
Accessing Information and Services
on the DAML-Enabled Web

Grit Denker, Jerry R. Hobbs, David Martin, Srini Narayanan, Richard Waldinger
SRI International

Menlo Park, California, USA
denker@csl.sri.com, hobbs, martin, narayana, waldinge @ai.sri.com

ABSTRACT
The DARPA Agent Markup Language (DAML) program aims to
allow one to mark up web pages to indicate the meaning of their
content; it is intended that the results delivered by a DAML-enabled
browser will more closely match the intentions of the user than is
possible with today’s syntactically oriented search engines.

In this paper we present our vision of a DAML-enabled search
architecture. We present a set of queries of increasing complexity
that should be answered efficiently in a Semantic Web. We describe
several scenarios illustrating how queries are processed, identifying
the main software components necessary to facilitate the search.
We examine the issue of inference in search, and we address how to
characterize procedures and services in DAML, enabling a DAML
query language to find web sites with specified capabilities.
Key Words: Semantic Web, DAML, inference, Web services, pro-

cess modeling.

1. INTRODUCTION
Querying the Web today can be a frustrating activity because the

results delivered by syntactically oriented search engines often do
not match the intentions of the user. This problem is caused by the
Web’s lack of semantic structures that could be exploited during
the search process.

DARPA’s DAML program (http://www.daml.org) aims
at overcoming this problem. The DARPA Agent Markup Language
is intended to allow annotating web pages to indicate the meaning
of their content. Thus, search engines are supported in their deci-
sions about the appropriateness of a web page as an answer to a
query and are able to extract the most appropriate information.

DAML allows specifying ontologies and annotating Web content
with respect to these ontologies. Together with a yet-to-be-defined
query mechanism, these DAML annotations are intended to ease
and improve searches on the Internet. In this paper we present our
vision of a DAML-enabled search architecture by outlining differ-
ent software components and their functionality, the use of infer-

Supported by the Defense Advanced Research Projects Agency
through the Air Force Research Laboratory under Contract F30602-
00-C-0168.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission by the authors.
Semantic Web Workshop 2001 Hongkong, China
Copyright by the authors.

ence during search, and the declarative representation of the capa-
bilities of services and procedures available on the Web.

1.1 Some DAML Queries
To illustrate what is desired on the Semantic Web, we present

a set of queries of increasing complexity expressed in natural lan-
guage, which should be answered efficiently in our framework. The
queries, which are concerned with the general area of searching for
and obtaining publications via the Internet, illustrate roughly in-
creasing complexity in the requirements for the search process.

1. Find information about a researcher with name “James Hend-
ler”. (This can very nearly be accomplished with keyword
searches, although for very common names the search engine
would return too many hits by not filtering on “researcher”.)

2. Find a reference to a paper about SHOE that is co-authored
by Hendler. (SHOE was named in part because Web searches
for it would also turn up sites on shoes. DAML will restrict
the search to references to publications about SHOE.)

3. Find a reference to the most recent paper on SHOE with
James Hendler as a co-author. (For this query, the search
engine must find all references possible within search con-
straints, find their dates, and pick the most recent. It must
know about the structure of references and about date arith-
metic.)

4. Request the Stanford Library to hold a copy of Daniel Den-
nett’s book “Elbow Room” for me. (Here the search engine
must deal with service and procedural aspects of web pages.
A password is required, and logging in is necessary, as well
as searching for the book on the library’s web site and exe-
cuting the process for requesting a hold.)

5. Buy a copy of Daniel Dennett’s “Elbow Room” for me from
amazon.com. (This again requires executing a procedure, but
in addition involves security concerns in sending in credit
card information.)

These examples motivate our concerns in the long term. In this
paper we will illustrate what is required to handle them.

In Section 2 we describe several scenarios illustrating how queries
are processed. Along the way we identify the main software com-
ponents necessary to facilitate the search, and we summarize the
software architecture for DAML-enabled search and outline the
main functionalities of its components. In Section 3 we examine
the issue of inference in search. Although DAML is still in the pro-
cess of being defined and its query language has not yet been spec-
ified, we have implemented the inference scenarios in first-order

logic on an automatic theorem prover. As DAML develops, we
are defining the mapping between it and this notation. Finally in
Section 4 we address the issue of characterizing procedures and
services in DAML in terms of an existing model of complex pro-
cesses. This will enable a DAML query language to find web sites
with specific capabilities.

2. A DAML-ENABLED ARCHITECTURE
FOR QUERYING THE WEB

2.1 Query Processing: Example Scenarios
We present the flow of data and control for DAML query pro-

cessing, with the help of the first example query of the previous
section.

DAML ontologies for publications, researchers, and topics have
been built. Here we present only those parts necessary for process-
ing our example queries. More details can be found under

www.ai.sri.com/daml/ontologies/

in Publication.daml and Researcher.daml.
In Publication.daml a class Publication-refhas two

properties among others: author, of type Researcher, and
topic, of type Topic. The class Researcher is declared in
Researcher.daml along with its properties lastName and
firstName of type String. The property name as well as
subTopics and relatedTopic are properties of the class Topic.
Fig. 1 summarizes the classes and their relationships via property
declarations, where List is taken to be a way to form lists.

Publication-ref

StringResearcher

Topic

author

lastName

firstName

name

topic

relatedTopic List

subTopics

Figure 1: Ontologies

We use an ad hoc notation for DAML queries. Our purpose is
not to suggest a particular query language, but rather to identify
concepts necessary to support DAML-enabled search.

The first query, “Find information about a researcher with name
James Hendler”, may be formalized as follows:

xmlns: SRI = ‘‘http://www.ai.sri.com/daml/
ontologies/Researcher#’’

FIND <SRI:Researcher>
SUCH-THAT <SRI:Researcher:lastName>

Hendler
</SRI:Researcher:lastName>
<SRI:Researcher:firstName>

James
</SRI:Researcher:firstName>

END

The query specifies the ontology (or ontologies) it uses. In our
example we search for information about researchers. Therefore,

we cite the SRI Researcher ontology that has lastName and
firstName as properties. FIND <SRI:Researcher> means
that we expect the query to return objects of class Researcher
(including all properties that are defined for this class). We restrict
our result to those researcher objects that have “James Hendler” as
name.

