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Abstract

We present a novel approach for key management in wirelessseetworks. Using initial
trust built from a small set of shared keys, low-cost prol®@nable neighboring sensors
to authenticate and establish secure local links. As tlikeofisensor compromise increases
with time, the keys are used only for a limited period righttatieployment. Once secure
local links are established, other security services sscraup-key refresh can be pro-
vided. The protocols we present require little memory ammat@ssing power, and require a
small number of shared keys independent of the network Blpeeover, these protocols do
not depend on a trusted server or base station. To validat@pblicability of our approach
to ad hoc wireless sensor networks, we have implemented rotmgols on the TinyOS-
based Mica platform and applied them to secure a perimeteitanimg application.
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1 Introduction

Networks of wireless sensors present a cost-effectivdisnlto a range of applications in

critical domains such as detection of chemical or bioldgagents or tracking of enemy

vehicles. In these critical applications, using incorrecinaliciously corrupted data can

have disastrous consequences. Security services ardigisszensure the authenticity,

confidentiality, freshness, and integrity of the criticaflarmation collected and processed
by such networks. To support these security services, oadsnentity authentication and
key management that are resilient to external attacks stgdiese networks and to failure
or compromise of these sensors.

If all sensors have sufficient memory and processing poweroaches based on public-
key cryptography or on the Diffie-Hellman key exchange protanay be applicable, but
the necessary cryptographic primitives are currently tqueasive for the most resource-
constrained devices. Less costly alternatives that emplsyed servers sharing a long-term
secret with each client are available. However, such agpesahave significant adminis-
trative overhead as clients must be registered and keyspseefore deployment. Also,
servers must have sufficient memory and computation powengare good performance,
and connectivity must be maintained between clients angserFurthermore, unless ad-
ditional costly measures are taken, attacks against arsease result in denial of service,
or in the loss of a large set of long-term keys, compromisithgexurity services. These
disadvantages and constraints make server-based selutisnitable for sensor networks.

This report presents key-management services that enadesar network to set up
cryptographic keys in an autonomous fashion, without nglyan expensive cryptography
or trusted servers, and with minimal administrative ovathe

The approach requires the sensors to share a small set ef kegs. These keys are
loaded in each sensor before deployment, and, unlike o#epiedistribution schemes,|
6], the number of keys required does not increase with thearétsize. The shared keys
enable a pair of neighbord and B — that is, two sensors that can communicate directly
with each other — to mutually authenticate and securely &xgh a keyK,;, unique to
the pair(A, B). This key K, can then be used to secure local communication between
and B. We call the process of establishing these pairwise keygstrappingand call the
corresponding linksecure local links

Since sensors are typically not tamperproof, we cannotnasdhat the initial keys
used for bootstrapping can be kept secret forever. Howieigan assume that it takes
time for an adversary to physically compromise sensors &tdhg keys. Thus, sensors
that are deployed at the same time can trust each other foak tame interval right after
sensor deployment. Bootstrapping exploits this intervatust to establish secure local
links inexpensively. In particular, a sensor can authatgi@and set up pairwise keys with
its neighbors by using secrets that only recently deplogedars possess. An extension of



the basic bootstrapping protocol supports multiphaseogeptnt, in which secure links are
established between sensors that are deployed in diffphases.

Because of its low cost, this approach is well suited for kenagement in networks
of resource-constrained sensors. The main benefits of ffreagh can be summarized as
follows.

e Low memory and computation cost: Each sensor needs to sttyeasmall set of
(symmetric) keys, independent of network size, and no esiperoperations such as
those used in public-key cryptography are required.

e Low key setup overhead: Sensors deployed at the same tinpeesn@nfigured with
the same set of keys. As a result, our approach has a smalhigthaiive key setup
overhead.

e Self organizing: Sensors autonomously establish secnke livithout involving a
trusted server that may become a bottleneck or a single pbfatlure.

