
MuCAPSL �
Jon Millen and Grit Denker

Computer Science Laboratory
SRI International

Menlo Park, CA 94025, USAfmillen j denkerg@csl.sri.com

Abstract

Secure group communication protocols have
been designed to meet needs such as secure man-
agement of group membership, confidential group
communication, and access control. New languages
and models are necessary to appropriately cap-
ture the concepts of such protocols and make them
amenable to formal analysis.

For this purpose, we developed MuCAPSL (Mul-
ticast Common Authentication Protocol Specifica-
tion Language). In this paper we introduce the Mu-
CAPSL features and motivate our design decisions
by illustrating the practical use of MuCAPSL with
the help of a simplified version of the secure group
communication protocol used in SecureSpread. We
also briefly introduce MuCAPSL’s intermediate lan-
guage MuCIL which serves as an interface lan-
guage for analysis tools.

1 Introduction

A variety of new protocols and frameworks have
been designed to create multicast groups on a net-
work and support secure group communication,
such as GDOI [3] and GSAKMP [11]. Key ex-
change protocols for secure communication have
been extended to the group setting. Some of
these are extensions of the symmetric key distribu-
tion techniques used in virtual private networks, as
in Enclaves [10], others are extensions of Diffie-
Hellman, such as Group Diffie-Hellman (GDH)
[21, 22] and its authenticated form A-GDH [2].
Some schemes are hierarchical, either physically as
in Iolus [18], or abstractly as in various key graph�This work was supported by DARPA through SPAWAR Sys-
tems Center under Contract N66001-00-C-8014.

approaches [23, 12]. Different key management ap-
proaches can be offered as options over basic reli-
able multicast frameworks, as in Secure Spread [1].

There have been only a few results on the formal
analysis of group management protocols; Pereira
and Quisquater analyzed A-GDH [20], and Mead-
ows discovered security flaws in early versions of
GDOI [14]. The analysis of group management
protocols poses new challenges for formal analysis
techniques. New language concepts are necessary
to appropriately capture the features of such proto-
cols. Moreover, analysis techniques and tools have
to be revised and extended.

MuCAPSL (Multicast Common Authentication
Protocol Specification Language) has been de-
signed to meet these needs. MuCAPSL is a high-
level, yet mathematically well-founded protocol
specification language that allows easy transforma-
tion of published descriptions of secure group com-
munication protocols into an intermediate language
suitable as an interface to many formal analysis
techniques and tools. The ideas behind MuCAPSL
and its special features for facilitating group multi-
cast protocol specification and a brief summary of
the term-rewriting model underlying the intermedi-
ate language are described in this paper.

This paper is primarily about the design of Mu-
CAPSL. We have begun some work on the analysis
of multicast protocols using our semantic model,
summarized briefly in Section 5.2. More details
on the intermediate language and its application for
protocol analysis are presented in [16, 8]. Back-
ground on the project and the parent unicast lan-
guage CAPSL may be found in [7].

2 Review of CAPSL

MuCAPSL is based on concepts that appeared in
the CAPSL language for unicast protocols. CAPSL

philosophy is retained where it still applies, so to
understand MuCAPSL it helps to review its foun-
dation in CAPSL.

CAPSL was designed to formalize the kind of
protocol specifications that appear in textbooks and
articles. In those sources, a protocol is given as a se-
quence of messages in what has been called “Alice
and Bob” style. A typical message exchange might
appear as:A! B : A; fNA; BgKBB ! A : B;NA
The accompanying text would describe the types
and purposes of the variables.

A CAPSL version declares variables as in a
strongly-typed programming language, but there
are some additional characteristics of CAPSL that
are not usually found in programming languages.
Consider the CAPSL specification of the example
above:

PROTOCOL Example;
VARIABLES

A, B: PKUser;
Na: Nonce,FRESH,CRYPTO;

ASSUMPTIONS
HOLDS A: B;

MESSAGES
A -> B: A,{Na,B}pk(B);
B -> A: B,Na;

GOALS
PRECEDES B: A| Na;

END;

Certain features of the above specification are
significant and are retained in MuCAPSL:� Variables representing parties in a protocol are

usually of some specialized datatype for which
protocol-related functions are defined. In this
case, a partyB of type PKUser has a public
keypk (B).� Variables haveproperties like FRESH and
CRYPTO above, representing assumptions rel-
evant to attack analysis that cannot be ex-
pressed simply by defining a type for them.
FRESH, for example, means that the variable
can be given a new value that has never (for
purposes of analysis) been used before.� Attention is paid to implementability consider-
ations, such as ensuring that a variable receives
a value somehow before it is used. This is the
reason for the “HOLDS A: B” assumption.

� Security goals for the protocol may be speci-
fied. PRECEDES is a kind of authentication
goal. In this protocol,A can establish that
there is aB session holdingNa.

Other characteristics of CAPSL and MuCAPSL
are not visible on the surface, but are important for
understanding the meaning of specifications. The
most important of these is thelatchbehavior of pro-
tocol variables. Variables may be uninitialized or
undefined at the beginning of a protocol session,
but once they receive a value, the value is fixed for
the remainder of the session. This behavior reflects
the protocol designer’s view of variables as hav-
ing a global or shared value, even though they are
stored locally. It affects the interpretation of mes-
sages, since it implies, for example, that the value
of NA received byA in the second message should
be compared with the original, to detect error con-
ditions, rather than be accepted as a new value for
it.