After parsing the query, it would be handed to a search engine
DAML-Q (for “DAML Query engine”) that would be capabable of
processing queries written in the DAML query language. During
its search it makes use of the ontology information that is part of
the query.

xmlns:SRIRes = "http://www.ai.sri.com/daml/
ontologies/Researcher#">

<SRIRes:Researcher>
<firstName>James</firstName>
<lastName>Hendler</lastName>
<title>Dr.</title>

</SRIRes:Researcher>

Figure 2: Scenario 1
Assume a DAML-annotated web page as illustrated in Fig. 2.

DAML-Q selects this web page for further inspection because the
ontology cited in the query matches one of the ontologies in the
list of namespaces of the web page. From the xmlns declaration
DAML-Q obtains the namespace identifier (here “SRIRes”) and
sequentially searches the content of this web page for a tag <SRIRes:Researche
according to the query. Whenever it finds an object of this class,
DAML-Q will search for tags

<firstName>James</firstName>

and

<lastName>Hendler</lastName>

and select objects that satisfy these criteria. Note that DAML-Q
needs to be capable of recognizing the various equivalent notations
that can be used instead, such as

<lastName ID="Hendler"/>

or

<SRIRes:Researcher:lastName>
Hendler

</SRIRes:Researcher:lastName>

among others. The query result will contain the researcher object
(with all its properties) defined in the web page illustrated in Fig.
2.

A slightly more complex situation is one in which a web page
does not refer to the ontology stated in the query but is related
to that ontology by some means. For example, assume a web
page that declares the ontology www.ai.sri.com/˜hobbs/
MyResearcher.daml. A search through this web page shows
that this ontology is defined in terms of the SRI Researcher ontol-
ogy. More precisely, a subclass MyResearcher of Researcher
is declared in

www.ai.sri.com/˜hobbs/MyResearcher.daml

that adds properties to the Researcher class of the original SRI
ontology. Using this information, DAML-Q can infer that a web
page like the one in Fig. 3 is a match for the query. DAML-Q ex-
tracts from the ontology www.ai.sri.com/ hobbs/MyRe-
searcher.daml and the given <subClassOf> declaration,

xmlns: SRI = "http://www.ai.sri.com/daml/
ontologies/Researcher#">

<Class ID="MyResearcher>
<subClassOf resource="SRI:Researcher"/>
</Class>

—————————-
xmlns: hobbs="http://www.ai.sri.com/ hobbs/

MyResearcher#">
<hobbs:MyResearcher>
<firstName>James</firstName>
<lastName>Hendler</lastName>

</hobbs:MyResearcher>

Figure 3: Scenario 2

that the class tag to be searched for is MyResearcher (the prop-
erty tag remains lastName).

Instead of placing the burden of recursively searching through
web pages that have direct or indirect references to ontologies con-
tained in the query on DAML-Q, it seems much more efficient to
implement a mapping service for ontologies, which we may call
DAML-M. DAML-M would be a service that for a given ontol-
ogy and a set of classes and properties returns mappings to other
ontologies and their classes and properties that are declared to be
equivalent. For instance, the Knowledge Systems Lab of Stanford
University has declared a class PERSON in its ontology www.ksl.
stanford.edu/projects/DAML/ksl-daml-desc.daml. The
property HAS-FULL-NAME of type STRING is declared for this
class. Contacted by DAML-Q with the query at hand, DAML-M
would return this information indicating that web pages that refer
to the KSL ontologies and that have content marked as an object of
class PERSON with property HAS-FULL-NAME are also possible
answers to the query. Fig. 4 illustrates this situation.

<rdfs:Class ID="PERSON">
<rdfs:subClassOf rdfs:resource="#ORGANISM"/>

</rdfs:Class>
<rdfs:Property ID="HAS-FULL-NAME">
<rdfs:domain rdfs:resource="#PERSON"/>
<rdfs:range rdfs:resource="#STRING"/>

</rdfs:Property>
—————————-
http://www.ai.sri.com/daml/ontologies/Researcher#
--> http://www.ksl.stanford.edu/projects/

DAML/ksl-daml-desc#">
Researcher --> PERSON
firstName lastName --> HAS-FULL-NAME
—————————-
xmlns: KSL="http://www.ksl.stanford.edu/

projects/DAML/
ksl-daml-desc#">

<KSL:PERSON>
<HAS-FULL-NAME>James Hendler</HAS-FULL-NAME>

</KSL:PERSON> ...

Figure 4: Scenario 3

It is obvious that the task of mapping ontologies, classes and
properties is nontrivial. Already in our simple example one has to
be able to map two properties into one. We envision that DAML
would suggest a “DAML mapping” ontology that defines the stan-
dard interface for ontology mapping. This ontology has to provide
for complex mapping operations such as mapping different kinds of
combinations of properties or classes. Given such a “standardized
ontology mapping interface”, a software module like DAML-M
can collect mapping information from different sites that advertise
such mappings using the “DAML mapping” ontology. Here trust
issues are critical: A search engine like DAML-Q might prefer to
get mapping-related information only from specific sites since they
have proven reliable with respect to the mapping assertions. Trust
and security issues are orthogonal to other parts of the query. The
DAML query language also needs to be able to support the specifi-
cation of such requirements.

Further complexity may be introduced by less-defined DAML
queries. For instance, the user may be aware that “James Hendler”
is often also referred to as “Jim Hendler”. Thus, the formaliza-
tion of the query may leave the specifics of the first name open, or
suggest alternatives that are considered equivalent. For instance,
the query “Find information about a researcher with name James
Hendler” may be formalized as

xmlns: SRI = "http://www.ai.sri.com/daml/
ontologies/Researcher#}"

FIND <SRI:Researcher>
SUCH-THAT <SRI:Researcher:lastName>Hendler

</SRI:Researcher:lastName>
OR(<SRI:Researcher:firstName>

James
</SRI:Researcher:firstName>,
<SRI:Researcher:firstName>

Jim
</SRI:Researcher:firstName>)

END

It is also possible that one does not know the exact first name,
but believes that it is “James” or something similar. Assume that
there exists an Internet service that for a given first name delivers
names that are commonly used instead of the given first name or
that are considered equivalent or a nickname or an abbreviation.
For instance, there might be a “Name-Match” service available
that given a name like “Jim” returns “James” and “J.”. A query that
keeps the first name open and rather relies on such a service could
look as follows:

xmlns: SRI = ‘‘http://www.ai.sri.com/daml/
ontologies/Researcher#’’

xmlns: S = ‘‘http://www.ai.sri.com/daml/
ontologies/Service#’’

FIND <SRI:Researcher>
SUCH-THAT <SRI:Researcher:lastName>

Hendler
</SRI:Researcher:lastName>
<SRI:Researcher:firstName>
USE <S:Service>

<S:Service:name>
Name-Match

</S:Service:name>
<S:Service:par>

James
</S:Service:par>

</S:Service>
</SRI:Researcher:firstName>

END

The intended meaning of this ad hoc notation is that DAML-
Q is supposed to make use of a service in order to determine the

possible first names. The name of the service to be used is Name-
Match and it is to be consulted with the parameter James. This
service would deliver a set of possible names that are associated
with “James” that will be used in processing the query. Service
specifications of various kinds are one of the key foci of our re-
search and are described in greater detail below.

