
Presented at EMSOFT 2001: First Workshop on Embedded Software, 8–10 October 2001, Lake
Tahoe CA. Springer-Verlag Lecture Notes in Computer Science, Vol. 2211, pp. 306–323.
c©Springer-Verlag

Bus Architectures
For Safety-Critical Embedded Systems?

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025, USA
rushby@csl.sri.com

Abstract. Embedded systems for safety-critical applications often integrate mul-
tiple “functions” and must generally be fault-tolerant. These requirements lead to
a need for mechanisms and services that provide protection against fault propaga-
tion and ease the construction of distributed fault-tolerant applications. A number
of bus architectures have been developed to satisfy this need. This paper reviews
the requirements on these architectures, the mechanisms employed, and the ser-
vices provided. Four representative architectures (SAFEbusTM , SPIDER, TTA,
and FlexRay) are briefly described.

1 Introduction

Embedded systems generally operate as closed-loop control systems: they repeatedly
sample sensors, calculate appropriate control responses, and send those responses to
actuators. In safety-critical applications, such as fly- and drive-by-wire (where there are
no direct connections between the pilot and the aircraft control surfaces, nor between
the driver and the car steering and brakes), requirements for ultra-high reliability de-
mand fault tolerance and extensive redundancy. The embedded system then becomes a
distributed one, and the basic control loop is complicated by mechanisms for synchro-
nization, voting, and redundancy management.

Systems used in safety-critical applications have traditionally beenfederated, mean-
ing that each “function” (e.g., autopilot or autothrottle in an aircraft, and brakes or sus-
pension in a car) has its own fault-tolerant embedded control system with only minor
interconnections to the systems of other functions. This provides a strong barrier to
fault propagation: because the systems supporting different functions do not share re-
sources, the failure of one function has little effect on the continued operation of others.
The federated approach is expensive, however (because each function has its own repli-
cated system), so recent applications are moving toward more integrated solutions in
which some resources are shared across different functions. The new danger here is
? This research was supported by the DARPA MOBIES and NEST programs through USAF

Rome Laboratory contracts F33615-00-C-1700 and F33615-01-C-1908, and by NASA Lan-
gley Research Center under contract NAS1-20334 and Cooperative Agreement NCC-1-377
with Honeywell Incorporated.

1



that faults may propagate from one function to another;partitioning is the problem of
restoring to integrated systems the strong defenses against fault propagation that are
naturally present in federated systems. A dual issue is that ofstrong composability:
here we would like to take separately developed functions and have them run without
interference on an integrated system platform with negligible integration effort.

The problems of fault tolerance, partitioning, and strong composability are chal-
lenging ones. If handled in an ad-hoc manner, their mechanisms can become the pri-
mary sources of faults and ofunreliability in the resulting architecture [10]. Fortunately,
most aspects of these problems are independent of the particular functions concerned,
and they can be handled in a principled and correct manner by generic mechanisms
implemented as an architecture for distributed embedded systems.

One of the essential services provided by this kind of architecture is communica-
tion of information from one distributed component to another, so a (physical or logical)
communication bus is one of its principal components, and the protocols used for con-
trol and communication on the bus are among its principal mechanisms. Consequently,
these architectures are often referred to asbuses(or databuses), although this term un-
derstates their complexity, sophistication, and criticality. In truth, these architectures are
the safety-critical core of the applications built above them, and the choice of services to
provide to those applications, and the mechanisms of their implementation, are issues
of major importance in the construction and certification of safety-critical embedded
systems.

In this paper, I survey some of the issues in the design of bus architectures for safety-
critical embedded systems. I hope this will prove useful to potential users of these ar-
chitectures and will alert others to the benefits of building on such well-considered
foundations. My presentation is derived from a review of four representative architec-
tures: two of these were primarily designed for aircraft applications and two for auto-
mobiles. The economies of scale make the automobile buses quite inexpensive—which
then renders them attractive in certain aircraft applications. The aircraft buses consid-
ered are the Honeywell SAFEbus [1,7] (the backplane dat bus used in the Boeing 777
Airplane Information Management System) and the NASA SPIDER [11] (an architec-
ture being developed as a demonstrator for certification under the new DO254 guide-
lines [15]); the automobile buses considered are the TTTech Time-Triggered Architec-
ture (TTA) [24,8], recently adopted by Audi and Volkswagen for automobile applica-
tions, and by Honeywell for avionics and aircraft controls functions, and FlexRay [3],
which is being developed by a consortium of BMW, DaimlerChrysler, Motorola, and
Philips. A detailed comparison of these four architectures, along with more extended
discussion of the issues, is available as a technical report [17].

The paper is organized as follows: Section 2 examines general issues in time-
triggered systems and bus architectures, Section 3 examines the fault hypotheses under
which they operate, and Section 4 describes the services that they provide; Section 5
briefly describes the four representative architectures, and conclusions are provided in
Section 6.

2



Host

Interface

Host

Interface

Host

Interface

Host

Interface

Bus

Fig. 1.Bus Interconnect

2 Time-Triggered Buses

The architectures considered here are called “buses” because multicast or broadcast
communication is one of the services that they provide, and their implementations are
based on a logical or physical bus. In a generic bus architecture, application programs
run in host computers, and sensors and actuators are also connected to the hosts; an
interconnectmedium provides broadcast communications, andinterfacedevices con-
nect the hosts to the interconnect. The interfaces and interconnect comprise the bus;
the combination of a host and its interface(s) is referred to as anode. Realizations of
the interconnect may be a physical (passive) bus, as shown in Figure1, or a centralized
(active) hub, as shown in Figure2. The interfaces may be physically proximate to the
hosts, or they may form part of a more complex central hub. Many of the components
will be replicated for fault tolerance.

All four of the buses considered here are primarilytime triggered; this is a fun-
damental design choice that influences many aspects of their architectures and mech-
anisms, and sets them apart from fundamentallyevent-triggeredbuses such as Byte-
flight, CAN, Ethernet, LonWorks, or Profibus. The time-triggered and event-triggered
approaches to systems design find favor in different application areas, and each has
strong advocates; for integrated, safety-critical systems, however, the time-triggered
approach is generally preferred. “Time triggered” means that all activities involving the
bus, and often those involving components attached to the bus, are driven by the passage
of time (“if it is 20 ms since the start of the frame, then read the sensor and broadcast
its value”); this is distinguished from “event triggered,” which means that activities are
driven by the occurrence of events (“if the sensor reading changes, then broadcast its
new value”). A prime contrast between these two approaches is their locus of control:
a time-triggered system controls its own activity and interacts with the environment ac-
cording to an internal schedule, whereas an event-triggered system is under the control
of its environment and must respond to stimuli as they occur.

