
Depender Graphs: A Method of Fault-TolerantCerti�
ate Distribution�Rebe

a N. WrightAT&T Labs { Resear
h180 Park AvenueFlorham Park, NJ 07932 USArwright�resear
h.att.
om Patri
k D. Lin
olnSRI International333 Ravenswood AveMenlo Park, CA 94025 USAlin
oln�
sl.sri.
omJonathan K. MillenSRI International333 Ravenswood AveMenlo Park, CA 94025 USAmillen�
sl.sri.
omAbstra
tWe 
onsider s
alable 
erti�
ate revo
ation in a publi
-key infrastru
ture (PKI).We introdu
e depender graphs, a new 
lass of graphs that support eÆ
ient and fault-tolerant revo
ation. Nodes of a depender graph are parti
ipants that agree to forwardrevo
ation information to other parti
ipants. Our depender graphs are k-redundant, sothat revo
ations are provably guaranteed to be re
eived by all non-failed parti
ipantseven if up to k � 1 parti
ipants have failed. We present a proto
ol for 
onstru
ting k-redundant depender graphs that has two desirable properties. First, it is load-balan
ed,in that no parti
ipant need have too many dependers. Se
ond, it is lo
alized, in that itavoids the need for any parti
ipant to maintain the global state of the depender graph.We also give a lo
alized proto
ol for restru
turing the graph in the event of permanentfailures.Keywords: fault toleran
e, publi
 key infrastru
tures (PKI), revo
ation1 Introdu
tionPubli
 keys and their 
erti�
ates eventually be
ome invalid. Most 
erti�
ates have an expi-ration date, but for various reasons a 
erti�
ate may be
ome invalid prior to the expirationdate. For example, the se
ret key may have been lost or 
ompromised. The subje
t's iden-tifying information, whi
h might in
lude an e-mail address or employer, may have 
hanged.The 
erti�
ate might have been used to enable organizational privileges that have sin
ebeen withdrawn by the employer. Under these 
ir
umstan
es, there should be some way torevoke the 
erti�
ate.�A preliminary version of this paper appeared in Pro
eedings of the Seventh ACM Conferen
e on Com-puter and Communi
ations Se
urity (CCS), November 2000.1



1.1 Existing Approa
hesCurrent proposed standards for revo
ation, as found in the X.509 dire
tory framework [14℄,and the Internet draft standard Publi
 Key Infrastru
ture [1℄, involve 
erti�
ate revo
ationlists (CRLs) maintained on key servers, whi
h a
t as repositories for 
erti�
ates. To revokea 
erti�
ate, the subje
t or another responsible authority sends the key server a revo
ationnoti
e, whi
h is a signed message identifying the 
erti�
ate to be revoked.Upon re
eipt of a valid revo
ation noti
e, the key server updates its CRL and no longergives out the revoked 
erti�
ate. In a push-based system, signed CRL updates are sent outperiodi
ally to interested users. In a pull-based system, end users who want to 
he
k thevalidity of a 
erti�
ate must query the key server, and in response re
eive all or part ofthe latest CRL. Good dis
ussions of revo
ation te
hnologies 
an be found in [4℄ and [11℄.There are various strategies for redu
ing 
ommuni
ation and storage 
osts while maintain-ing timeliness of revo
ation, su
h as Ko
her's 
erti�
ate revo
ation trees [8℄ and relatedadvan
es [7, 12℄, and methods for redu
ing server load, as in [2, 9℄.One 
an try to redu
e the need for revo
ation by limiting 
erti�
ates to brief expirationperiods, but this in
reases server load be
ause new 
erti�
ates must be sent more frequently.Rivest [13℄ suggested a two-level staged expiration, but this more 
omplex system stillrequires a \sui
ide bureau" to maintain revo
ations due to key 
ompromise. M
Daniel andRubin [10℄ suggest that revo
ation will remain a ne
essary part of any PKI.In pra
ti
e, it is important to re
ognize the fa
t that many 
erti�
ates are issued byindividuals, perhaps using PGP, and distributed without the use of a key server [15℄. Cer-ti�
ates and revo
ations might be posted on Web pages to publi
ize them, but these pagestypi
ally do not support key server responsibilities su
h as CRL maintenan
e or distribution.1.2 A New Distributed Approa
hIn this paper, we propose a new method for handling distribution of revo
ations or 
erti�-
ate updates. Our method is a push-based method in whi
h ea
h 
erti�
ate has a list ofdependers . Revo
ations and updates for a 
erti�
ate, when they o

ur, are to be sent tothe 
erti�
ate's dependers.Having a set of dependers for ea
h 
erti�
ate narrows the burden of noti�
ation to theminimal set of interested parties, whi
h is an advantage in a push-based system. However,a solution in whi
h a single root entity sends revo
ation noti
es for a parti
ular 
erti�
ateto all the dependers for that 
erti�
ate has several disadvantages. If the root entity is akey server with many 
erti�
ates and many 
ustomers, it may be too 
ostly to provideand distribute 
ustomized CRL's for ea
h of its 
ustomers. On the other hand, if the rootentity is an individual, it need only be responsible for sending noti
es regarding its own
erti�
ate, but even so may not have the resour
es to distribute them to a large list. Forexample, everyone with a 
opy of the PGP software has the 
erti�
ate of its 
reator PhilZimmerman, and he would not and 
ould not put everyone on his depender list. Finally,it is not fault-tolerant. For example, if the network link 
onne
ting a depender to the rootentity is 
rashed or slow, then the depender will not be able to re
eive revo
ation noti
es ina timely fashion.In our system, rather than having a 
entralized revo
ation server who sends revo
ationsto all end users either periodi
ally or in response to queries, the dependers themselves willparti
ipate in distributing revo
ations and other updates. To that end, parti
ipants whowish to re
eive revo
ation noti
es for a parti
ular 
erti�
ate must register as dependers on2