As a last possible scenario we consider the situation where a
service on the Web has stored specialty information, the so-called
DAML-R (for DAML speciality repository). DAML-R would pro-
vide comprehensive information for specific topics. For instance,
there may exists a service that has cached links to home pages of
researchers in a specific field, or that has cached the most relevant
information about those researchers locally (e.g., their names, af-
filiations, publication references). Such a service can obtain its in-
formation offline, and manipulate and store it in a way that allows
high throughput of queries.

3. INFERENCE IN QUERIES
We have shown how the differing ways information can be rep-

resented on the Web can call for successively more complex pro-
cessing, even for simple queries. But for complex queries, this is
even more true. In our initial list of sample queries, all but the first
two require significant inference capabilities.

As part of our research, we have been considering what kinds
of inference are necessary to answer plausible queries and to per-
form typical tasks using Web-based documents and services. We
have been considering what constructs will be necessary in the lan-
guage to allow designers of a web site to advertise its services. Also
we have been investigating the representation of the background
knowledge necessary to connect queries with the web sites that sup-
ply the answers.

We have been using the theorem prover SNARK [11] as a vehicle
for our experiments with inference. This is not to say that SNARK
needs to be incorporated into a DAML search engine, but rather
that by studying the SNARK inferences, we can see what kinds of
processing suffice to handle DAML queries.

SNARK is an automatic first-order theorem prover, implemented
in Common Lisp, that can be tuned and specialized to exhibit high
performance in particular subject domains. It has a highly evolved
sort structure that enables us to represent taxonomic information
concisely and to infer consequences quickly. It has built-in facil-
ities for fast temporal reasoning. It has answer-extraction facili-
ties, which allow it to answer questions instead of merely proving
theorems. These facilities were developed for deductive program
synthesis [2], [6], but apply as well to query answering.

SNARK has a procedural-attachment mechanism, which makes
it possible to link symbols in the logic with procedures; when the
symbol is employed in the proof, the corresponding procedure is
executed. This enables us to invoke outside sources, including web
sites, while the proof is in progress. The examples in this section
are expressed in SNARK notation; we intend that this language be
inter-translatable with the logic language of DAML.

3.1 An Experiment with Document Search
As an experiment, we consider what kinds of inference are re-

quired to answer queries for searching for documents. We phrase
this query in terms of the ontologies and theories we have devel-
oped for bibliographical references, names, addresses, topics, and
dates. We then use SNARK to find answers, based on theories we
have developed for these areas.

In reading the example, one must distinguish between strings,
names, and entities. For example, "James Hendler" is a string,
(personq "James Hendler") is a name, and james-hend-

ler is a person. While james-hendler refers to a unique indi-
vidual (ultimately a URI), the name (personq "James Hend-
ler") is shared by several people. These distinctions seem pedan-
tic, but when we try to ignore them we get into trouble.

The relation person-val relates a name of a person with the
person itself. Thus, if

(person-val ?personq ?person)

holds, ?personq is a name for ?person. While, by convention,
?person, ?person0, ?person1, etc., are variables that range
over people, ?personq, ?personq0, etc., range over names of
people.

A paper is of sort paper; a reference to a paper is of sort paperq.
Thus we think of a reference as a kind of name for a paper.

Other concepts are best explained in the context of the example.
We consider Query 3 from Section 1.1:

Find a reference to the most recent paper on SHOE
with James Hendler as a co-author.

This query may be phrased in the SNARK language as:

(find
?paperq

such-that
(and
(pub-val ?paperq ?paper)
(author ?paper ?person)
(person-val (personq "James Hendler") ?person)
(about ?paper (topic "SHOE"))
(= (pub-to-year ?paper) (year-fn ?natural)))

prefer
starts-after-starting-of

on
(year-fn ?natural)

time-limit
10)

In other words, we want to find a reference ?paperq such that

?paperq is a reference to ?paper—the relation pub-val,
analogous to person-val, relates a publication reference
with the corresponding publication.

?person is an author of ?paper—there may be other au-
thors.

(personq "James Hendler") is a name for ?person.

?paper is about the topic SHOE; if the topic ontology con-
tained subtopics of SHOE, papers on those subtopics would
be acceptable.

?paper was published in year (year-fn ?natural);
e.g., while 2000 is a natural number, (year-fn 2000)
is the year 2000.

Furthermore, if there are several papers found that satisfy the
above criteria, we prefer the latest one. The relation

starts-after-starting-of

is a relation on time intervals such that

(starts-after-starting-of
?time-interval1
?time-interval2)

holds if ?time-interval1 starts after ?time-interval2;
thus

(starts-after-starting-of
(year-fn 2000)
(year-fn 1997))

We execute this query by first finding a single paper reference
that meets all our criteria. We then look for another one, with a later
publication date. We do not ask for the latest of all of Hendler’s
publications, since we can never be sure if we have seen all of them;
instead, we give the search a time limit, and return the latest paper
we have found in that time.

We assume we have access to DAML-annotated publication lists;
the following is a description of a 1997 paper on SHOE ([5]), of
which Hendler is a co-author.