The remainder of the report describes our key-managemevitag in greater detail.
Section3 presents the basic bootstrapping protocol. An extendegwbfor multiphase
deployment of sensors is discussed in SectiorAn example network-level key-refresh
service that builds upon the secure local links is describb&kction5. Our implementation
of these protocols in the TinyOS framework is presented tti®e6, and related work is
discussed in Section

2 Notation and Cryptographic Primitives

The following table summarizes the notation used in thisrep



A,B,C,... | Node identities

Ny, Ny Random numbers (nonces) generated
by AorB

R, Random number stored in nodkbe-
fore deployment

Gg(m) Keyed one-way hash function applied

to stringm using keyk
MACL(m) | Message authentication code for mes-
sagem, generated using key

bk Group authentication key used for
bootstrapping

bko Key generation key used for bootstrap-
ping

gk Key shared by all sensors of generatipn

1 and used for authentication with pr
vious generations

Ky Pairwise key established by neighbdg
AandB

9%
1

=

S

G is a keyed one-way hash function. It has the property thagnga random quantity
r and a data stringn, it is computationally infeasible to find the kdysuch thatr =
Gr(m). Moreover, givenm andk, one can computé,(m) efficiently, but one cannot
learn anything about/, (m) without knowingk. More formally, G is assumed to form a
pseudo-random function family. That is, a polynomial tintyversary cannot distinguish
between the functiotir, for a randomly chosen key, and a true random functiofi of
same domain and range &5. The notion of undistinguishability is defined rigorously
in [1], for example.

MAC is an algorithm for constructing secure message-autlaiaic codes using:.
Givenk and a message:, MAC(m) can be efficiently computed, but one cannot effi-
ciently constructM A C.(m) givenm but notk. We also assume that thiéA C is collision
resistant. Knowingn and MAC;(m), it is computationally intractable to construct a mes-
sagem' such thatMACy(m') = MAC(m). Like G, such aMAC can be constructed
from a pseudo-random function family.

3 Bootstrapping Service

Authentication and key management require initial trustvieen some of the parties in-
volved. For example, a public-key certificate is acceptedadid if signed by an authority
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one trusts. If only symmetric-key cryptography is used pieies that trust each other must
somehow acquire a common shared secret that will enable tiheommunicate securely.
In traditional networks, the initial secrets that are neaeg to bootstrap the authentication
services are typically set up by hand. For example, if a ekatrthentication server is used,
an initial shared key is distributed by an administrator mttee client is registered with the
server. This initial key is typically communicated offlireensure secrecy.

In the case of large networks of embedded devices, manugting a large number
of keys is not practical. In many scenarios, access to theeg\or administration is
impossible once the devices are deployed. For exampleprseosuld be dropped from a
plane over an inaccessible region or deployed in a toxicrenment []. In such cases,
device configuration is possible only before deployment] #rere are no secure offline
channels. Once deployed, the network must be autonomousetiratganizing. The initial
keys should then be set up securely by the devices themgselithsut manual intervention.

The typical scenario is for a sét of wireless sensors to be deployed or dropped in
the environment. At this point, the devices must discoveirtheighbors and self-organize
in an ad hoc network. During this initial phase, the main sgcweoncerns are external
attacks and possibly malicious devices already presertteretivironment. The sensors
from S themselves may be assumed initially trustworthy, as itddkae for an adversary
to compromise them. As the risk of device compromise in@gagth time, it is crucial to
very quickly establish the initial secure links. This cdtis an efficient localized algorithm
with minimal communication overhead. Our bootstrappingiqeol is a localized algorithm
that builds initial trusted links between sensors that atkiwdirect communication range
of each other. It is executed in a short time window after #resers have been deployed.

3.1 Protocol Description

Since all the sensors & are assumed initially trustworthy, two neighbotsand B can
trust each other and establish a secure link if they can maiestlat both of them belong
to S. Hence, a fairly weak form of authentication is sufficieréymely, the ability for a
sensor to prove that it belongs $0 This is implemented cheaply by loading a segretup
authentication keyk, into all the members of. Another secret key, thkey generation
key denoted bybks, is also stored in all sensors 6f It is used by neighborst and B
to generate a pairwise kéy,, after they have authenticated. Loading these two keys
all devices can be done easily when the sensors are prog@namé has very minimal
administration overhead.

The protocol is straightforward. A sensor, sdyinitiates the protocol by generating a
random nonceV, and broadcasting lzello message of the following form:

in

(Hello, A, Ny, MAC, (Hello, A, N,)).