The latch behavior of protocol variables affects
the semantics of equations. CAPSL allows equa-
tional actions likeK = pk (B) to be interspersed
with messages. An equational action is usually a
comparison test that must be satisfied at that point,
otherwise the protocol session aborts. However, if
the left side of the equation is a variable that has not
yet received a value, the equation is interpreted as
an assignment.

In MuCAPSL, there are two kinds of variables:
protocol variables as in CAPSL, having the latch
property; andgroup member attributes, which do
not. This distinction is important to understanding
the conceptual design of MuCAPSL. The difference
in behavior is related to the other major difference
between protocol variables and attributes, namely
that protocol variables are transient – they disappear
when the protocol run ends – while attributes are
persistent – the last value stored in a previous run is
available at the beginning of the next run (of either
the same or a different protocol) by the same group
member.

2.1 Specification Components

A MuCAPSL or CAPSL specification is made
up of three kinds of modules:typespec, protocol,
andenvironmentspecifications, usually in that or-
der.

Abstract data type specifications (calledtype-
specs) introduce new data types and define cryp-
tographic operators and other functions axiomati-
cally. Standard typespecs are included automati-

2

cally and others may be supplied by the user. Our
abstract data type approach borrows from those
appearing in modern systems like PVS [19] and
Maude [5]. Functions are characterized axiomat-
ically, rather than defined procedurally, with meth-
ods as in languages like Java. However, as in object-
oriented languages, certain MuCAPSL objects –
group members – do have modifiable states. Proto-
col agents also have states, but they are not declared
as objects of an explicit type, but, instead, are de-
fined using separate protocol specifications.

There may be more than one protocol specifi-
cation. In CAPSL, this occurrs when a top-level
protocol invokes one or more subprotocols. In Mu-
CAPSL, subprotocol delegation may occur, but the
main reason to have multiple protocols is to specify
several distinct functions for group management,
such as initialize, join, leave, merge, and re-key.

Environment specifications are optional; they are
used to set up particular network scenarios for the
benefit of search tools. They are not discussed here.

2.2 CAPSL Tools

The purpose of a CAPSL specification is primar-
ily to support vulnerability analysis using formal
methods. There are many analysis tools and meth-
ods, but none of them is specifically included in the
CAPSL environment. Instead, the goal of CAPSL
is to support a variety of such tools by defining a
universal language they can share.

The principal CAPSL tool is a translator that
parses and checks a CAPSL specification, and
translates it into a term-rewriting specification of a
state transition model. The term-rewriting notation
is called CIL. The CIL form of a CAPSL specifi-
cation expresses its semantics and serves as an in-
termediate language. It is possible to write transla-
tors (“connectors”) from CIL to the input language
of various analysis tools, and some of those have
in fact been written, including one for Athena [15]
and one for the Naval Research Laboratory Protocol
Analyzer, as well as experimental ones for PVS, the
SRI Constraint Solver [17], and Maude [6].

The CIL language has been extended to MuCIL
to support multicast group management protocols in
MuCAPSL, and there is now a MuCAPSL to Mu-
CIL translator.

3 MuCAPSL Concepts

There are two prominent differences between
CAPSL and MuCAPSL. One is that there is a new

kind of protocol variable, mentioned above, called
a group member attribute. Attributes and a built-
in group member type are discussed in Section 3.1.
In contrast to protocol variables, attributes can be
modified. As a consequence, a new syntactic nota-
tion is needed to determine whether received values
for an attribute are to be compared with the existing
value or to be replaced. This is done in Section 3.3.

The other big difference is that the Alice-and-
Bob style of specification is no longer used, even
though the bulk of the protocol specification con-
sists of message sequences. The roles of different
parties in the protocol are specified separately as
presented in Section 3.2.

3.1 The Group Member Type

In CAPSL, messages are sent from and toprin-
cipals– an object of some subtype of Principal, like
PKUser. In MuCAPSL, the sender and receiver of
a message is an object of some subtype of Group-
Member. The GroupMember type has a special
status in MuCAPSL as the only kind of object for
which attributes may be defined. GroupMember is
not a subtype of Principal; rather, a group member
is defined with two components, the principal who
owns it and the group ID of the group it belongs to.
In this way, the same principal may have a presence
in two or more groups, as a different group mem-
ber, holding a different attribute set for each. We
sometimes use the term “agent” for “group mem-
ber” when we wish to de-emphasize the particular
group it is associated with, for example when it has
just been deleted from the group.

The group ID is meant to persist over differ-
ent views of the group resulting from membership
changes. A new group ID is created only when a
totally new group instance is formed from an initial
group member or set of members.

We introduce the type GroupMember as the de-
fault type for group members in the following spec-
ification:

TYPESPEC GROUPMEMBER;
TYPE GroupMember: Object;
FUNCTIONS

owner(GroupMember): Principal;
groupid(GroupMember): Nat;

END;

Note that the owner and groupid are “functions”
rather than “attributes.” The difference is that at-
tributes can be modified, while if one changes the

3

owner or groupid of a group member it is not the
same group member any more. Attributes are dis-
cussed in more detail in the next section.

The GroupMember type scheme has a slight in-
convenience when group member types are hierar-
chical - one is a subtype of another - and it is de-
sired to make the owner of one of the lower types a
special kind of principal, like PKUser, when its par-
ent owner is only a kind of Principal. MuCAPSL,
like CAPSL, does not support multiple inheritance.
However, it is still possible to override lower-level
function signatures in subtypes to make them more
specific. So, although the owner of a GroupMember
has type Principal, one can declare a kind (subtype)
of GroupMember for which the owner is a subtype
of Principal, like PKUser.

