
Appears in Applied Formal Methods|FM-Trends 98, Dieter Hutter, Werner Stephan,Paolo Traverso, and Markus Ullman Eds., Springer Verlag Le
ture Notes inComputer S
ien
e Vol. 1641, pp. 338{345, Boppard, Germany, O
tober 1998.PVS: An Experien
e Report?S. Owre, J. M. Rushby, N. Shankar, and D. W. J. Stringer-CalvertComputer S
ien
e Laboratory, SRI International, Menlo Park CA 94025 USAfowre, rushby, shankar, dave s
g�
sl.sri.
omURL: http://pvs.
sl.sri.
omAbstra
t. PVS is a 
omprehensive intera
tive tool for spe
i�
ation andveri�
ation 
ombining an expressive spe
i�
ation language with an inte-grated suite of tools for theorem proving and model 
he
king. PVS hasmany a
ademi
 and industrial users and has been applied to a wide rangeof veri�
ation tasks. In this note, we summarize some of its appli
ations.1 Introdu
tion to PVSPVS (Prototype Veri�
ation System) is an environment for 
onstru
ting 
learand pre
ise spe
i�
ations and for eÆ
ient me
hanized veri�
ation. It is designedto exploit the synergies between language and dedu
tion, automation and in-tera
tion, and theorem proving and model 
he
king. The PVS spe
i�
ation lan-guage is a typed higher-order logi
 with a ri
hly expressive type system withpredi
ate subtypes and dependent types. Type
he
king in this language requiresthe servi
es of a theorem prover to dis
harge proof obligations 
orresponding tosubtyping 
onstraints.The development of PVS began in 1990, and it was �rst made publi
ly avail-able in 1993. Subsequent releases have in
reased its robustness and speed, andadded a host of new 
apabilities. The essential features of PVS have alreadybeen des
ribed in prior publi
ations [30, 32, 40℄, and 
omprehensive details 
anbe found in the system manuals that are available from the PVS web site athttp://pvs.
sl.sri.
om. In this note, we indi
ate the 
apabilities of the sys-tem through a survey of some of the appli
ations for whi
h it has been used. Dueto spa
e 
onstraints, this is only a small sampling of the appli
ations that havebeen performed using PVS, and even those that are mentioned are often givenwithout full 
itations (we generally 
ite only the most a

essible and the mostre
ent works). We apologize to all PVS users whose work is omitted or men-tioned without 
itation, and refer all readers to the online PVS Bibliography fora 
omprehensive list of 
itations to work 
on
erning PVS [38℄.We divide PVS a
tivities and appli
ations into a few broad subje
t areas:library development, requirements analysis, hardware veri�
ation, fault-tolerantalgorithms, distributed algorithms, semanti
 embeddings/ba
kend support, real-time and hybrid systems, se
urity and safety, and 
ompiler 
orre
tness.? The development of PVS was funded by SRI International through Internal R&Dfunds. Various appli
ations and 
ustomizations have been funded by NSF GrantsCCR-930044 and CCR-9509931, and by 
ontra
ts F49620-95-C0044 from AFOSR,NAS1-20334 from NASA, and N00015-92-C-2177 from NRL.1



2 PVS Library DevelopmentAmajor 
ost in undertaking formal spe
i�
ation and veri�
ation is that of devel-oping formalizations for all the \ba
kground knowledge" that is required. PVSlibraries help redu
e this 
ost by providing formalizations for many 
ommonmathemati
al domains. Good libraries are 
hallenging to develop: not only mustthey provide foundational de�nitions and axiomatizations that are 
orre
t, to-gether with a body of derived 
onstru
tions and lemmata that are ri
h enoughto support development of 
lean, su

in
t, and readable spe
i�
ations, but theymust express these in a way that allows the PVS theorem prover to make e�e
tiveuse of them.The \prelude" library built in to PVS provides many useful de�nitions andtheorems 
overing basi
 mathemati
al 
on
epts su
h as sets, bags, fun
tions,relations, and orderings, together with properties of real and integer arithmeti
outside the domain of the PVS de
ision pro
edures (prin
