
EÆ
ient Fault-Tolerant Certi�
ate Revo
ation�Rebe

a N. WrightAT&T Labs { Resear
h180 Park AvenueFlorham Park, NJ 07932 USArwright�resear
h.att.
omPatri
k D. Lin
oln, Jonathan K. Millen, Andrea I. Lin
olnSRI International333 Ravenswood AveMenlo Park, CA 94025 USAfmillen,lin
olng�
sl.sri.
omJune 5, 2000Abstra
tWe 
onsider s
alable 
erti�
ate revo
ation in a publi
-key infrastru
ture. We introdu
edepender graphs, a new 
lass of graphs whi
h support eÆ
ient and fault-tolerant revo
ation.Nodes of a depender graph graph are parti
ipants that agree to forward revo
ation informationto other parti
ipants. Our depender graphs are k-redundant, so that revo
ations are provablyguaranteed to be re
eived by all non-failed parti
ipants even if up to k�1 parti
ipants have failed.We present a proto
ol for 
onstru
ting k-redundant depender graphs that has two desirableproperties. First, it is load-balan
ed, in that no parti
ipant need have too many dependers.Se
ond, it is lo
alized, in that it avoids the need for any parti
ipant to maintain the global stateof the depender graph. We also give a lo
alized proto
ol for restru
turing the graph in the eventof permanent failures.1 Introdu
tionPubli
 keys and their 
erti�
ates eventually be
ome invalid. Most 
erti�
ates have an expirationdate, but for various reasons a 
erti�
ate may be
ome invalid prior to the expiration date. Forexample, the se
ret key may have been lost or 
ompromised. The owner's identifying information,whi
h might in
lude an e-mail address or employer, may have 
hanged. The 
erti�
ate might havebeen used to enable organizational privileges whi
h have been withdrawn by the employer. Underthese 
ir
umstan
es, there should be some way to revoke the 
erti�
ate.1.1 Existing Approa
hesCurrent proposed standards for revo
ation, as found in the X.509 dire
tory framework [X.509℄,and the Internet draft standard Publi
 Key Infrastru
ture [AZ98℄, involve 
erti�
ate revo
ation�Some of the ideas in this paper appeared in exploratory form in: J. Millen and R. Wright, \Certi�
ate Revo
ationthe Responsible Way," Pro
. Computer Se
urity, Dependability, and Assuran
e: From Needs to Solutions (CSDA'98),IEEE Computer So
iety, (1999), pp. 196{203.Submission to CCS '2000 | Please do not distribute