3.1.1 Attributes in MuCAPSL

In the group protocol setting, agents need to store
keys or other information over several protocol ses-
sions, and they also need to be able to assign new
values to group information. For example, mem-
bers of a group may be ordered and have a se-
quence number. When a new member is added
with a join protocol, existing members retain their
old sequence number. When a member is deleted,
other members after it in the sequence will decre-
ment their sequence numbers. Persistent but modifi-
able information like this is stored in attributes. At-
tributes are specified in typespecs for group member
types in a new ATTRIBUTES section. For example,

TYPESPEC FRIEND;
TYPES Friend: GroupMember;
ATTRIBUTES

groupSize: Nat;
groupKey: Skey;

END FRIEND;

Like protocol variables in CAPSL, the values of
attributes can be set and tested explicitly by equa-
tional actions and implicitly as a result of receiv-
ing messages. Unlike protocol variables, attributes
can receive a succession of different values. There
are some very interesting syntactical and semantic
issues regarding how to handle attribute values in
messages and equations; those are discussed later
after we have introduced the way roles are specified
in MuCAPSL.

Attributes, unlike protocol variables, can
be functions, in which case they repre-
sent local tables. An attribute declared as

keytable(Principal): Skey holds a key
keytable (A) for any principalA, and the key
for A can be updated within a protocol run.

Attributes can also be arrays, which also repre-
sent local tables. Arrays, unlike functions, are ob-
jects of a data type that can be sent in messages, and
they can be protocol variable values as well. Mes-
sages containing arrays are quite useful for specify-
ing some group management protocols.

3.2 Role Separation

The second overwhelming difference between
CAPSL and MuCAPSL is the separation of roles
in the specification. A CAPSL protocol specifica-
tion has a single MESSAGES section, in which the
list of messages indicates all of the different roles
played by participants in the protocol: initiator, re-
sponder, key server, etc., typically associated with
principal names such asA;B; S, etc.

In a group multicast protocol, there is a vari-
able collection of membersM1; :::;Mn, but one
can still identify a small fixed number of roles, in
the sense of distinct behavioral sequences. In the
GDH.2 key distribution protocol [21], for example,
there are three roles (see Figure 1): the initiatorM1, the “middle” role played byM2; :::;Mn�1, and
the final role played byMn. The middle membersM2; :::;Mn�1 all receive and send the same kinds
of messages, and perform the same computations.
Their common role is named “Mi” in the figure.

If one attempts to connect the message arrows in
the figure into a single message sequence, one finds
quickly that there are more possibilities than are
immediately apparent or easy to reconcile. There
should be a loop fromMi to itself, and one might
forget to connectM1 directly toMn in casen = 2.
And what if the group only has one member? We
avoid these problems in MuCAPSL by specifying
each role separately. Conditions for instantiating
the roles and determining message destinations are
given in detail as part of the specification.

Role separation has syntactic consequences. For
example, even though the two-message protocol in
Secion 2 is not a group multicast protocol, we can
still express it in MuCAPSL. The MuCAPSL ver-
sion looks like this:

SUITE EXAMPLE;

TYPESPEC PKGM;
TYPES PKGroupMem: GroupMember;
FUNCTIONS

4

M

M1

M

M
broadcast

upflow upflow
upflow

broadcast

Mi

upflow

broadcast

Mn

Figure 1. GDH.2 Key Distribution Protocol

owner(PKGroupMem): PKUser;
END;

PROTOCOL Example;
VARIABLES

Na: Nonce,FRESH,CRYPTO;
A,B: PKUser;

ROLE Init: PKGroupMem;
ASSUMPTIONS

HOLDS A,B;
A=owner(Init);

MESSAGES
-> B: A, {Na,B}pk(B);
<-: B,Na;

END;

ROLE Resp: PKGroupMem;
ASSUMPTIONS

HOLDS B;
B=owner(Resp);

MESSAGES
<-: A, {Na,B}pk(B);
-> A: B,Na;

END;

GOALS
PRECEDES Resp: Init | Na;

END Example;
END EXAMPLE;

We have introduced two operator symbols,-
> : and <-: , for sending and receiving mes-
sages, respectively. Since we are specifying a proto-
col from the viewpoint of each role, the sender in a
“ -> : ” message and the receiver in a “<-: ” mes-
sage is implicitly the owner of the group member
playing the role that is being specified. Therefore,
we only need to specify the intended receiver in a
sent message, and we just omit the receiver if the
message is multicast. A sending message without a
receiver is understood as a multicast to the group to
which the sender belongs.

The origin of a received message is not indicated,

because header information is not available to the
role process. The claimed identity of the sender can
be included in the message as a message field. Note
that the role variables are of type GroupMember,
which is not a message field type. But the owner()
is of type Principal and may be included as a mes-
sage field and used as a destination address.

3.3 Assignment vs. Testing

In CAPSL, when a protocol variable is received
in a message or it appears on the left side of an equa-
tion action, the CAPSL translator can determine
whether the variable is assigned a value or used
in a comparison. This is possible because of the
latch property: protocol variables are never modi-
fied once they initialized. Thus, if a variable has
not yet been assigned a value, then the operation is
interpreted as an assignment, but if it already has a
value, the equation must be a comparison.

