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Abstract. PVS is a comprehensive interactive tool for specification and
verification combining an expressive specification language with an inte-
grated suite of tools for theorem proving and model checking. PVS has
many academic and industrial users and has been applied to a wide range
of verification tasks. In this note, we summarize some of its applications.

1 Introduction to PVS

PVS (Prototype Verification System) is an environment for constructing clear
and precise specifications and for efficient mechanized verification. It is designed
to exploit the synergies between language and deduction, automation and in-
teraction, and theorem proving and model checking. The PVS specification lan-
guage 18 a typed higher-order logic with a richly expressive type system with
predicate subtypes and dependent types. Typechecking in this language requires
the services of a theorem prover to discharge proof obligations corresponding to
subtyping constraints.

The development of PVS began in 1990, and 1t was first made publicly avail-
able in 1993. Subsequent releases have increased its robustness and speed, and
added a host of new capabilities. The essential features of PVS have already
been described in prior publications [30,32,40], and comprehensive details can
be found in the system manuals that are available from the PVS web site at
http://pvs.csl.sri.com. In this note, we indicate the capabilities of the sys-
tem through a survey of some of the applications for which it has been used. Due
to space constraints, this 1s only a small sampling of the applications that have
been performed using PVS, and even those that are mentioned are often given
without full citations (we generally cite only the most accessible and the most
recent works). We apologize to all PVS users whose work is omitted or men-
tioned without citation, and refer all readers to the online PVS Bibliography for
a comprehensive list of citations to work concerning PVS [38].

We divide PVS activities and applications into a few broad subject areas:
library development, requirements analysis, hardware verification, fault-tolerant
algorithms, distributed algorithms, semantic embeddings/backend support, real-
time and hybrid systems, security and safety, and compiler correctness.

* The development of PVS was funded by SRI International through Internal R&D
funds. Various applications and customizations have been funded by NSF Grants
CCR-930044 and CCR-9509931, and by contracts F49620-95-C0044 from AFOSR,
NAS1-20334 from NASA, and N00015-92-C-2177 from NRL.



2 PVS Library Development

A major cost in undertaking formal specification and verification is that of devel-
oping formalizations for all the “background knowledge” that is required. PVS
libraries help reduce this cost by providing formalizations for many common
mathematical domains. Good libraries are challenging to develop: not only must
they provide foundational definitions and axiomatizations that are correct, to-
gether with a body of derived constructions and lemmata that are rich enough
to support development of clean, succinct, and readable specifications, but they
must express these in a way that allows the PVS theorem prover to make effective
use of them.

The “prelude” library built in to PVS provides many useful definitions and
theorems covering basic mathematical concepts such as sets, bags, functions,
relations, and orderings, together with properties of real and integer arithmetic
outside the domain of the PVS decision procedures (principally those involving
nonlinear arithmetic).

External PVS libraries provide finite sets, floor and div/mod, bitvectors, coal-
gebras, real analysis, graphs, quaternions, p-calculus, and linear and branching
time temporal logics. Development of libraries is very much a community effort
in which sharing, modification, and extension has allowed the PVS libraries to
grow into effective; robust and reusable assets. For example, the library for undi-
rected graphs was developed by NASA Langley to support a proof of Menger’s
theorem [7]. This was extended to directed graphs by the University of Utah to
support analysis of PCI bus transactions [28], and subsequently re-adopted and
generalized by NASA.

3 Requirements

There 1s extensive evidence that requirements capture is the most error-prone
stage in the software engineering lifecycle, and that detection and removal of
those errors at later stages is very costly. Requirements provide a fruitful appli-
cation area for formal methods because relatively “lightweight” techniques have
proved effective in detecting numerous and serious errors. PVS supports these
activities by providing direct support for consistency and completeness checking
of tabular specifications [31], and through the process of “formal challenges” [39]
where expected properties are stated of a specification and examined by theorem
proving or model checking.

PVS has been used by multiple NASA centers to analyze requirements for
the Cassini Spacecraft [13] and for the Space Shuttle [9], and by the SafeFM
project (University of London) in the analysis of requirements for avionics control
systems [12].

4 Hardware Verification

Applications of PVS to hardware verification fall into two broad classes. One
class 1s concerned with verification of the complete microarchitecture against



the instruction set architecture seen by machine code programmers. While the
presence of pipelining and other optimizations introduces complexities, the basic
approach to this class of verifications depends on efficient symbolic simulation
and equality reasoning, which in PVS are achieved by its tight integration of
cooperating decision procedures with rewriting, combined with BDD-based sim-
plification. PVS has been used for the full or partial verification of microcoded
avionics and Java processors developed by Rockwell Collins [18], as well as for
a number of smaller DLX-like processors with complex pipelines.

The other class of hardware applications concerns the complex circuits, algo-
rithms, and protocols that are the building blocks of modern processors; these
applications are sufficiently difficult that success depends on finding an effective
methodology. Examples include verification of SRT dividers and other arithmetic
circuits at NASA [27] and SRI, out-of-order execution at the University of Utah
and SRI [23] and the Weizmann Institute [36], and cache-coherence at Stanford
University [33]. Some applications are best handled using a combination of tools;
PVS was used in this way by Fujitsu for the validation of the high-level design
of an ATM switch [37].