lists (CRLs) maintained on key servers, whi
h a
t as a repositories for 
erti�
ates. To revoke a
erti�
ate, the owner sends the key server a revo
ation noti
e, whi
h is a signed message identifyingthe 
erti�
ate to be revoked.Upon re
eipt of a revo
ation noti
e, the key server updates its CRL and no longer gives outthe revoked 
erti�
ate. End users who want to 
he
k the validity of a 
erti�
ate must querythe key server, and in response re
eive all or part of the latest full, signed, CRL, whi
h is updatedperiodi
ally. Good dis
ussions of revo
ation te
hnologies 
an be found in [FL98℄ and [Mey98℄. Thereare various strategies for redu
ing 
ommuni
ation and storage 
osts while maintaining timelinessof revo
ation, su
h as Ko
her's 
erti�
ate revo
ation tree [Ko
98℄ and related advan
es [KAN99,NN98℄, and methods for redu
ing server load, as in [Coo99, MJ00℄.One 
an try to redu
e the need for revo
ation by limiting 
erti�
ates to brief expiration periods,but this in
reases server load be
ause new 
erti�
ates must be sent more frequently. Rivest [Riv98℄suggested a two-level staged expiration, but this more 
omplex system still requires a \sui
idebureau" to maintain revo
ations due to key 
ompromise. M
Daniel and Rubin [MR00℄ suggestthat revo
ation will remain a ne
essary part of any PKI.From a so
ial point of view we want to a
knowledge the fa
t that many 
erti�
ates are issued byindividuals, perhaps using PGP, and they are distributed without the use of a key server [Zim95℄.Certi�
ates and revo
ations might be posted on Web pages to publi
ize them, but these pagestypi
ally do not support key server responsibilities su
h as CRL maintenan
e.1.2 A New Distributed Approa
hIn this paper, we propose a new method for handling distribution of revo
ations or 
erti�
ateupdates. In our method, ea
h 
erti�
ate holder has a list of dependers. Revo
ations and updatesfor that 
erti�
ate are sent only to the dependers.The advantage of having a set of dependers for ea
h 
erti�
ate is that it narrows the burdenof noti�
ation to the minimal set of interested parties. However, a solution in whi
h a single rootentity sends revo
ation noti
es for a parti
ular 
erti�
ate to all the dependers for that 
erti�
ate hasseveral disadvantages. If the root entity is a key server with many 
erti�
ates and many 
ustomers,it may be too 
ostly to provide and distribute 
ustomized CRL's for ea
h of its 
ustomers. Onthe other hand, if the root entity is an individual, it need only be responsible for sending noti
esregarding its own 
erti�
ate, but even so may not have the resour
es to distribute them to a largelist. For example, everyone with a 
opy of the PGP software has the 
erti�
ate of its 
reator PhilZimmerman, and he would not and 
ould not put everyone on his depender list. Finally, it is notfault-tolerant. For example, if the network link 
onne
ting a depender to the root entity is 
rashedor slow, then the depender will not be able to re
eive the revo
ation noti
e in a timely fashion.In our system, rather than having a 
entralized revo
ation server who sends revo
ations to allend users, parti
ipants who wish to be dependers for a parti
ular 
erti�
ate register as dependerswith other parti
ipants. The parti
ipants 
an then be 
onsidered to form a depender graph. Aparti
ipant agrees to forward any revo
ations or other updates she re
eives to her dependers. Thesour
e of a revo
ation noti
e sends it to dependers registered dire
tly with it; those dependers thenforward the revo
ations to their dependers, and so on.The simplest kind of depender graph is a tree. For example, we 
ould make a rule saying thatanyone who relays a 
erti�
ate should put the re
ipient on a depender list. That is, if A sends a
erti�
ate to B, then A puts B on A's depender list for that 
erti�
ate, regardless of who owns the
erti�
ate or where it 
ame from. However, this simple s
heme has the diÆ
ulty that it dependson the 
orre
t and prompt operation of parti
ipants, and that a parti
ipant who distributes a2




erti�
ate to many users will also be bound to distribute revo
ations to them. Furthermore, it iseven more vulnerable to failures than the 
entralized root entity s
heme sin
e there is generallyonly one path by whi
h a revo
ation noti
e 
an be forwarded.In order to provide toleran
e of up to k � 1 
rashed, slow, or misbehaving parti
ipants (or thenetwork links 
onne
ting them), we require parti
ipants to register as dependers with at least kother parti
ipants. This straightforward idea has several desirable properties:� It is workable for individuals.� It is \server-light," so that massive institutional fa
ilities are not required.� It is de
entralized.� It is survivable in the event of typi
al 
omputer and network failures.� It supports prompt revo
ation, even if some of 
omponents exhibit extraordinary delays.� It requires only a realisti
 workload for those using the system.� The workload is allo
ated in proportion to the self-interest of users.� It makes it pra
ti
al to distribute revo
ation information immediately, rather than delayingfor a periodi
 CRL publi
ation s
hedule.Although we fo
us on using depender graphs to distribute revo
ations, they 
an also be usedto distribute frequent short-lived 
erti�
ates or other kinds of 
erti�
ate updates.In order to join a depender graph, a parti
ipant needs to �nd k other parti
ipants to dependon. We present joining proto
ols that are load-balan
ed, in that no parti
ipant need have too manydependers, and lo
alized, in that no global state is maintained and parti
ipants need only maintaininformation about a few other parti
ipants. We also give a lo
alized proto
ol for restru
turing thegraph in the event of permanent failures.We de�ne depender graphs and prove their fault toleran
e properties in Se
tion 2. We presentdepender graph 
onstru
tion proto
ols in Se
tion 3. In Se
tion 4, we present algorithms to re
on�g-ure the graph around permanent failures. We present further dis
ussion in Se
tion 5 and 
on
ludein Se
tion 6.2 Depender GraphsFor a given 
erti�
ate, we view 
erti�
ate-holding parti
ipants in a network as nodes in a dire
tedgraph, 
alled a depender graph, where there is an edge from A to B if B is on A's depender list forthat 
erti�
ate. In that 
ase we say that B depends on A, and that A is a parent of B. We willalways 
onstru
t depender graphs to be a
y
li
 and rooted , and we say B is below A in a dependergraph if there is a path from A to B. The root of the depender graph|usually the 
erti�
ateowner or some kind of 
erti�
ate server|is the sour
e of revo
ation or update information aboutthe 
erti�
ate. When the root initiates a 
erti�
ate revo
ation or update noti
e, it sends the noti
eto its dependers, 
alled root-dependers. In turn, ea
h node re
eiving the noti
e forwards it to itsdependers.In general, di�erent 
erti�
ates have di�erent depender graphs, though these graphs may sharesome 
ommon subgraphs. In pra
ti
e, multiple depender graphs might have signi�
ant overlap, and3