Attributes in MuCAPSL may be modified, so an
explicit syntactic notation is needed to determine
whether a received value is to be compared with the
existing value or to replace it. One obvious possibil-
ity is to introduce an assignment operator, like ‘:=’,
or use ‘=’ for assignment and ‘==’ for comparison,
as in C and Java. However, there is another problem
we have to solve first, and the solution to that one
makes it redundant to have an assignment operator.

Consider receiving a message<-: X,Y whereX andY are attributes. What if the intent is to re-
placeX with the value in the message, but to com-
pareY with the value in the message? We have to
distinguish the message fields syntactically. It ap-
pears that replacement is more often intended, and
we assume that as the default case. When a com-
parison is intended, we place ‘?’ before an attribute
to indicate that. The example would be written as
<-: X,?Y .

In order to be consistent, we also apply the same
rule for protocol variables. Nevertheless, since in
the case of protocol variables the decision whether
it is an assignment or a test can be made from the

5

context and does not require an explicit mark-up of
the variable, the translator will only give a warning
if a protocol variable is not marked with a ‘?’ when
the variable has been initialized and a test for equal-
ity has to take place, or if it is marked but it has not
been initialized.

Now we can handle equations the same way. The
equationX = Y is an assignment intoX , and the
equation?X = Y is a comparison test!

4 A Group-Diffie-Hellman protocol

Some of the new features of MuCAPSL are il-
lustrated in this section with the help of a protocol
example based loosely on Secure Spread [1] and
its application of a form of group Diffie-Hellman
called IKA.2 in [22].

Our protocol GKA-S (for GKA-simplified) han-
dles membership messages for multiple join and
leave events in a multicast group. The result of
a successful membership message is the installa-
tion of a new membership view in which all current
group members share a new group key. A (“cascad-
ing”) membership message specifies the next group
view, with the new set of members and a view iden-
tifier. Before we discuss in more details the vari-
ous roles of the protocol, we introduce the required
group member types for GKA-S.

4.1 Member Types and Attributes

For GKA-S we specify two types: CLQCTX
and GKA-SCTX. CLQ CTX holds all the informa-
tion necessary to participate in the key agreement
protocol. GKA-SCTX is a subtype of CLQCTX
and has further attributes that hold information that
needs to be stored for the Secure Spread group
communication algorithm. Agents that engage in
a key agreement algorithm are identified by a nat-
ural numberp. Each agent has a nonceNp and a
set of current group membersM . It also stores the
last partial key tokenPT , the last final key tokenFT , and keylistKL that it received.Ks holds the
current group key. A GKA-S member also stores
the latest membership information such as the view
identity and the transitional, merge, and leave sets
of the installed view.

TYPESPEC CLQ_CTX;
TYPES CLQ_CTX: GroupMember,MUTEX;
CONSTANTS g: Skey;
ATTRIBUTES

p: Nat; /* position in

group_members_list */
Np: Skey; /* Mi’s session

random number */
Ks: Skey; /* current group

shared key */
M: SParray; /* member list */
KL: Sarray; /* key list */
PT: Skey; /* Partial token */
FT: Skey; /* Final token */

END;

TYPESPEC GKA-S_CTX;
TYPES GKA-S_CTX: CLQ_CTX;
ATTRIBUTES

mb_id: Nat;
/* group view unique id */
vs_set: SParray;
/* transitional set */
merge_set: SParray;
leave_set: SParray;
Me: Principal;
/* assume: initialized to owner */

END;

The MUTEX property of CLQCTX means that
a group member of this type is single-threaded; it
supports only one role process at a time, enforced
with an invisible semaphore. This comes into play
later when we discuss flow of control.

The types Sarray and SParray are subtypes of the
general CAPSL array type. An Sarray is an array
of Skeys. (Presently, MuCAPSL does not support
parametric types, so arrays of different kinds of val-
ues must be declared separately.) A Parray is an
array of principals; the SParray subtype is an “or-
dered set” array, in which members are ordered and
no member appears twice. Among the operators de-
fined for SParray arelast(S) to determine the last
principal in the ordered setS, add(P,S)to add a new
principal to a set,setequal(S,S)to test two sets for
equality, andsize(S)to determine the size of an or-
dered set.

4.2 Roles

The GKA-S algorithm, like GKA, could be pre-
sented as the state graph in Figure 4.2 (see also [1]).
The state abbreviations stand for Secure, Cascad-
ingMembership, PartialToken, FactorOut, FinalTo-
ken, and KeyList. Except for the Secure state, the
states are named according to the type of message
they are waiting to receive. Except for the CM
message, the messages contain partial key informa-
tion supplied in Secure Spread through calls to the

6

Cliques API. In our specification, we need to repre-
sent the content of those messages. In the example,
for simplicity, we do not include the digital signa-
tures on messages that are present in Secure Spread.

SCM

KLFT

PT FO

Figure 2. GKA-S

The GKA-S is normally in the Secure state, pass-
ing encrypted data messages between the user ap-
plication and the network. A membership message
leads to state transitions necessary to compute a new
group key. A new membership message, which may
arrive before processing for the previous one has
completed, is preceded by a “Flush” message caus-
ing a (dashed) transition to the CM state. In Se-
cure Spread, a membership message indicating that
some members have left is preceded also by a tran-
sitional signal, which is passed upward to the appli-
cation. Transitional signals are not represented in
this example, or any other communication with the
application.

When there are multiple transitions from a state,
the path taken by a group member depends on its
role in the new membership list, one of: Alone,
New, Last, Chosen, and Other. Agents that join a
group belong to either of the first three roles. The
special case in which only one member constitutes
the new group is covered by the role “Alone.” If
several agents join the group, then one among them
is identified of being the last agent to join (role
“Last”) whereas all others behave as specified in a
role called “New.” Among the transitioning agents
(remaining from the prior view) one is chosen to be
the group controller (“Chosen”) whereas the behav-
ior of all other transitioning agents can be specified
in one role “Other.”