<pub:Inproceedings-ref ID= "97:_ont_ba_web_ag">
<pub:author> "Sean Luke" </pub:author>
<pub:author> "Lee Spector" </pub:author>
<pub:author> "David Rager" </pub:author>
<pub:author> "James Hendler" </pub:author>
<pub:title>
"Ontology-based Web Agents "

</pub:title>
<pub:booktitle>
"Proceedings of the First International
Conference on Autonomous Agents (Agents97)"

</pub:booktitle>
<pub:year> "1997" </pub:year>
<pub:publisher>
"Association for Computing Machinery"
</pub:publisher>
<pub:address> "New York, NY, US" </pub:address>
<pub:topic> "SHOE" </pub:topic>
</pub:Inproceedings-ref>

This may be represented in SNARK notation as:
(assert
’(pub-val

(inproceedingsq
author (coq

(personq "Sean Luke")
(personq "Lee Spector")
(personq "David Rager")
(personq "James Hendler"))

title (titleq "Ontology-based Web Agents")
booktitle
(titleq "Proceedings of the First

International Conference
on Autonomous Agents
(Agents97)")

year (year-fn 1997)
publisher
(publisherq
"Association for Computing Machinery")

address
(cityq "New York" "NY" "US")

topic (topic "SHOE"))
97:_ont_ba_web_ag)

:name ’shoe-acm-paper-reference)

Here
(coq ?personq1 ?personq2 ...)

is a publication list containing names ?personq1, ?personq2,
. Names, indicated by the keyword :name, have no logical or

functional significance; they are used only to make the proof traces
easier for us to follow. Our representation for references in logic is
derived from one developed in Maude [1] by Meseguer.

The reference indicates that the paper appears in a conference
proceedings, gives the title of the paper, the title of the proceedings,
the date of publication, the publisher, the address of the publisher,
and the topic. The notation for references in this theory is based on
that of Bibtex.

Let us also assume that we have the reference to a later SHOE
paper ([3]):

(assert
’(pub-val
(inproceedingsq
author (coq

(personq "Jeff Heflin")
(personq "James Hendler"))

title (titleq "Searching the Web with SHOE")
booktitle
(titleq
"Artificial Intelligence for Web Search.
Papers from the AAAI Workshop.")

year (year-fn 2000)
publisher (publisherq "AAAI Press")
number (pubnumber "WS-00-01")
address (cityq "Menlo Park" "CA" "US")
topic (topic "SHOE"))

shoe-aaai-paper)
:name ’shoe-aaai-paper-reference)

Let us follow a few steps of the SNARK inference process by
which an answer was found.

We begin with a logical sentence obtained from the query

(Row 193
(or (not (pub-val ?paperq ?paper))

(not (author ?paper ?person))
(not (person-val

(personq "James Hendler")
?person))

(not (about ?paper (topic "SHOE")))
(not (= (pub-to-year ?paper)

(year-fn ?integer&nonnegative))))
Answer (ans ?paperq

(year-fn ?integer&nonnegative)))

Note that, because SNARK is a refutation procedure, queries are
negated, and inference proceeds until a contradiction is obtained.
Also note that the query, and its logical descendents, is accompa-
nied by an Answer expression indicating what answer we expect
to obtain from the proof. Because our preference is based on the
year, we include the year of publication as part of our answer. The
expression integer&nonnegative is SNARK’s internal nota-
tion for the sort of natural numbers.

Formulas and their associated answers are called “rows”.
We omit some details of the proof.
Using this assertion, and others from our publication ontology,

we obtain the first answer

(Row 335
false
(resolve 334 name-of-lee-spector)
Answer (ans
(assert
’(pub-val
(inproceedingsq
author (coq

(personq "Sean Luke")
(personq "Lee Spector")
(personq "David Rager")
(personq "James Hendler"))

title (titleq "Ontology-based Web Agents")
booktitle
(titleq "Proceedings of the First

International Conference
on Autonomous Agents
(Agents97)")

year (year-fn 1997)
publisher
(publisherq

"Association for Computing Machinery")
address
(cityq "New York" "NY" "US")

topic (topic "SHOE"))
(year-fn 1997)))

Note that, since SNARK is a refutation procedure, obtaining a row
false indicates that a proof is complete.

Since we want the latest possible publication, we begin a new
query, to find a publication later than 1997:

(Row 324
(or (not (pub-val ?paperq ?paper))

(not (author ?paper ?person))
(not (person-val

(personq "James Hendler")
?person))

(not (about ?paper (topic "SHOE")))
(not (= (pub-to-year ?paper)

(year-fn ?integer&nonnegative)))
(not (starts-after-starting-of

(year-fn ?integer&nonnegative)
(year-fn 1997))))

Answer (ans ?paperq
(year-fn ?integer&nonnegative)))

This query is the same as the one we started with, except it con-
tains an additional condition:

(starts-after-starting-of
(year-fn ?integer&nonnegative)
(year-fn 1997))

In other words, we insist that the publication we find is more recent
than 1997.

The refutation proceeds similarly to what we have seen already,
except this time SNARK finds the second reference, to the AAAI
2000 paper.

SNARK uses a temporal reasoning procedure, based on the Allen
temporal calculus, to check temporal constraints, whether they arise
directly from the query or are a consequence of our preferences.
This allows us to determine that the Year 2000 paper is indeed more
recent than the 1997 paper. (It could also discriminate on the basis
of publication month and day.) Thus, the AAAI paper satisfies all
the constraints and is our next best selection:

(Row 421
false
(resolve 420 name-of-jeff-heflin)
Answer
(ans
(inproceedingsq
author
(coq
(personq "Jeff Heflin")
(personq "James Hendler"))

title
(titleq "Searching the Web with SHOE")
booktitle
(titleq
"Artificial Intelligence for Web Search.
Papers from the AAAI Workshop.")

year (year-fn 2000)
publisher (publisherq "AAAI Press")
number
(pubnumber "WS-00-01")
address (cityq "Menlo Park" "CA" "US")
topic (topic "SHOE"))

(year-fn 2000)))

SNARK will continue to look for Hendler SHOE papers more
recent than 2000; when the time limit is exceeded, it returns the
reference to the best paper we have found.

It is also possible to obtain lists of papers, ordered by our prefer-
ence, so that the more recent are returned first.

We can also use inference to combine capabilities of multiple
web sites. For example, suppose we had forgotten Hendler’s name,
but remembered he worked for the University of Maryland. Then
we could phrase the query

(find
?paperq

such-that
(and
(pub-val ?paperq ?paper)
(author ?paper ?person)
(employed-by
?person
(org "University of Maryland"))

(about ?paper (topic "SHOE"))
(= (pub-to-year ?paper)

(year-fn ?natural)))
prefer
starts-after-starting-of

on
(year-fn ?natural)

time-limit
10)

The inference process can then consult the University of Maryland
web page to be sure that at least one of the co-authors of the papers
it finds in the bibliography is employed there.

SNARK is limited to first-order logic and has no special facilities
for combining theories. We have been working with Jose Meseguer
to connect Maude [1], a higher-order language with metalogical ca-
pabilities, with SNARK. This would make our presentation of the-
ories simpler and more elegant. For instance, now we have separate
sorts, personq and person, for names and people respectively.
Similarly we have separate sorts, cityq and city, for names of
cities and the cities themselves. With Maude we will be able to have
a function name that maps each sort into the corresponding name
sort; thus we would not need new sorts personq and cityq.