some operations on them 
ould be 
ombined for eÆ
ien
y. We do not dis
uss su
h optimizationsfurther in this paper.In order to avoid spurious revo
ations, revo
ation noti
es are typi
ally authenti
ated in someway. In our setting, we propose that revo
ation noti
es of an individual's publi
 key should be signedby the 
orresponding private key; forwarded revo
ation noti
es maintain the initial signature. A
orre
t signature then implies that the revo
ation noti
e either 
ame from the owner of the key andshould therefore be trusted, or the revo
ation noti
e 
ame from someone who knows the privatekey (or who knows how to forge signatures from that key), in whi
h 
ase the key is by de�nition
ompromised and should be revoked. One advantage of this method is that sin
e the key used toverify the revo
ation noti
e is the same as the key that is being revoked, a user will always be ableto 
he
k the signature on revo
ation noti
es for 
erti�
ates she has. The only 
ase where this is notpossible is when a publi
 key is being revoked be
ause the private key has been lost. In this 
ase,we require the user to �rst obtain a new set of keys and use these to authenti
ate the revo
ationmessage; this has the disadvantage of requiring the new key to be disseminated before the old key
an be revoked. However, it has the advantage that sin
e revo
ations are digitally signed, anddis
arded if the authenti
ation of the signature fails for any reason, mali
ious or arbitrary failureshave the same e�e
t as 
rash or omission failures, in whi
h the wrong messages are sent.We would like depender graphs to be fault-tolerant. Obviously, we 
annot expe
t informationfrom the root to be sent if the root has failed. However, the temporary or permanent failure offewer than k non-root nodes should not prevent a revo
ation noti
e sent by the root from rea
hingany non-failed 
erti�
ate holder in a timely fashion. To obtain fault toleran
e, we 
onsider thefollowing k-redundan
y property: a rooted dire
ted a
y
li
 graph is k-redundant if even after theremoval of any set of k � 1 non-root nodes, there is a path from the root to every remaining node.(In Se
tion 5.2, we address methods for making the root itself fault-tolerant if desired.)We show below that the global property of k-redundan
y 
an be a
hieved by ensuring a lo
alproperty|that every node ex
ept for the root and its dependers has k parents in the graph; thisis 
alled the k-parent property. We refer to a rooted, dire
ted, a
y
li
 graph with the k-parentproperty as a k-rdag .In order to prove the fault toleran
e properties of k-rdags, we need some basi
 graph theoreti
de�nitions, slightly modi�ed to take into a