ipally those involvingnonlinear arithmeti
).External PVS libraries provide �nite sets, 
oor and div/mod, bitve
tors, 
oal-gebras, real analysis, graphs, quaternions, �-
al
ulus, and linear and bran
hingtime temporal logi
s. Development of libraries is very mu
h a 
ommunity e�ortin whi
h sharing, modi�
ation, and extension has allowed the PVS libraries togrow into e�e
tive, robust and reusable assets. For example, the library for undi-re
ted graphs was developed by NASA Langley to support a proof of Menger'stheorem [7℄. This was extended to dire
ted graphs by the University of Utah tosupport analysis of PCI bus transa
tions [28℄, and subsequently re-adopted andgeneralized by NASA.3 RequirementsThere is extensive eviden
e that requirements 
apture is the most error-pronestage in the software engineering life
y
le, and that dete
tion and removal ofthose errors at later stages is very 
ostly. Requirements provide a fruitful appli-
ation area for formal methods be
ause relatively \lightweight" te
hniques haveproved e�e
tive in dete
ting numerous and serious errors. PVS supports thesea
tivities by providing dire
t support for 
onsisten
y and 
ompleteness 
he
kingof tabular spe
i�
ations [31℄, and through the pro
ess of \formal 
hallenges" [39℄where expe
ted properties are stated of a spe
i�
ation and examined by theoremproving or model 
he
king.PVS has been used by multiple NASA 
enters to analyze requirements forthe Cassini Spa
e
raft [13℄ and for the Spa
e Shuttle [9℄, and by the SafeFMproje
t (University of London) in the analysis of requirements for avioni
s 
ontrolsystems [12℄.4 Hardware Veri�
ationAppli
ations of PVS to hardware veri�
ation fall into two broad 
lasses. One
lass is 
on
erned with veri�
ation of the 
omplete mi
roar
hite
ture against2



the instru
tion set ar
hite
ture seen by ma
hine 
ode programmers. While thepresen
e of pipelining and other optimizations introdu
es 
omplexities, the basi
approa
h to this 
lass of veri�
ations depends on eÆ
ient symboli
 simulationand equality reasoning, whi
h in PVS are a
hieved by its tight integration of
ooperating de
ision pro
edures with rewriting, 
ombined with BDD-based sim-pli�
ation. PVS has been used for the full or partial veri�
ation of mi
ro
odedavioni
s and Java pro
essors developed by Ro
kwell Collins [18℄, as well as fora number of smaller DLX-like pro
essors with 
omplex pipelines.The other 
lass of hardware appli
ations 
on
erns the 
omplex 
ir
uits, algo-rithms, and proto
ols that are the building blo
ks of modern pro
essors; theseappli
ations are suÆ
iently diÆ
ult that su

ess depends on �nding an e�e
tivemethodology. Examples in
lude veri�
ation of SRT dividers and other arithmeti

ir
uits at NASA [27℄ and SRI, out-of-order exe
ution at the University of Utahand SRI [23℄ and the Weizmann Institute [36℄, and 
a
he-
oheren
e at StanfordUniversity [33℄. Some appli
ations are best handled using a 
ombination of tools;PVS was used in this way by Fujitsu for the validation of the high-level designof an ATM swit
h [37℄.5 Fault-Tolerant AlgorithmsMe
hanisms for fault toleran
e are a signi�
ant 
omponent of many safety-
riti
al systems: they 
an a

ount for half the software in a typi
al 
ight-
ontrolsystem, and are suÆ
iently 
ompli
ated that they 
an be
ome its primary sour
eof failure! Veri�
ations of pra
ti
al fault-tolerant designs are quite diÆ
ult andare often a
hieved in
rementally, as more real-world 
omplexities are layered onto a basi
 algorithm. The parameterized theories and stri
t dependen
y 
he
kingof PVS help in these in
remental 
onstru
tions.For example, formal analysis of Byzantine fault tolerant 
lo
k syn
hroniza-tion has been elaborated over nearly a de
ade, with 
ontributions from SRI andNASA Langley (using a prede
essor to PVS) and the University of Ulm, 
ulmi-nating in veri�
ation of the algorithm used in a 
ommer
ial system for safety-
riti
al automobile 