The message contaings identity and the noncéV,, and a message authentication code
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(MAC) generated usingk;. On reception of such a message, any sensaét cdin check
whether the MAC is valid, thus establishing that the sendsspsses the secret kel .
Let B be such a sensor. Onéthas verified the MAC, it generates a random noigeand
sends the following reply tal:

<ACk, A, B, Nb, MA Cbkl (ACk, A, B, Nb, Na»

This acknowledgment communicatesAdhe nonceV,, and proves tol that B knowsbk,
and has receivefy,. WhenA receives the message, it can check whether the MAC is valid,
and if so, extract the nonds,.

After this exchangeA and B have proven to each other that they know the group
authentication key, and they are also both in possessioneofidncesV, and N,. They
construct a pairwise symmetric key as follows:

Koy = Gy (Ng, Nyp),

whereG is a keyed one-way hash function. This pairwise key enahkrs to communicate
securely in the future. The kel is actually split into two subkeyss!, and K?,, used
for encryption and authentication of future messages esely.

3.2 Security

This bootstrapping protocol is a variant of the implicit lesichange protocol AKEP2 of].

It can be proven to be secure against an adversary who doksowthe keysk; andbk,
using the models and techniques introduced by Bellare arghway in R]. The proof
relies on the assumption th&tA C' andG are pseudorandom function families. Under this
assumption, one can show that the following properties atisfied for any adversary,
initiator sensorA, and respondeB.

e The probability thatB3 accepts a hello message that appears to be #dmut was not
sent byA is negligible.

e The probability thatd accepts an acknowledgment message that appears to be from
B but was not sent by3 is negligible.

e F cannot distinguish between the k&Y, , and a random bit string of the same length.

These properties can be stated precisely and proven riglgras shown inZ]. This proof
shows that the protocol is secure against an advedsamno can listen to traffic and inject
messages, as long &sdoes not know the bootstrapping keyis andbks,.

Since sensors are typically not tamperproof, an adversauid gotentially obtain the
keys by physically compromising a sensor. Clearly, if anesglary obtaingk, and bk,



during the bootstrapping time window, then it can comput gihirwise keysK,;, from

the messages it intercepts, or interfere with bootstrappin forging hello and acknowl-
edgment messages. This risk is small if the bootstrappimglew is kept short. However,
an additional risk exists if the adversary can record thesagss exchanged betwedn
and B during bootstrapping and later discover the kéy. Since all sensors use the same
key-generation key, compromise bf; can lead to the compromise of a large number of
pairwise keys. Our countermeasure to this attack is to drasebk; and bk, as soon as
possible, after the bootstrapping window has elapsed.

3.3 Robustness and Cost

The unreliability of the communication link is a major issimedesigning protocols for
wireless sensor networks. We use several mechanisms tothmkeotstrapping protocol
robust to message loss.

First, all the sensors that are deployed together will plath the initiator and responder
role. All of them will initiate the bootstrapping protocdilaast once by broadcasting a hello
message. Two neighborsand B have then at least two chances to establish a secure link:
once withB and once with4 as the initiator. Optionally, the sensors can be programmed
to send more than one hello message, thus executing thefappisg protocol more than
once. This increases the probability that bootstrappirareseds between two neighbors
even if some messages are lost.

In addition, several timing mechanisms are employed toaede probability of mes-
sage collisions. Randomization is used to prevent all serfsom sending a hello at the
same time. When first started, a sensor will wait for a randemogd of time after de-
ployment before sending its hello message. A similar tepiis used to reduce the risk
of collisions between several acknowledgments to a hellbeiVa sensoA broadcasts a
hello message, neighbors dfthat already share a pairwise key withdo not respond.
Such sensors either already responded to a previous hefloAr or they have sent a hello
to which A responded. Except for these sensors, every neighhéitludt received the hello
is expected to respond. To reduce the probability of collisibetween acknowledgments
from different responders, replies tbare sent after a randomized wait time.

A final mechanism reduces the risk of collisions betweerohalkssages and acknowl-
edgments. When a hello message is transmitted at#jrtieen a time intervalt, ¢ + A]
is reserved for acknowledgments to this hello. Transmissaf hellos are triggered by a
timer. If a sensomB receives a hello at time it will not broadcast its own hello until after
t+ A. If B'stimer expires in the interval, theld will not send its hello but restart the timer,
with a randomized delay, to retry later.