ount the rooted nature of our depender graphs. A setof nodes is root-avoiding if it does not 
ontain the root. A 
ut set is a root-avoiding set of nodeswhose removal dis
onne
ts some remaining node from the root. Two or more paths from A to Bare pairwise internally node-disjoint if no two of the paths have any nodes in 
ommon ex
ept A andB. In any rooted, �nite, a
y
li
 graph, it is possible to de�ne a rank fun
tion on nodes su
h thatevery edge goes to a node of greater rank than the one it is from (so edges are rank-in
reasing).For example, the rank of a node 
an be the length of the longest path from the root to that node.Theorem 1 Let G be a k-rdag. Then G is k-redundant.Proof: Let G be a k-rdag and let C be a 
ut set of G. Note that if every 
ut set 
ontains at leastk nodes, then any set of k � 1 or fewer non-root nodes is not a 
ut set, so all remaining nodes are
onne
ted to the root, and the graph is k-redundant. Hen
e, it suÆ
es to show that C has at leastk nodes. Let x be a node that is dis
onne
ted from the root in G�C, and de�ne the neighborhoodof x to be the set of nodes y on paths from the root to x in G su
h that no path from y to x has anode in C. These are the nodes between C and x.Note that sin
e C dis
onne
ts x from the root, x is not the root or a neighbor of the root, andtherefore x has k parents by assumption. If the neighborhood of x is empty, then every parent ofx must be in C, and hen
e C has at least k nodes, and we are done. Otherwise, �nd a node y in4



the neighborhood of x of minimum rank. By the de�nition of a neighborhood, y also is not theroot or a neighbor of the root. Hen
e, by the k-parent property, y has k parents. Those parentsmust all be in C, for one that is not would be in the neighborhood of x and have rank less than y,a 
ontradi
tion. Thus, C has at least k nodes, 
ompleting the proof.The following more expli
it result will be helpful when we 
onsider the eÆ
ien
y of revo
ationdistribution.Theorem 2 Every k-rdag has k pairwise interior node-disjoint paths from the root to any node.Proof: Let G be a k-rdag. If the root and a root-neighbor are both a
tive, then there is alwaysa path between them (
onsisting of the single edge that 
onne
ts them). Suppose x is a not theroot of G, and is not a root-neighbor in G. Then by the argument in the proof of Theorem 1, itfollows that any 
ut set that dis
onne
ts x from the root is of size at least k. By Menger's Theorem(
f. [Har69℄), it further follows that there are k pairwise interior node-disjoint paths from the rootto x.3 Depender Graph Constru
tionDepender graphs grow as new nodes join the graph. We envision that a new node will join thegraph for a parti
ular 
erti�
ate when it re
eives the 
erti�
ate from one of the nodes already inthe graph. In order to maintain the k-parent property, the joining node must either depend on theroot or �nd k nodes to depend on that are already in the graph.3.1 Ne
essary and SuÆ
ient ConditionsWe �rst address the 
onditions ne
essary to ensure that there are always enough available parentswithout overloading parti
ipants with too many dependers. Hen
e, a restri
tion on the 
hoi
e ofparents is that there is limit on the number of depender slots, the maximum number of dependersa node is willing to support. It is 
lear that if nodes are not willing to have enough depender slots,then it will not always be possible to add new nodes to the graph, sin
e on
e the root's dependerslots are full, ea
h new node requires k available parent slots in order to join the graph. We 
anshow that it is enough for ea
h new node to have k depender slots. De�ne a kernel as k nodes thathave at least 1, 2, ..., k slots available, respe
tively.Theorem 3 A k-rdag 
an be 
onstru
ted from any number of nodes with k depender slots.Proof: Begin with the root and make the next k nodes root-dependers. Subsequent nodes needto �nd k parents. We 
laim that when a kernel exists, another node with k depender slots 
analways be added to the graph, and there will still be a kernel; that is, the existen
e of a kernel isan invariant.Note �rst that just after the k root-dependers are added, the k root-dependers ea
h have all theirk slots available, more than satisfying the requirement for a kernel. (In fa
t, the root-dependersform a kernel even if the ith root-depender has only i slots.)For the proof of invarian
e, assume that a kernel exists. We 
an add a new node and give itk parents by taking one parent from ea
h of the kernel nodes. This preserves the existen
e of akernel, sin
e the original kernel nodes now have at least 0, 1, ..., k � 1 slots available and the newnode 
an be added to the kernel with its k available slots.5