ontrol [35℄. Comparable developments at SRI, NASA, AlliedSignal, and Ulm have veri�ed pra
ti
al algorithms for 
onsensus, diagnosis, andgroup membership, together with overall ar
hite
tures for state ma
hine repli-
ation and time-triggered exe
ution of syn
hronous algorithms.6 Distributed AlgorithmsThe fault toleran
e appli
ations des
ribed above employ syn
hronous algorithms.Other distributed algorithms are often asyn
hronous and are generally modeledas transition relations. Safety properties are traditionally veri�ed by invarian
earguments, and generation of suitably strong invariants is the major method-ologi
al 
hallenge. More re
ent approa
hes employ abstra
tion to a �nite-state(or other tra
table) system that 
an be model 
he
ked. PVS has a model 
he
kerintegrated with its theorem prover, so that it is able to perform all the stages of3



su
h approa
hes. Examples in
lude 
ommuni
ations proto
ols [19℄ and garbage
olle
tion algorithms, parallel simulation algorithms [44℄ and parallelizing te
h-niques [8℄, and operating system bu�er-
a
he management [34℄.Current resear
h fo
usses on methods for automating the generation of ab-stra
tions and invariants [1,5,41℄.7 Semanti
 Embeddings and Ba
kend SupportFor some appli
ations it is 
onvenient to use a 
ustomized logi
 for both spe
-i�
ation and reasoning. Su
h logi
s 
an be en
oded in the higher-order logi
 ofPVS using either shallow or deep semanti
 embeddings. Examples in
lude theDuration Cal
ulus [42℄, DisCo [26℄, the B method [29℄, and 
oalgebrai
 treat-ments of Java 
lasses [25℄. An advantage of these embeddings over dedi
atedveri�
ation support is that the full expressiveness and power of PVS is availablefor all the auxiliary 
on
epts and data types that are required.An API for semanti
 embeddings of other logi
s is 
urrently under develop-ment; this will allow spe
i�
ations and proofs to be presented dire
tly in thenotation of the embedded logi
.An alternative to semanti
 embedding is to use PVS to dis
harge proof obli-gations generated by the support tool for another language. This route has beenexplored at Mi
higan State [20℄ and Bremen [6℄ universities.8 Real-Time and Hybrid SystemsFormal treatments of real-time systems often employ spe
ial temporal or Hoarelogi
s. Some of these have been supported by semanti
 embedding in PVS, asdes
ribed above; others in
lude timed automata [4℄, the language Trio [2℄, andthe 
ompositional method of Hooman [22℄. Appli
ations in
lude several standardtest-pie
es, su
h as the Fisher's mutual ex
lusion algorithm, the GeneralizedRailroad Crossing, and the Steam Boiler, as well as some realisti
 proto
ols.A real-time kernel for supporting Ada95 appli
ations on a unipro
essor em-bedded system has also been developed in PVS at the University of York [14℄.9 Se
urity and SafetyStrong prote
tion of data belonging to di�erent pro
esses is required for bothse
urity and safety in several appli
ations. A formulation of this property interms of \noninterferen
e" forms one of the PVS tutorial examples. More elab-orate and realisti
 treatments based on the same idea have been developed forse
urity at Se
ure Computing Corporation [21℄, and for safe \partitioning" inavioni
s at NASA [45℄ and Ro
kwell Collins [49℄.Ongoing work at SRI is developing an eÆ
ient approa
h for the veri�
ationof 
ryptographi
 proto
ols, while the spe
ial se
urity problems arising in a
tivenetworks have been formalized at the University of Cin
innati [11℄.4



10 Compiler Corre
tnessIn most system developments, 
orre
tness of the translation from sour
e 
ode toobje
t 
ode is not a sour
e of major 
on
ern. Testing is performed on obje
t 
ode,whi
h is fortuitously e�e
tive in �nding errors introdu
ed during 
ompilation,assembly and linking. For 
riti
al developments, however, further assuran
e maybe required.PVS has been used to perform the veri�
ation of a 
ompiler for a smallsafety 
riti