All these mechanisms are necessary to make the protocatraba network where
radio links are unreliable. Since the protocol requiressage exchanges only between
neighbors, it is inexpensive in terms of communication. &@ensorA, the cost is one



broadcast message per hello, and at most one reply frtoreach of its neighbors. A more
economical approach could be envisaged that requires oiglyhello message per node. A
protocol that relies on this approach to exchange sessimigaliscussed inlP]. In such
protocols, the keyK,, must be constructed from nonces attached to the hellos fr@and
B. This is very cheap in terms of communication, but also vemgliable if hellos are lost
because of collisions or radio noise.

A main benefit of our bootstrapping protocol over other apphes 4, 6] is its low
memory requirement. Only two secret keys are necessanofustiapping, irrespective of
the network size. The computational cost is also relatigehall as all the cryptographic
primitives required can be implemented using block ciphers

4 Multiphase Deployment

Sensors may be deployed in different phases. For example sessors may be added
when previously deployed sensors fail or when the capghilitthe existing network is
determined to be insufficient. We assume that sensors ateyeepin successive gener-
ations. The bootstrapping protocol of Sect®applies to sensors of a single generation.
This section presents an extension of bootstrapping tlediles a sensaod of generation

to establish a secure link with a seng¢of a later generatiog > i.

The basic idea is fod to store a random quantity,, and a secref,, ; derived fromR,,.
The secret has the property that no other sensor of geneiatw earlier generation, can
efficiently computes, ; from R,. On the other hand, a sensor of generajican efficiently
computeS, ; from R,. The secret is used to establish a secure link betwiand sensors
of generationy. The construction oF, ; relies on a keyed one-way hash function such as
the functionG used previously. For authentication across multiple ggtiwTs, we add an
extra keygk; that is shared by all sensors of generatjoand the secref, ; is constructed

by
Sa,j - ngj(Ra)-

Thus, under the assumption tlais a secure one-way function, only sensors of generation
jJ can constructS, ; from R,. SensorA itself knowsS, ; and R,, but it does not possess
gk;. Several secrets such 8g; must be stored inl before deployment; each corresponds
to one generation betweénr- 1 andi + n, wheren > 0 is the number of future generations
with which A can establish secure links.

SensorA of generationi and B of generationj use the following protocol, called
cross-generation bootstrapping (XGB). WhBris first deployed, it adverstises the event
by broadcasting hello message:

<He”0a Baja Nb)



Thehellomessage consists &fs identity and generation, and a randomly generated nonce
Npg. Upon receiving the messagé,extracts the generation numbgand extracts corre-
sponding secre$, ;. ThenA sends the following acknowledgment £

(Ack, A, B, Ry, MAC, ,(Ack, A, B, R,, N}))

When B receives this message, it can comp8ig usinggk; andR,. ThenB will verify
whether the MAC is valid to establish thatpossesses the secigf ;. If the MAC is
determined to be valid3 completes the protocol by sending a second acknowledgment
that B can authenticate using the secret:

(Ack2, B, A, MACs, ,(Ack2, B, A)).

After XGB, A and B will derive a new session key based 8p;, R4, andNV, for securing
their communication in a way similar to that of the bootspiag protocol.

Because of the one-way property of functiGh A cannot obtairyk;. Thus, A may
not tamper with the communication between a sensor of géoeraand another sensor
other than itself. AlsoA cannot masquerade as another sersaf generation:, of an
earlier generation, or of a later generation when commtinigavith a sensor of generation
j becaused cannot efficiently computér .. (R.).

As previously, the security of the XBG protocol relies @atly on the assumption that
sensors of generatiohare trustworthy when deployed and remain trustworthy fasra|
enough time to complete the protocol. It is also crucial fibsansors of generatiop to
erase the keyk; as soon as the cross-generation protocol is over.

Using the secure local links established by the XGB protamaé can securely transmit
a group key,K,, from generation; and pre-generation sensors to generatiofi + 1)
sensors. In other words, we have a set of old sensors of diemsramaller tham + 1 that
share a secret group kéyj,. This set may be strictly smaller than the set of all genenati
and pre-generationsensors. For example, some sensors may be excluded beuayised
detected to be compromised or misbehaving. When generatiohis deployed, we want
them to obtain the group kely, so that all sensors can participate in a common application.