Kernel

Root

Figure 1: The k = 3 Triangular S
hemeThe kernel-based algorithm for adding nodes to a depender graph used in the proof above is
alled a triangular s
heme. The result of adding eight nodes to a root using su
h a s
heme isillustrated in Figure 3.1 for k = 3. To emphasize the regular 
onstru
tion of the graph, the rootdependers are shown with additional root-depender parents, though those edges are not ne
essary.Note that a kernel may not be unique, and there may exist other nodes with additional availableslots, be
ause some nodes, su
h as those designed to be key servers, may support more than theminimum assumed k dependers for ea
h 
erti�
ate.The triangular s
heme always has 1 + 2 + :::+ k = (k2 + k)=2 slots available on
e all the root-dependers have been added. This may sound ex
essive, sin
e adding a node only requires �ndingk slots (in di�erent parents), but we 
an show that this number (k2 + k)=2 is minimal.Theorem 4 In order to add k non-root-depender nodes, a k-rdag must have at least (k2 + k)=2slots available.Proof: Consider adding a new set S of k nodes. The �rst node in S to be added must dependon k other nodes. So there must be at least one slot open in k other nodes at the beginning of thepro
ess of adding the S nodes. Also, by the end of adding all nodes in S, k2 slots have been used.Ea
h of the k additions need to depend on k nodes, some of whi
h may be in S. The maximumnumber of slots that may be used in the set S (with members of S depending on earlier membersof S) is (k2 � k)=2. Sin
e k2 total slots are used in adding S, that means there must have been atleast k2 � (k2 � k)=2 = (k2 + k)=2 slots at the beginning of the pro
ess of adding S.Hen
e, the triangular s
heme is optimal in the sense of having the fewest sustainable numberof available slots. Note, though, that there are other ways of a
hieving the same optimal numberof available slots if some nodes are willing to support more than k dependers.6



3.2 A Lo
alized Proto
ol for Node AdditionOne motivation of forwarding 
erti�
ates and re
ording dependers for later revo
ation is that it isdistributed and de
entralized 
hara
ter, so that it is not ne
essary for the root to 
ommuni
ate withall the nodes holding its 
erti�
ate. Adding nodes with a triangular s
heme seems to destroy thisadvantage by requiring parti
ipants to keep tra
k of whi
h nodes are in the 
urrent kernel. However,it is not ne
essary to do so, be
ause it turns out the existen
e of a kernel 
an be maintained withoutknowing where it is.Spe
i�
ally, if there is a kernel and the parents of a new node are taken to be any k nodes withavailable slots, a kernel exists after the addition of the node. To see this, note that where kernelnodes are taken, an argument as in the proof of Theorem 3 shows that the new node plus all butone node from the old kernel form a new kernel. Where a non-kernel node is taken, the kernelnode that \should" have been taken is still available to �ll its role in the new kernel. Hen
e, theexisten
e of a kernel is preserved. This 
exibility in 
hoosing parents makes it possible to 
onsideroptimization goals, su
h as minimizing the average path length in the depender graph.Theorem 5 shows that if there is a kernel, then one 
an �nd k available depender slots in kdistin
t nodes by tra
ing down in the graph from any initial \sear
h set" of k nodes.Theorem 5 If G is a k-rdag, then there is an available parent set below any set of k nodes.Proof: Let S be a set of k nodes. Indu
t on the maximum length (
ounting the number of edges)of a path that begins in S and ends outside S. If the maximum is 0 then the S nodes have nodependers outside S, so ea
h node in S 
an have at most k � 1 dependers (all the other nodes inS), ea
h node in S has at least one available slot, and thus S 
an be the parent set.For the indu
tion step, suppose the maximum su
h path length is n. If every node in S has anavailable slot, the k nodes in S 
an serve as parents. Otherwise, some node has no available slots,so it has a set S0 of k dependers. The set S0 has maximum path length smaller than n, and isbelow the original set S, so by indu
tion and transitivity of below there exists an available parentset below the given k nodes.Theorem 5 suggests a lo
alized proto
ol for adding new nodes, for whi
h ea
h node in the graphkeeps tra
k only of its parents and its dependers. Given a new node, we begin by identifying asingle node already in the graph as a \starting node"; typi
ally, the starting node would be aparti
ipant from whom a new parti
ipant has just learned a 
erti�
ate. If the starting node doesnot have k parents, it must be the root or a root-depender. In that 
ase, either the new node 
anbe a root-depender, or if there are already k root-dependers, take those k nodes as a sear
h set andapply Theorem 5. Otherwise, the starting node has k parents that 
an be taken as a sear
h set.It might be desired to 
hoose parents in su
h a way that the path lengths from the root toea
h new node are minimized. The 
onstru
tion in Theorem 5 does not satisfy that property.To minimize path length, one would instead traverse ba
k up the parent links and take dependerslots from the highest available nodes. However, this would either require nodes to maintain moreinformation about where in the graph the available slots are, or would require a new parti
ipant totraverse more of the graph in the worst 
ase.4 Re
on�guring After FailuresWhen a node wants to drop out of a depender graph, or is otherwise dis
overed (somehow) tohave failed permanently, we would like to be able to restru
ture the depender graph so that the7