al language [43℄, and to reason about obje
t 
ode in terms of
ow graphs [47℄. The Veri�x proje
t (http://i44s11.info.uni-karlsruhe.de/~verifix/) at the Universities of Karlsruhe, Kiel, and Ulm has veri�ed sev-eral 
ompilation and optimization algorithms (in
luding some expressed as ab-stra
t state ma
hines, ASMs, where errors were found) and has also developeda 
olle
tion of PVS theories for reasoning about operational and denotationalsemanti
s in this 
ontext. Another appli
ation related to programming languageimplementation is the se
urity of Java style dynami
 linking [10℄.11 SummaryThe appli
ations sket
hed above give an idea of the range of proje
ts for whi
hPVS has been used and also provide a resour
e for those undertaking similarwork. Additional des
riptions 
an be found in the PVS Bibliography, whi
hprovides over 250 
itations [38℄.The development of PVS has been strongly in
uen
ed by pra
ti
al appli
a-tions and by feedba
k from users, and we expe
t this to 
ontinue. Enhan
ements
urrently in progress in
lude dire
t and very fast exe
ution for a substantial sub-set of the PVS language (this supports 
omputational re
e
tion [46℄, as well asimproved validation of spe
i�
ations [16℄), and faster and more automated the-orem proving. Those planned for the near future in
lude support for re�nementand a more open system ar
hite
ture.Referen
es1. Parosh Aziz Abdulla, Aurore Anni
hini, Saddek Bensalem, Ahmed Bouajjani, Pe-ter Habermehl, and Yassine Lakhne
h. Veri�
ation of in�nite-state systems by
ombining abstra
tion and rea
hability analysis. In Halbwa
hs and Peled [17℄,pages 146{159.2. Andren Alborghetti, Angelo Gargantini, and Angelo Morzenti. Providing auto-mated support to dedu
tive analysis of time 
riti
al systems. In Mehdi Jazayeri andHelmut S
hauer, editors, Software Engineering|ESEC/FSE '97: Sixth EuropeanSoftware Engineering Conferen
e and Fifth ACM SIGSOFT Symposium on theFoundations of Software Engineering, volume 1301 of Le
ture Notes in ComputerS
ien
e, pages 211{226, Zuri
h, Switzerland, September 1997. Springer-Verlag.3. Rajeev Alur and Thomas A. Henzinger, editors. Computer-Aided Veri�
ation,CAV '96, volume 1102 of Le
ture Notes in Computer S
ien
e, New Brunswi
k, NJ,July/August 1996. Springer-Verlag.4. Myla Ar
her and Constan
e Heitmeyer. Me
hani
al veri�
ation of timed au-tomata: A 
ase study. In IEEE Real-Time Te
hnology and Appli
ations Symposium(RTAS'96), pages 192{203, Brookline, MA, June 1996. IEEE Computer So
iety.5



5. Saddek Bensalem, Yassine Lakhne
h, and Hassen Sa��di. Powerful te
hniques forthe automati
 generation of invariants. In Alur and Henzinger [3℄, pages 323{335.6. Bettina Buth. PAMELA + PVS. In Mi
hael Johnson, editor, Algebrai
 Methodol-ogy and Software Te
hnology, AMAST'97, volume 1349 of Le
ture Notes in Com-puter S
ien
e, pages 560{562, Sydney, Australia, De
ember 1997. Springer-Verlag.7. Ri
ky W. Butler and Jon A. Sjogren. A PVS graph theory library. NASA Te
h-ni
al Memorandum 1998-206923, NASA Langley Resear
h Center, Hampton, VA,February 1998.8. Rapha�el Couturier and Dominique M�ery. An experiment in parallelizing an appli-
ation using formal methods. In Hu and Vardi [24℄, pages 345{356.9. Judith Crow and Ben L. Di Vito. Formalizing Spa
e Shuttle software requirements:Four 
ase studies. ACM Transa
tions on Software Engineering and Methodology,7(3):296{332, July 1998.10. Drew Dean. Stati
 typing with dynami
 linking. In Fourth ACM Conferen
e onComputer and Communi
ations Se
urity, pages 18{27, Zuri
h, Switzerland, April1997. Asso
iation for Computing Ma
hinery.11. Darryl Die
kman, Perry Alexander, and Philip A. Wilsey. A
tiveSPEC: A frame-work for the spe
i�
ation and veri�
ation of a
tive network servi
es and se
uritypoli
ies. In Nevin Heintze and Jeannette Wing, editors, Workshop on FormalMethods and Se
urity Proto
ols, Indianapolis, IN, June 1998. Informal pro
eedingsavailable at http://www.