Again, we assume that sensors are not compromised shaidlythéy are deployed.
After generation(i + 1) sensors are deployed, there exists a time window duringhndiic
generatior(i+ 1) sensors can be trusted to behave correctly and no advessaoptain the
secrets stored in these sensors. During this time windahs@hsors can establish secure
local links with new sensors of generation 1 using XBG, and they can transmi{,,
to them using the secure local links. To prevent a misbelawld sensor from causing
generation(i + 1) sensors to use an incorrect group key, genergtion 1) sensors can
exchange the group keys they receive among themselvestafiitincorrect group key(s),
assuming the majority of the group keys obtained from dist{based on th&?, values)



pre-generatiorfs + 1) sensors are correct. Moreover, thanks to its inability t@iobS,, ;.
for another sensar, a misbehaving pre-generatidi+ 1) sensor cannot masqueradeZzas
in this process. Thus the misbehaving sensor cannot ped@yiil attack p] to outnumber
the correct sensors by presenting itself as multiple preeggtion{: + 1) sensors.

5 Using Secure Local Links

Once neighbors can communicate via secure local links,r atbeurity services can be
built inexpensively. As a simple example, chaining can bedus secure communication
between distant nodes. We present a group-key distribyiotocol built on top of the
secure local links.

An inexpensive way of adding security to a sensor networklisly on a common group
key known by all the sensors. For example, this approachpsasted by TinySec]]], a
link-layer encryption service for TinyOS. Using a globalykenessages between sensors
can be encrypted for confidentiality, or protected againstuption by using a MAC. An
important advantage of this approach is that secure msitisavery efficient. The sender
of a multicast message encrypts the message and computd@&@ence using the group
key. Every recipient decrypts the message and checks the dtyConce.

A limitation of using a shared group key is that compromisa afngle sensor is suf-
ficient to obtain the key, which gives an adversary accesh metwork traffic. To recover
from such an attack, one needs the means to distribute a e gey to all group mem-
bers except those that are considered compromised. Thibec@asily implemented by
exploiting the secure local links.

Our key refresh protocol provides this service. It can bgatad by any member of a
group, although it is typically done by a base station. Thi&itor generates a new, random
group key and optionally constructs a list of sensors to lnduebed from the group. The
new key together with the exclusion list, a sequence nunabet.the initiator's identity is
distributed via the secure local links to all sensors, eitiegse on the exclusion list. First
the initiator securely sends a copy of the key and exclusstrid its good neighbors (i.e.,
those not on the list), using the pairwise key it shares waitheof these neighbors.

A key-refresh message sent lyto B is of the following form:

(KeyRefresh, B, A, O, N, {KQ}K;b, L, MAOKjb(- ).

In this messaged)) is the originator of the new key, that is, the sensor thaiait@tl the key
refresh,N is the group key’s sequence numbkf, the new group key, andl the exclusion
list. The message is protected by using the pairwiseKgythat A and B set up during
bootstrapping. More precisely, the subkisy, is used to guarantee confidentiality &,
while K is used for authentication and integrity.



When B receives such a key-refresh message, it checks the mesgaggty using
Kgb, and it checks whether the message is fresh, based on thensequumbeV and the
originator identityO. If both checks succeed accepts the new group key carried by the
message, and forwards it to all its neighbors excepind any sensor on the exclusion list.
This requires a re-encryption and MAC computation for edcB’s good neighbors.

This protocol distributes the new group key securely andistf. As long as the good
group members are connected, the flooding-like procedwsteilites the new key to all
good members in a robust manner. However, this procedursgensive in terms of com-
munication and computation. The key-refresh message iyjuted once but encrypted
multiple times by each sensor, and sent in separate mesgagash neighbor. This may
not be a significant issue if the group key is not changed véignpbut more efficient
solutions may be desirable.

Including the identity of the originator and a sequence nemngrovides the means to
arbitrate between conflicting key-refresh messages, weachoccur if multiple nodes ini-
tiate the protocol at roughly the same time. Key-refreshaagss are totally ordered using
the lexicographic order on the p&iv, O). When a key-refresh message is receivedbit
is accepted and forwarded only if it is higher in the lexiamgvic order than all key-refresh
messages seen [@yin the past.

This protocol is secure as long as the originator and all xaddoded sensors are not
compromised. If one of the relaying nodes or the origina@oimpromised it could exploit
the protocol to effect denial of service. A possible pratecgainst such compromises is
to require that the originator of all key refresh messagesecfrom a trusted node, such as
a base station. This could be done using a protocol sughTesla [L4]. We are currently
investigating extensions of our protocols for autheniticatistant nodes that could also be
used in this context. We are also examining monitoring meishas to detect misbehaving
nodes in a timely manner.