3



Host

Interface

Host

Interface

Host

Interface

Host

Interface

Star

Hub

Fig. 2.Star Interconnect

Event-triggered systems allow flexible allocation of resources and this is attractive
when demands are highly variable. However, in safety-critical applications it is neces-
sary to guarantee some basic quality of service to all participants, even (or especially)
in the presence of faults. Because the clients of the bus architecture are real-time em-
bedded control systems, the required guarantees include predictable communications
with low latency and low jitter (assured bandwidth is not enough). The problem with
event-driven buses is that events arriving at different nodes may cause them to contend
for access to the bus, so some form of media access control (i.e., a distributed mutual
exclusion algorithm) is needed to ensure that each node eventually is able to transmit
without interruption. The important issue is how predictable is the access achieved by
each node, and how strong is the assurance that the predictions remain true in the pres-
ence of faults.

Buses such as Ethernet resolve contention probabilistically and therefore can pro-
vide only probabilistic guarantees of timely access, and no assurance at all in the pres-
ence of faults. Buses for non-safety-critical embedded systems such as CAN, Lon-
Works, or Profibus use various priority, preassigned slot, or token schemes to resolve
contention deterministically. In CAN, for example, the message with the lowest num-
ber always wins the arbitration and therefore has to wait only for the current message
to finish, while other messages must also wait for any lower-numbered messages. Thus,
although contention is resolved deterministically, latency increases with load and can be
bounded with only probabilistic guarantees—and these can be quite weak in the pres-
ence of faults (e.g., the current message may be retransmitted in the case of transmission
failure, thereby delaying the next message, even if this has higher priority). Further-
more, faulty nodes may not adhere to expected patterns of use and may make excessive
demands for service, thereby reducing that available to others. Event-triggered buses
for safety-critical applications add various mechanisms to limit such demands. ARINC
629 (an avionics data bus used in the Boeing 777), for example, uses a technique some-

4



times referred to as “minislotting” that requires each node to wait a certain period after
sending a message before it can contend to send another. Even here, however, latency is
a function of load, so the Byteflight automobile protocol developed by BMW extends
this mechanism with guaranteed, preallocated slots for critical messages. But even pre-
allocated slots provide no protection against a faulty node that fails to recognize them.
The worst manifestation of this kind of fault is the so-called “babbling idiot” failure
where a faulty node transmits constantly, thereby compromising the operation of the
entire bus.

In a time-triggered bus, there is a static preallocation of communication bandwidth
in the form of a global schedule: each node knows the schedule and knows the time,
and therefore knows when it is allowed to send messages, and when it should expect
to receive them. Thus, contention is resolved at design time (as the schedule is con-
structed), when all its consequences can be examined, rather than at run time. A static
schedule makes possible the control of the babbling idiot failure mode. This is achieved
by interposing an independent component, called a busguardian, that allows each node
to transmit on the bus only when it is allowed to do so. The guardian must know when
its node is allowed to access the bus, which is difficult to achieve in an event-triggered
system but is conceptually simple in a time triggered system: the guardian has an in-
dependent clock and independent knowledge of the schedule and allows its node to
broadcast only when indicated by the schedule.

Because all communication is triggered by the global schedule, there is no need
to attach source or destination addresses to messages sent over a time-triggered bus:
each node knows the sender and intended recipients of each message by virtue of the
time at which it is sent. Elimination of the address fields not only reduces the size of
each message, thereby greatly increasing the message bandwidth of the bus (messages
are typically short in embedded control applications), but it also eliminates a potential
source of serious faults: namely, the possibility that a faulty node may send messages
to the wrong recipients or, worse, may masquerade as a sender other than itself.

Fault-tolerant clock synchronization is a fundamental requirement for a time-
triggered bus architecture: the abstraction of a global clock is realized by each node
having a local clock that is closely synchronized with the clocks of all other nodes.
Tightness of the bus schedule, and hence the throughput of the bus, is strongly related
to the quality of global clock synchronization that can be achieved—and this is related
to the quality of the clock oscillators local to each node, and to the algorithm used to
synchronize them. There are two basic classes of algorithm for clock synchronization:
those based on averaging and those based on events. Averaging works by each node
measuring the skew between its clock and that of each other node (e.g., by comparing
the arrival time of each message with its expected value) then setting its clock to some
“average” value. A simple average (e.g., the mean or median) over all clocks may be af-
fected by wild readings from faulty clocks (which might provide different, or missing,
readings to different observers), so we need a “fault-tolerant average” that is largely
insensitive to a certain number of readings from faulty clocks. Schneider [18] gives
a general description that applies to all averaging clock synchronization algorithms;
these algorithms differ only in their choice of fault-tolerant average. The Welch-Lynch
algorithm [25] is a popular choice that is characterized by use of the “fault-tolerant

5



midpoint” as its averaging function. Event-based algorithms rely on nodes being able
to sense events directly on the interconnect: each node broadcasts a “ready” event when
it is time to synchronize and sets its clock when it has seen a certain number of events
from other nodes. Depending on the fault model, additional waves of “echo” or “ac-
cept” events may be needed to make this fault tolerant. The number of faulty nodes that
can be tolerated, and the quality of synchronization that can be achieved, depend on
the details of the algorithm, and on the fault hypothesis under which it operates. The
event-based algorithm of Srikanth and Toueg [21] is particularly attractive because it
achieves optimal accuracy.

3 Fault Hypotheses and Fault Containment Units

Safety-critical aerospace functions are generally required to have failure rates less than
10−9 per hour [5], and an architecture that is intended to support several such func-
tions should provide assurance of failure rates better than10−10 per hour. Similar re-
quirements apply to cars (although higher rates of loss are accepted for individual cars
than aircraft, there are vastly more of them, so the required failure rates are similar).
Consumer-grade electronics devices have failure rates many orders of magnitude worse
than this, so redundancy and fault tolerance are essential elements of a bus architecture.
Redundancy may include replication of the entire bus, of the interconnect and/or the in-
terfaces, or decomposition of those elements into smaller subcomponents that are then
replicated.