k-redundan
y property is maintained on the new graph. If su
h re
on�gurations are done, the faulttoleran
e of our system over time 
an be mu
h more than k, as long as there are not more thank � 1 failed nodes between re
on�gurations. We sket
h a proto
ol for re
on�guring the graph ifonly 
rash failures 
an o

ur. If mali
ious failures 
an o

ur, the re
on�guration proto
ol needs tobe made robust in order to tolerate them.A node's role as a depender and as a parent for its dependers 
an be taken over 
ompletely byone of the following:� the last node added, whi
h has no dependers,� the next node added, if it is feasible to wait,� one of its dependers (whose role will have to be taken over re
ursively),� k slots (found by the proto
ols of Se
tion 3.2) using one of its parents or dependers as astarting node.There are several details that have to be addressed. If the proto
ol to determine whi
h node willrepla
e the failed node is de
entralized, then there is a problem with asyn
hrony. Without a globalordering, if two nodes try to take the pla
e of a failed node, ea
h might start repla
ing the failednode in its parent's dependers' slots. Then both new nodes might get half way through, having onlyk=2 parents. In theory, the dependers of the failed node 
ould run a mutual ex
lusion or priorityalgorithm. In pra
ti
e, some 
anoni
al ordering su
h as one based on IP address 
ould be used.In order to 
arry out a repla
ement, it is ne
essary that the topologi
al information stored inthe failed node (its parent and depender addresses) has not been lost. It 
ould be saved in another\
aretaker" node, for example the �rst depender of that node in some 
anoni
al ordering (su
h asIP address in a pra
ti
al setting). However, it 
annot be saved inde�nitely, be
ause then it wouldbe
ome part of the topologi
al information of the 
aretaker node, whi
h would have to be savedin another node, leading to an una

eptable regress of a

umulating redundant information. If weassume that at most ` permanent failure o

urs between re
on�gurations, it is suÆ
ient for ea
hnode to store ` levels of topologi
al information.A topi
 for further resear
h is to repair known failures gradually. A failure is \known" if a nodebe
omes aware that one of its parents or dependers is no longer a
tive. The unsolved question hereis how to use lo
al information to �nd and take advantage of available slots.5 Dis
ussionIn this se
tion, we brie
y dis
uss a number of issues and possible extensions where further resear
his 
alled for.5.1 Link/Transport 
onne
tivityIf two paths are node-disjoint, then they are also edge-disjoint. Thus, our depender graphs aretolerant against the failure of k�1 node or edge failures. However, in a real network, links betweendi�erent nodes are not independent. Often many links go through the same swit
hing node in anunderlying 
ommuni
ation infrastru
ture. Thus, the failure of one swit
hing node may result inthe failure of many edges in a depender graph.It would therefore be desirable to assure that links from a node to its k parents are independent(so it takes k failures of lower-layer swit
hing nodes to break them all). If in addition there are8