6 Implementation

We have implemented and experimented with the bootstrgpguiil key-refresh protocols
using Mica devicesd]. The Mica platform is based on an Atmel ATmega 103L or Atmega
128 microcontroller and the RF Monolithics TR100 radio segiver. The microcontroller
is an 8-bit processor that runs at 4 MHz, and includes 4 kB ofMRahd 128 kB of flash
program memory. Mica supports a variety of sensor boards p¥ibto-diode, thermistor,
microphone and sounder, and magnetic and acceleratiolorsenhe radio has a fixed
frequency of 916.5 MHz and a range that can be varied fromeim¢b hundreds of feets,
depending on power.

The Mica platform runs UC Berkeley’s TinyOS operating systg]. TinyOS is a
modular operating system designed for small sensor ptaforin the TinyOS model, an
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application consists of a set of software components thatdnt using event passing and
a simple tasking mechanism. The TinyOS infrastructure idesva collection of low-level
components for interaction with sensor hardware, which lwarilexibly assembled and
integrated with application components. Since version TifyOS and application com-
ponents can be written in NesC, an extension of the C progiagilanguage that supports
the TinyOS component and composition model. All our implataBon was done with
TinyOS 1.0.

6.1 Radio Stack

Implementing our security protocols in TinyOS requirech#igant extensions to the TinyOS
radio stack. In version 1.0, TinyOS actually provided twifedent radio stacks for the Mica
platform. One was the standard radio implementation thes cot include any security. In
this implementation, radio messages consist of a headaylegu, and a cyclic redundancy
check (CRC) that is used to detect message corruption. Tdmehéncludes fields such as
destination address, message type, and length. This mes$ithe radio stack was not
suitable for our protocols because the message formatgéejre do not match TinyOS
messages very well. For example, all our protocols use agypphic MAC for authentica-
tion and integrity, which means that a CRC is unnecessao,Aome of the header fields
required by TinyOS are not used by our protocols.

The second radio stack available with TinyOS is TinySEd.[ It provides link-layer
security based on a fixed network-wide key. In TinySec, th€@Replaced by a MAC and
the payload is encrypted. This use of cryptography for seguadio communication could
address some of our needs but it is not sufficiently flexibteto protocols. TinySec relies
on a fixed key that is used for all messages and provides ndaogefor changing the key.
In our protocols, several keys are maintained for each beigbf a sensor. Some messages
require different keys depending on the destination. Caahg checking a received mes-
sage requires identifying the sender to find the correctypsar keys to use. Furthermore,
some MAC computations that our protocols use require inédion that is not included
in the messages sent (e.g., the acknowledgmentfi¢gli@amessage during bootstrapping).
For these reasons, we need a radio stack that provides @géblmessage formatting and
encryption.

We have developed a new radio stack for TinyOS that provideset services. This
stack is an extension and combination of the standard Tingt@& and TinySec. It pro-
vides four communication services that use the following fypes of messages:

e Plain messages in a format similar to that used by the stdidayOS stack. Mes-
sages are sent in clear and a CRC is added for error detection.

e Encrypted messages, similar to the format used by TinySee.nfessage payload is
encrypted, and a MAC is added for integrity and authenticati
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Stack bytes in ROM bytes in RAM
TinyOS 9440 356
TinySec 14630 1078
Our Stack 11818 914

Table 1: Code Size with Different Stacks

e Authenticated messages: a variant of the TinySec formahinmthe payload is sent
in clear and a MAC is added.

e Raw messages: intended to be formatted by the applicatisawAnessage consists
of a single header byte that specifies the message lengthzadacad.

Thus, two of the communication services provided by ouraattck are the same as what
the TinyOS stack and TinySec provide. Authenticated message a simple variant of
TinySec messages. The raw-message interface gives theadiopl full responsibility for
formatting and error checking. All four types of communioat services are available
within the same radio stack, and can be accessed via differenfaces. By default, the
encrypted and authenticated message services use grasifhiaeyare fixed at compilation
time, but our radio stack provides an interface for changfiege keys at runtime.