Agents that engage in GKA-S are given an indexp, in our specification, which orders the members
such that new ones have the higher indices. Chosen
has the highest index of the transitional members,
and the one in role Last has the highest index.

The group key is computed from secret random
contributions of each group member. For this pur-
pose, each agent has a nonceNp. The group keyKs

is the exponentiation baseg raised to the product of
all nonces�i=1::nNi of group members.

Figure 3 illustrates the communication between
group members for a membership message in whichM1 andM2 are previous members of the group, andM3 andM4 join the group.M2 is the chosen group
controller andM4 is the last new member to join
the group. The figure assumes that the member-
ship message has already been received. The group
controller sends a partial-token message with a new
key contributionN 02 to the first joining memberM3.
The diagrams indicate how partial token messages
are chained upwards, a final-token message is mul-
ticast from Last, factor-out messages are sent from
all members to Last, and finally Last multicasts a
long key-list message from which other members
extract one field they can use to compute the final
key, using their own nonce.

From studying the message flow, one sees that
there is a deterministic sequence of state transitions
and message receptions for each role, except for the
special flush transitions. For example, whether the
next state after PT is FO or FT depends on whether
the role is Last or not. This is important for writing
MuCAPSL specifications, in which each role nor-
mally goes through a single sequence of message
sends and receives. Flush handling is accomplished
with the help of a separate role that listens for flush
requests and interrupts the main processing with the
new MuCAPSL “abort” statement.

The Chosen role is specified below for illustra-
tion. This specification has examples of array in-
dexing and array operations such as size and last, as
well as arithmetic operations, including exponenti-
ation (̂).

ROLE Chosen: GKA-S_CTX;
ASSUMPTIONS

Me=owner(Chosen);
MESSAGES

<-: mb_id,M,vs_set,merge_set,leave_set;
/* membership msg */

last(vs_set) = Me;
size(merge_set)>0;
p = size(vs_set);
NEW Np;
-> merge_set[1]: PTˆNp;

/* first new PT msg */
<-: FT;

/* wait for final token msg */
-> last(merge_set): Me, FTˆ(1/Np);
<-: KL IF size(KL)=size(M)-1;

/* wait for key list */
Ks = KL[p]ˆNp;

7

2M

3M

1M

4M
g

N’2 N3N1
FT

1M 2M 3M
g

N’2 N3N1

4M
g

N’2N1

Other Chosen New Last

PT

2M

N3g 1N

3M
g

N’21N

1M g
N32N’

4MFO

4M

N1

2M

3M

1M

g
N3 N4N’2 g g

N’2 N4N3 N4N1

KL

Figure 3. IKA.2 Key Distribution Message Flow

END Chosen;

Note that the role is confirmed after receiving the
membership message, with the tests on the size of
mergeset and vsset. Since other roles start this
way, the model is written as though the process non-
deterministically selects a role, then aborts it if it
discovers that the conditions for that role are not
satisfied. This is unrealistic from an implementa-
tion point of view, but it generates the same set of
possible traces as a system that might crash for no
particular reason after receiving a membership mes-
sage, or fail to receive a membership message, and
therefore it yields the same results for security anal-
ysis.

4.3 Control Flow: Aborts and Loops

Ideally, MuCAPSL control flow is straight-line
for each role. Exceptions are possible and some-
times necessary. One exception occurs in GKA-S
to handle flush messages.

ROLE Flush: GKA-S_CTX;
MESSAGES

<-: flush;
ABORT;

END Flush;

This role listens for the flush message (“flush”
is just a constant declared at the protocol level) and
invokes the ABORT action. The effect of ABORT
is to terminate all other processes acting for the
same group member. The rewrite-rule semantics of
ABORT is simple for a single-threaded group mem-
ber, and more complex for one that supports mul-
tiple concurrent role processes. The single-thread
property is indicated by the MUTEX keyword in
the GKA-SCTX typespec earlier. The flush role,
or any role that performs an ABORT, runs concur-
rently. An ABORT resets the implicit mutual exclu-
sion semaphore so that a new role may (nondeter-
ministically) begin and listen for the next CM mes-
sage.

Another departure from straight-line flow of con-
trol occurs when a role must collect a set of mes-
sages from other group members in order to com-
pute a key or for other purposes such as determin-
ing a majority vote. The Last role in GKA-S col-
lects factor-out messages to assemble the final key-
list message. There is a DO-UNTIL construct for
this purpose.

ROLE Last: LastCTX;
ASSUMPTIONS

Me=owner(Last);
MESSAGES

<-: mb_id,M,vs_set,merge_set,leave_set;
Me = last(merge_set);
size(M)>1;

8

<-: PT; /* wait for partial
token message */

p=size(M);
->: PT;
FMlist = panull;
DO /* wait for factor out

messages */
<-: m,FO[pos(m,M)];
FMlist = add(m,FMlist);

UNTIL setequal(add(Me,FMlist),M);
NEW Np;
Ks = PTˆNp;
KL = FOˆˆNp;
-> : KL;

END Last;

The Last role specification makes use of three
additional attributes that are declared for an ex-
tended subtype of GKA-SCTX called LastCTX.
They are: FO, the array of factor-out values; FM-
list, the set of principals who have returned the FO
message to Last, and a variablem of type Principal
used as the loop variable.

