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Abstract

We show that the assumptions required of the au-
thentication mechanism in Byzantine agreement pro-
tocols that use “signed messages” are stronger than
generally realized, and require more than simple digi-
tal signatures. The protocols may fail if these assump-
tions are violated. We then present new protocols for
Byzantine agreement that add authentication to “oral
message” protocols so that additional resilience is ob-
tained with authentication, but with no assumptions
required about the security of authentication when the
number and kind of faults present are within the re-
silience of the unauthenticated protocol.

Our analysis is performed under a “hybrid” fault
model that admits manifest (e.g., crash) and symmet-
ric faults as well as arbitrary (i.e., Byzantine) faults.
We also extend the classical signed messages protocol
to this fault model, and show that its fault tolerance is
matched by one of our new protocols. We then explore
the behavior of these various protocols under the com-
bination of hybrid processor faults and communica-
tions link faults. Using formal state-exploration tech-
niques, we examine cases beyond those guaranteed by
simple worst-case bounds and find that the resilience
of one of the new protocols exceeds that of the others
in these regions.

The new protocols are superior to other known pro-
tocols in properties and measures of practical inter-
est, and we recommend them for general use. They
are particularly attractive in security-critical systems
where authentication may be subjected to sophisticated
cryptographic attack, and in safety-critical embedded
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systems where it may be necessary to use very short
signatures, but where maximum resilience is required.

1 Introduction

A fundamental requirement in fault-tolerant sys-
tems based on the “state machine” approach [27] is
for replicated processors to reach agreement on the
values of single-source data, such as sensor samples.
In its abstract form, this is the problem of Byzan-
tine Agreement (and its variant, the problem of “In-
teractive Consistency,” also known as “source congru-
ence,” “distributed consensus,” and “reliable multi-
cast”) [16,23]. There are two broad classes of proto-
cols for achieving Byzantine agreement. Those based
on “oral message” assumptions place no restrictions
on what a faulty processor may do; those based on
“written message” assumptions disallow faulty pro-
cesses making undetectable modifications to messages
as they are relayed from one processor to another, and
also disallow processors manufacturing messages that
purport to come from another processor. It is gener-
ally stated that the written messages assumptions can
be satisfied using cryptographic authentication meth-
ods (i.e., “digital signatures”), and protocols based on
these assumptions are therefore often called “signed
messages” or “authenticated” protocols [5,11,16].

Both oral and written message protocols proceed in
“rounds” and the parameters of interest include: how
many faults can be tolerated by a given number of
processors, and how many rounds and how many mes-
sages are required? Theoretical studies also consider
the size of the messages, or the total number of bits
transmitted. The advantage of written messages pro-
tocols is that they can generally withstand more faults
than oral message protocols, and often require fewer
messages. For example, oral message protocols require
3t + 1 processors to withstand ¢ faults, while written
messages protocols require only ¢ + 2 (the problem is
vacuous unless there are at least two nonfaulty pro-



cessors). However, both classes of protocols provably
require ¢ + 1 rounds in the worst case [5,11], though
“early stopping” protocols (which are most easily con-
structed under the written messages assumptions) use
fewer rounds when the actual number of faults is less
than ¢ [2,7,8,10,12].

It would seem that the written messages protocols
have significant advantages over their oral message
counterparts (e.g., asymptotically, a three-fold advan-
tage in number of faults tolerated). However, these
advantages may not be so significant in practice. In
embedded applications, the most severe practical con-
straint on these protocols is the number of rounds: a
given application will generally fix the number r of
rounds it can afford (generally two). This, in turn,
fixes the number of faults that can be tolerated at r—1,
independently of the class of protocols chosen.! The
class of protocols does affect the number of processors
required: e.g., two-round written message protocols
require three processors to tolerate a single fault, while
oral message protocols require four. But if other pur-
poses (e.g., clock synchronization) already require four
or more processors, there seems no compelling reason
to use written message protocols. In fact, there is an
argument against these protocols which Chris Wal-
ter, one of the developers of the MAFT architecture
for fault-tolerant flight control [15] expressed to us as
follows: “you have to assume that digital signatures
satisfy the requirements for written messages, and in
life-critical systems we prefer to make as few assump-
tions as possible.” It turns out that this caution is
justified.