An application that sends a message via the raw-messagkaetés free to format the
payload in any way. Conversely, when a raw-message is emtdifte radio stack forwards
it to the application without performing any check. Thiseiriace gives the most flexibility
and it is the one we use for the bootstrapping and key refrestognls.

Our radio stack reuses many components of TinyOS and Tiny@ecattempts to re-
main compatible with them. For example, we use the same MAGri#hm as TinySec,
and we encrypt the payload in CBC mode using the cipher steaédichnique also em-
ployed by TinySec. The block ciphers we use for computing MA&Gd for encryption are
also inherited from TinySec.

The size and performance of our radio stack are similar ta'thgSec stack. Tablé
shows the code size and RAM usage of the same example afplicampiled with the
TinyOS stack, the TinySec stack, and our new stack. The dataoabtained with the
TinyOS 1.0 distribution. In this example, both TinySec andl stack used the SkipJack
block cipher. The application is one of the demo applicatidistributed with TinyOS; it
periodically increments a counter and sends its value ondtli®. As could be expected,
using cryptography increases the code size and RAM usagetioblor stack and TinySec,
compared with the nonsecure TinyOS stack, but the code $&edsily within the Mica

This implementation was done using version 1.0 of TinyOS. drarrecent version of TinySed ] in-
cludes some of the same extensions as our radio stack.
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program memory. On the other hand, the RAM consumption isecto 25% of the total
Mica RAM, which may be a lot for certain applications. SeVegtimizations are possible
to reduce the memory used by the block cipher. For exampeSkipJack implementation
stores a constant table of 256 bytes in RAM. It is possible ¢oarthis table into ROM, at
the cost of a slight reduction in performance. With the tadtged in ROM, SkipJack is
about 7% slower than with the table in RAM.

6.2 Protocol Implementation

Our bootstrapping protocol is intended for authenticattord key distribution between
neighbor sensors in a network. We have implemented thi®@gobbn the Mica platform
using the radio stack described previously. Helosand acknowledgment messages are
sent and received via the raw-message interfaces sincedabeiye special formatting and
MAC construction.

The bootstrapping protocol is implemented by a NesC compocalled Secur e-

Li nkManager . The main role of thé&ecur eLi nkManager module is to build a table
of authenticated neighbors. At the end of bootstrapping,tdlble contains the identity of
each authenticated neighbor and the two pairwise keys Ki,g.and K2,) established with

this neighbor, and other bookkeeping data.

The bootstrapping protocol uses a different block ciphantthose available with the
TinySec distribution, namely, AES. The main reason for tiag a new cipher imple-
mentation was to reduce the memory space needed to storaithdsp keys. TinySec
provides implementation of two block ciphers — RC5 and SkgJ— but these imple-
mentations are optimized for speed. They use buffers t@ sthermediate data derived
from the cryptographic keys to speed up encryption and g¢iory. Storing this data re-
quires 128 bytes of memory for SkipJack and 104 bytes for Ri®s is too much if one
needs to store cryptographic material equivalent to twa k@ neighbor. We have devel-
oped an AES implementation that requires less RAM. This @mgntation uses 128-bit
keys, has a block size of 128 bits, and is optimized for spbksing this implementation,
the neighbor table requires only 48 bytes per neighbor twirsj cryptographic material.

All the cryptographic operations performed by tSecur eLi nkManager module
rely on this AES implementation. This includes MAC compigtatand generation of the
pairwise keys as discussed in Sectinn addition, we use the AES cipher for implement-
ing a secure pseudo-random generator for generating nombésgenerator is initialized
with a random AES key, that must be different for each sersutthat is constructed when
the Mica nodes are programmed.

We have also developed a prototype implementation of thedfegsh protocol of Sec-
tion 5. This protocol is used to change the group keys used by the&Se€itlike services of
our radio stack. The implementation of this key-refrestqmol relies on the neighbor table
constructed by bootstrapping to flood key-refresh messaglesse key-refresh messages
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are formatted at the application level and are transmittadhe raw-message interface of
the stack. The encryption and MAC applied to these messaggetha pairwise key stored
in the neighbor table and thus employ our implementation 86A

The whole code for bootstrapping and key refresh togethirtivé radio stack occupies
around 17,000 bytes of program memory. The total RAM usagemtts on the size of the
neighbor table. Assuming a table of as many as 10 nodes, dicamn requires 1753
bytes, which includes the neighbor table and the data stegtand buffers used by the
radio stack.