Also Maude would give us more flexible syntax and the abil-
ity to develop new theories in a modular way, by instantiating and
combining old ones.

4. DEFINING AND ACCESSING
WEB SERVICES

In the preceding sections, we have discussed the mechanisms by
which DAML will facilitate the representation and discovery of ob-
jects containing information on the Web. We turn now to a consid-
eration of services on the Web, with two basic observations: first, it
should be possible to use these same mechanisms for representing
and discovering services; second, there is a close, interleaved rela-
tionship between querying, or searching, the Web, and making use
of services on the Web. Queries 4 and 5 of Section 1 are requests
for services, and not merely for information.

Today, for the most part, services on the Web are created for
human consumption, with interfaces intended for humans, not for
software agents. In contrast, a DAML-enabled Web, while still
allowing for human consumption of services, will make software
agents first-class citizens of the Web, with full access to its services.
This, in turn, will allow the number and variety of services offered
on the Web, and the efficiency with which they are used, to continue
to increase at a dramatic rate.

Web services can be of many types, including but not limited
to the types that are already familiar to human users: querying
of databases, catalogs, digital libraries, and other types of infor-
mation repositories, searches and classification services provided

by portals, business-to-consumer (B2C) transactions, business-to-
business (B2B) transactions, etc. It is worth noting that Web ser-
vices are not limited to the two-party, client/server approach most
commonly used. Services can involve any number of parties, with
complex patterns of interaction between them. For example, a
business-to-business transaction may well involve a buyer, a seller,
a financer, and a shipper.

To make use of a Web service, a software agent needs a formal
description of the service, and the means by which it is accessed.
An important goal for DAML, then, is to establish a framework
within which these descriptions are made and shared.

4.1 Logical Advertisement of Services
The author of a DAML-annotated web page will need to provide

sufficient information to link the services provided by the web page
with the concepts in an appropriate theory or ontology. Usually
there will not be an exact match between the service and a sym-
bol in the theory; rather, the author will need to describe a logical
relationship between each service and the concepts of the theory.

For one thing, the web site functions are defined on concrete data
types, such as strings or real numbers; the functions and relations
in the theory will be defined on abstract entities, such as cities and
people, independently of how they are represented. A query will
not necessarily be phrased in terms of the same representation se-
lected by a web site. Most people will not even know the concrete
functions and relations computed by particular web sites.

For example, the Travelocity site www.travelocity.com
computes many functions. One of them returns the airports local
to a city, with their respective distances from the city. We cannot
assume that the user knows that Travelocity provides this service.
There may, however, be an ontology that defines an relation city-
airport, that holds between a city and its local airports, which
are abstract entities.

The service that Travelocity provides for finding local airports
can then be advertised using the following logical axiom.

(assert
’(implies

(city-airport-tvl
?city-string ?state-abbr ?country-abbr
?airport-code ?airport-string ?real ?string)
(city-airport
(city ?city-string ?state-abbr ?country-abbr)
(airport ?airport-code)))

:name ’travelocity-city-airport
:documentation
"Travelocity can determine which airports are
local to a given city. The Travelocity
relation city-airport-tvl implements
the ontology relation city-airport")

While city-airport is the abstract relation between a city
and its local airports, city-airport-tvl is the concrete rela-
tion computed by the Travelocity web site that finds airports local
to a given city, and their distances in miles from the city. While
city-airport applies to cities and airports, which are abstract
entities, city-airport-tvl applies to concrete strings and real
numbers, which are a particular representation of the abstract enti-
ties. The relationship between the concrete strings and numbers and
the abstract entities is expressed by functions and relations from the
ontology itself.

Travelocity choses to represent a city with three name-strings,
for the city, the state (or region), and the country, respectively. For
instance, the function city maps these name-strings into the ap-
propriate city, an abstract entity. Thus

(city "New York" "New York" "US")

is the abstract entity New York City. Similarly, the function air-
port maps a name-string or a code for an airport into the corre-
sponding airport.

This service provided by Travelocity can be advertised in terms
of other concepts from the same or other ontologies. For instance,
the above assertion does not say anything about the distances that
the web site computes, between a city and its local airport. That
information is provided by an additional assertion.

(assert
’(implies

(city-airport-tvl
?city-string ?state-abbr ?country-abbr
?airport-code ?airport-string ?real ?string)

(=
(distance-between
(city ?city-string ?state-abbr ?country-abbr)
(airport ?airport-code))
(miles ?real)))

:name ’travelocity-city-airport-distance
:documentation
"Travelocity can determine the distance between
a city and its local airports")

Here, distance-betweengives the abstract distance between
two places, independent of unit of measurement; miles maps a
concrete real number into an abstract distance, the corresponding
distance in miles. There are other functions, for kilometers, feet,
etc. This representation does not identify numbers with distances;
rather, it allows web sites that only deal with miles to communicate
with web sites that only deal with kilometers.

These examples show the importance of having some logical
power to advertise the services of web sites. We can see the value of
a sorted logic with equality. Although one could phrase the same
assertions in unsorted logic without equality, they would be un-
wieldy to write and more inefficient to reason with. In particular,
without sorts we would need to prefix each assertions with condi-
tions, such as

(implies
(and
(real ?real1)
(city-string ?city-string)
...)

...)

Without equality, it is peculiarly awkward to reason about func-
tions, for example to express the uniqueness of their values.

In addition to such linking assertions, we will need other asser-
tions for background inference, to link queries with web sites and
to link different web sites together. For example, the following
assertion tells us that the time required to travel from one place to
another is limited by the distance between them and by the person’s
best speed.

(assert
’(implies
(and
(at ?person ?place1 ?time-point1)
(at ?person ?place2 ?time-point2))

(=<
(distance-between ?place1 ?place2)
(*-quantity
(abs-quantity
(time-minus ?time-point1 ?time-point2))

(speed-between ?place1 ?place2)

)))
:name ’distance-equals-rate-times-time
:documentation
"If a person is going from ?place1 at
?time-point1 to ?place2 at ?time-point2, the
distance between the points is less than or
equal to the product of the difference between
the times and the best speed between the two
places.")

While this assertion does not directly refer to any particular web
site, it is useful in handling queries that do invoke web sites. For in-
stance, if we are using Travelocity to book a trip, the decision about
which flight to book might be determined by the time required to
travel between the airport and the ultimate destination city.