In the rest of the paper, we first describe the var-
ious assumptions that such protocols (we will call
them “authenticated protocols”) depend on, highlight-
ing the risks in placing the correctness of Byzantine
agreement on the effectiveness of cryptographic pro-
tocols for which currently there is no method of as-
surance that is definitive and generally accepted. We
note, however, that authenticated protocols can toler-
ate more faults than oral message protocols, and we
show that this advantage is retained when the analysis
is extended to a hybrid fault model that counts faults
more carefully than the purely Byzantine fault model.

We then consider the addition of authentication to
variants of the Oral Messages protocol and show that
this increases the number of faults they can tolerate if
the assumptions on the authentication mechanism are
warranted, without compromising their innate fault

The small number of rounds and the deterministic processor
and communications scheduling used in embedded applications
also obviate the benefits of early stopping.

tolerance if those assumptions are violated. Assuming
authentication, we show that one of these new proto-
cols can tolerate as many hybrid faults as the classical
Signed Messages protocol.

We then examine the two-round versions of the
various protocols under an enlarged fault model that
includes communications link faults. For many ap-
plications, this is the most realistic class of proto-
col and fault-model, and we provide evidence, derived
from formal state-exploration techniques, that one of
the authenticated oral message protocols provides the
greatest fault tolerance.

2 Byzantine agreement, fault models,
and message assumptions

In the classical Byzantine Generals problem, there
are a number of participants, which we call “proces-
sors.” A distinguished processor, which we call the
transmitter, possesses a value to be communicated to
all the other processors, which we call the receivers.
(These correspond to the “Commanding General” and
“Lieutenant Generals,” respectively, in the terminol-
ogy of Lamport, Shostak, and Pease [16].) It is as-
sumed that there are point-to-point communications
paths between each pair of processors. The Byzantine
Agreement problem can be studied under several dif-
ferent sets of assumptions. We consider both “Oral”
and “Written” message assumptions, and a “Hybrid”
fault model. The Oral Messages assumptions are the
following [16, p. 387].

A1l: Every message that is sent between nonfaulty
processors is correctly delivered.

A2: The receiver of a message knows who sent it
(assumption of private channels).

A3: The absence of a message can be detected
(assumption of synchrony).

Written Messages assumptions add the following to
those of oral messages [16, p. 391].

A4(a): Messages sent by a nonfaulty processor (un-
der the hybrid fault model see later this be-
comes a non-arbitrary-faulty processor) cannot be
altered or manufactured by other processors.

A4(b): Any nonfaulty receiver can identify the pro-
cessor that originated a message, if that proces-
sor is nonfaulty (again, under the hybrid fault
model this becomes a non-arbitrary-faulty pro-
cessor). Note that A2 concerns the case of a di-
rect path from sender to receiver, whereas A4(b)
concerns a message from an “originating sender”



that is possibly relayed by other processors before
reaching the receiver.

There are n processors in total, of which some (pos-
sibly including the transmitter) may be faulty. In the
classical Byzantine Generals problem, there are no
constraints other than those given above on the be-
havior of faulty processors. This leads to pessimistic
estimates of the number of faults that can be tolerated
because all faults are regarded as the worst possible.
We therefore consider a “hybrid” fault model (origi-
nally due to Thambidurai and Park [29] and also inves-
tigated by Walter, Suri, and Hugue [30]) that distin-
guishes certain simpler kinds of fault as well as those
that are unconstrained. The fault modes we distin-
guish for processors are arbitrary-faulty, symmetric-
faulty, and manifest-faulty. A manifest fault is one
that can be detected by mechanisms present in all
nonfaulty processors (e.g., missing or improperly for-
matted messages). The other two fault modes yield
behaviors that are not detectably bad: a symmet-
ric fault presents the same faulty behavior to every
nonfaulty processor; an arbitrary fault is completely
unconstrained (i.e., Byzantine) and may present (pos-
sibly) different aberrant behaviors to some nonfaulty
processors, and good behavior to others.

The above characterization of the hybrid fault
model is a generic one; for Byzantine agreement, the
characterization of fault modes has to be refined in
terms of the processor behaviors relevant to this prob-
lem (see [26] for a different characterization in terms
relevant to clock synchronization). The basic step in
an agreement protocol is for a processor to transmit
a value v to several other processors. The interpre-
tation of a manifest fault in this context is one that
produces detectably missing values (e.g., timing, omis-
sion, or crash faults), or that produces a value that all
nonfaulty recipients can detect as bad (e.g., it fails
checksum or format tests). Symmetric faults deliver
wrong, rather than missing or manifestly corrupted
values—but do so consistently, so that all receivers
of a given transmission obtain the same wrong value
v’ # v. Arbitrary faults are unconstrained, and can
deliver correct, wrong, or manifestly faulty values in
any combination.