\parent" parti
ipants. The parti
ipants 
an then be 
onsidered to form a depender graph. Aparti
ipant agrees to forward any revo
ations or other updates she re
eives to her dependers.The sour
e of a revo
ation noti
e sends the noti
e to dependers registered dire
tly with it;those dependers then forward the revo
ations to their dependers, and so on.The simplest kind of depender graph is a tree. For example, we 
ould make a rule sayingthat anyone who relays a 
erti�
ate should put the re
ipient on a depender list. That is,if A sends a 
erti�
ate to B, then B would request to be on A's depender list for that
erti�
ate and A would agree to the request, regardless of whose 
erti�
ate it is or where it
ame from. However, this simple s
heme has the diÆ
ulty that it depends on the 
orre
tand prompt operation of parti
ipants, and that a parti
ipant who distributes a 
erti�
ateto many users will also be bound to distribute revo
ations to them. Furthermore, it is evenmore vulnerable to failures than the 
entralized root entity s
heme sin
e there is generallyonly one path by whi
h a revo
ation noti
e 
an be forwarded and the failure of any nodeon that path prevents all later nodes from re
eiving revo
ations.In order to provide toleran
e of up to k � 1 
rashed, slow, or misbehaving parti
ipants(or the network links 
onne
ting them), we require parti
ipants to register as dependerswith at least k other parti
ipants. This straightforward idea, whi
h we will elaborate on inthe remainder of the paper, has several desirable properties:� It is workable for individuals.� It is \server-light," so that massive institutional fa
ilities are not required.� It is de
entralized.� It is survivable in the event of typi
al 
omputer and network failures.� It supports prompt revo
ation, even if some (up to k) 
omponents exhibit extraordi-nary delays.� It requires only a realisti
 workload for those using the system.� The workload is allo
ated in proportion to the self-interest of users.� It makes it pra
ti
al to distribute revo
ation information immediately, rather thandelaying for a periodi
 CRL publi
ation s
hedule.Although we fo
us on using depender graphs to distribute revo
ations, they 
an also beused to distribute frequent short-lived 
erti�
ates or other kinds of 
erti�
ate updates.In order to join a depender graph, a parti
ipant needs to �nd k other parti
ipants todepend on. We present joining proto
ols that are load-balan
ed, in that no parti
ipantneed have too many dependers, and lo
alized, in that no global state is maintained andparti
ipants need only maintain information about a few other parti
ipants. We also give alo
alized proto
ol for restru
turing the graph in the event of permanent failures.We de�ne depender graphs and prove their fault toleran
e properties in Se
tion 2. Wepresent depender graph 
onstru
tion proto
ols in Se
tion 3. In Se
tion 4, we present proto-
ols to re
on�gure the graph around permanent failures. We dis
uss some additional aspe
tsof depender graphs in Se
tion 5 and 
on
lude in Se
tion 6.
3