Fault tolerance takes two forms in these architectures: first is that which ensures that
the bus itself does not fail, second is that which eases the construction of fault-tolerant
applications. Each of these mechanisms must be constructed and validated against an
explicit fault hypothesis, and must deliver specifiedservices(that may be specified to
degrade in acceptable ways in the presence of faults). The fault hypothesis must de-
scribe themodes(i.e., kinds) of faults that are to be tolerated, and their maximum
numberandarrival rate. The fault hypothesis must also identify the differentfault con-
tainment units(FCUs) in the design: these are the components that canindependently
be afflicted by faults. The division of an architecture into separate FCUs needs care-
ful justification: there must be no propagation of faults from one FCU to another, and
no “common mode failures” where a single physical event produces faults in multiple
FCUs. Only physical faults (those caused by damage to, defects in, or aging of the de-
vices employed, or by external disturbances such as cosmic rays, and electromagnetic
interference) are considered in this analysis: design faults must be excluded, and must
be shown to be so by stringent assurance and certification processes.

The assumption that failures of separate FCUs are independent must be ensured by
careful design and assured by stringent analysis. True independence generally requires
that different FCUs are served by different power supplies, and are physically and elec-
trically isolated from each other. Providing this level of independence is expensive and
it is generally undertaken only in aircraft applications. In cars, it is common to make
some small compromises on independence: for example, the guardians may be fabri-
cated on the same chip as the interface (but with their own clock oscillators), or the
interface may be fabricated on the same chip as the host processor. It is necessary to

6



examine these compromises carefully to ensure that the loss in independence applies
only to fault modes that are benign, extremely rare, or tolerated by other mechanisms.

A fault modedescribes the kind of behavior that a faulty FCU may exhibit. The same
fault may exhibit different modes at different levels of a protocol hierarchy: for example,
at the electrical level, the fault mode of a faulty line driver may be that it sends an
intermediate voltage (one that is neither a digital 0 nor a digital 1), while at the message
level the mode of the same fault may be “Byzantine,” meaning that different receivers
interpret the same message in different ways (because some see the intermediate voltage
as a 0, and others as a 1). Some protocols can tolerate Byzantine faults, others cannot;
for those that cannot, we must show that the fault mode is controlled at the underlying
electrical level.

The basic dimensions that a fault can affect are value, time, and space. Avaluefault
is one that causes an incorrect value to be computed, transmitted, or received (whether
as a physical voltage, a logical message, or some other representation); atiming fault
is one that causes a value to be computed, transmitted, or received at the wrong time
(whether too early, too late, or not at all); aspatial proximityfault is one where all
matter in some specified volume is destroyed (potentially afflicting multiple FCUs).
Bus-based interconnects of the kind shown in Figure1 are vulnerable to spatial prox-
imity faults: all redundant buses necessarily come into close proximity at each node, and
general destruction in that space could sever or disrupt them all. Interconnect topolo-
gies with a central hub are far more resilient in this regard: a spatial proximity fault
that destroys one or more nodes does not disrupt communication among the others (the
hub may need to isolate the lines to the destroyed nodes in case these are shorted), and
destruction of a hub can be tolerated if there is a duplicate in another location.

There are many ways to classify the effects of faults in any of the basic dimensions.
One classification that has proved particularly effective in analysis of the types of al-
gorithms that underlie the architectures considered here is thehybrid fault model of
Thambidurai and Park [23]. In this classification, the effect of a fault may bemanifest,
meaning that it is reliably detected (e.g., a fault that causes an FCU to cease transmitting
messages),symmetricmeaning that whatever the effect, it is the same for all observers
(e.g., an off-by-1 error), orarbitrary, meaning that it is entirely unconstrained. In par-
ticular, an arbitrary fault may be asymmetric orByzantine, meaning that its effect is
perceived differently by different observers (as in the intermediate voltage example).

The great advantage to designs that can tolerate arbitrary fault modes is that we do
not have to justify assumptions about more specific fault modes: a system is shown to
tolerate (say) two arbitrary faults by proving that it works in the presence of two faulty
FCUs withno assumptions whatsoeveron the behavior of the faulty components. A
system that can tolerate only specific fault modes may fail if confronted by a different
fault mode, so it is necessary to provide assurance that such modes cannot occur. It is
this absenceof assumptions that is the attraction, in safety-critical contexts, of systems
that can tolerate arbitrary faults. This point is often misunderstood and such systems
are derided as being focused on asymmetric or Byzantine faults, “which never arise in
practice.” Byzantine faults are just one manifestation of arbitrary behavior, and cannot
simply be asserted not to occur (in fact, they have been observed in several systems
that have been monitored sufficiently closely). One situation that is likely to provoke

7



asymmetric manifestations is aslightly out of specification(SOS) fault, such as the
intermediate electrical voltage mentioned earlier. SOS faults in the timing dimension
include those that put a signal edge very close to a clock edge, or that have signals with
very slow rise and fall times (i.e., weak edges). Depending on the timing of their own
clock edges, some receivers may recognize and latch such a signal, others may not,
resulting in asymmetric or Byzantine behavior.

FCUs may be active (e.g., a processor) or passive (e.g., a bus); while an arbitrary-
faulty active component can do anything, a passive component may change, lose, or
delay data, but it cannot spontaneously create a new datum. Keyed checksums or digital
signatures can sometimes be used to reduce the fault modes of an active FCU to those
of a passive one. (An arbitrary-faulty active FCU can always create its own messages,
but it cannot create messages purporting to come from another FCU if it does not know
the key of that FCU; signatures need to be managed carefully for this reduction in fault
mode to be credible.)

Any fault-tolerant architecture will fail if subjected to too many faults; generally
speaking, it requires more redundancy to tolerate an arbitrary fault than a symmetric
one, which in turn requires more redundancy than a manifest fault. The most effective
fault-tolerant algorithms make this tradeoff automatically between number and diffi-
culty of faults tolerated. For example, the clock synchronization algorithm of [16] can
toleratea arbitrary faults,s symmetric, andm manifest ones simultaneously provided
n, the number of FCUs, satisfiesn > 3a+2s+m. It is provably impossible (i.e., it can
be proven that no algorithm can exist) to toleratea arbitrary faults in clock synchro-
nization with fewer than3a+ 1 FCUs (unless digital signatures are employed—which
is equivalent to reducing the severity of the arbitrary fault mode).