Under these assumptions, the Byzantine Agree-
ment problem is to devise a protocol that will allow
each receiver p to compute an estimate v, of the trans-
mitter’s value satisfying the following conditions:

Agreement: If receivers p and ¢ are nonfaulty,
then they agree on the value ascribed to the
transmitter that is, for all nonfaulty p and g,
vy, =1,.

Validity: If receiver p is nonfaulty, the value ascribed
to the transmitter by p is

e The value actually sent, if the transmitter is
nonfaulty or symmetric-faulty,

e The distinguished value E, if the transmitter
is manifest-faulty.

All the Byzantine agreement protocols we consider
proceed in rounds: in the first round, the transmitter
sends a value to all the other processors; in subsequent
rounds, these processors exchange the values received
among themselves in order to detect inconsistencies;
each receiver then decides on one value among those
received and exchanged. How this decision is made,
and how the exchanges are done, depends on the pro-
tocol considered.

Notice that the additional assumptions for writ-
ten messages essentially constrain the behavior of
symmetric- and arbitrary-faulty receivers: under oral
message assumptions, such receivers can alter or man-
ufacture messages purporting to come from other pro-
cessors in the later rounds this is prohibited under
written messages assumptions. Authenticated proto-
cols attempt to satisfy the written messages assump-
tions using digital signatures: each processor signs
the messages that it sends. Any receiver can check
the authenticity of a message and confirm the identity
of its claimed originator by checking the signature.
There are several digital signature schemes that pro-
vide these basic properties [4,9,22,25]. However, in
the following section we show that these schemes must
be used very carefully.

3 Authentication issues

The messages that are passed among the pro-
cessors in authenticated protocols have the form
{{...{v}p...}4}» which symbolizes the value v in
a message signed and sent by processor p, received
signed and forwarded by processors ...,q and finally
received, signed and forwarded by processor r. If pro-
cessor p is nonfaulty, then at no stage in the protocol
should there exist {{...{v'},...},}» in which v # v'.
(This follows because if p is nonfaulty, it would not
send out two different values v and v', and authen-
tication prevents any other processor manufacturing
such a value.) It is generally assumed that this re-
quirement is satisfied if digital signatures are simply
computed on and attached to the messages being re-
layed. This would be true if a valid message of the
form {{...{v},...}4}+ could only arise once in the
lifetime of the protocol. Theoretical examinations of
these protocols normally consider only a single “run,”



but in practice they will be called repeatedly (e.g.,
to distribute sensor samples at the beginning of every
process control cycle). It follows that processor r could
save a valid message {...{v'},...}; from one run of
the protocol and could then inject the correctly signed
message {{...{v'}p...}4}r into a later run, which will
cause any nonfaulty receiver to conclude that the orig-
inal sender p must be faulty, and thereby defeat the
protocol.

We do not need to postulate active, intelligent at-
tacks to be concerned about this kind of problem: a
hardware “off by one” fault that causes a message to
be picked up from the wrong buffer when two agree-
ment protocols are in operation simultaneously (as
when all processors are exchanging sensor data) could
produce this behavior. A solution to this particular
problem is to include additional information under the
digital signatures that will identify messages as “fresh”
(Lamport, Shostak, and Pease suggest sequence num-
bers [16, page 400]), but this needs to be done carefully
in order to distinguish this run of the protocol from
others that may be active simultaneously.

In the rest of this section, we discuss this and a
number of other issues requiring care in the imple-
mentation of authenticated Byzantine agreement pro-
tocols.

Signature permutation. The signature sys-
tem must not be commutative. Otherwise,
Vp,q,v, {{v},}s = {{v}q}p and, if the session initiator
is faulty, another faulty processor can falsely accuse
a third, but correct, processor of being faulty in a
several-round protocol.

Verifying signature sequences. Verifying a se-
quence of t signatures is not trivial. A recipient can
try all possible sequences of ¢ out of n signatures, but
this requires an exponential amount of computation.
Or the message can include a hint, such as the iden-
tity of the signer, in each stage of the signing, so the
message may look like {¢, {p,v},},. We can alterna-
tively require that a list of hints is attached to each
message outside the signatures. However, such hints
will add O(n logn) bits to the message length (in an n-
round protocol), thus exceeding the tight lower bound
on message bits by Srikanth and Toueg [28, Theorem
1] by a factor of n. (In today’s practice, a secure dig-
ital signature uses about 512 to 1024 bits.) Note that
hints are necessary whether the signature system used
is commutative or not. A third approach is to glob-
ally order the messages so that a recipient can deduce
from the context which signature sequence should be
used for verification.