It may not be necessary to express background assertions in the
DAML language, but it will be necessary to invoke such assertions
in the course of handling queries. It will be important that people
writing DAML-annotated web pages should find it easy to write
declarative statements that describe how the services offered by
that web page are related to some theory. While they need not write
them in logic directly, they will need to write them with some tool
that translates them into logic. If the logical language is less expres-
sive, that translation will be more difficult. It is not true that using a
less expressive language will give us more efficiency of inference.
If we paraphrase the above assertions without using equality and
sorts, the result will be less efficient inference, not more.

4.2 Toward an Ontology for Describing Ser-
vices

Web sites should be able to employ a set of basic classes and
properties for declaring and describing services, and the ontology
structuring mechanisms of DAML provide the appropriate frame-
work within which to do this. In this subsection, we sketch out an
initial proposal for these basic classes and properties.

A note on terminology: In what follows, when we refer to the
“user” of a service, we are thinking of a software agent, unless
stated otherwise. (Of course, a software agent, in most cases, acts
on behalf of some human user.)

We propose here some general principles by which a DAML on-
tology of services may be organized, and a few fundamental classes
and properties that will provide the backbone of any DAML service
ontology. (We will refer to these fundamental classes and prop-
erties as “built-in” classes and properties, because we expect they
will form a coherent layer of the DAML language, which is generic
enough to be used as an upper ontology for all service descriptions.)
Note, however, that we are not proposing any particular taxonomy
of service types; indeed, we are neutral as to whether there should
be one such taxonomy, a few, or a great many. Our concern here is
to provide the mechanisms and concepts by which any number of
such hierarchies can be constructed and used.

Our proposal begins, naturally enough, with built-in class Ser-
vice. The categories of a taxonomy of services will be subclasses
of class Service, and will be structured according to the needs to a
given domain or application. For example, a bookseller’s web site
might make use of a toplevel B2C-Service class, the immediate sub-
classes of which might be B2C-InformationService (including such
things as search and recommendation of books), B2C-Transaction,
B2C-AccountMaintenance, and B2C-PurchaseTracking.

4.3 The Fundamental Properties of a Service
Our structuring of the ontology of services is motivated by the

need to provide three essential types of knowledge about a service,
which may be intuitively characterized by these questions:

Service

ServiceModel

provides

supportspresents

imple ments
ServiceProfile ServiceGrounding

Resource

!"#$%$"&

'&()*+&%,-&'

.-/%*$%/-(0'

.-/%$-%

#++&''%*$

Figure 5: Top level of service ontology

What does the service require of the users and provide for
them?

How does it work?

How is it used?

As shown in Fig. 5, these three types of knowledge are captured
by the built-in properties presents, implements, and supports, of
class Service. These properties range over built-in classes Service-
Profile, ServiceModel, and ServiceGrounding, respectively. These
are “placeholder” classes; that is, they have no important proper-
ties defined. The substantive properties are left to be defined by
their various subclasses. For each descendant class of Service,
there will exist corresponding subclasses of ServiceProfile, Service-
Model, and ServiceGrounding, containing the properties that can
most appropriately represent the required information for class .

It is important to note that logical rules may be employed in any
or all of (the subclasses of) ServiceProfile, ServiceModel, and Ser-
viceGrounding, so as to support the uses of inferential reasoning
discussed earlier in this paper.

Service profiles. The specification of what a service requires
and provides calls for an external, or “black-box”, view of
the service, giving such things as preconditions that must
hold before the service can be requested, required inputs, ef-
fects of the service, expected outputs, cost of accessing the
service, acceptable forms of payment, and so on. The ser-
vice profile is meant to provide the essential information by
which a potential user of the service (or perhaps a match-
maker agent) can determine if the service meets the user’s
needs. The role of a service profile is analogous to that of a
procedure declaration (header) in a typed programming lan-
guage, or the schema of a database relation. (Indeed, for
many simple, one-step, services, the service profile may be
essentially the same as a procedure header or schema.)

Service models. The specification of how a service works
calls for an internal, or “glass-box” view of the service. The
type of representation used to display this information will
vary with the nature of the service. For example, a purchase
from a Web site may involve a number of steps (specifying
quantity, desired color, and other purchase attributes; giving
shipping address; securely inputting credit card information;
verification of credit card information; final confirmation).
The service model describes the shared knowledge of these
steps, which is required for the user(s) and service provider to
coordinate their activities. For many such services, the repre-
sentations associated with process modeling will be essential
in describing this knowledge. Thus, we expect there to be

one or more important subclasses of ServiceModel based on
process modeling. One such approach, under development at
SRI, is described in the following section.

Service groundings. A service supports one or more service
groundings, each of which spells out the implementation-
specific details by which the user communicates with the
service, such as message formatting, transport mechanisms,
etc. A service grounding will typically be a well-known set
of specifications for exchange and interaction, and will play
a role such as is played today by standards such as HTTP
forms protocol, CORBA IDL, SOAP, OAA’s ICL, KQML,
Java’s RMI, and the like.
In addition, the grounding must specify, for each abstract
type specified in the ServiceModel, an unambigous way of
exchanging data elements of that type with the service (that
is, marshalling / serialization techniques employed). The
likelihood is that, as a result of market forces, a relatively
small set of groundings will come to be widely used in con-
junction with DAML services. Groundings will be declared
and documented in detail at various well-known URIs.

In a nutshell, the relationship between these three fundamen-
tal classes is this: The service model, which provides the fullest
description of the service, gives an abstract, semantic description
of what the service does. (Thus, a given service model could be
reused for a variety of services accessed in widely varying ways.)
Each of the service’s groundings spells out how the data types and
messages, required by the service model, are to be formatted and
communicated in using a specific instance of the service. Taken to-
gether, the ServiceModel and ServiceGrounding object associated
with a Service will give enough information for an agent to make
use of a newly discovered service.

The service profile summarizes the service model, by giving an
external view of it (inputs, outputs, preconditions, postconditions),
and may also provide additional information needed to determine
the appropriateness of the service to a potential user. Generally
speaking, a potential user of a service (or a matchmaker for the
user) examines the service’s service profile to determine if the user
can provide the service’s inputs and make use of its outputs, and
examines the service’s groundings to determine if it is competent
to interact with the service provider (that is, knows how to use one
or more of those service groundings).

In the following section, we discuss how a process-based service
model can facilitate the use of interaction sequences for a wide va-
riety of transaction-based services, such as those typical of B2C
web sites.