Because it is algorithmically much easier to tolerate simple failure modes, some
architectures (e.g., SAFEbus) arrange FCUs (the “Bus Interface Units” in the case of
SAFEbus) in self-checking pairs: if the members of a pair disagree, they go offline,
ensuring that the effect of their failure is seen as a manifest fault (i.e., one that is easily
tolerated). Most architectures also employ substantial self-checking in each FCU; any
FCU that detects a fault will shut down, thereby ensuring that its failure will be manifest.
(This kind of operation is often calledfail silence). Even with extensive self-checking
and pairwise-checking, it may be possible for some fault modes to “escape,” so it is
generally necessary to show either that the mechanisms used have complete coverage
(i.e., there will be no violation of fail silence), or to design the architecture so that it can
tolerate the “escape” of at least one arbitrary fault.

Some architectures can tolerate only a single fault at a time, but can reconfigure to
exclude faulty FCUs and are then able to tolerate additional faults. In such cases, the
fault arrival rate is important: faults must not arrive faster than the architecture can
reconfigure. The architectures considered here operate according to static schedules,
which consist of “rounds” or “frames” that are executed repeatedly in a cyclic fashion.
The acceptable fault arrival rate is often then expressed in terms of faults per round
(or the inverse). It is usually important that every node is scheduled to make at least
one broadcast in every round, since this is how fault status is indicated (and hence how
reconfiguration is triggered).

8



Historical experience and analysis must be used to show that the hypothesized
modes, numbers, and arrival rate are realistic, and that the architecture can indeed oper-
ate correctly under those hypotheses for its intended mission time. But sometimes things
go wrong: the system may experience many simultaneous faults (e.g., from unantici-
pated high-intensity radiated fields (HIRF)), or other violations of its fault hypothesis.
We cannot guarantee correct operation in such cases (otherwise our fault hypothesis
was too conservative), but safety-critical systems generally are constructed to a “never
give up” philosophy and will attempt to continue operation in a degraded mode. The
usual method of operation in “never give up” mode is that each node reverts to local
control of its own actuators using the best information available (e.g., each brake node
applies braking force proportional to pedal pressure if it is still receiving that input, and
removes all braking force if not), while at the same time attempting to regain coordi-
nation with its peers. Although it is difficult to provide assurance of correct operation
during these upsets, it may be possible to provide assurance that the system returns to
normal operation once the faults cease (assuming they were transients) using the ideas
of self-stabilization [20].

Restart during operation may be necessary if HIRF or other environmental influ-
ences lead to violation of the fault hypothesis and cause a complete failure of the bus.
Notice that this failure must be detected by the bus, and the restart must be automatic
and very fast: most control systems can tolerate loss of control inputs for only a few
cycles—longer outages will lead to loss of control. For example, Heiner and Thurner
estimate that the maximum transient outage time for a steer-by-wire automobile appli-
cation is 50ms [6].

Restart is usually initiated when an interface detects no activity on any bus line for
some interval; that interface will then transmit some “wake up” message on all lines. Of
course, it is possible that the interface in question is faulty (and there was bus activity all
along but that interface did not detect it), or that two interfaces decide simultaneously
to send the “wake up” call. The first possibility must be avoided by careful checking,
preferably by independent units (e.g., both interfaces of a pair, or an interface and its
guardian); the second requires some form of collision detection and resolution: this
should be deterministic to guarantee an upper bound on the time to reach resolution (that
will allow a single interface can send an uninterrupted “wake up” message) and, ideally,
should not depend on collision detection (because this cannot be done reliably). Notice
that it must be possible to perform startup and restart reliably even in the presence of
faulty components.

4 Services

The essential basic purpose of these bus architectures is to make itpossibleto build
reliable distributed applications; a desirable purpose is to make itstraightforwardto
build such applications. The basic services provided by the bus architectures consid-
ered here comprise clock synchronization, time-triggered activation, and reliable mes-
sage delivery. Some of the architectures provide additional services; their purpose is
to assist straightforward construction of reliable distributed applications by providing
these services in an application-independent manner, thereby relieving the applications

9



of the need to implement these capabilities themselves. Not only does this simplify the
construction of application software, it is sometimes possible to providebetterservices
when these are implemented at the architecture level, and it is also possible to provide
strong assurance that they are implemented correctly.

Applications that perform safety-critical functions must generally be replicated for
fault tolerance. There are many ways to organize fault-tolerant replicated computations,
but a basic distinction is between those that useexactagreement, and those that useap-
proximateagreement. Systems that use approximate agreement generally run several
copies of the application in different nodes, each using its own sensors, with little co-
ordination across the different nodes. The motivation for this is a “folk belief” that it
promotes fault tolerance: coordination is believed to introduce the potential for com-
mon mode failures. Because different sensors cannot be expected to deliver exactly the
same readings, the outputs (i.e., actuator commands) computed in the different nodes
will also differ. Thus, the only way to detect faulty outputs is by looking for values that
differ by “a lot” from the others. Hence, these systems use some form of selection or
threshold voting to select a good value to send to the actuators, and similar techniques
to identify faulty nodes that should be excluded from the configuration. A difficulty
for applications of the kind considered here is that hosts accumulate state that diverges
from that of others over time (e.g., velocity and position as a result of integrating ac-
celeration), and they execute mode switches that are discrete decisions based on local
sensor values (e.g., change the gain schedule in the control laws if the altitude, or tem-
perature, is above a specific value). Thus small differences in sensor readings can lead
to major differences in outputs and this can mislead the approximate selection or vot-
ing mechanisms into choosing a faulty value, or excluding a nonfaulty node. The fix to
these problems is to attempt to coordinate discrete mode switches and periodically to
bring state data into convergence. But these fixes are highly application specific, and
they are contrary to the original philosophy that motivated the choice of approximate
agreement—hence, there is a good chance of doing them wrong. There are numerous
examples that justify this concern; several that were discovered in flight tests are docu-
mented by Mackall and colleagues [10]. The essential points of Mackall’s data is that all
the failures observed in flight test were due to bugs in the design of the fault tolerance
mechanisms themselves, and all these bugs could be traced to difficulties in organizing
and coordinating systems based on approximate agreement.