Note how the exponentiation withNp is dis-
tributed over all elements of theFO array with the
elementwise array operatorˆˆ . This is just infix
notation in MuCAPSL for an operation defined in
the Sarray typespec. At present, there are several
such notational conveniences. Such syntax exten-
sions can be added easily, but still only by the Mu-
CAPSL developers.

In the previous subsection we noted that the non-
deterministic selection of roles, confirmed by a test
after receiving the CM message, was not natural
from an implementation point of view. If a speci-
fication is desired that is closer to the implementa-
tion state graph, it is possible to make one. The idea
is to create a role for each state, and to include an
additional attribute, ‘State’, that determines the role
required for the next process. For example, after the
CM state-role has examined the CM message and
determined whether it should go into a Last role, it
can set the State attribute properly to PT or FT and
terminate. Then either PT or FT may begin, as ap-
propriate, and so on.

Finally, there is a construct IF-THEN-ELSE for
conditional branching within a role. This is con-
venient when there is a minor choice that does not
justify starting a new role.

4.4 Group Security Goals

The fundamental security goal of a group pro-
tocol is the same as that for a unicast key distribu-

tion protocol: the session key held by each partic-
ipant should be disclosed only to legitimate partic-
ipants. In a group management protocol, the state-
ment of this property is more challenging because it
is more difficult to specify who the participants are.
In some cases, the group membership might not be
known at all, and there is merely an assurance that
joins are made according to some policy or only by
the group leader. Examples of policies particular to
group security management are the “forward secu-
rity” and “backward security” policies, mentioned,
among other places, in [12], preventing previous
group members and new group members from read-
ing messages sent to new or old views of the group,
respectively.

MuCAPSL provides slight extensions of the
types of goal statements found in CAPSL, which are
very general and are capable of representing group
security goals. Goals are stated for protocols. The
three kinds of goals are SECRET, PRECEDES, and
AGREE.

The SECRET goal names a secret variable or at-
tribute, like the group key, and requires that attacker
be unable to obtain its value unless the attacker is
(or has compromised) a group member playing one
of the roles in the protocol. Current group mem-
bers are defined by one or more parameters, one of
which is a principal or group member, sufficient to
identify the current group. For example, the GKA-S
goal could be

SECRET Ks: Last, mb id, or
SECRET Ks: M.

In the first version, the value ofKs associated with
the owner of a Last role may be shared with any
other principal whose member state contains the
same value ofmb id. In the second version, in any
state with particular values of the attributesKs andM (the whole member list), any element ofM may
shareKs. Both of these imply both forward and
backward secrecy, since any user who is not (ac-
cording to that user’s own member state) a member
of the present group view, identified either implic-
itly by mb id or explicitly byM , is not permitted to
share the current group key. For analysis, the policy
would be reflected in the attacker model by allowing
the attacker to hold any secret keys appearing as at-
tributes of users not in the current group view. The
analysis would include a sequence of group views
showing members deleted and added.

The PRECEDES and AGREE goals state forms
of authentication, based on agreement between par-
ties on certain values. PRECEDES differs from

9

AGREE in that PRECEDES requires the other party
to exist, and AGREE asks for agreement condition-
ally if the other party exists. Authentication goals
would prevent a group member from using a key or
token that was not sent by another member. They
are sometimes necessary to exclude replay attacks,
where an attacker may force an old key to be used
repeatedly.

Extensions for new goal statements would be
needed to express some substantively different
ideas such as threshold secrecy (used in voting or
fault tolerance), fairness, or anonymity.

5 Semantics and Analysis

Analysis of MuCAPSL specifications is made
possible through translation of MuCAPSL to Mu-
CIL (MuCAPSL Intermediate Language). MuCIL
serves as an interface language through which sev-
eral analysis tools can be made available.

5.1 MuCIL

In MuCIL (as well as in CIL) protocols are un-
derstood as specifying systems in which sending
or receiving a message causes a state transition for
some agent. Transitions are expressed as symbolic
term-rewriting rules that can be used in different
ways. They can be implemented in executable code,
given adequate software library resources; or exe-
cuted symbolically for security analysis by model
checking; or viewed as logical statements for secu-
rity analysis by inductive proof techniques.

Some security analysis approaches require “ide-
alizing” the protocol actions into statements in a
specialized logic. This is the case for BAN logic
[4] and its successors. Where tools for automat-
ing BAN logic deductions are available, the ideal-
ization step is still manual. Furthermore, authen-
tication proofs in this context do not establish the
confidentiality properties that are central to multi-
cast security, and this sort of analysis has not been
done for multicast protocols. CAPSL permitted the
user to supply the idealized logic version of proto-
col actions using ASSUME and PROVE statements.
However, this facility was never applied in CAPSL,
and it is not currently supported in MuCAPSL.

Transition rules are expressed in MuCIL as terms
of the form

rule (facts (:::); ids (:::); facts (:::); if (:::)):
The “if” clause contains a boolean term and is op-
tional. The left and right facts represent the prior

and new state, respectively. The variables listed in
the “ids” term represent nonces for which new, un-
used values are generated when the rule is executed.
In general, facts are atomic formulas of the formP (t1; :::; tr) whereP is a predicate symbol and the
argumentsti are data terms. A data term is con-
structed from constants, variables, attributes, and
function symbols that are defined in the protocol.