5. MODELING SERVICE PROCESSES
Much of the Web-based ontological content (developed using

DAML, OIL and other languages) is based on static attribute-value
feature structures arranged in taxonomies. This representation is
ideal for describing and representing complex objects (nouns) such
as documents, organizations, or bibliographies in a manner that
supports structured queries such as the first three of our example
queries.

A significant missing piece in the currently available ontolog-
ical content is the representation of the dynamic content of ser-
vices (procedures, protocols, behaviors and transactions). Much of
the Web is about providing and using services such as reserving
a ticket, interacting with a secure site, buying/selling/trading, and
making an appointment with a doctor. Services are distinguished
from objects in that they require representing changes in the state of

the world and the dynamics of interaction. In this way, services are
more like verbs and actions than like nouns. Thus representing ser-
vices requires tapping into an ontology/theory of actions, processes
and events.

5.1 A Core Theory of Processes and Events
Consider the examples of Queries 4 and 5 (Section 1). These

queries are information requests that result in actions changing the
state of the world in a specific way (one results in a buying action
from amazon.com, the other in placing a library hold on a book).
In order for these queries to be processed, the Web agent needs to
know at least the following: a) input/output format/protocol(OAA,
Jini), b) parameters of interaction (payment method, shipping method,
etc., c) dynamics of interaction (steps involved and the internal tem-
poral structure of a buying action), d) preconditions/effects of a
specific action (selecting a book results in its being in the shopping
cart), e) resources consumed (money), produced or locked (credit-
card number), f) ways of controlling the transaction, such as short
cuts (using stored profile information), interrupting or canceling
from various stages/states in the interaction (you can cancel an or-
der before shipping).

Continuing with the example, note that buying is not an isolated
concept but is integrated with a cluster of concepts in what might
be called the commercial transaction frame. The commercial trans-
action frame involves such concepts as possession, change of pos-
session (giving, taking/receiving), exchange (the parties in the ex-
change accept and are expected by their community to accept the
results of the exchange), and money. The basic parameters/roles
of this frame, then, will include Money, the Goods (standing for
goods or services), the Buyer (the person who surrenders money
in exchange for the goods), and the Seller (the person who surren-
ders the goods in exchange for the money). Further elaborations,
needed for describing some of the peripheral terms in this frame,
involve certain details of the exchange: in some cases, for exam-
ple, we need to identify the Price, a ratio between the quantity of
money given and the quantity of goods received (e.g. two dollars
an ounce), temporal features of the exchange (perhaps the payment
is spread over a period of time), the difference between the tender
and the price (Change), and so on. Still further elaborations can
separate the owner of the goods or the owner of the money from
the actual participants in the exchange arrangement.

We have been developing just such a parameterized model of the
structure of events and processes, and it can support tools for agents
to enter, modify, advertise and communicate the capabilities, types
and details of events they can observe, monitor, model and control.
The abstract theory of event structure has three major components1.

1. Temporal structure and evolution trajectories: The fine-
structure of events comprises of a set of key states (such as
enabled, ready, ongoing, done, suspended, canceled, stopped,
aborted) and a partially ordered directed graph that repre-
sents possible evolution trajectories as transitions between
key states (such as prepare, start, interrupt, finish, cancel,
abort, iterate, resume, restart). Each of these transitions may
be atomic, timed, stochastic or hierarchical (with a recur-
sively embedded event-structure).

2. Process primitives and event construals: Events may be
punctual, durative, (a)telic, (a)periodic, (un)controllable, re-
versable, (ir)reversable, ballistic or continuous. Thay may

For further details, comparisons with hybrid system (dis-
crete/continuous) models [4] and an extended treatment of the rep-
resentation and semantics of verbs and events, see [9, 10].

describe their resource interactions through relations such
as locking, producing, creating, transforming, consuming or
destroying. They may support defeasable construal opera-
tions of shifting granularity (elaboration (zoom-in), collapse
(zoom-out)) and enable focus, profiling and framing of spe-
cific parts and participants.

3. Inter-event relations: A rich theory of inter-event relations
allows sequential and concurrent enabling, disabling, or mod-
ifying relations. Examples include interrupting, starting, re-
suming, canceling, aborting or terminating relations. In each
of these cases, we have a precise semantics in terms of the
overall structure of the interacting events.

5.2 A DAML Encoding of Processes
We have a preliminary DAML implementation of many aspects

of our core theory of processes and events. We are developing a
core DAML ontology of services in a larger collaborative effort
with Stanford KSL[7, 8], CMU, BBN, and Nokia as part of the
DAML service specification language effort. Some aspects of this
core ontology are described below.

The basic class that implements process-specific information is
appropriately termed the EVENT class. Event specific information
includes parameters such as the name of the event, where it is to
execute, documents updated, read or written as part of execution.
These properties obviously refer to noun ontologies like name on-
tologies or document ontologies (developed by us or other ontology
developers).

<rdfs:Class rdf:ID="Event">
<rdfs:comment> A simple event </rdfs:comment>
<rdfs:subClassOf rdf:resource="ServiceModel"/>

</rdfs:Class>

Processes have a name, inputs, outputs, participants, parame-
ters, preconditions, and effects. Each input, output, parameter, pre-
condition or effect is a property of event left unrestricted at this
level (it ranges over ”Thing”). Collections of input, output, etc are
are unrestricted bags (items are anything). Shown below is an il-
lustrative sample from our existing ontology. Complete versions
can be found at http://www.ai.sri.com/ontologies/
services/Process.daml.

<rdf:Property rdf:ID="name">
<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="rdfs:Literal"/>

</rdf:Property>

<rdf:Property rdf:ID="precondition">
<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="daml:Thing"/>
</rdf:Property>

<rdf:Property rdf:ID="parameter">
<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="daml:Thing"/>
</rdf:Property>

<rdf:Property rdf:ID="effect">
<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="daml:Thing"/>
</rdf:Property>

Parameters are further typed into input, output and participants.

<rdf:Property rdf:ID="input">

<rdfs:subPropertyOf rdf:resource="#parameter"/>
</rdf:Property>

<rdf:Property rdf:ID="output">
<rdfs:subPropertyOf rdf:resource="#parameter"/>

</rdf:Property>

<rdf:Property rdf:ID="participant">
<rdfs:subPropertyOf rdf:resource="#parameter"/>

</rdf:Property>

A theory of events has to link to a theory of time. We have been
developing a fairly rich theory of time [1, 11] that includes a theory
of time intervals and a theory of time points with varying densities
(qualitative, integer, reals, etc.). Our DAML encoding of the start
time of a process may thus use the point theory while the duration
of a process may be specified using the interval theory.

