
A Formalization of Software Architecture

John Herbert, Bruno Dutertre, Robert Riemenschneider, and
Victoria Stavridou

Dependable System Architecture Group
System Design Laboratory

SRI International
Menlo Park CA 94025

USA
{herbert, rar, victoria, bruno}@sdl.sri.com

http://www.sdl.sri.com/dsa/

Abstract. Software architecture addresses the high level specification,
design and analysis of software systems. Formal models can provide es-
sential underpinning for architectural description languages (ADLs), and
formal techniques can play an important role in analysis.
While formal models and formal analysis may always enhance conven-
tional notations and methods, they are of greatest benefit when they em-
ploy tractable models and efficient, mechanisable techniques. The novelty
in our work has been in the effort to find and mechanise a general se-
mantic framework for software architectures that can provide tractable
models and support architectural formal analysis.
The resultant semantic framework is a layered one: the core is a sim-
ple model of the elements and topology, which provides the basis for
general architectural theorems and proof techniques; the structural core
is augmented by semantic layers representing the semantics of relevant
properties of the design.
The model has been implemented in the higher-order logic proof tool
PVS, and has been used in correctness proofs during a case study of a
distributed transaction protocol.

1 Introduction

Software architecture research has resulted in a range of formalisms for modelling
architectures including [16, 11, 2, 7, 8, 6]. The formal models of software archi-
tecture make possible formal analysis. Formal analysis is especially important
for software architectures since operational models, amenable to conventional
techniques, may be absent at this abstract level.

Formal verification of real-world designs is difficult. Apart from the use of
model-checkers for hardware designs, formal verification is usually a tour de force
effort. The success of model-checking relies on problems where the state space
can (in effect) be enumerated and exhaustively checked. The abstract levels of
design addressed by software architectures require more general proof methods
such as induction.
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For formal analysis of real-world designs to be effective one must have tool
support, and the tools must provide efficient proof procedures. The kind of analy-
sis, and consequently tool support, depends on the choice of underlying semantic
model. The following describes our exploration of two approaches to the embed-
ding of semantics.

1.1 A Precise Semantic Embedding

SADL (Structural Architectural Description Language) [11] is an example of
a current architectural description language (ADL). Like similar ADLs, it has
a rich type system and allows one to describe designs at various levels of ab-
straction. Appendix A presents a high level description in SADL of a software
architecture. It describes a set of components and their connections; the config-
uration is illustrated in figure 2.

Aspects of SADL were inspired by the logic of PVS [12] so it is not surprising
that a very precise semantic model can be constructed in PVS. Here is a fragment
of the SADL description in Appendix A, followed by a translation into PVS. It
illustrates the declaration of types, component types, an instance of a component
and a connection.

...

tx_commands, tx_responses: TYPE

...

ap: TYPE <= Function [ap_in1: ar_resources, ap_in2: tx_responses

-> ap_out1: ar_requests, ap_out2: tx_commands]

...

the_ap: ap

...

ar_1: CONNECTION =

(EXISTS c: Channel<ar_requests>)

Connects(c, the_ap.ap_out1, the_rms.rm_in1)

...

...

tx_commands, tx_responses: TYPE

...

ap: TYPE = Fun[[# ap_in1: ar_resources, ap_in2: tx_responses #],

[# ap_out1: ar_requests, ap_out2: tx_commands #]]

...

the_ap: VAR ap

...

ar_1: AXIOM

EXISTS (c: Channel[ar_requests]):

Connects(c, ap_out1(rng(the_ap)), rm_in1(dom(the_rms)))

...

There are a number of good points to note about this PVS translation: the
syntax closely follows the SADL thus offering the advantage of transparency; the
expressiveness of PVS, including the rich type system, matches that of SADL.
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In principle, we have an excellent embedding and indeed we can (and have) done
proofs of correctness based on this translation.