Facts express agent states or messages. There
are two kinds of state facts: the “member state” of a
group member, and the “protocol state” of the pro-
tocol process for a particular role. The current state
of the system includes a member state fact and zero
or more protocol state facts for each group member
or potential group member, and also some message
facts for messages that have been sent.

A protocol state fact consists of the group mem-
ber agent object, a role, a state number and a list of
terms that correspond to the agent’s memory during
the protocol execution. An example of the initial
state fact of a group memberM in the “Chosen”
role is state(M,Chosen,0,terms()) (the
agent does not hold any protocol-specific terms).

A member state fact consists of the group
member agent object and a list of terms rep-
resenting group member memory components
that persist across role instantions, including
such data as the member’s position and the
size of the group. For instance,member(M,
terms(p,Np,Ks,M,KL,PT,FT)) is a mem-
ber state fact for agents of type CLQCTX whereM is a variable of type CLQCTX andp;Np; etc.
are variables of the appropriate types as specified in
the typespec CLQCTX in Section 4.1.

A message fact has the formmmsg(terms). We
do not keep sender or receiver addresses in message
facts, or distinguish between unicast and multicast
messages. This is motivated by the fact that these
addresses make no difference from the viewpoint
of security analysis, since an active attacker can al-
ways forge addresses or distribute unicast messages
to the whole group.

When a rule is applied for a state transition, vari-
ables on the lefthand side of the rule are instantiated
with values matching facts that currently exist in the
system. All facts on the lefthand side are deleted
from the current state configuration and replaced by
the facts on the righthand side of the rule, instanti-
ated with the corresponding values.

For illustrative purposes we present one rule
to give a flavor of the semantics. The first event
of the “Chosen” role, to receive new membership
information, is interpreted by the following rule.

10

rule (
facts (
member(Mn,
terms(p,Np,Ks,M,KL,PT,FT,mb id
vs set,merge set,leave set)) ,

state(Mn,Chosen,0,terms()) ,
mmsg(terms(ID,M’,VS,MS,LS)))

ids (),
facts (
member(Mn,
terms(p,Np,Ks,M’,KL,PT,FT,ID
VS,MS,LS)) ,

state(Mn,Chosen,1,terms())),
if (Me=owner(Mn)).

A group memberMn in the initial state of the
“Chosen” role can receive a multicast message with
new values for the various membership attributes
mb set, M, vs set,... . The condition tests
that the name of the group member corresponds to
the name stored in the attribute “Me.” This is the
assumption for that role.

5.2 Translation and Analysis

The primary task of the MuCAPSL-to-MuCIL
translator is to translate the actions in the MES-
SAGES section of each ROLE specification into
MuCIL rules. The translator achieves this by a two-
step process: (1) parsing MuCAPSL messages into
lists of events such assend (M;m) (unicast mes-
sage),mcast (m) (multicast message),recv (m)
(receiving a message),new(N) (generating a fresh
value), oreqn (t1; t2) (test or assignment), and (2)
translating each event into a rule, or sometimes a
sequence of rules. Due to space limitations we can-
not present the details of this translation here. The
algorithm is described in [9].

The result of the translation is a MuCIL specifi-
cation of the protocol that can then be used as input
to any general purpose tool that analyzes state tran-
sition systems. To do security analysis, such tools
generally require significant adapation that is inde-
pendent of particular protocols but supports anal-
ysis strategies, cryptographic operations, and at-
tacker models. To use MuCIL protocol specifi-
cations, an additional minor syntactic translator (a
“connector”) is needed to generate the correspond-
ing tool input in its native language.

We have experimented with the Maude [13] tool
for model checking the GDH.2 protocol suite. We
added declarations of MuCAPSL data types and im-
plemented general attacker rules in Maude that al-

low an intruder to duplicate, delete, or replay mes-
sages. The MuCIL specification of GDH.2 was en-
tered into Maude by hand (because the connector
was not ready at the time) and we used the Maude
interpreter to execute it. For this purpose, we set up
initial scenarios with a bounded number of mem-
bers.

For the purpose of security analysis, we are inter-
ested in abnormal protocol behaviors. One way to
detect such erroneous behavior is by defining states
that violate some given policy. For instance, in the
case of GDH.2 we expect that the result of any of
the tasks is that the members of the group share a
group key. Therefore, for one test, we defined an
attack to be a protocol state in which at least two
members of a group finished a specific protocol task
but do not agree on the group key. Executing the
initial configuration of the GDH.2 key distribution
protocol (with well-behaving group members and
an attacker) resulted in an attack state that is due
to some confusion in the formats of messages in
GDH.2. The attack takes less than a second to be
found.

Searching for attacks is a bounded tree search
that increases exponentially in time requirements
with the size of the initial scenario, affected by fac-
tors such as the number of potential group mem-
bers, the number of group views, and the number of
roles. Most successful attacks seem to be demon-
strable with small values of these parameters, but
no guarantee of this can be made because the analy-
sis problem is known to be inherently intractable in
the worst case, even for unicast protocols.

To our knowledge there does not exist other com-
parable work for applying model checking tools
to group multicast security protocols. We intend
to perform further experiments and widen our ap-
proach to include theorem proving techniques to
gain more confidence in our approach.

6 Concluding Remarks

We have attempted in this paper to motivate the
design decisions that characterize MuCAPSL as a
language for expressing group multicast protocols
in a way that is suitable for application of formal
methods, extends the CAPSL approach, is concise
and still readable, has convenient syntactic features
for group key distribution, and has a sound seman-
tic basis in a term-rewriting model. We are still
in the process of experimenting with the analysis
of protocols expressed in MuCAPSL. While this
work will primarily result in connectors and analy-

11

sis techniques, it may also feed back into techniques
for setting up security goals and environments in the
most effective way to support such analysis.