s.bell-labs.
om/who/n
h/fmsp/program.html.12. Bruno Dutertre and Vi
toria Stavridou. Formal requirements analysis of an avion-i
s 
ontrol system. IEEE Transa
tions on Software Engineering, 23(5):267{278,May 1997.13. Steve Easterbrook, Robyn Lutz, Ri
hard Covington, John Kelly, Yoko Ampo, andDavid Hamilton. Experien
es using lightweight formal methods for requirementsmodeling. IEEE Transa
tions on Software Engineering, 24(1):4{14, January 1998.14. Simon Fowler and Andy Wellings. Formal development of a real-time kernel. InReal Time Systems Symposium, pages 220{229, San Fran
is
o, CA, De
ember 1997.IEEE Computer So
iety.15. Ganesh Gopalakrishnan and Phillip Windley, editors. Formal Methods inComputer-Aided Design (FMCAD '98), volume 1522 of Le
ture Notes in Com-puter S
ien
e, Palo Alto, CA, November 1998. Springer-Verlag.16. David Greve. Symboli
 simulation of the JEM1 mi
ropro
essor. In Gopalakrishnanand Windley [15℄, pages 321{333.17. Ni
olas Halbwa
hs and Doron Peled, editors. Computer-Aided Veri�
ation, CAV'99, volume 1633 of Le
ture Notes in Computer S
ien
e, Trento, Italy, July 1999.Springer-Verlag.18. David Hardin, Matthew Wilding, and David Greve. Transforming the theoremprover into a digital design tool: From 
on
ept 
ar to o�-road vehi
le. In Hu andVardi [24℄, pages 39{44.19. Klaus Havelund and N. Shankar. Experiments in theorem proving and model
he
king for proto
ol veri�
ation. In Formal Methods Europe FME '96, volume1051 of Le
ture Notes in Computer S
ien
e, pages 662{681, Oxford, UK, Mar
h1996. Springer-Verlag.20. Mats P. E. Heimdahl and Barbara J. Czerny. Using PVS to analyze hierar
hi-
al state-based requirements for 
ompleteness and 
onsisten
y. In IEEE High-Assuran
e Systems Engineering Workshop (HASE '96), pages 252{262, Niagaraon the Lake, Canada, O
tober 1996.21. John Ho�man and Charlie Payne. A formal experien
e at Se
ure ComputingCorporation. In Hu and Vardi [24℄, pages 49{56.6



22. Jozef Hooman. Compositional veri�
ation of real-time appli
ations. In Willem-Paul de Roever, Hans Langmaa
k, and Amir Pnueli, editors, Compositionality:The Signi�
ant Di�eren
e (Revised le
tures from International Symposium COM-POS'97), volume 1536 of Le
ture Notes in Computer S
ien
e, pages 276{300, BadMalente, Germany, September 1997. Springer-Verlag.23. Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrishnan. Proof of 
orre
t-ness of a pro
essor with reorder bu�er using the 
ompletion fun
tions approa
h.In Halbwa
hs and Peled [17℄, pages 47{59.24. Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Veri�
ation, CAV '98,volume 1427 of Le
ture Notes in Computer S
ien
e,Van
ouver, Canada, June 1998.Springer-Verlag.25. Bart Ja
obs, Joa
him van den Berg, Marieke Huisman, Martijn van Berkum, Ulri
hHensel, and Hendri
k Tews. Reasoning about Java 
lasses. In Pro
eedings, Obje
t-Oriented Programming Systems, Languages and Appli
ations (OOPSLA'98), pages329{340, Van
ouver, Canada, O