2 Depender GraphsFor a given 
erti�
ate, we view 
erti�
ate-holding parti
ipants in a network as nodes in adire
ted graph, 
alled a depender graph, where there is an edge from A to B if B is onA's depender list for that 
erti�
ate. In that 
ase we say that B depends on A, and thatA is a parent of B. We will always 
onstru
t depender graphs to be a
y
li
 and rootedgraphs, and we say B is below A in a depender graph if there is a path from A to B.The root of the depender graph|usually the 
erti�
ate subje
t or some kind of 
erti�
ateserver|is the sour
e of revo
ation or update information about the 
erti�
ate. When theroot initiates a 
erti�
ate revo
ation or update noti
e, it sends the noti
e to its dependers,
alled root-dependers . In turn, ea
h node re
eiving the noti
e forwards it to its dependers.In general, di�erent 
erti�
ates will have di�erent depender graphs, though these graphsmay share some 
ommon subgraphs. In pra
ti
e, multiple depender graphs might havesigni�
ant overlap, and some operations on them 
ould be 
ombined for eÆ
ien
y. We donot dis
uss su
h optimizations further in this paper.In order to avoid spurious revo
ations, revo
ation noti
es are typi
ally authenti
ated bymeans of a digital signature. Sin
e revo
ations are dis
arded if the authenti
ation of thesignature fails for any reason, mali
ious or arbitrary failures have the same e�e
t as 
rashor omission failures, in whi
h messages are lost. In order for a node to obtain the properrevo
ation information, it is suÆ
ient that it re
eive one 
opy of the signed noti
e, regardlessof whether other 
opies have 
orre
t information, in
orre
t information, or have been lost.In our setting, the simplest method for signing revo
ation noti
es is that revo
ationnoti
es of an individual's publi
 key are signed by the 
orresponding private key; forwardedrevo
ation noti
es maintain the initial signature. An advantage of this method is that sin
ethe key used to verify the revo
ation noti
e is the same as the key that is being revoked,a user will always be able to 
he
k the signature on revo
ation noti
es for 
erti�
ates shehas. Furthermore, a 
orre
t signature implies that the revo
ation noti
e either 
ame fromthe owner of the private key and should therefore be trusted, or the revo
ation noti
e 
amefrom someone else who knows the private key or knows how to forge its signatures, in whi
h
ase the key is by de�nition 
ompromised and should be revoked.If a publi
 key is being revoked be
ause the private key has been lost, or if the key isbeing revoked by an authority other than the owner of the private key, then it is not possiblefor the private key to sign the revo
ation. In this 
ase, one possibility is for the user to �rstobtain a new set of keys and then use these to authenti
ate the revo
ation message, butthis has the disadvantage of requiring the new key to be disseminated before the old key
an be revoked. In the 
ase that another authority is intended to be able to revoke thekey, it is important that the dependers know the publi
 key of that authority. This 
an beguaranteed, for example, by in
luding the revoking authority's publi
 key as an extensionin the user's 
erti�
ate. This is not ne
essary in the 
ase that the revoking authority is thesame as the 
erti�
ate authority that originally signed the 
erti�
ate.We would like depender graphs to be fault-tolerant. Obviously, we 
annot expe
t infor-mation from the root to be sent if the root has failed. However, the temporary or permanentfailure of fewer than k non-root nodes should not prevent a revo
ation noti
e sent by theroot from rea
hing any non-failed 
erti�
ate holder in a timely fashion. Sin
e revo
ationsare digitally signed by a key known to all the dependers, it suÆ
es to guarantee that ea
hdepender will re
eive at least one 
orre
t revo
ation noti
e in a timely fashion, independentof the timing or 
orre
tness of any other 
opies re
eived. To guarantee that at least one 
or-re
t revo
ation noti
e is re
eived qui
kly, we 
onsider the following k-redundan
y property:4



a rooted dire
ted a
y
li
 graph is k-redundant if even after the removal of any set of k � 1non-root nodes, there is a path from the root to every remaining node. (In Se
tion 5.2, weaddress methods for making the root itself fault-tolerant if desired.)We show below that the global property of k-redundan
y 
an be a
hieved by ensuringa lo
al property|that every node ex
ept for the root and its dependers has k parents inthe graph; this is 
alled the k-parent property. We refer to a rooted, dire
ted, a
y
li
 graphwith the k-parent property as a k-rdag .As mentioned above, sin
e revo
ations are signed, we 
an essentially ignore mali
iousfaults. However, if desired for other appli
ations, depender graphs 
ould be extended totolerate mali
ious behavior during the distribution of information: i.e. non-root-dependernodes in a (2k + 1)-rdag 
an tolerate up to k Byzantine failures using voting.In order to prove the fault toleran
e properties of k-rdags, we need some basi
 graphtheoreti
 de�nitions, slightly modi�ed to take into a

ount the rooted nature of our dependergraphs. A set of nodes is root-avoiding if it does not 
ontain the root. A 
ut set is a root-avoiding set of nodes whose removal dis
onne
ts some remaining node from the root. Twoor more paths from A to B are pairwise internally node-disjoint if no two of the paths haveany nodes in 
ommon ex
ept A and B. In any rooted, �nite, a
y
li
 graph, it is possible tode�ne a rank fun
tion on nodes su
h that every edge goes to a node of greater rank thanthe one it is from (so edges are rank-in
reasing). For example, the rank of a node 
an bethe length of the longest path from the root to that node.Theorem 1 Let G be a k-rdag. Then G is k-redundant.Proof: Let G be a k-rdag and let C be a 
ut set of G. Note that if every 
ut set 
ontains atleast k nodes, then any set of k�1 or fewer non-root nodes is not a 
ut set, so all remainingnodes are 
onne
ted to the root, and the graph is k-redundant. Hen
e, it suÆ
es to showthat C has at least k nodes. Let x be a node that is dis
onne
ted from the root in G� C,and de�ne the neighborhood of x to be the set of nodes y on paths from the root to x in Gsu
h that no path from y to x has a node in C. These are the nodes between C and x.Note that sin
e C dis
onne
ts x from the root, x is not the root or a root-depender,and therefore x has k parents by assumption. If the neighborhood of x is empty, then everyparent of x must be in C, and hen
e C has at least k nodes, and we are done. Otherwise, �nda node y in the neighborhood of x of minimum rank. By the de�nition of a neighborhood,y also is not the root or a root-depender. Hen
e, by the k-parent property, y has k parents.Those parents must all be in C, for one that is not would be in the neighborhood of xand have rank less than y, a 
ontradi
tion. Thus, C has at least k nodes, 
ompleting theproof.The following more expli
it result will be helpful when we 
onsider the eÆ
ien
y ofrevo
ation distribution.Theorem 2 Every k-rdag has k pairwise interior node-disjoint paths from the root to anynode.Proof: Let G be a k-rdag. If the root and a root-depender are both a
tive, then there isalways a path between them (
onsisting of the single edge that 
onne
ts them). Supposex is a not the root of G, and is not a root-depender in G. Then by the argument in theproof of Theorem 1, it follows that any 
ut set that dis
onne
ts x from the root is of size atleast k. By Menger's Theorem (
f. [6℄), it further follows that there are k pairwise interiornode-disjoint paths from the root to x. 5