What is wrong with this embedding? The main problem is that the embed-
ding is too precise in that each architecture defines its own types, has its own
type structure, and is unique rather than an instance of a generic model of an
architecture. Thus, while it is possible to do formal analysis of each individual
architecture, it is not possible to derive general theorems that relate to many
configurations or to easily implement general analysis techniques. The issue is
not one of semantics; rather it is one of pragmatics, efficiency and generality.

1.2 Layered Embedding

The initial experiments in mechanising SADL suggest that a very precise embed-
ding of semantics lacks generality and may not support efficient analysis. The so-
lution is to adopt a lightweight approach using a layered semantic model. Rather
than constructing a monolithic semantics covering the complete language, one
provides a generic semantic framework. The layered semantic framework consists
of:

– a core structural semantic model representing the design elements and their
interconnection

– semantic layers representing behavioural or non-behavioural aspects of the
design

Latency Semantics

Dataflow Semantics

Core
Structural Semantics

Fig. 1. Semantic layers

A design described in SADL is not translated to a single precise semantics,
instead it is abstracted into the core structural semantics plus appropriate se-
mantic layers 1. A software architecture is a combination of design topology and
properties. The layered semantic approach encourages a separation of concerns:
1 The use of the term “layers” does not mean that a semantics must be built up se-

quentially. Independent semantic layers may augment the core structural description
in parallel.



A Formalization of Software Architecture 119

the core describes the components, connectors and their interconnection; each
semantic layer describes related semantic properties. Figure 1 shows an example
software design which is decomposed into the core structural model, and layers
dealing with latency and dataflow.

1.3 Supporting Different ADLs

While originally developed for SADL, the layered semantic model is a generic
solution applicable much more widely. This follows the motivation of ACME [2, 4]
where the ACME notation provides a method of interchange of common aspects
of designs. Our focus is complementary: on semantic integration rather than
syntax-based interchange, but similar to ACME in that the core is a common
description of structure and the other design information is structured — using
the property languages for ACME and the semantic layers for our model.

Each semantic layer represents a model of some property of concern such
as dataflow or communication bandwidth. The semantic layers are language in-
dependent and provide a model for semantic integration. Descriptions of two
components in different ADLs may each result in statements at a common se-
mantic layer and can therefore be combined in architectural analysis at this
layer.

Our model avoids the need for full semantic translation between ADLs and
provides the more feasible approach of translation into a common framework.
Each ADL description is mapped onto the layered semantics. A heterogeneous
design description employing various ADLs can therefore be abstracted into:

– the core language-independent elements and topology
– semantic information from the various descriptions structured into layers

Some layers may be relevant to just one language; layers representing standard
concerns may be relevant to all languages. A shared semantic layer enables a
full architectural analysis of the associated property across the heterogeneous
components of the design.

2 Formal Model

An example of a simple software architecture structure2 is given in figure 2.
The core structural semantic model needs to represent components, the ports
of the components, and the connections which relate ports of components. The
model must support the description of families of elements as well as individual
elements. This is done by defining a general type of components or connections;
the actual components and connections of a design are then instances of this
type.

The model has been formalised as a number of theories in PVS. The higher-
order logic with dependent types of PVS provides an expressive language for
2 A description of this architecture is provided in section 4.1
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Fig. 2. Software structure: SDTP architecture example

embedding semantics. Formal analysis based on the semantics benefits from the
high degree of automation in PVS.
(The PVS examples use the syntax of the prover: FORALL, EXISTS, IMPLIES, AND

and IFF for the non-ascii ∀, ∃,⊃,
∧

and ⇔.
a:bool shows type decoration; comp:(INST(comp_ty)) shows type dependency.
bool is the type of booleans in PVS and appears in definitions as the domain
when predicates are defined.
(: :) can denote a list and also a set via the implicit list2set coercion. It is used
here to repesent a set, for example (:output1,output2:).)