tober 1998. Asso
iation for Computing Ma
hinery.Pro
eedings issued as ACM SIGPLAN Noti
es Vol. 33, No. 10, O
tober 1998.26. Pertti Kellom�aki. Veri�
ation of rea
tive systems using DisCo and PVS. In FormalMethods Europe FME '97, volume 1313 of Le
ture Notes in Computer S
ien
e,pages 589{604, Graz, Austria, September 1997. Springer-Verlag.27. Paul S. Miner and James F. Leathrum, Jr. Veri�
ation of IEEE 
ompliant sub-tra
tive division algorithms. In Mandayam Srivas and Albert Camilleri, editors,Formal Methods in Computer-Aided Design (FMCAD '96), volume 1166 of Le
-ture Notes in Computer S
ien
e, pages 64{78, Palo Alto, CA, November 1996.Springer-Verlag.28. Abdel Mokkedem, Ravi Hosabettu, and Ganesh Gopalakrishnan. Formalizationand proof of a solution to the PCI 2.1 bus transa
tion ordering problem. InGopalakrishnan and Windley [15℄, pages 237{254.29. C�esar Mu~noz. PBS: Support for the B-method in PVS. Te
hni
al Report SRI-CSL-99-1, Computer S
ien
e Laboratory, SRI International, Menlo Park, CA, February1999.30. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combiningspe
i�
ation, proof 
he
king, and model 
he
king. In Alur and Henzinger [3℄, pages411{414.31. Sam Owre, John Rushby, and N. Shankar. Integration in PVS: Tables, types, andmodel 
he
king. In Ed Brinksma, editor, Tools and Algorithms for the Constru
tionand Analysis of Systems (TACAS '97), volume 1217 of Le
ture Notes in ComputerS
ien
e, pages 366{383, Ens
hede, The Netherlands, April 1997. Springer-Verlag.32. Sam Owre, John Rushby, Natarajan Shankar, and Friedri
h von Henke. Formalveri�
ation for fault-tolerant ar
hite
tures: Prolegomena to the design of PVS.IEEE Transa
tions on Software Engineering, 21(2):107{125, February 1995.33. Seungjoon Park and David L. Dill. Veri�
ation of 
a
he 
oheren
e proto
ols byaggregation of distributed transa
tions. Theory of Computing Systems, 31(4):355{376, 1998.34. N.S. Pendharkar and K. Gopinath. Formal veri�
ation of an O.S. submodule. InV. Arvind and R. Ramanujin, editors, 18th Conferen
e on the Foundations of Soft-ware Te
hnology and Theoreti
al Computer S
ien
e, volume 1530 of Le
ture Notesin Computer S
ien
e, pages 197{208, Madras, India, De
ember 1998. Springer-Verlag.35. Holger Pfeifer, Detlef S
hwier, and Friedri
h W. von Henke. Formal veri�
ationfor time-triggered 
lo
k syn
hronization. In Weinsto
k and Rushby [48℄, pages207{226. 7



36. Amir Pnueli and Tamara Arons. Veri�
ation of data-insensitive 
ir
uits: An in-order-retirement 
ase study. In Gopalakrishnan and Windley [15℄, pages 351{368.37. S. P. Rajan, M. Fujita, K. Yuan, and M. T-C. Lee. ATM swit
h design by highlevel modeling, formal veri�
ation, and high level synthesis. ACM Transa
tionson Design Automation of Ele
troni
 Systems (TODAES), 3(4):554{562, O
tober1998.38. John Rushby. PVS bibliography. Te
hni
al report, Computer S
ien
e Laboratory,SRI International, Menlo Park, CA. Constantly updated; available at http://www.