k independent paths from the root to its dependers, then an indu
tive argument shows that ittakes k failures of the underlying network 
omponents to 
ut all paths to a node. A weaker versionguarantees k-redundan
y for non-root-depender nodes so long as ea
h link from the root to a root-depender is independent of all other links in the graph. We 
an still show by indu
tion that it takesk failures to 
ut o� a non-root-depender.Che
king independen
e of transport paths 
an be done using network monitoring tools su
h as\tra
eroute." However, in pra
ti
e this information is rather dynami
 and may be diÆ
ult to keepa handle on.5.2 Distributing root authorityIn some settings, it is desirable for the root authority to be distributed among multiple parties,so that it takes at least t of these parties to send out a valid revo
ation noti
e. This 
an bea
hieved by distributing the fun
tionality of the root into multiple parties and using thresholdsignatures [DF91, GJKR96℄ so that the 
orre
t parti
ipation of t parties is ne
essary and suÆ
ientto 
reate a valid revo
ation. If this new \distributed root" 
onsists of at least k + t � 1 parties,then this also provides 
rash fault toleran
e for up to k � 1 of the root parties.In order for the threshold signatures to work, the root-dependers must now have at least k+t�1the root parties as parents; other nodes still need k parents as before. When a revo
ation noti
e issent, it is signed using the threshold signature s
heme. Ea
h root node sends its partial signatureto the root-dependers. The root-dependers re
onstru
t the signed revo
ation noti
e, and if it is avalid signature, they pro
eed as before by forwarding the signed revo
ation. Sin
e the resultingdepender graph has its normal properties with respe
t to this distributed root, it still enjoys thek-redundan
y property with respe
t to it.5.3 Global OptimizationsFor distribution of revo
ation noti
es, the k-redundan
y property 
an be exploited simply by havingea
h node forward a noti
e to all its dependers. In the general 
ase, this is the best that 
an be done.However, there are several situations in whi
h global information about the graph 
ould be usedto redu
e or eliminate unne
essary network traÆ
 while still ensuring revo
ations are distributedproperly.For example, if the graph in fa
t more than k disjoint paths to some nodes, it might be possibleto remove or ignore some of the edges of the graph. Similarly, if not all nodes need to re
eive ea
hupdate, then some edges 
an be removed. Given a parti
ular destination node, Theorem 2 saysthat there are k pairwise interior node-disjoint paths from the root to that node, so that using onlythe edges in these paths would eliminate unne
essary traÆ
 while preserving k-redundan
y withrespe
t to that one destination node. When only some subset of nodes needs to re
eive a revo
ationnoti
e, the goal would be to �nd a minimal set of edges that in
lude k disjoint paths to ea
h nodein the subset. Finally, in the 
ase that something more is known about whi
h failure 
on�gurations
an o

ur than just that any k � 1 nodes might simultaneously fail, it might be possible to ensurethat ea
h node has always at least one path from the root through no failed nodes without havingk disjoint paths to ea
h node.To go one step further, depender graphs for multiple 
erti�
ates 
ould take advantage of stru
-ture sharing, so that where parti
ipants have 
erti�
ates in 
ommon, messages relating to those
erti�
ates 
ould be 
oales
ed. This 
ould be done not just for revo
ation noti
es, but for thedepender graph 
onstru
tion proto
ol itself. Stru
ture sharing 
ould be further fa
ilitated by pro-to
ols to merge multiple depender graphs with 
ommon nodes into one graph with the maximal9