References

[1] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stan-
ton, and G. Tsudik. Exploring robustness in group
key agreement. InProc. of the 21st IEEE Intern.
Conf. on Distributed Computing Systems, Phoenix,
Arizona, April 16-19, 2001., pages 399–408, 2001.

[2] G. Ateniese, M. Steiner, and G. Tsudik. New
multi-party authentication services and key agree-
ment protocols.IEEE Journal on Selected Areas in
Communication, 18(4):628–639, 2000.

[3] M. Baugher, T. Hardjono, H. Harney, and
B. Weis. The Group Domain of Interpreta-
tion. Internet Draft, IETF, 2001. http:
//www.ietf.org/internet-drafts/
draft-ietf-msec-gdoi-01.txt .

[4] M. Burrows, M. Abadi, and R. Needham. A logic
of authentication.ACM Transactions on Computer
Systems, 8(1):18–36, 1990.

[5] M. Clavel and J. Meseguer. Reflection and
Strategies in Rewriting Logic. In J. Meseguer,
editor, Rewriting Logic and Its Applications,
First International Workshop, Asilomar Confer-
ence Center, Pacific Grove, CA, September 3-
6, 1996, pages 125–147. Elsevier Science B.V.,
Electronic Notes in Theoretical Computer Sci-
ence, Volume 4,http://www.elsevier.nl/
locate/entcs/volume4.html , 1996.

[6] G. Denker. Design of a CIL Connector to Maude.
In E. Clarke, N. Heintze, and H. Veith, editors,
2000 Workshop on Formal Methods and Com-
puter Security (FMCS’00), July 20, 2000, Chicago,
USA (post-CAV workshop), 2000.http://www.
csl.sri.com/˜denker/pub_00.html .

[7] G. Denker and J. Millen. CAPSL integrated pro-
tocol environment. InDARPA Information Sur-
vivability Conference (DISCEX 2000), pages 207–
221. IEEE Computer Society, 2000.

[8] G. Denker and J. Millen. Design and Implementa-
tion of Multicast CAPSL and Its Intermediate Lan-
guage. CSL Report , Computer Science Laboratory,
SRI International, Menlo Park, CA 94025, 2002.To
appear.

[9] G. Denker and J. Millen. Modeling group commu-
nication protocols using multiset term rewriting. In
4th International Workshop on Rewriting Logic and
its Applications (WRLA’02), 2002.

[10] B. Dutertre, H. Säidi, and V. Stavridou. Intrusion-
tolerant group management in enclaves. InInterna-
tional Conference on Dependable Systems and Net-
works (DSN’01), pages 203–212, Göteborg, Swe-
den, July 2001.

[11] H. Harney, A. Colegrove, E. Harder,
U. Meth, and R. Fleischer. Group Se-
cure Association Key Management Proto-
col. Internet Draft, IETF, 2001. http:
//www.ietf.org/internet-drafts/
draft-ietf-msec-gsakmp-sec-00.txt .

[12] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-
tolerant key agreement for dynamic collaborative
groups. InProc. 7th ACM Conference on Com-
puter and Communications Security, pages 235–
244. ACM SIGSAC, 2000.

[13] Maude Web Site.http://maude.csl.sri.
com/ , 2000.

[14] C. Meadows. Experiences in the formal
analysis of the GDOI protocol. Slides,
Dagstuhl Seminar ”Specification and Anal-
ysis of Secure Cryptographic Protocols,
2001. http://www.informatik.
uni-freiburg.de/˜accorsi/dagstuhl .

[15] J. Millen. A CAPSL connector to Athena. In
H. Veith, N. Heintze, and E. Clarke, editors,Work-
shop of Formal Methods and Computer Security.
CAV, 2000.

[16] J. Millen and G. Denker. CAPSL and MuCAPSL.
To appear in Special Issue of Journal of Telecom-
munications and Information Technology (JTIT),
2002.

[17] J. Millen and V. Shmatikov. Constraint solving for
bounded-process cryptographic protocol analysis.
In 8th ACM Conference on Computer and Commu-
nication Security, pages 166–175. ACM SIGSAC,
November 2001.

[18] S. Mittra. Iolus: A framework for scalable secure
multicasting. InProceedings of ACM SIGCOMM
’97, September 1997.

[19] S. Owre, J. M. Rushby, and N. Shankar. PVS: A
prototype verification system. In D. Kapur, edi-
tor, 11th International Conference on Automated
Deduction (CADE), volume 607 ofLecture Notes
in Artificial Intelligence, pages 748–752. Springer-
Verlag, 1992.

[20] O. Pereira and J. Quisquater. A security analysis
of the cliques protocol suites. In14th IEEE Com-
puter Security Foundations Workshop, pages 73–
81. IEEE Computer Society, 2001.

[21] M. Steiner, G. Tsudik, and M. Waidner. Diffie-
Hellman Key Distribution Extended to Groups. In
ACM Conference on Computer and Communica-
tions Security. ACM, 1996.

[22] M. Steiner, G. Tsudik, and M. Waidner. Key agree-
ment in dynamic peer groups.IEEE Transaction on
Parallel and Distributed Systems, August 2000.

[23] C. Wong, M. Gouda, and S. Lam. Secure group
communications using key graphs.IEEE/ACM
Transactions on Networking, 8(1):16–30, February
2000.

12