Systems based on exact agreement face up to the fact that coordination among repli-
cated computations is necessary, and they take the necessary steps to do it right. If we
are to use exact agreement, then every replica must perform the same computation on
the same data: any disagreement on the outputs then indicates a fault; comparison can
be used to detect those faults, and majority voting to mask them. A vital element in
this approach to fault tolerance is that replicated components must work on the same
data: thus, if one node reads a sensor, it must distribute that reading to all the redundant
copies of the application running in other nodes. Now a fault in that distribution mecha-
nism could result in one node getting one value and another a different one (or no value
at all). This would abrogate the requirement that all replicas obtain identical inputs, so
we need to employ mechanisms to overcome this behavior.

10



The problem of distributing data consistently in the presence of faults is variously
called interactive consistency, consensus, atomic broadcast, or Byzantine agreement
[12, 9]. When a node transmits a message to several receivers, interactive consistency
requires the following two properties to hold.

Agreement: All nonfaulty receivers obtain the same message (even if the transmitting
node is faulty).

Validity: If the transmitter is nonfaulty, then nonfaulty receivers obtain the message
actually sent.

Algorithms for achieving these requirements in the presence of arbitrary faults necessar-
ily involve more than a single data exchange (basically, each receiver must compare the
value it received against those received by others). It is provably impossible to achieve
interactive consistency in the presence ofa arbitrary faults unless there are at least
3a+ 1 FCUs,2a+ 1 disjoint communication paths between them, anda+ 1 levels (or
“rounds”) of communication. The number of FCUs and the number of disjoint paths
required, but not the number of rounds, can be reduced by using digital signatures.

The problem might seem moot in architectures that employ a physical bus, since a
bus surely cannot deliver values inconsistently (so the agreement property is achieved
trivially). Unfortunately, it can—though it is likely to be a very rare event. The scenarios
involving SOS faults presented earlier exemplify some possibilities.

Dealing properly with very rare events is one of the attributes that distinguishes a
design that is fit for safety-critical systems from one that is not. It follows that either
the application software must perform interactive consistency for itself (incurring the
cost ofn2 messages to establish consistency acrossn nodes in the presence of a single
arbitrary fault), or the bus architecture must do it.

The first choice is so unattractive that it vitiates the whole purpose of a fault-tolerant
bus architecture. Most bus architectures therefore provide some type of interactively
consistent message broadcast as a basic service. In addition, most architectures take
steps to reduce the incidence of asymmetric transmissions (i.e., those that appear as one
value to some receivers, and as different values, or the absence of values, to others). As
noted, SOS faults are among the most plausible sources of asymmetric transmissions.
SOS faults that cause asymmetric transmissions can arise in either the value or time do-
mains (e.g., intermediate voltages, or weak edges, respectively). In those architectures
that employ a bus guardian in a central hub or “in series” with each interface, the bus
guardians are a possible point of intervention for the control of SOS faults: a suitable
guardian can reshape, in both value and time domains, the signal sent to it by the con-
troller. Of course, the guardian could be faulty and may make matters worse—so this
approach makes sense only when there are independent guardians on each of two (or
more) replicated interconnects. Observe that for credible signal reshaping, the guardian
must have a power supply that is independent of that of the controller (faults in power
supply are the most likely cause of intermediate voltages and weak edges).

Interactively consistent message broadcast provides the foundation for fault toler-
ance based on exact agreement. There are several ways to use this foundation. One
arrangement, confusingly called thestate machineapproach [19], is based on majority
voting: application replicas run on a number of different nodes, exchange their output
values, and deliver a majority vote to the actuators.

11



Another arrangement is based on self-checking (either by individuals or pairs) so
that faults result in fail-silence. This will be detected by other nodes, and some backup
application running in those other nodes can take over. The architecture can assist this
master/shadow arrangement by providing services that support the rollover from one
node to another. One such service automatically substitutes a backup node for a failed
master (both the master and the backup occupy the same slot in the schedule, but the
backup is inhibited from transmitting unless the master is failed). A variant has both
master and backup operating in different slots, but the backup inhibits itself unless
it is informed that the master has failed. A further variation, calledcompensation,
applies when different nodes have access to different actuators: none is a direct backup
to any other, but each changes its operation when informed that others have failed (an
example is car braking: separate nodes controlling the braking force at each wheel will
redistribute the force when informed that one of their number has failed).

The variations on master/shadow described above all depend on a “failure notifica-
tion,” or equivalently a “membership” service. The crucial requirement on such a ser-
vice is that it must produceconsistentknowledge: that is, if one nonfaulty node thinks
that a particular node has failed, then all other nonfaulty nodes must hold the same
opinion—otherwise, the system will lose coordination, with potentially catastrophic
results (e.g., if the nodes controlling braking at different wheels make different adjust-
ments to their braking force based on different assessments of which others have failed).
Notice that this must also apply to a node’s knowledge of itsownstatus: a näıve view
might assume that a node that is receiving messages and seeing no problems in its own
operation should assume it is in the membership. But if this node is unable to transmit,
all other nodes will have removed it from their memberships and will be making suit-
able compensation on the assumption that this node has entered its “blackout” mode
(and is, for example, applying no force to its brake). It could be catastrophic if this node
does not adopt the consensus view and continues operation (e.g., applying force to its
brake) based on its local assessment of its own health.

A membership service operates as follows. Each node maintains a privatemember-
ship list, which is intended to comprise all and only the nonfaulty nodes. Since it can
take a while to diagnose a faulty node, we have to allow the common membership to
contain at most one faulty node. Thus, a membership service must satisfy the following
two requirements.

Agreement: The membership lists of all nonfaulty nodes are the same.
Validity: The membership lists of all nonfaulty nodes contain all nonfaulty nodes and

at most one faulty node.

These requirements can be achieved only under benign fault hypotheses (it is prov-
ably impossible to diagnose an arbitrary-faulty node with certainty). When unable to
maintain accurate membership, the best recourse is to maintain agreement, but sacrifice
validity (nonfaulty nodes that are not in the membership can then attempt to rejoin).
This weakened requirement is called “clique avoidance” [2].