3 Depender Graph Constru
tionDepender graphs grow as new nodes join the graph. We envision that a new node will jointhe graph for a parti
ular 
erti�
ate when it re
eives the 
erti�
ate from one of the nodesalready in the graph. In order to maintain the k-parent property, the joining node musteither depend on the root or �nd k nodes to depend on that are already in the graph.3.1 Ne
essary and SuÆ
ient ConditionsWe �rst address the 
onditions ne
essary to ensure that there are always enough availableparents without overloading parti
ipants with too many dependers. Hen
e, a restri
tion onthe 
hoi
e of parents is a parti
ipating node is allowed to pla
e a limit on its number ofdepender slots, that is, the maximum number of dependers the node is willing to support. Itis 
lear that if nodes are not willing to have enough depender slots, then it will not alwaysbe possible to add new nodes to the graph, sin
e on
e the root's depender slots are full,ea
h new node requires k parents, ea
h of whi
h has an available depender slot, in order tojoin the graph. (A node has a depender slot available if the number of dependers that it
urrently has is less than its maximum number.)We will show that it is enough for ea
h new node to have k depender slots. First, wede�ne a kernel as k nodes su
h that if the nodes are ordered, from largest to smallest, by thenumber of available depender slots they have, and if di is the number of available dependerslots the ith node on this ordered list has, then di � i. That is, the nodes have at least k,. . . , 2, 1 slots available, respe
tively.Theorem 3 A k-rdag 
an be 
onstru
ted from any number of nodes that ea
h have k de-pender slots.Proof: Begin with the root and make the next k nodes root-dependers. Subsequent nodesneed to �nd k parents. We 
laim that when a kernel exists, another node with k dependerslots 
an always be added to the graph, and there will still be a kernel; that is, the existen
eof a kernel is an invariant.Note �rst that just after the k root-dependers are added, ea
h of the k root-dependersstill has all its k slots available, more than satisfying the requirement for a kernel. (In fa
t,the root-dependers form a kernel even if the ith root-depender has only i slots.)For the proof of invarian
e, assume that a kernel exists. We 
an add a new node andgive it k parents by taking one parent from ea
h of the kernel nodes. This preserves theexisten
e of a kernel, sin
e the original kernel nodes now have at least 0, 1, ..., k � 1 slotsavailable and the new node 
an be added to the kernel with its k available slots.The kernel-based algorithm for adding nodes to a depender graph used in the proofabove is 
alled a triangular s
heme. The result of adding eight nodes to a root using su
ha s
heme is illustrated in Figure 1 for k = 3. To emphasize the regular 
onstru
tion of thegraph, the root-dependers are shown with additional root-depender parents, though thoseedges are not ne
essary.Note that a kernel may not be unique, and there may exist other nodes with additionalavailable slots, be
ause some nodes, su
h as those designed to be key servers, may supportmore than the minimum assumed k dependers for ea
h 
erti�
ate.The triangular s
heme always has 1 + 2 + ::: + k = (k2 + k)=2 slots available on
e allthe root-dependers have been added. This may sound ex
essive, sin
e adding a node only6



Root

New Node
New KernelFigure 1: The k = 3 Triangular S
hemerequires �nding k slots (in di�erent parents), but we 
an show that this number (k2 + k)=2is minimal.Theorem 4 In order to add k non-root-depender nodes, a k-rdag must have at least (k2 +k)=2 slots available.Proof: Consider adding a new set S of k nodes. The �rst node in S to be added mustdepend on k other nodes. So there must be at least one slot open in k other nodes at thebeginning of the pro
ess of adding the S nodes. By the end of adding all nodes in S, a totalof k2 slots have been used. Ea
h of the k additions needs to depend on k nodes, some ofwhi
h may be in S. The maximum number of slots that may be used in the set S (withmembers of S depending on earlier members of S) is (k2 � k)=2. Sin
e k2 total slots areused in adding S, that means there must have been at least k2 � (k2 � k)=2 = (k2 + k)=2slots at the beginning of the pro
ess of adding S.Hen
e, the triangular s
heme is optimal in the sense of having the fewest sustainablenumber of available slots. Note that there may be other ways of a
hieving the same optimalnumber of available slots if some nodes are willing to support more than k dependers.3.2 A Lo
alized Proto
ol for Node AdditionOne motivation of forwarding 
erti�
ates and re
ording dependers for later revo
ation is thatit is distributed and de
entralized, so that it is not ne
essary for the root to 
ommuni
atewith all the nodes holding its 
erti�
ate. Adding nodes with a triangular s
heme seemsto destroy this advantage by requiring parti
ipants to keep tra
k of whi
h nodes are inthe 
urrent kernel. In this se
tion, we show that it is not ne
essary to do so, be
ause the7