2.1 Components

Component families are declared using MK_COMP. This is defined as follows in
PVS:

comp_ty: VAR COMP_TY

comp: VAR COMP

inputs: VAR setof[INPUT]

outputs: VAR setof[OUTPUT]

MK_COMP(comp_ty,inputs,outputs): bool =

FORALL(comp:(INST(comp_ty))):

(FORALL ip:

INPUT_OF(comp)(ip) IFF member(ip,inputs)) AND

(FORALL op:

OUTPUT_OF(comp)(op) IFF member(op,outputs))
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COMP_TY is a PVS type, an instance of which represents a component type; COMP
is a PVS type, an instance of which represents an individual component. INPUT
and OUTPUT are PVS types representing inputs and outputs.

For a family of component types comp_ty the definition of MK_COMP simply
states that the only inputs and outputs of any component instance are those
given by sets inputs and outputs.

The interaction points of component types and components are referred
to as inputs and outputs. The fully qualified names for component instances
are called input ports and output ports and are given by expressions such as:
port(the_ap,ap_in1) and port(the_ap,ap_out2), where the_ap is a component
instance and ap_in1 and ap_out2 are declared as input and output, respectively,
of the component type.

Instances of component families are declared using an uninterpreted con-
stant3 INST. Components may also have constraints which can be stated by
predicates on the input and outputs. The following example: declares a type
box_ty to have one input and two outputs; makes an assertion that the values
of one output depend on the input values while the values of the other output
do not; declares the_box to be an instance of box_ty.

MK_COMP(box_ty,(:input:),(:output1,output2:))

FORALL(box:(INST(box_ty))):

DependsOn(port(box,output1),port(box,input)) AND

NOT(DependsOn(port(box,output2),port(box,input)))

INST(box_ty)(the_box)

2.2 Connections

A general type of connections, CONN_TY, and an uninterpreted constant CONNECTS,
describing an unconstrained connection between an output port and input port,
are declared.
A one-to-one connection is defined by:

CONNECTS11(conn,port(c1,output),port(c2,input)) =

(FORALL p1, p2:

CONNECTS(conn,p1,p2) IFF (p1=port(c1,output)) AND (p2=port(c2,input)))

AND

(FORALL conn1, p2:

CONNECTS(conn1,port(c1,output),p2) IFF (conn1=conn)) AND

(FORALL conn1, p1:

CONNECTS(conn1,p1,port(c2,input)) IFF (conn1=conn))

This states that: the only ports connected by conn are those given by the
arguments; the only connection from the given output port is conn; the only
connection to the given input port is conn.

3 An uninterpreted constant is one with a type signature but without a defining axiom.
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2.3 The Semantic Layers

A software architecture is not only a structure but a structure plus the be-
havioural and non-functional properties of the elements of the architecture. Se-
mantic layers are a mechanism for partitioning the non-structural information.
A layer provides a semantics for a concern of the designer.

Layering supports the separation of concerns: the core model provides the
underlying structural semantics; the higher semantic layers represent different
aspects of the design. The semantic layer may be completely independent or may
sometimes be based on the underlying structure. Examples of layered semantic
properties are latency between ports and dataflow.
The latency 4 semantic layer is based on assertions about pairs of ports; these
are independent of the underlying structural semantics:

LATENCY(portA,portB,N)

The dataflow semantic layer is derived from the underlying structural semantics:

DirectFlow(c1,c2): bool =

EXISTS conn, output, input:

CONNECTS(conn,port(c1,output),port(c2,input));

2.4 Abstraction

Abstraction is required for mapping a design into the semantic framework. The
result of the abstraction is a representation of the architectural topology in
the core structural model and a representation of the behavioural and non-
behavioural aspects of the design in the semantic layer(s). Mapping an ADL
design to the core structural model is straightforward. However a certain col-
lation of information may be required. In SADL for example, components are
declared with explicit inputs and outputs but ignoring inter-component proce-
dure calls. The ability to pass and return values of these procedure calls means
they can act as communication ports. These implicit input and output ports
must be made explicit in the mapping to the core model.