Note that it is quite simple to achieve consistent membership on top of an inter-
actively consistent message service: each node broadcasts its own membership list to
every other node, and each node runs a deterministic resolution algorithm on the (iden-
tical, by interactive consistency) lists received. Conversely, a membership and clique-

12



avoidance service can assist the construction of an interactively consistent message ser-
vice: simply exclude from the membership any node that receives a message different
than the majority (TTA does this).

5 Practical Implementations

Here, we provide sketches of four bus architectures that provide concrete solutions to
the requirements and design challenges outlined in the previous sections. More details
are available in a companion report to this paper [17]. All four buses support the time-
triggered model of computation, employ fault-tolerant distributed clock synchroniza-
tion, and use bus guardians or some equivalent mechanism to protect against babbling
idiot failure modes. They differ in their fault hypotheses, mechanisms employed, ser-
vices provided, and in their assurance, performance, and cost.

SAFEbus. Honeywell developed SAFEbusTM (the principal designers are Kevin
Driscoll and Ken Hoyme [7]) to serve as the core of the Boeing 777 Airplane Infor-
mation Management System (AIMS) [22], which supports several critical functions,
such as cockpit displays and airplane data gateways. The bus has been standardized as
ARINC 659 [1] and variations on Honeywell’s implementation are being used or con-
sidered for other avionics and space applications. It uses a bus interconnect similar to
that shown in Figure1; the interfaces (they are called Bus Interface Units, or BIUs)
are duplicated, and the interconnect bus is quad-redundant. Most of the functionality of
SAFEbus is implemented in the BIUs, which perform clock synchronization and mes-
sage scheduling and transmission functions. Each BIU of a pair is a separate FCU and
acts as its partner’s bus guardian by controlling its access to the interconnect.

Each BIU of a pair drives a different pair of interconnect buses but is able to read
all four; the interconnect buses themselves each comprise two data lines and one clock
line and operate at 30MHz. The bus lines and their drivers have the electrical char-
acteristics of OR-gates (i.e., if several different BIUs drive the same line at the same
time, the resulting signal is the OR of the separate inputs). Some of the protocols ex-
ploit this property; in particular, clock synchronization is achieved using an event-based
algorithm.

The paired BIUs at sender and receiver, and the quad-redundant buses, provide
sufficient redundancy for SAFEbus to provide interactively consistent message broad-
casts (in the Honeywell implementation) using an approach similar to that described
by Davies and Wakerly [4] (this remarkably prescient paper anticipated many of the
issues and solutions in Byzantine fault tolerance by several years). It also supports
application-level fault tolerance (based on self-checking pairs) by providing automatic
rapid rollover from masters to shadows.

Its fault hypothesis includes arbitrary faults, faults in several nodes (but only one
per node), and a high rate of fault arrivals. It never gives up and has a well-defined
restart and recovery strategy from fault arrivals that exceed its fault hypothesis. It toler-
ates spatial proximity faults in the AIMS application by duplicating the entire system.
SAFEbus is certified for use in passenger aircraft and has extensive field experience in
the Boeing 777. The Honeywell implementation is supported by an in-house tool chain.

13



SAFEbus is the most mature of the four buses considered, and makes the fewest
compromises. But because each of its major components is paired (and its bus requires
separate lines for clock and data), it is the most expensive of those available for com-
mercial use (typically, a few hundred dollars per node).

TTA. The Time Triggered Architecture (TTA) was developed by Hermann Kopetz
and colleagues at the Technical University of Vienna [8]. Commercial development of
the architecture is undertaken by TTTech and it is being deployed for safety-critical
applications in cars by Audi and Volkswagen, and for flight-critical functions in aircraft
and aircraft engines by Honeywell.

Current implementations of TTA use a bus interconnect similar to that shown in Fig-
ure 1. The interfaces (they are calledcontrollers) implement the TTP/C protocol [24]
that is at the heart of TTA, providing clock synchronization, and message sequenc-
ing and transmission functions. The interconnect bus is duplicated and each controller
drives both of them through partially independent bus guardians. TTA uses an averaging
clock synchronization algorithm based on that of Lundelius and Lynch [25]. This algo-
rithm is implemented in the controllers, but requires too many resources to be replicated
in the bus guardians. The guardians, which have independent clocks, therefore rely on
their controllers for a “start of frame” signal. This compromises their independence
somewhat (they also share the power supply and some other resources with their con-
trollers), so forthcoming implementations of TTA use a star interconnect similar to that
shown in Figure2. Here, the guardian functionality is implemented in the central hub
which is fully independent of the controllers: the hubs and controllers comprise separate
FCUs in this implementation. Hubs are duplicated for fault tolerance and located apart
to withstand spatial proximity faults. They also perform signal reshaping to reduce the
incidence of SOS faults.

TTA employs algorithms for group membership and clique avoidance [2]; these
enable its clock synchronization algorithm to tolerate multiple faults (by reconfigur-
ing to exclude faulty members) and combine with its use of checksums (which can be
considered as digital signatures) to provide a form of interactively consistent message
broadcasts. The membership service supports application-level fault tolerance based on
master-backup or compensation. Proposed extensions provide state machine replication
in a manner that is transparent to applications.

The fault hypothesis of TTA includes arbitrary faults, and faults in several nodes
(but only one per node), provided these arrive at least two rounds apart (this allows the
membership algorithm to exclude the faulty node). It never gives up and has a well-
defined restart and recovery strategy from fault arrivals that exceed this hypothesis.

The prototype implementations of TTA have been subjected to extensive testing and
fault injections, and deployed in experimental vehicles. Several of its algorithms have
been formally verified [14,13], and aircraft applications under development are planned
to lead to FAA certification. It is supported by an extensive tool suite that interfaces to
standard CAD environments (e.g., Matlab/Simulink and Beacon). Current implementa-
tions provide 25 Mbit/s data rates; research projects are designing implementations for
gigabit rates. TTA controllers and the star hub (which is basically a modified controller)
are quite simple and cheap to produce in volume.

14



Of the architectures considered here, TTA is unique in being used for both auto-
mobile applications, where volume manufacture leads to very low prices, and aircraft,
where a mature tradition of design and certification for flight-critical electronics pro-
vides strong scrutiny of arguments for safety.