existen
e of a kernel 
an be maintained without knowing where it is, and we present alo
alized proto
ol that takes advantage of this.Spe
i�
ally, if there is a kernel and the parents of a new node are taken to be any knodes with available slots, a kernel exists after the addition of the node. To see this, notethat where kernel nodes are taken, an argument as in the proof of Theorem 3 shows that thenew node plus all but one node from the old kernel form a new kernel. Where a non-kernelnode is taken, the kernel node that \should" have been taken is still available to �ll its rolein the new kernel. Hen
e, the existen
e of a kernel is preserved. This 
exibility in 
hoosingparents makes it possible to 
onsider optimization goals, su
h as minimizing the averagepath length in the depender graph.Theorem 5 shows that if there is a kernel, then one 
an �nd k available depender slotsin k distin
t nodes by tra
ing down in the graph from any initial \sear
h set" of k nodes.Theorem 5 If G is a k-rdag, then there is an available parent set below any set of k nodes.Proof: Let S be a set of k nodes in a k-rdag. Indu
t on the maximum length (i.e., thenumber of edges) of a path that begins in S and ends outside S. If the maximum is 0then the S nodes have no dependers outside S, so ea
h node in S 
an have at most k � 1dependers (all the other nodes in S), ea
h node in S has at least one available slot, and thusS 
an be the parent set.For the indu
tion step, suppose the maximum su
h path length is n. If every node inS has an available slot, the k nodes in S 
an serve as parents. Otherwise, some node hasno available slots, so it has a set S0 of k dependers. The set S0 has maximum path lengthsmaller than n, and is below the original set S, so by indu
tion and transitivity of \below"there exists an available parent set below the given k nodes.Theorem 5 suggests a lo
alized proto
ol for adding new nodes, for whi
h ea
h node inthe graph keeps tra
k only of its parents and its dependers. Given a new node, we begin byidentifying a single node already in the graph as a \starting node"; typi
ally, the startingnode would be a parti
ipant from whom a new parti
ipant has just learned a 
erti�
ate. Ifthe starting node does not have k parents, it must be the root or a root-depender. In that
ase, either the new node 
an be a root-depender, or if there are already k root-dependers,take those k nodes as a sear
h set and apply Theorem 5. Otherwise, the starting node hask parents that 
an be taken as a sear
h set as in Theorem 5.It might be desired to 
hoose parents in su
h a way that the path lengths from theroot to ea
h new node are minimized. The 
onstru
tion in Theorem 5 does not satisfy thatproperty. To minimize path length, one would instead traverse ba
k up the parent links andtake depender slots from the highest available nodes. However, this would either requirenodes to maintain more information about where in the graph the available slots are, orwould require a new parti
ipant to traverse more of the graph in the worst 
ase.4 Re
on�guring After FailuresWhen a node wants to drop out of a depender graph, or is otherwise suspe
ted to havefailed permanently, we would like to be able to restru
ture the depender graph so that thek-redundan
y property is maintained on the new graph. If su
h re
on�gurations are done,the fault toleran
e of our system over time 
an be mu
h more than k, as long as there arenot more than k � 1 failed nodes between re
on�gurations. In this se
tion, we sket
h a8



proto
ol for re
on�guring the graph if only 
rash failures 
an o

ur. If mali
ious failures
an o

ur, the re
on�guration proto
ol would need to be made robust in order to toleratethem.Note that we need not repla
e failed nodes that have no dependers, sin
e there are noother nodes a�e
ted by their failure. Similarly, sin
e we assume that the root is the solesour
e of revo
ations, there is no use in repla
ing the root, sin
e there will be no revo
ationssent as long as the root is failed.In order to 
arry out a repla
ement, it is ne
essary that the lo
al topologi
al informationstored in the failed node (its parent and depender addresses) has not been lost. To thisend, we dupli
ate this information in one or more 
aretaker nodes. For the purposes of thisexposition, we assume that only one failure may o

ur between re
on�gurations. In our
onstru
tion, we use one 
aretaker for ea
h node that has one or more dependers. We 
allthis node the ward of its 
aretaker. The a
tual repla
ement for the ward will not generallybe the 
aretaker but rather some other node that does not have dependers at the time therepla
ement needs to be 
arried out. The repla
ement proto
ol des
ribed below will �ndan appropriate repla
ement node. On
e the repla
ement node is identi�ed, the ne
essaryinformation is sent to the repla
ement from the 
aretaker and the repla
ement takes on thedependers and any 
aretaking duties of the ward being repla
ed.Our proto
ol works if every node with dependers has a 
aretaker and a node 
an bethe designated 
aretaker of at most one ward. This is initially true when a depender graph
onsists only of the root. The join proto
ol des
ribed below in Se
tion 4.1 ensures that
aretakers are identi�ed as part of the pro
edure for adding new nodes, and does so in su
ha way as to preserve these properties.There are a number of ways that failures 
ould be dete
ted. Parents 
ould dis
over orsuspe
t failures of their dependers through an a
knowledgement requirement in the revo-
ation forwarding proto
ol. Sin
e revo
ations may only be infrequent, it may be desirableto dete
t and repair failures before revo
ations are to be sent. In this 
ase, this 
ould bea
hieved by requiring \I'm awake" messages to be sent from wards to their 
aretakers. Of
ourse, su
h messages should not be sent too frequently, or their 
ost will outweigh thebene�ts of using depender graphs. If a node is repla
ed when it has not a
tually failed, butjust su�ered an unusually long delay, it 
an be re
onne
ted when it re
overs by treating itas a new node. An additional 
onsideration in this 
ase is that it may possess 
erti�
atesthat it believes to be valid, but whi
h were revoked during the period in whi
h it was dis
on-ne
ted. To avoid this problem, nodes should save revo
ations they re
eive until the a�e
ted
erti�
ate has expired; these revo
ations will be 
ommuni
ated to a re
overing node as partof the re
overy pro
edure.If instead of our above assumption that only one permanent failure o