An important abstraction is type abstraction where the precise structured
types of components, ports and connectors are ignored in the core model. Compo-
nents have untyped input and output ports as points of interaction. The generic
structure given by type abstraction supports the use of general theorems and
techniques. The dropping of type information may be justified by noting that the
original description is type correct and the structural connections are unchanged
by the abstraction. One may need some type information for the semantic layers.
This may be encoded as a predicate, for example CARRIES(conn,values).

4 Latency is modelled as a three place predicate relating two ports and a latency
measure. The latency of the computations taking values on a certain port to values
on another is thus described by a single number.
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Various other abstractions may be useful in mapping from a design to the
generic model. A comprehensive overview of abstractions for software architec-
tures is given in [15]; our focus is on low level abstraction mappings. For example,
structural abstraction may be used to abstract parameterised, replicated com-
ponents to a finite representation. A group working paper [5] describes a number
of these abstraction techniques.

While our original motivation was to provide a general tractable basis for
analysis of SADL designs, the semantic framework developed can provide a basis
for analysis of designs described in other ADLs or a design described using a
mixture of ADLs. Abstraction functions appropriate to individual ADLs can be
used to map into the semantic framework. The following example shows how one
might abstract a Rapide text into the semantic framework.

Example: Abstraction of Rapide Rapide is an ADL developed at Stanford
[7]. The semantics of Rapide is stated in terms of posets of events, and one of the
main benefits of the language is its use in simulation. The following is a simple
description of a component in Rapide:

type Resource is interface

public action Receive(Msg : String);

extern action Results(Msg : String);

constraint

match

((?S in String) (Receive(?S) -> Results(?S)))^(*~);

end Resource;

the_resource: Resource;

The semantics of the component may be understood in Rapide in terms of
the constraints on the sets of external events on ports Receive and Results. The
relationship between the events may be stated precisely in Rapide to provide an
accurate simulation model. For the purposes of formal analysis this behaviour
may be abstracted to the property of concern being analysed.

If we are only interested in possible data dependency between ports then the
detailed relationship between events can be ignored, and the abstraction can
yield the fact that the Results port can depend on the Receive port.

MK_COMP(Resource,(:Receive:),(:Results:)) AND

INST(Resource)(the_resource) AND

FORALL r: (INST(Resource)):

PortDependency(port(r,Receive),port(r,Results))

3 Architectural Analysis

The goal of the simple layered semantic model is to provide a lightweight em-
bedding supporting effective architectural proof. Architectural proof emphasises
proof that is based on the underlying architectural structure augmented with
the semantic layer of concern.
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Standard proof techniques are based on the logical syntax of the descrip-
tion rather than on the underlying architectural structure of the design. Thus,
for example, a compound design may be required to satisfy the conjunction of
the predicates describing its components. Standard manipulation of the logical
operators quickly removes any reflection of the design architecture.

The abstraction of designs to the core structural semantics and semantic
layers means that generic techniques based on the structure can underpin anal-
ysis at the semantic layer and can be applied to a wide range of designs. The
following are some examples of architectural proof techniques.

3.1 Combining Architectural Measures

In the core model all components, ports and connectors are generic and so it is
possible to formulate general techniques of combining measurements for compo-
nents, ports, and connectors applicable to all designs.

An example is a general method of deriving from a measurement of a property
relating port A and B, and another measurement relating ports B and C, the
measurement of the property as it relates port A and C. A higher-order predicate
PROP is declared and an axiom defining its semantics is introduced:

PROP(fn)(portA,portB,X) AND

PROP(fn)(portB,portC,Y) IMPLIES

PROP(fn)(portA,portC,fn(X,Y))

i.e. if a property with a combining function fn has a measurement X between
portA and portB and measurement Y between portB and portC then the property
between portA and portC is computed as fn(X,Y)

Depending on the property, the user can choose an appropriate function,
fn, to calculate the resultant property measure. Thus, latency between ports is
additive so fn is a λ-term returning the sum of its arguments:

LATENCY(portA,portB,N) :bool =

PROP(LAMBDA (a,b:int): a+b)(portA,portB,N)

Given a property measured by rationals and multiplicative, for example proba-
bility of dropping data, then the appropriate definition would be:

PROB_LOSS(portA,portB,NR) :bool =

PROP(LAMBDA (a,b:rat): a*b)(portA,portB,NR)

By implementing the general pattern of inter-port measurement using PROP one
can cover a number of properties.
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3.2 Transitive Closure

Certain architectural two-place predicates have a common property, namely, they
are transitive, and for these a general method of architectural analysis can be
used: computation of the transitive closure. Given a transitive relation describing
properties of individual elements, the transitive closure of the relation describes
the property for the complete architecture.