<Property ID="startTime">
<comment> Start time for the process </comment>
<domain resource="#Process"/>
<range resource="sri-time:Time"/>

</Property>

<Property ID="duration">
<comment> Duration of the process </comment>
<domain resource="#Process"/>
<range resource="sri-time:TimeInterval"/>

</Property>

Processes are complex events that have additional properties with
respect to the ordering and conditional execution of individual events.
The attempt here is to come up with a minimal set of process classes
that can be specialized to specify a variety of web services.

<rdfs:Class rdf:ID="Process">
<rdfs:comment>
A process is a composite event.
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Event"/>
</rdfs:Class>

There are two fundamental relations between events and pro-
cesses. One pertains to expanding an event to its underlying process
(zoom-in) and the other corresponds to collapsing a process into an
atomic event (zoom-out).

<rdf:Property rdf:ID="expand">
<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="#Process"/>

</rdf:Property>

<rdf:Property rdf:ID="collapse">
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Event"/>

</rdf:Property>

Often we want to define operations on multisets of processes
(buying involves simultaneous transfers of money (from credit card
bank to seller) and goods (from seller to buyer). To do this we de-
fine a PROCESS BAG class that is a subclass of the RDF (http:
//www.w3.org/TR/REC-rdf-syntax) BAG class.

<rdfs:Class rdf:ID="ProcessBag">
<rdfs:comment> A multiset of Events </rdfs:comment>

<rdfs:subClassOf rdf:resource="rdfs:Bag"/>
<rdfs:subClassOf>
<daml:Restriction>

<daml:onProperty rdf:resource="#item"/>
<daml:toClass rdf:resource="#Process"/>
</daml:Restriction>

</rdfs:subClassOf>
</rdfs:Class>

Now we are able to define more complicated assemblages of pro-
cesses. For instance, SEQUENCE is a process that is comprised of a
list of subprocesses, while CONCURRENT is a process which com-
prises a multiset of subprocesses.

<rdfs:Class rdf:ID="Sequence">
<rdfs:subClassOf rdf:resource="#Process"/>
<rdfs:subClassOf rdf:resource="#ProcessList"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Concurrent">
<rdfs:subClassOf rdf:resource="#Process"/>
<rdfs:subClassOf rdf:resource="#ProcessBag"/>

</rdfs:Class>

We have also implemented an algorithm that can recursively con-
struct executable process models of the type described in (Narayanan
1999) given DAML descriptions of the dynamic content of ser-
vices. Such models can be constructed automatically by agents
that encounter specific services. Agents can then use these mod-
els to track execution of service requests and responses, monitor
requests and task performance and to plan and schedule specific
service related tasks. While the details of the construction algo-
rithm and the process modeling environment are outside the scope
of this paper, the reader can obtain further details from http:
//www.ai.sri.com/daml/services.

A rich and structured core theory of service and an automatic
construction algorithm that compiles into an executable model should
provide us with motivated constraints to design interfaces that allow
service providers to describe their services at a high level using do-
main specific vocabulary. We envison this interaction environment
to be a guided core-theory based graphical and natural language
dialog. Building such a semantically grounded service authoring
environment is a current focus of our work.

In summary, an ongoing project addresses a correlated set of es-
sential missing components in the current state of the Web: theo-
ries, languages and authoring environments for describing the dy-
namic content of services. Such models require a rich ontology and
theory of events and processes and will be crucial in enabling and
coordinating the activities of autonomous agents. This holds true
regardless of whether the underlying context is one of controlling
devices, carrying out complex tasks, or obtaining information. In-
deed, in a Web enabled for intelligent agents, all of these contexts
will become intertwined.

5.3 Status of Service/Process Ontology
We are developing DAML declarations for the fundamental classes

and properties mentioned above for describing services and pro-
cess. The latest versions of these may be found at the URL

http://www.ai.sri.com/daml/services.

6. CONCLUSION
We have presented our vision of a DAML-enabled search archi-

tecture, describing several scenarios for how queries will be pro-
cessed amd identifying the main software components necessary to
facilitate the search. We examined the issue of inference in search,
and we address the issue of characterizing procedures and services

in DAML, enabling a DAML query language to find web sites with
specified capabilities. These are, we believe, some of the most crit-
ical components of the language required for enabling the Semantic
Web.

7. REFERENCES
[1] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet,

J. Meseguer, and J. Quesada. Maude: Specification and
Programming in Rewriting Logic. SRI International,
Computer Science Laboratory, Menlo Park, CA, January
1999. http://maude.csl.sri.com/manual/.

[2] C. C. Green. Application of theorem proving to problem
solving. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 219–239, May 1969.

[3] J. Heflin and J. Hendler. Searching the web with shoe. In
Artificial Intelligence for Web Search. Papers from the AAAI
Workshop., number WS-00-01, Menlo Park, CA, US, 2000.
AAAI Press.

[4] T. A. Henzinger. The theory of hybrid automata. In LICS 96
(expanded version), pages 278–292, 1998.

[5] S. Luke, L. Spector, D. Rager, and J. Hendler.
Ontology-based web agents. In Proceedings of the First
International Conference on Autonomous Agents (Agents97),
New York, NY, US, 1997. Association for Computing
Machinery.

[6] Z. Manna and R. Waldinger. A deductive approach to
program synthesis. ACM Transactions on Programming,
Languages, and Systems, 2:90–121, 1980.

[7] S. McIlraith, T. Son, and Z. H. Mobilizing the semantic web
with daml-enabled web services. In Proceedings of the
Second International Workshop on the Semantic Web
(SemWeb’2001), May 2001.

[8] S. McIlraith, T. Son, and Z. H. Semantic web services. In
IEEE Intelligent Systems, March/April 2001.

[9] S. Narayanan. Knowledge-based Action Representations for
Metaphor and Aspect (KARMA). PhD thesis, Computer
Science Division, EECS Department, University of
California at Berkeley, 1997.

[10] S. Narayanan. Reasoning about actions in narrative
understanding. In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI-99).
Morgan Kaufmann Press, 1999.

[11] M. Stickel, R. Waldinger, and V. Chaudhri. A Guide to
SNARK. SRI International, Artificial Intelligence Center,
Menlo Park, CA, 2000.
http://ai.sri.com/snark/tutorial.html.