urs betweenre
on�gurations, we assume that ` permanent failures may o

ur between re
on�gurations,it would be ne
essary for ea
h node to store ` levels of topologi
al information.4.1 Sustainability of JoinOur re
on�guration proto
ol requires us to use a new join proto
ol for adding new nodes tothe depender graph. A depender graph is prote
ted if every parent has a 
aretaker, and someadditional properties, stated below, are satis�ed. The join proto
ol preserves the prote
tedstatus. The key idea is that if a node be
omes a parent, it is 
onne
ted to the end of a 
hainof 
aretaker-ward pairs.We say a node is free if it has no dependers (i.e., it is not a parent). A node is available9



if it 
an a

ept another depender; otherwise it is full. A set of nodes is available if everynode in the set is available.As mentioned previously, a free node needs no 
aretaker as it has no dependers and willnot be repla
ed. Also, the root needs no 
aretaker be
ause the root is the sour
e of allrevo
ations, and so if it is not a
tive, no revo
ations will be initiated. If root authorityis distributed, as dis
ussed in Se
tion 5.2, we would have to modify the 
aretaker s
hemea

ordingly.Formally, we say a depender graph is prote
ted if1. every non-root parent has a 
aretaker,2. every 
aretaker has exa
tly one ward,3. every 
aretaker is a parent, and4. there are no 
y
les in the graph of 
aretaker-to-ward edges.Part of the reason to avoid 
aretaker-ward 
y
les is to in
rease the number of simul-taneous failures that 
an be re
overed from. An n-
y
le 
an re
over from at most n � 1failures.Theorem 6 Suppose we are given a new node to be added to a prote
ted depender graph,and set of k available nodes. Then it is possible to add parent responsibilities and 
aretakerresponsibilities, if ne
essary, in su
h a way that the resulting graph is prote
ted.Proof: Consider the 
aretaker needs of the nodes in the available set A. Tentatively adddepender edges from ea
h node in A to the new node; we may later 
hange one of theseedges. Nodes that were not free (i.e., already parents) prior to adding the new node mustalready have 
aretakers.If some nodes in the available set were free, say A0 � A, we must �nd 
aretakers forthese nodes. Choose a node in A0, and 
onsider one of its parents, p. If p is already a
aretaker, follow the 
aretaker-ward 
hain from p to its non-
aretaker terminus q (whi
h hasa 
aretaker be
ause we followed the path through its 
aretaker to arrive at q); otherwise letq = p (whi
h has a 
aretaker unless it is the root, be
ause it is a parent). Thus, we havefound a non-
aretaker q that itself has a 
aretaker unless it is the root.Before we make q a 
aretaker, we have to make sure q is a parent. If it is not, we repla
esome member r of A0 with q. That is, we repla
e the depender edge from r to the new nodewith a depender edge from q, leaving r as a free node. We assign A0 := (A0 n frg)[fqg, andnow pro
eed to assign 
aretakers for all nodes in A0.To do this, we extend the 
aretaker-ward 
hain from q through all nodes in A0. We 
ando this be
ause all nodes in A0 were not parents and therefore were not already 
aretakers.Sin
e all nodes in A now have the new node as a 
hild, all 
onditions for being prote
tedare satis�ed.Note that the above 
onstru
tion a
tually results in a single 
aretaker-ward 
hain startingat the root and traversing through all the parent nodes of the graph.Next we show how available sets are lo
ated. When the depender graph is �rst 
reated, ithas a root. New nodes are added as root-dependers, requiring no 
on
ern about 
aretakersor k-redundan
y, until the root is full. On
e the root is full, a new node is added to adepender graph by asking some prior node to �nd k parents for the new one. The parents of10



the prior node serve as the �rst 
andidate set. The nodes in this set are either all available ornot. If so (skip this 
ase if the prior node is a root-depender), they be
ome the parents of thenew node. If not, there is a full parent, and k of its 
hildren be
ome the next 
andidate set.This iteration terminates be
ause the graph is �nite and a
y
li
, as illustrated in Figure 2.Caretaker responsibilities are assigned in a

