 4-8 1994.Also appears in SRI Technical Report CSL-93-11.P. D. Lincoln� N. Shankar�lincoln@csl.sri.com shankar@csl.sri.comSRI International Computer Science Laboratory333 Ravenswood AveMenlo Park CA 94025 USAAbstractWe present a general framework for proof search in�rst-order cut-free sequent calculi and apply it to thespeci�c case of linear logic. In this framework, Her-brand functions are used to encode universal quanti�-cation, and uni�cation is used to instantiate existentialquanti�ers so that the eigenvariable conditions are re-spected. We present an optimization of this procedurethat exploits the permutabilities of the subject logic.We prove the soundness and completeness of severalrelated proof search procedures. This proof searchframework is used to show that provability for �rst-order MALL is in nexptime, and �rst-order MLL isin np. Performance comparisons based on Prolog im-plementations of the procedures are also given. Theoptimization of the quanti�er steps in proof search canbe combined e�ectively with a number of other opti-mizations that are also based on permutability.1 IntroductionSince proofs contain more information than the the-orems they prove, the main challenge for automatedreasoning is one of automatically �nding proofs ratherthan merely proving theorems. We are therefore moreinterested in automated proof search than in auto-mated theorem proving. Simply stated, the problemof proof search is to �nd a proof for a given conjecture.There is a very simple but impractical approach toproof search: guess a formal proof of the given conjec-ture and check whether it is a correct proof. This ap-proach is too nondeterministic. For example, it leavesopen the choice of the formalism in which the proofis to be generated. We restrict our attention to se-quent calculi since most logics can be formalized thisway, and sequent calculi have certain structural ad-vantages from the point of view of mechanization. Weconcentrate on cut-free sequent calculi so as to removeany guesswork regarding the choice of cut formulas.Most sequent calculi do exhibit cut-elimination theo-rems so that no theorems are lost by this restriction,�Work supported under NSF Grant CCR-9224858

even though some useful and compact proofs are typi-cally ruled out. The latter disadvantage is outweighedby the ease with which cut-free sequent calculi can bemechanized.The next level of nondeterminism is in the guess-ing of the term instantiating an existential quanti�er.By employingHerbrand functions and uni�cation, thisguesswork can be eliminated. The Herbrand theo-rem [6] states that a formula A of �rst-order logic canbe transformed into a quanti�er-free formula AH suchthat A is provable if and only if some �nite disjunctionof instances of AH can be proved in classical proposi-tional logic. The Herbrand theorem yields an e�ectivesemi-decision procedure for classical �rst-order logic,but cannot be applied directly to most logics, includ-ing intuitionistic, linear, and modal logics, which typ-ically lack the transformations needed to convert Ato AH . The proof search procedures described in thispaper eliminate the guesswork in the quanti�er ruleseven in the absence of a Herbrand theorem.The �nal level of nondeterminism in proof searchhas to do with the order in which the inference rulesare applied. It is possible for the proof search to suc-ceed with one ordering of the rules, and fail with someother ordering. A proof search procedure might there-fore backtrack in order to try all possible orderings ofthe applicable proof rules. The relative ordering ofthe quanti�er rules in a proof is particularly impor-tant because the rule of universal generalization mustobey the eigenvariable condition. In many sequentcalculi, the relative order of the structural and propo-sitional rules is also crucial to the success of an at-tempted proof search. The permutability theorems [9]of a sequent calculus indicate when the relative orderof two inference rules can be permuted without invali-dating a proof. These permutabilities can be exploitedto reduce the nondeterminism in the ordering of proofrules.This paper studies the optimizations that can beapplied to proof search in the general setting of cut-free sequent calculi. The point of these optimiza-tions is to reduce the amount of backtracking in proof