SPIDER. A Scalable Processor-Independent Design for Electromagnetic Resilience
(SPIDER) is being developed by Paul Miner and colleagues at the NASA Langley Re-
search Center as a research platform to explore recovery strategies for radiation-induced
(HIRF/EMI) faults, and to serve as a case study to exercise the recent design assurance
guidelines for airborne electronic hardware (DO-254) [15].

SPIDER uses a star configuration similar to that shown in Figure2, in which the
interfaces (called BIUs) may be located either with their hosts or in the centralized hub,
which also contains active elements called Redundancy Management Units, or RMUs.

Clock synchronization and other services of SPIDER are achieved by novel dis-
tributed algorithms executed among the BIUs and RMUs [11]. The services provided
include interactively consistent message broadcasts, and identification of failed nodes
(from which a membership service can easily be synthesized). SPIDER’s fault hypoth-
esis uses a hybrid fault model, which includes arbitrary faults, and allows some com-
binations of multiple faults. Its algorithms are novel and highly efficient and are being
formally verified.

SPIDER is an interesting design that uses a different topology and a different class
of algorithms from the other buses considered here. However, it is a research project
whose design and implementation are still in progress and so it cannot be compared
directly with the commercial products.

FlexRay. A consortium including BMW, DaimlerChrysler, Motorola, and Philips, is
developing FlexRay for powertrain and chassis control in cars. It differs from the other
buses considered here in that its operation is divided between time-triggered and event-
triggered activities. Published descriptions of the FlexRay protocols and implementa-
tion are sketchy at present [3] (see also the Web sitewww.flexray-group.com ).

FlexRay can use either an “active” star interconnect similar to that shown in Figure
2, or a “passive” bus similar to that shown in Figure1. In both cases, duplication of the
interconnect is optional. The star configuration of FlexRay (and also that of TTA) can
also be deployed in distributed configurations where subsystems are connected by hub-
to-hub links. Each FlexRay interface (it is called a communication controller) drives
the lines to its interconnects through separate bus guardians located with the interface.
(This means that with two buses, each node has three clocks: one for the controller and
one for each of the two guardians; this differs from the bus configuration of TTA where
there is one clock for the controller and both guardians share a second clock.) Like the
bus configuration of TTA, the guardians of FlexRay are not fully independent of their
controllers.

FlexRay aims to be more flexible than the other buses considered here, and this
seems to be reflected in the choice of its name. As noted, one manifestation of this
flexibility is its combination of time- and event-triggered operation. FlexRay partitions
each time cycle into a “static” time-triggered portion, and a “dynamic” event-triggered
portion. The division between the two portions is set at design time and loaded into

15

www.flexray-group.com


the controllers and bus guardians. Communication during the event-driven portion of
the cycle uses the Byteflight protocol. Unlike SAFEbus and TTA, FlexRay does not
install the full schedule for the time-triggered portion in each controller. Instead, this
portion of the cycle is divided into a number of slots of fixed size and each controller
and its bus guardians are informed only of those slots allocated to their transmissions
(nodes requiring greater bandwidth are assigned more slots than those that require less).
Controllers learn the full schedule only when the bus starts up. Each node includes
its identity in the messages that it sends; during startup, nodes use these identifiers to
label their input buffers as the schedule reveals itself (e.g., if the messages that arrive
in slots 1 and 7 carry identifier 3, then all nodes will thereafter deliver the contents
of buffers 1 and 7 to the task that deals with input from node 3). There appears to be a
vulnerability here: a faulty node could masquerade as another (i.e., send a message with
the wrong identifier) during startup and thereby violate partitioning for the remainder
of the mission. It is not clear how this fault mode is countered.

Like TTA, FlexRay uses the Lundelius-Welch clock synchronization algorithm but,
unlike TTA, it does not use a membership algorithm to exclude faulty nodes. FlexRay
provides no services to its applications beyond best-efforts message delivery; in par-
ticular, it does not provide interactively consistent message broadcasts. This means that
all mechanisms for fault-tolerant applications must be provided by the applications pro-
grams themselves. Published descriptions of FlexRay do not specify its fault hypothesis,
and it appears to have no mechanisms to counter certain fault modes (e.g., SOS faults or
other sources of asymmetric broadcasts, and masquerading on startup). A never-give-up
strategy has not been described, nor have systematic or formal approaches to assurance
and certification.

FlexRay is interesting because of its mixture of time- and event-triggered operation,
and potentially important because of the industrial clout of its developers. Currently, it
is the slowest of the commercial buses, with a claimed data rate of no more than 10
Mbit/s.

6 Summary and Conclusion

A safety-critical bus architecture provides certain properties and services that assist in
construction of safety-critical systems. As with any system framework or middleware
package, these buses offer a tradeoff to system developers: they provide a coherent
collection of services, with strong properties and highly assured implementations, but
developers must sacrifice some design freedom to gain the full benefit of these services.
For example, all these buses use a time-triggered model of computation, and system
developers must build their applications within that framework. In return, the buses are
able to guarantee strong partitioning: faults in individual components or applications
(“functions” in avionics terms) cannot propagate to others, nor can they bring down the
entire bus (within the constraints of its fault hypothesis).

Partitioning is the minimum requirement, however. It ensures that one failed func-
tion will not drag down others, but in many safety-critical systems the failure of even
a single function can be catastrophic, so the individual functions must themselves be
made fault tolerant. Accordingly, most of the buses provide mechanisms to assist the

16



development of fault-tolerant applications. The key requirement here is interactively
consistent message transfer: this ensures that all masters and shadows (or masters and
monitors), or all members of a voting pool, maintain consistent state. Three of the buses
considered here provide this basic service; some of them do so in association with other
services, such master/shadow rollover or group membership, that can be provided with
much increased efficiency and much reduced latency when implemented at a low level.
FlexRay, alone, provides none of these services. In their absence, all mechanisms for
fault-tolerance must be implemented in applications programs. Thus, application pro-
grammers, who may have little experience in the subtleties of fault-tolerant systems, be-
come responsible for the design, implementation, and assurance of very delicate mech-
anisms with no support from the underlying bus architecture. Not only does this in-
crease the cost and difficulty of making sure that things are done right, it also increases
their computational cost and latency. For example, in the absence of an interactively
consistent message service provided by the architecture, applications programs must
explicitly transmit the multiple rounds of cross-comparisons that are needed to imple-
ment this service at a higher level, thereby substantially increasing the message load.
Such a cost will invite inexperienced developers to seek less expensive ways to achieve
fault tolerance—in probable ignorance of the impossibility results in the theoretical
literature, and the history of intractable “Heisenbugs” (rare, unrepeatable, failures) en-
countered by practitioners who pushed for10−9 with inadequate foundations.