ordan
e with Theorem 6.
PRIOR NODE

NEW NODEFigure 2: Sear
hing for Parents4.2 The Repla
e Proto
olWhen a 
aretaker node de
ides that its ward must be repla
ed, it must lo
ate a free node toserve as a repla
ement. To do so, it sends a \help" message to one or more of its dependers,
ontaining its address. The depender passes the message down again until it rea
hes afree node. The free node replies to the 
aretaker node, and the 
aretaker node sele
ts arepla
ement from among the replies (if there are more than one). The repla
ement re
eivesa 
opy of the ward's ba
kup information from the ward. The repla
ement be
omes the newward of the 
aretaker.As with the initial sele
tion of parents from di�erent available sets of parents, the sele
-tion of whi
h depender should pass down the help request as well as the sele
tion amongpotential repla
ements that reply to the 
aretaker, 
ould be made arbitrarily or 
ould bemade a

ording to some strategy for sele
ting the best 
andidate.The updated free node, the old ward's repla
ement, tells the ward's parents (whoseidentities it now knows) to repla
e the old ward by itself as a depender. The new warda

epts the old ward's dependers as its own without having to tell them, but if the old wardwas the 
aretaker of another node, the new ward must 
onta
t that node to obtain a ba
kup
opy of its stored information.There is a problem if the the old ward had more than k dependers, sin
e new nodesare not required to support more than k dependers. To handle this, we assume that thehelp request spe
i�es the number of dependers. If a willing repla
ement is found, it 
anbe used, otherwise the repla
ement proto
ol fails. This may be expe
ted to happen if thefailed node is a server with a very large number of dependers. It is not unreasonable toexpe
t that su
h nodes are well maintained, and are unlikely to fail permanently withoutsome administrative solution in the event of failure.11



5 Dis
ussionIn this se
tion, we brie
y dis
uss a number of issues and possible extensions where furtherresear
h is 
alled for.5.1 Link/Transport 
onne
tivityIf two paths are node-disjoint, then they are also edge-disjoint. Thus, our depender graphsare tolerant against the failure of k � 1 node or edge failures. However, in a real network,links between di�erent nodes are not independent. Often many links go through the sameswit
hing node in an underlying 
ommuni
ation infrastru
ture. Thus, the failure of oneswit
hing node may result in the failure of many edges in a depender graph.It would therefore be desirable to assure that links from a node to its k parents areindependent (so it takes k failures of lower-layer swit
hing nodes to break them all). If inaddition there are k independent paths from the root to its dependers, then an indu
tiveargument shows that it takes k failures of the underlying network 
omponents to 
ut allpaths to a node. A weaker version guarantees k-redundan
y for non-root-depender nodesso long as ea
h link from the root to a root-depender is independent of all other links in thegraph. We 
an still show by indu
tion that it takes k failures to 
ut o� a non-root-depender.Che
king independen
e of transport paths 
an be done using network monitoring toolssu
h as \tra
eroute." However, in pra
ti
e this information is rather dynami
 and may bediÆ
ult to keep a handle on.5.2 Distributing root authorityIn some settings, it is desirable for the root authority to be distributed among multipleparties, so it takes the parti
ipation of at least t of these parties to send out a valid revo
ationnoti
e (and furthermore any t parties 
an do so). This 
an be a
hieved by distributing thefun
tionality of the root into multiple parties and using threshold signatures (
.f. [3, 5℄)so that the 
orre
t parti
ipation of t parties is ne
essary and suÆ
ient to 
reate a validrevo
ation. If this new \distributed root" 
onsists of at least k+ t�1 parties, then this alsoprovides 
rash fault toleran
e for up to k � 1 of the root parties.In order for the threshold signatures to work, the root-dependers must now have at leastk + t � 1 of the root parties as parents; other nodes still need k parents as before. Whena revo
ation noti
e is sent, it is signed using the threshold signature s
heme. Ea
h rootnode sends its partial signature to the root-dependers. The root-dependers re
onstru
t thesigned revo
ation noti
e, and if it is a valid signature, they pro
eed as before by forwardingthe signed revo
ation. Sin
e the resulting depender graph has its normal properties withrespe
t to this distributed root, it still enjoys the k-redundan
y property with respe
t to it.5.3 Reusing LinksIn some appli
ations it may be desirable to reuse all or part of the depender graph tosupport all-to-all revo
ation-like signaling. As des
ribed above, k-rdags must be 
onstru
tedfor ea
h root node wishing to have a reliable revo
ation me
hanism. However, one 
antake great advantage of sharing between multiple k-rdags to redu
e resour
e usage in large
ommunities. Further, if all links 
an be assumed to be used in both dire
tions, one 
ouldbuild a single k-rdag that supports reliable revo
ations or other 
ommuni
ation from any12



node in the network using a simple 
ooding proto
ol. However, the details of this approa
hare beyond the s
ope of this paper.5.4 Global OptimizationsFor distribution of revo
ation noti
es, the k-redundan
y property 
an be exploited simplyby having ea
h node forward a noti
e to all its dependers. In the general 
ase, this is thebest that 
an be done. However, there are several situations in whi
h global informationabout the graph 
ould be used to redu
e or eliminate unne
essary network traÆ
 while stillensuring revo
ations are distributed properly.For example, if the graph has more than k disjoint paths to some nodes, it might bepossible to remove or ignore some of the edges of the graph. Similarly, if not all nodes needto re
eive ea
h update, then some edges 
an be removed. Given a parti
ular destinationnode, Theorem 2 says that there are k pairwise interior node-disjoint paths from the root tothat node, so that using only the edges in these paths would eliminate unne
essary traÆ
while preserving k-redundan
y with respe
t to that one destination node. When only somesubset of nodes needs to re
eive a revo
ation noti
e, the goal would be to �nd a minimalset of edges that in
lude k disjoint paths to ea
h node in the subset. Finally, in the 
asethat something more is known about whi
h failure 
on�gurations 
an o