number of 
ommon edges.6 Con
lusionsWe have presented depender graphs, whi
h provide a lo
ally manageable, s
alable, eÆ
ient, andfault-tolerant method of 
erti�
ate revo
ation in a publi
-key infrastru
ture.Due to their fault toleran
e and lo
alized 
onstru
tion proto
ols, k-rdags may �nd useful ap-pli
ations elsewhere. As des
ribed in this paper, they are most useful for environments in whi
honly 
rash or delay failures o

ur, or if the information to be sent is digitally signed or otherwiseveri�able, as in the 
ase of 
erti�
ate revo
ations. However, even in the 
ase of mali
ious failuresduring the distribution of information, k-rdags 
an tolerate up to (k�1)=2 failures by using voting.Other possible appli
ations that might bene�t from depender graphs in
lude fault-tolerant mul-ti
ast ba
kbone (MBone) trees, maintaining lo
ation information for a mobile host as it moves fromone base station to another, and distributing routing information in the Internet su
h as rea
habilityinformation ex
hanged by the BGP proto
ol.A
knowledgmentsWe thank Patri
k M
Daniel for helpful dis
ussions.Referen
es[AZ98℄ C. Adams and R. Zu

herato, \Internet X.509 Publi
 Key Infrastru
ture Data Certi�-
ation Server Proto
ols," Internet Draft, PKIX Working Group, 1998.[Coo99℄ D. Cooper, \A Model of Certi�
ate Revo
ation," Pro
. 15th Annual Computer Se
urityAppli
ations Conferen
e, 1999, 256{264.[DF91℄ Y. Desmedt and Y. Frankel, \Shared generation of authenti
ators and signatures," InAdvan
es in Cryptology|CRYPTO '91, Le
ture Notes in Computer S
ien
e 576, 457{469, Springer-Verlag, 1992.[FL98℄ B. Fox and B. LaMa

hia, \Certi�
ate Revo
ation: Me
hani
s and Meaning," Pro
.Finan
ial Cryptography '98 , LNCS 1465, 1998, 158{164.[GJKR96℄ R. Gennaro, S. Jare
ki, H. Kraw
zyk, and T. Rabin, \Robust Threshold DSS Signa-tures," In Advan
es in Cryptology|CRYPTO '96, Le
ture Notes in Computer S
ien
e1070, 354{371, Springer-Verlag, 1996.[Har69℄ F. Harary, Graph Theory , Addison-Wesley, Reading, MA, 1969.[KAN99℄ H. Kiku
hi, K. Abe, and S. Nakanishi, \Performan
e Evaluation of Certi�
ate Revo
a-tion Using k-Valued Hash Tree," Pro
. ISW'99, LNCS 1729, 1999, 103{117.[Ko
98℄ P. Ko
her, \On Certi�
ate Revo
ation and Validation," Pro
. Finan
ial Cryptography'98, LNCS 1465, 1998, 172{177.[MJ00℄ P. M
Daniel and S. Jamin, \Windowed Certi�
ate Revo
ation," Pro
. IEEE Info
om2000 , IEEE, 2000, 1406{1414. 10



[MR00℄ P. M
Daniel and A. Rubin, \A Response to `Can We Eliminate Certi�
ate Revo
ationLists?' ", Pro
. Finan
ial Cryptography 2000, to appear.[Mey98℄ M. Myers, \Revo
ation: Options and Challenges," Pro
. Finan
ial Cryptography '98,LNCS 1465, 1998, 165-171.[NN98℄ M. Naor and K. Nissim, \Certi�
ate Revo
ation and Certi�
ate Update," Pro
. 7thUSENIX Se
urity Symposium, 1998, 217{228.[Riv98℄ R. Rivest, \Can we eliminate 
erti�
ate revo
ation lists?" Pro
. Finan
ial Cryptography'98, LNCS 1465, 1998, 178-183.[X.509℄ \The Dire
tory-Authenti
ation Framework," CCITT Re
ommendation X.509.[Zim95℄ P. Zimmermann, The OÆ
ial PGP User's Guide, MIT Press, 1995.

11