The computation of transitive closure demands a finite structure but non-
finite replicated structures can be abstracted to provide a finite structure over
which one can compute the transitive closure [5]. For a domain of n objects then
the maximum size of the transitive closure n2.

A typical transitive property of software architectures is dataflow between
components. The flow between adjacent components may be described by a set
of predicates: (:Flow(A,B), Flow(B,C), Flow(B,D), Flow(D,B):)

It is straightforward to compute the transitive closure of the Flow relation
over this domain. The result describes all possible flows, direct and indirect,
resulting from the architectural structure:

(:Flow(A,B), Flow(B,C), Flow(B,D), Flow(D,B), Flow(A,C),

Flow(A,D), Flow(B,B), Flow(D,C), Flow(D,D):)

4 Application Example

Previous sections have described the formal model and support for architectural
analysis. Applications drive past and future development of the semantic frame-
work and mechanised analysis techniques. Our main example is a particular
architecture, namely the SDTP reference architecture. This section illustrates
the use of semantic layers and architectural proof through the formal analysis of
an abstract level of this architecture.

4.1 SDTP Reference Architecture

The SDTP (Secure Distributed Transaction Protocol) architecture [10] imple-
ments the X/Open DTP (Distributed Transaction Processing) standard [17] en-
hanced to support multilevel security. Figure 3 provides a diagram of an abstract
level of the reference architecture.

The architecture consists of an application, the_ap, a transaction manager,
the_tm, and resource managers (incorporating resources), the_rms. The general
operation of the protocol is that the application contacts the transaction manager
to initiate the transaction; the transaction manager then sets up the transaction,
returning information to the application and contacting the resource managers
to prepare appropriate resources for the transaction; the application then con-
tacts the resource managers and conducts the transaction; further calls from the
application to the transaction manager (and then from transaction manager to
resource managers) can commit or rollback the transaction.
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Fig. 3. Abstract SDTP architecture

4.2 SADL Description

SDTP has been described in SADL at an abstract level and then at successive
levels down to one suitable for translation to a standard programming language.
(In all there are 18 different descriptions of the architecture). The general archi-
tectural model is being used in the formal verification of the architecture.

Many kinds of formal analysis can be applied to the SDTP reference ar-
chitecture. Our initial work just deals with the verification of the security en-
hancements to the basic DTP architecture. We assume that the underlying DTP
protocol correctly implements the transaction, and our proof must show that the
extensions enforce the “no read up, no write down” policy of multilevel secure
systems.

The SADL text describing an abstract level of the SDTP reference architec-
ture is given in Appendix A and figure 3 provides a diagram. This abstract level
is similar to that used to illustrate proof-carrying architectures in [13], and we
have mechanised the proof of multilevel security as outlined there.

4.3 Core Structural Semantics

The abstraction of the description in SADL into the core architectural model
results in the following:
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ap, rms, tm: COMP_TY