5 Fault-Tolerant Algorithms

Mechanisms for fault tolerance are a significant component of many safety-
critical systems: they can account for half the software in a typical flight-control
system, and are sufficiently complicated that they can become its primary source
of failure! Verifications of practical fault-tolerant designs are quite difficult and
are often achieved incrementally, as more real-world complexities are layered on
to a basic algorithm. The parameterized theories and strict dependency checking
of PVS help in these incremental constructions.

For example, formal analysis of Byzantine fault tolerant clock synchroniza-
tion has been elaborated over nearly a decade, with contributions from SRI and
NASA Langley (using a predecessor to PVS) and the University of Ulm, culmi-
nating in verification of the algorithm used in a commercial system for safety-
critical automobile control [35]. Comparable developments at SRI, NASA, Allied
Signal, and Ulm have verified practical algorithms for consensus, diagnosis, and
group membership, together with overall architectures for state machine repli-
cation and time-triggered execution of synchronous algorithms.

6 Distributed Algorithms

The fault tolerance applications described above employ synchronous algorithms.
Other distributed algorithms are often asynchronous and are generally modeled
as transition relations. Safety properties are traditionally verified by invariance
arguments, and generation of suitably strong invariants is the major method-
ological challenge. More recent approaches employ abstraction to a finite-state
(or other tractable) system that can be model checked. PVS has a model checker
integrated with its theorem prover, so that it is able to perform all the stages of



such approaches. Examples include communications protocols [19] and garbage
collection algorithms, parallel simulation algorithms [44] and parallelizing tech-
niques [8], and operating system buffer-cache management [34].

Current research focusses on methods for automating the generation of ab-
stractions and invariants [1,5,41].

7 Semantic Embeddings and Backend Support

For some applications it is convenient to use a customized logic for both spec-
ification and reasoning. Such logics can be encoded in the higher-order logic of
PVS using either shallow or deep semantic embeddings. Examples include the
Duration Calculus [42], DisCo [26], the B method [29], and coalgebraic treat-
ments of Java classes [25]. An advantage of these embeddings over dedicated
verification support is that the full expressiveness and power of PVS is available
for all the auxiliary concepts and data types that are required.

An API for semantic embeddings of other logics is currently under develop-
ment; this will allow specifications and proofs to be presented directly in the
notation of the embedded logic.

An alternative to semantic embedding is to use PVS to discharge proof obli-
gations generated by the support tool for another language. This route has been
explored at Michigan State [20] and Bremen [6] universities.

8 Real-Time and Hybrid Systems

Formal treatments of real-time systems often employ special temporal or Hoare
logics. Some of these have been supported by semantic embedding in PVS, as
described above; others include timed automata [4], the language Trio [2], and
the compositional method of Hooman [22]. Applications include several standard
test-pieces, such as the Fisher’s mutual exclusion algorithm, the Generalized
Railroad Crossing, and the Steam Boiler, as well as some realistic protocols.

A real-time kernel for supporting Ada95 applications on a uniprocessor em-
bedded system has also been developed in PVS at the University of York [14].

9 Security and Safety

Strong protection of data belonging to different processes is required for both
security and safety in several applications. A formulation of this property in
terms of “noninterference” forms one of the PVS tutorial examples. More elab-
orate and realistic treatments based on the same idea have been developed for
security at Secure Computing Corporation [21], and for safe “partitioning” in
avionics at NASA [45] and Rockwell Collins [49].

Ongoing work at SRI is developing an efficient approach for the verification
of cryptographic protocols, while the special security problems arising in active
networks have been formalized at the University of Cincinnati [11].



10 Compiler Correctness

In most system developments, correctness of the translation from source code to
object code is not a source of major concern. Testing is performed on object code,
which 1s fortuitously effective in finding errors introduced during compilation,
assembly and linking. For critical developments, however, further assurance may
be required.

PVS has been used to perform the verification of a compiler for a small
safety critical language [43], and to reason about object code in terms of
flow graphs [47]. The Verifix project (http://i44s11.info.uni-karlsruhe.
de/"verifix/) at the Universities of Karlsruhe, Kiel, and Ulm has verified sev-
eral compilation and optimization algorithms (including some expressed as ab-
stract state machines, ASMs, where errors were found) and has also developed
a collection of PVS theories for reasoning about operational and denotational
semantics in this context. Another application related to programming language
implementation is the security of Java style dynamic linking [10].

11 Summary

The applications sketched above give an idea of the range of projects for which
PVS has been used and also provide a resource for those undertaking similar
work. Additional descriptions can be found in the PVS Bibliography, which
provides over 250 citations [38].

The development of PVS has been strongly influenced by practical applica-
tions and by feedback from users, and we expect this to continue. Enhancements
currently in progress include direct and very fast execution for a substantial sub-
set of the PVS language (this supports computational reflection [46], as well as
improved validation of specifications [16]), and faster and more automated the-
orem proving. Those planned for the near future include support for refinement
and a more open system architecture.
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