It is unlikely that any single bus architecture will satisfy all needs and markets, so
it is possible that FlexRay’s lack of application-level fault-tolerant services will find
favor in some areas. It is also to be expected that new or modified architectures will
emerge to satisfy new markets and requirements. (For example, it is proposed that TTA
could match FlexRay’s ability to support event-triggered as well as time-triggered com-
munications by allocating certain time slots to a simulation of CAN; the simulation is
actually faster than a real CAN bus, while retaining all the safety attributes of TTA.) I
hope that the description provided here will help potential users to evaluate existing ar-
chitectures against their own needs, and that it will help designers of new architectures
to learn from and build on the design choices made by their predecessors.

References

[1] ARINC Specification 659: Backplane Data Bus. Aeronautical Radio, Inc, Annapolis, MD,
December 1993. Prepared by the Airlines Electronic Engineering Committee.2, 13

[2] Günther Bauer and Michael Paulitsch. An investigation of membership and clique avoid-
ance in TTP/C. In19th Symposium on Reliable Distributed Systems, Nuremberg, Germany,
October 2000.12, 14

[3] Joef Berwanger et al. FlexRay–the communication system for advanced automotive control
systems. InSAE 2001 World Congress, Society of Automotive Engineers, Detroit, MI, April
2001. Paper number 2001-01-0676.2, 15

[4] Daniel Davies and John F. Wakerly. Synchronization and matching in redundant systems.
IEEE Transactions on Computers, C-27(6):531–539, June 1978.13

[5] System Design and Analysis. Federal Aviation Administration, June 21, 1988. Advisory
Circular 25.1309-1A.6

17



[6] Günter Heiner and Thomas Thurner. Time-triggered architecture for safety-related dis-
tributed real-time systems in transportation systems. InFault Tolerant Computing Sympo-
sium 28, pages 402–407, IEEE Computer Society, Munich, Germany, June 1998.9

[7] Kenneth Hoyme and Kevin Driscoll. SAFEbusTM . In 11th AIAA/IEEE Digital Avionics
Systems Conference, pages 68–73, Seattle, WA, October 1992.2, 13

[8] Hermann Kopetz and G̈unter Gr̈unsteidl. TTP—a protocol for fault-tolerant real-time sys-
tems.IEEE Computer, 27(1):14–23, January 1994.2, 14

[9] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.11

[10] Dale A. Mackall. Development and flight test experiences with a flight-crucial digital con-
trol system. NASA Technical Paper 2857, NASA Ames Research Center, Dryden Flight
Research Facility, Edwards, CA, 1988.2, 10

[11] Paul S. Miner. Analysis of the SPIDER fault-tolerance protocols. In C. Michael Holloway,
editor, LFM 2000: Fifth NASA Langley Formal Methods Workshop, NASA Langley Re-
search Center, Hampton, VA, June 2000. Slides available athttp://shemesh.larc.
nasa.gov/fm/Lfm2000/Presentations/lfm2000-spider/ . 2, 15

[12] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228–234, April 1980.11

[13] Holger Pfeifer. Formal verification of the TTA group membership algorithm. In Tommaso
Bolognesi and Diego Latella, eds.,Formal Description Techniques and Protocol Specifi-
cation, Testing and Verification FORTE XIII/PSTV XX 2000, pages 3–18, Pisa, Italy, Oct.
2000. 14

[14] Holger Pfeifer, Detlef Schwier, and Friedrich W. von Henke. Formal verification for time-
triggered clock synchronization. In Charles B. Weinstock and John Rushby, eds.,Depend-
able Computing for Critical Applications—7, Volume 12 of IEEE Computer SocietyDe-
pendable Computing and Fault Tolerant Systems, pages 207–226, San Jose, CA, Jan. 1999.
14

[15] DO254: Design Assurance Guidelines for Airborne Electronic Hardware. Requirements
and Technical Concepts for Aviation, Washington, DC, April 2000.2, 15

[16] John Rushby. A formally verified algorithm for clock synchronization under a hybrid fault
model. InThirteenth ACM Symposium on Principles of Distributed Computing, pages 304–
313, Association for Computing Machinery, Los Angeles, CA, August 1994. Also available
as NASA Contractor Report 198289.8

[17] John Rushby. A comparison of bus architectures for safety-critical embedded sys-
tems. Technical report, Computer Science Laboratory, SRI International, Menlo Park,
CA, June 2001. Available athttp://www.csl.sri.com/˜rushby/papers/
buscompare.pdf . 2, 13

[18] Fred B. Schneider. Understanding protocols for Byzantine clock synchronization. Techni-
cal Report 87-859, Department of Computer Science, Cornell University, Ithaca, NY, Aug.
1987. 5

[19] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.11

[20] Marco Schneider. Self stabilization.ACM Computing Surveys, 25(1):45–67, March 1993.
9

[21] T. K. Srikanth and Sam Toueg. Optimal clock synchronization.Journal of the ACM,
34(3):626–645, July 1987.6

[22] William Sweet and Dave Dooling. Boeing’s seventh wonder.IEEE Spectrum, 32(10):20–
23, October 1995.13

[23] Philip Thambidurai and You-Keun Park. Interactive consistency with multiple failure
modes. In7th Symposium on Reliable Distributed Systems, pages 93–100, IEEE Computer
Society, Columbus, OH, October 1988.7

18

http://shemesh.larc.nasa.gov/fm/Lfm2000/Presentations/lfm2000-spider/
http://shemesh.larc.nasa.gov/fm/Lfm2000/Presentations/lfm2000-spider/
http://www.csl.sri.com/~rushby/papers/buscompare.pdf
http://www.csl.sri.com/~rushby/papers/buscompare.pdf


[24] Specification of the TTP/C Protocol. Time-Triggered Technology TTTech Computertechnik
AG, Vienna, Austria, July 1999.2, 14

[25] J. Lundelius Welch and N. Lynch. A new fault-tolerant algorithm for clock synchronization.
Information and Computation, 77(1):1–36, April 1988.5, 14

19


	Bus Architectures For Safety-Critical Embedded Systems