ur than just thatany k�1 nodes might simultaneously fail, it might be possible to ensure that ea
h node hasalways at least one path from the root through no failed nodes without having k disjointpaths to ea
h node.6 Con
lusionsDepender graphs provide a lo
ally manageable, s
alable, eÆ
ient, and fault-tolerant methodof 
erti�
ate revo
ation in a publi
-key infrastru
ture. The relationship between k-failureprote
tion and the obligation of a parti
ipant to support k dependers meets the obje
tiveof having a fair and realisti
 workload, and we have shown how the system responds toboth temporary and permanent failures. Many pra
ti
al issues remain open, su
h as how kshould be 
hosen to balan
e fault toleran
e needs with eÆ
ien
y 
onsiderations.Due to their fault toleran
e and lo
alized 
onstru
tion proto
ols, k-rdags may �nd usefulappli
ations elsewhere. As des
ribed in this paper, they are most useful for environments inwhi
h only 
rash or delay failures o

ur, or if the information to be sent is digitally signedor otherwise veri�able, as in our 
ase of 
erti�
ate revo
ations. However, depender graphs
an be extended to tolerate mali
ious behavior during the distribution of information: i.e.non-root-depender nodes in a (2k + 1)-rdag 
an tolerate up to k Byzantine failures usingvoting; additionally, the root-dependers must have some means for verifying informationre
eived from the root, su
h as voting among themselves.Other possible appli
ations that 
ould possibly bene�t from depender graphs in
ludefault-tolerant multi
ast ba
kbone (MBone) trees, distributing routing information in theInternet su
h as rea
hability information ex
hanged by the BGP proto
ol, and maintaininglo
ation information for a mobile host as it moves from one base station to another.A
knowledgmentsWe thank Andrea Lin
oln and Patri
k M
Daniel for helpful dis
ussions.13



Referen
es[1℄ C. Adams and R. Zu

herato, \Internet X.509 Publi
 Key Infrastru
ture Data Certi�-
ation Server Proto
ols," Internet Draft, PKIX Working Group, 1998.[2℄ D. Cooper, \A Model of Certi�
ate Revo
ation," Pro
. 15th Annual Computer Se
urityAppli
ations Conferen
e, 1999, 256{264.[3℄ Y. Desmedt and Y. Frankel, \Shared generation of authenti
ators and signatures,"In Advan
es in Cryptology|CRYPTO '91, Le
ture Notes in Computer S
ien
e 576,457{469, Springer-Verlag, 1992.[4℄ B. Fox and B. LaMa

hia, \Certi�
ate Revo
ation: Me
hani
s and Meaning," Pro
.Finan
ial Cryptography '98 , LNCS 1465, 1998, 158{164.[5℄ R. Gennaro, S. Jare
ki, H. Kraw
zyk, and T. Rabin, \Robust Threshold DSS Signa-tures," In Advan
es in Cryptology|CRYPTO '96, Le
ture Notes in Computer S
ien
e1070, 354{371, Springer-Verlag, 1996.[6℄ F. Harary, Graph Theory , Addison-Wesley, Reading, MA, 1969.[7℄ H. Kiku
hi, K. Abe, and S. Nakanishi, \Performan
e Evaluation of Certi�
ate Revo
a-tion Using k-Valued Hash Tree," Pro
. ISW'99, LNCS 1729, 1999, 103{117.[8℄ P. Ko
her, \On Certi�
ate Revo
ation and Validation," Pro
. Finan
ial Cryptography'98, LNCS 1465, 1998, 172{177.[9℄ P. M
Daniel and S. Jamin, \Windowed Certi�
ate Revo
ation," Pro
. IEEE Info
om2000 , IEEE, 2000, 1406{1414.[10℄ P. M
Daniel and A. Rubin, \A Response to `Can We Eliminate Certi�
ate Revo
ationLists?' ", Pro
. Finan
ial Cryptography 2000, February 2000.[11℄ M. Myers, \Revo
ation: Options and Challenges," Pro
. Finan
ial Cryptography '98,LNCS 1465, 1998, 165-171.[12℄ M. Naor and K. Nissim, \Certi�
ate Revo
ation and Certi�
ate Update," Pro
. 7thUSENIX Se
urity Symposium, 1998, 217{228.[13℄ R. Rivest, \Can we eliminate 
erti�
ate revo
ation lists?" Pro
. Finan
ial Cryptography'98, LNCS 1465, 1998, 178-183.[14℄ \The Dire
tory-Authenti
ation Framework," CCITT Re
ommendation X.509.[15℄ P. Zimmermann, The OÆ
ial PGP User's Guide, MIT Press, 1995.
14