sl.sri.
om/pvs-bib.html.39. John Rushby. Formal methods and their role in the 
erti�
ation of 
riti
al systems.In Roger Shaw, editor, Safety and Reliability of Software Based Systems (TwelfthAnnual CSR Workshop), pages 1{42, Bruges, Belgium, September 1995. Springer.Also to be issued as part of the FAA Digital Systems Validation Handbook (theguide for air
raft 
erti�
ation).40. John Rushby, Sam Owre, and N. Shankar. Subtypes for spe
i�
ations: Predi
atesubtyping in PVS. IEEE Transa
tions on Software Engineering, 24(9):709{720,September 1998.41. Hassen Sa��di and N. Shankar. Abstra
t and model 
he
k while you prove. InHalbwa
hs and Peled [17℄, pages 443{454.42. Jens U. Skakkeb�k and N. Shankar. Towards a Duration Cal
ulus proof assistantin PVS. In H. Langmaa
k, W.-P. de Roever, and J. Vytopil, editors, Formal Te
h-niques in Real-Time and Fault-Tolerant Systems, volume 863 of Le
ture Notes inComputer S
ien
e, pages 660{679, L�ube
k, Germany, Sept. 1994. Springer-Verlag.43. David W. J. Stringer-Calvert. Me
hani
al Veri�
ation of Compiler Corre
tness.PhD thesis, University of York, Department of Computer S
ien
e, York, England,Mar
h 1998. Available at http://www.
sl.sri.
om/~dave_s
/papers/thesis.html.44. Kothanda Umamageswaran, Krishnan Subramani, Philip A. Wilsey, and PerryAlexander. Formal veri�
ation and empiri
al analysis of rollba
k relaxation. Jour-nal of Systems Ar
hite
ture (formerly published as Mi
ropro
essing and Mi
ropro-gramming: the Euromi
ro Journal), 44(6{7):473{495, Mar
h 1998.45. Ben L. Di Vito. A model of 
ooperative noninterferen
e for integrated modularavioni
s. In Weinsto
k and Rushby [48℄, pages 269{286.46. Friedri
h von Henke, Stephan Pfab, Holger Pfeifer, and Harald Rue�. Case stud-ies in meta-level theorem proving. In Jim Grundy and Mal
olm Newey, editors,Theorem Proving in Higher Order Logi
s: 11th International Conferen
e, TPHOLs'98, volume 1479 of Le
ture Notes in Computer S
ien
e, pages 461{478, Canberra,Australia, September 1998. Springer-Verlag.47. M. Wahab. Veri�
ation and abstra
tion of 
ow-graph programs with pointersand 
omputed jumps. Resear
h Report CS-RR-354, Department of ComputerS
ien
e, University of Warwi
k, Coventry, UK, November 1998. Available at http://www.d
s.warwi
k.a
.uk/pub/reports/rr/354.html.48. Charles B. Weinsto
k and John Rushby, editors. Dependable Computing for Criti
alAppli
ations|7, volume 12 of Dependable Computing and Fault Tolerant Systems,San Jose, CA, January 1999. IEEE Computer So
iety.49. Matthew M. Wilding, David S. Hardin, and David A. Greve. Invariant perfor-man
e: A statement of task isolation useful for embedded appli
ation integration.In Weinsto
k and Rushby [48℄, pages 287{300.The views and 
on
lusions 
ontained herein are those of the author and should not be interpretedas ne
essarily representing the oÆ
ial poli
ies or endorsements, either expressed or implied, of theAir For
e OÆ
e of S
ienti�
 Resear
h or the U.S. Government.8