the_ap, the_rms, the_tm: COMP

direct: CONN_TY

ar_1, ar_2, tx_1, tx_2, xa_1, xa_2: CONN

ap_in1,ap_in2, rm_in1,rm_in2, tm_in1, tm_in2: IN_PORT

ap_out1,ap_out2, rm_out1,rm_out2, tm_out1, tm_out2: OUT_PORT

MK_COMP(ap,(:ap_in1,ap_in2:),(:ap_out1,ap_out2:) ) AND

MK_COMP(rms,(:rm_in1,rm_in2:),(:rm_out1,rm_out2:) ) AND

MK_COMP(tm,(:tm_in1,tm_in2:),(:tm_out1,tm_out2:) ) AND

INST(ap)(the_ap) AND

INST(rms)(the_rms) AND

INST(tm)(the_tm) AND

INST(direct)((:ar_1, ar_2, tx_1, tx_2, xa_1, xa_2:)) AND

CONNECTS11(ar_1,ap_out1,rm_in1) AND

CONNECTS11(ar_2,rm_out1,ap_in1) AND

CONNECTS11(tx_1,ap_out2,tm_in1) AND

CONNECTS11(tx_2,tm_out1,ap_in2) AND

CONNECTS11(xa_1,tm_out2,rm_in2) AND

CONNECTS11(xa_2,rm_out2,tm_in2)

The core semantics declares the types of the components and connectors,
their instances, and connections. This describes the structural skeleton of the
design. The semantic layer must describe the properties of concern and how
these properties relate to the structural skeleton.

4.4 General Dataflow Semantic Layer

We are concerned with dataflow so we must have a definition of dataflow along
with, if required, axioms defining how it can be analysed. The core definition
states simply that data can flow from c1 to c2 if there is a connection between
an output port of c1 and output port of c2:

DirectFlow(c1,c2): bool =

EXISTS conn, output, input:

CONNECTS(conn,port(c1,output),port(c2,input));

If we now add an axiom stating that dataflow is a transitive property we
can compute the resultant dataflows of the architecture using the transitive clo-
sure method introduced earlier. Due to the bi-directional connections between
components, we compute that all intercomponent dataflows are possible includ-
ing the fact that data can flow from the resource managers to the transaction
manager and from the transaction manager to the application.

In the proof illustrating proof-carrying architecture of [13] an axiom is in-
troduced stating that if secure data flows from the resource managers to the
application then it flows via the connection labelled here ar_2. The apparent
result of the dataflow analysis is that this condition is violated by the flow via
the transaction manager. In fact, the semantic model of dataflow is insufficient;
a more accurate model of secure dataflow is required. Our coarse definition of
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dataflow does not distinguish between flow of control information, for example
the return parameter of a procedure denoting success or failure, and the flow
of arbitrary data. The connection between the transaction manager and the ap-
plication manager only passes status and control information, and cannot carry
secure data. (We are dealing with an abstract model; implementation issues such
as presence of covert channels must be dealt with separately.)

4.5 Precise Dataflow Semantic Layer

A more accurate semantic analysis must be carried out based on the underlying
structure and a semantics defining which connections can carry data. The basic
definition of Carries states that a connection carries a certain kind of data
between ports if it connects those ports and is able to carry such data:

Carries(conn,data,p1,p2): bool =

CONNECTS(conn,p1,p2) AND

CAN_CARRY(conn,data)

The flow of data between components via a connection and via an unnamed
connection can then be defined:

CanFlowVia(conn,data,c1,c2): bool =

EXISTS output, input:

Carries(conn,data,port(c1,output),port(c2,input))

CanFlowDirect(data,c1,c2): bool =

EXISTS conn, output, input:

Carries(conn,data,port(c1,output),port(c2,input))

The resultant flow of data between components in the architecture can be
computed using transitive closure of CanFlowDirect, or equivalently using a PVS
inductive definition of CanFlow, stating the flow can be direct or indirect:

CanFlow(data,c1,c2): INDUCTIVE bool =

CanFlowDirect(data,c1,c2) OR

EXISTS c3:

CanFlowDirect(data,c1,c3) AND

CanFlow(data,c3,c2)

4.6 Architectural Analysis Result

It is straightforward to use these definitions to derive the theorem stating that
if secure data flows from the resource managers to the application then it flows
via the connection labelled here ar_2:

FORALL data:

CanFlow(data,the_rms,the_ap) IMPLIES

Carries(ar_2,data,port(the_rms,rm_out1),port(the_ap,ap_in1))
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In the proof illustrating proof-carrying architecture of [13] the above result
was introduced as an axiom. What we have shown here is that it can be derived
as a theorem from the core structural model and a semantic layer describing
precise dataflow.