6.3 An Example Application

We have tested our bootstrapping and key refresh implem@msain a demonstration ap-
plication: a perimeter monitoring scenario in which seasdong a perimeter communicate
sensor readings (in our case, light levels) via an ad hocarktaf other nodes. The routing
layer is an implementation of destination-sequenced mtistavector (DSDV) routing13]
written for TinyOS by Intel Research’s heterogeneous semstwvorks project15].

During normal operation, sensor readings are sent alongndigally updated multihop
paths to a base station. However, the routing protocol iserable to malicious route
update messages. For instance, a compromised “black hadie’ can falsely advertise that
it is close to the base station, and then not forward sengadiirrgs. Even in the case where
messages are signed with a group key (as in TinySec), albsensasurements can be
thwarted by a single malicious node that knows the groupleyvever, with the fallback of
pairwise keys obtained via bootstrapping, we can — if we ktimnidentity of the malicious
node — refresh the group key to trusted nodes only. Afteragsitforward assembly of
the TinyOS components for bootstrapping, key refresh, anting, our implementation
successfully demonstrated this capability. A screenslidhis application is shown in
Figurel.

7 Related Work

Because of resource constraints, most of the key-manadgemmendistribution protocols
developed for standard networks are not applicable tolscgée sensor networks. Readers
are referred toJ] for a more detailed discussion of how the resource comggrampact
security. We review recent work on key management for semstovorks.

Eschenauer and GligoB]and Chan et al.4] have proposed key-management schemes
based on random key predistribution. A subset of keys isaieatyg selected from a large
key pool and distributed to each sensor before deploymesdtur® communication chan-
nels can be established by using common keys shared by ioeigbdes. Through random
graph analysis and simulations, the authors show that mkey predistribution can ensure
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Figure 1: Perimeter monitoring demonstration.

with high probability that the network is connected via sedinks. For example, given a
network with 10,000 sensors, where each sensor can diatiynunicate with 40 sensors
and stores a random key set of size 250 obtained from a keyopsae 100,000; then, the
network is almost certainly connected. However, it is neaclwhether such schemes can
be used for sensors with very limited memory such as the Mitfgom. As network size
increases, one must either increase the number of keys giveath sensor or decrease the
size of the key pool to ensure with high probability that theole network is connected.
Assigning too many keys to each node is impractical for sensgh limited memory, and
reducing the size of the key pool has an impact on securityth Wismall key pool, ac-
cess to a few sensors may be sufficient to compromise a largéeruof communication
links. On the other hand, a random predistribution scheméeacombined with our boot-
strapping protocol. Instead of assuming that all nodesesbammon bootstrapping keys
bk andbks, one could predistribute a small number of keys randomlysehdrom a key
pool. This would make the protocol partially resilient tammaromise of a node during the
bootstrapping window.

Other approaches such as SPIN fely on a trusted base station for distributing keys
between sensors. A major part of the SPINS protocols is aaffigient approach for au-
thenticating multicast messages that originate from tise lstation. SPINS also introduced
a link-layer encryption and authentication algorithm edlSNEP. This algorithm adds very
little overhead over unencrypted messages but it requios énds of a communication
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link to maintain consistent counters. This may be difficoltehsure if the radio link is
unreliable. TinySec]1] is an alternative security service, developed in the Tiyf@ame-
work, to add security in sensor networks. TinySec assunasathsensors share common
cryptographic materials, and as discussed in this reportbeaenhanced using our boot-
strapping and key-refresh protocols. Our implementatimmdws many of its components
from TinySec.

8 Conclusion

We have presented a collection of lightweight protocolsafathentication and key distribu-
tion in resource-constrained sensor networks. Theseqoisttvave been implemented on
a representative sensor platform. They require only inesipe cryptographic primitives
and use little memory. Security is achieved by taking ach@atof bounded periods of
trust, just after sensors have been deployed, to quicklychadply establish pairwise keys.
Bootstrapping keys that enable sensors to authenticaiegdiis trust period are used only
within that time, and erased after pairwise keys have beehamged.

In future work, we are planning to extend these protocolsifpsrt authentication and
key exchange between distant nodes. The challenge is ttoggu®tocols for this purpose
that are as economical as possible, while ensuring se@uéy if some of the nodes in a
network have been compromised.
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