4.7 MLS Semantic Layer

The final part of the formal analysis of this abstract description of the SDTP
architecture is to add a semantic layer describing the properties of multilevel
security (MLS). This will allow us to deduce that the architecture enforces the
security policy. The basis of multilevel security is the labelling of data, compo-
nents and ports with security levels. The following declarations and definitions
are the essential parts of the MLS semantic layer:

LABEL: TYPE

;<=:[[LABEL,LABEL] -> bool]

Clearance: [COMP -> LABEL]

Clearance: [PORT -> LABEL]

label: [DATA -> LABEL]

SECURE_CHANNEL: [CONN -> bool]

SECURE_CHANNEL_AX: AXIOM

FORALL (conn:(SECURE_CHANNEL)),data,p1,p2:

Carries(conn,data,p1,p2) IMPLIES

(label(data) <= Clearance(p2))

PORT_CLEARANCE_AX: AXIOM

FORALL (comp:COMP),(input:(INPUT_OF(comp))):

(Clearance(port(comp,input)) <= Clearance(comp))

LABEL_TRANSITIVITY_AX: AXIOM

FORALL (l1:LABEL),(l2:LABEL),(l3:LABEL):

((l1 <= l2) AND (l2 <= l3)) IMPLIES

(l1 <= l3)

The type of security labels is introduced along with an ordering on labels (by
overloading <=). The security labelling of components, ports and data is given
by Clearance and label. Secure channels are a subtype of connectors.

Three axioms are introduced, following the proof of [13]. The first states that
a secure channel will only carry data to a port if the security label of the data
is less than or equal to the clearance level of the port. The second states that
the clearance level of input ports is less than or equal to the clearance level of
the component. The final axiom states that the ordering of security labels is
transitive.

Based on the above axioms and the semantic layer describing MLS one can
deduce the following theorem:

Security_Policy: LEMMA

FORALL data:

Flows(data,the_rms,the_ap) IMPLIES

(label(data) <= Clearance(the_ap))



130 John Herbert et al.

The result states that the architecture enforces the security policy: data can
only flow from the resource managers to the application if the security label of
the data is less than or equal to the clearance level of the application.

4.8 Summary

The architectural analysis of this abstract level of the SDTP architecture illus-
trates the general model and proof techniques. The design description is trans-
lated into the core structural model and semantic layers describing dataflow and
security labelling. The analysis is architectural: it is based on the underlying
structural model, augmented by the semantic layers.

5 Discussion

5.1 Related Work

The formal underpinnings of software architecture have been studied by many
researchers. Topics addressed include theories of connection behaviour, formal
models of composition, formal characterisation of non-functional properties. The
semantics of the design interchange language ACME has been illustrated in [3].
Our work builds on and complements these efforts: our concern is to structure
the semantics so as to provide a general tractable basis for mechanised proof. We
expect that this lightweight layered approach can support many of the models
and kinds of analysis developed by other researchers.

The ACME project is also based on the idea of a common basis for describing
architectures with properties extending the core description. We follow the gen-
eral design principles of ACME but are concerned with semantics rather than
design information. The layers in our model are related to the use of proper-
ties in ACME; they differ in that the layers are semantic rather than based on
syntactic design information. Thus, while an architecture incorporating different
ADLs might result in different properties in ACME, they might all be mapped
to a single semantic layer (describing dataflow, for example) in our model. The
layered semantics fits well with the ACME approach and may provide a basis
for complementing the design information with semantic information.

Various approaches are possible for the task of semantic integration of dif-
ferent ADLs. A very powerful and general approach consists of developing ‘a
semantic foundation for composition and interoperation of heterogeneous com-
ponents’ [9]. In this approach one might provide a means of representing the
semantics of various ADLs in a common logical system, and also provide the
mathematical infrastructure of metalogical or multi-model techniques for relat-
ing these heterogeneous semantics. Our approach is a complementary, pragmatic
one, and provides a tractable basis to begin experiments in semantic integration
without a large investment in theory and embedding of language semantics.

The layered semantic model means that the integration is achieved via a
common structural model and via abstraction to common semantic layers. This
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avoids full translation between ADLs; abstraction to common semantic layers
provides the ‘semantic interchange’. Other integration systems such as [1, 14]
are much more comprehensive and tightly defined. Our approach is a lightweight
but very general one which provides a basis for exploration of integration via
the user defined semantic layers.

5.2 Further Work

This work explores a model and methods supporting formal analysis of software
architectures. No new technology or new theory has been introduced, and the
inherent difficulties of developing a description and abstractions of a complex
software architecture remain. The work does suggest a useful layered semantic
model, and argues for a lightweight approach to achieve effective architectural
analysis. Further development driven by case studies, incorporating much au-
tomation, is needed as the basis of a useable tool.

The structured semantic model developed fits well with the open semantic
framework of ACME and could be integrated with the ACME design inter-
change language and toolset. Some changes would be required. For example, in
our model the point of interaction between a component and connector is iden-
tified as a single port entity while ACME supports a richer model of connectors
where a connector interacts via roles and these roles are attached to the ports of
components. The difference between semantic layers and properties has also been
mentioned. Reconciling these and other differences is not inherently difficult but
may involve trade-offs in the solution.

Our work has been motivated by the need for a general tractable seman-
tic framework, and the main stimulus for further evaluation, refinement and
improvement must be more case studies. Software architecture techniques offer
benefits in dealing with large complex software systems. Formal analysis of such
systems must have mechanised support and must be efficient, based on tractable
models.

5.3 Conclusions

Our work has developed a general semantic framework for architectures that
provides tractable models and supports architectural formal analysis. As well as
supporting the SADL language, it may provide a formal model for other ADLs
and support the semantic integration of heterogeneous designs using various
ADLs. The work has grown out of a real case study and has been used in case
study proofs. The approach is a pragmatic one, and seems to offer an effective
basis for automated architectural analysis. Further case studies are needed to
guide development of the model and automatation of the techniques.
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Appendix: Abstract Level of SDTP in SADL

x_open_abstract_df: ARCHITECTURE [ -> ]

IMPORTING ALL FROM Dataflow_style

BEGIN

ar_requests: TYPE

ar_resources: TYPE

tx_commands, tx_responses: TYPE

xa_commands, xa_responses: TYPE

COMPONENTS

ap: TYPE <= Function [ap_in1: ar_resources, ap_in2: tx_responses

-> ap_out1: ar_requests, ap_out2: tx_commands]

rms: TYPE <= Function [rm_in1: ar_requests, rm_in2: xa_commands

-> rm_out1: ar_resources, rm_out2: xa_responses]

tm: TYPE <= Function [tm_in1: tx_commands, tm_in2: xa_responses

-> tm_out1: tx_responses, tm_out2: xa_commands]

the_ap: ap

the_rms: rms

the_tm: tm

CONFIGURATION

ar_1: CONNECTION =

(EXISTS c: Channel<ar_requests>)

Connects(c, the_ap.ap_out1, the_rms.rm_in1)

ar_2: CONNECTION =

(EXISTS c: Channel<r_resources>)

Connects(c, the_rm.rm_out1, the_ap.ap_in1)

tx_1: CONNECTION =

(EXISTS c: Channel<tx_commands>)

Connects(c, the_ap.ap_out2, the_tm.tm_in1)

tx_2: CONNECTION =

(EXISTS c: Channel<tx_responses>)

Connects(c, the_tm.tm_out1, the_ap.ap_in2)

xa_1: CONNECTION =

(EXISTS c: Channel<xa_commands>)

Connects(c, the_tm.tm_out2, the_rms.rm_in2)

xa_2: CONNECTION =

(EXISTS c: Channel<xa_responses>)

Connects(c, the_rms.rm_out2, the_tm.tm_in2)

END x_open_abstract_df
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