Processors are assumed to know each others’ signa-
ture keys. Borcherding [3] investigates the case where
there is no central authority to distribute these keys,
and proposes the notion of “local authentication” to
achieve a weaker version of Byzantine agreement.

Distinguishing concurrent sessions. When
multiple sessions can execute at the same time, it is
vital to determine to which run a message belongs.
Otherwise, suppose each processor maintains a differ-
ent sensor and all processors are trying to agree on
the values of all sensors, then a faulty processor may
“borrow” a signed message from one run and use it in
another. Even a benign processor can possibly make
such a mistake, as we described previously. One so-
lution is to attach a session identifier, possibly the
identity of the session initiator, to the sensor value.
This solution will increase the size of each message by
O(logn) bits. This does not exceed the lower bound
by Srikanth and Toueg [28] because they already allo-
cate O(logn) bits for signatures.

Detecting replay attacks. Beside distinguishing
concurrent sessions initiated by different processors,
it is equally important to detect any attempt to reuse
past messages (from the same initiator) in a new run.
The initiator must securely attach a freshness identi-
fier to the signed value. For example, the initiator can
sign both the freshness identifier and the value in the
same signature.

There are three types of freshness identifiers, each
of which can be used in more than one way [13]. The
first is a timestamp, if processors have synchronized
clocks. In this case, the initiator attaches the reading
from the local clock to the value before signing them.
A recipient rejects any message with a timestamp that
is outside an agreed time window relative to the re-
cipient’s local clock. A significant risk exists when a
faulty processor can also have a faulty clock so that
the processor sends out values signed with timestamps
in the future. Even if this processor were to recover,
another faulty processor could play back such a mes-
sage when the correct time comes. The significance of
this attack lies in the fact that there is no guarantee
that any correct processor will know the existence of
previously signed messages (with future timestamps).
To invalidate such messages, a repaired processor can
change its signature key during reintegration.

The second type of a freshness identifier is a random
number, also known as a “nonce.” Since the nonce
must be generated by the processor that is checking
for freshness, processors must exchange nonces with
each other (thus adding one round to the protocol)



and the value must be signed with all O(n) nonces,
thus increasing the message length significantly.

The third type is a counter value. Each proces-
sor maintains a monotonic counter, increments the
counter value before initiating a session, and then
signs the value together with the current counter
value. Each processor also maintains a vector times-
tamp, noting the last seen counter value from every
other processor, and rejects any value signed with a
past counter value. Similar to timestamps, a faulty
processor may sign “future” counter values, so it is
prudent to change to a new signature key after repair.

Repair and restart. When a processor fails, it
may lose all its state information, including the cur-
rent session and round numbers and freshness identi-
fiers. If the failure is arbitrary, then the surviving state
information may be wrong. For example, its clock or
counters may be turned back or forward. Moreover,
simply asking every processor to reset their counters
to zero is vulnerable to replay attacks. Therefore, to
restore the synchrony between processors after repair,
a repaired processor must use challenge-response (with
nonces) to obtain from other processors fresh replies
containing the current state information. Given the
additional need of assigning a new signature key to
the restarting processor and notifying all other pro-
cessors of the corresponding public key, restart can be
costly.

Message redundancy. A message containing the
value to be signed must contain sufficient redundancy
to protect against forgery. For example, a faulty pro-
cessor p may choose a random number z and broadcast
it as {v}, for some value v. Because it is quite possible
that there is a value »' such that z = {{v'}4}p, p may
effectively forge a signature of value v’ signed by gq.
Or the faulty processor p can simply copy {v'}, from
a previous protocol run and broadcast {{v'},},. Any
processor r who further signs {{v'},}, is also spoofed.

There are many ways to introduce redundancy into
the messages. One is to attach a checksum of a suf-
ficient length to the original value. The size of the
message will thus increase, perhaps by 128 bits (the
size of a typical one-way hash function output) or at
least O(logn) bits. Note that including a unique iden-
tifier of the current run does not provide sufficient re-
dundancy because a randomly selected value x can be
of the form {id,v},, and if id is for a future run, an
attack can still happen in the future.

3.1 Practical implications

We have shown that authentication using digital
signatures needs to be managed very carefully if it is
to be secure against attack. How significant are these

threats? There are two main classes of applications
for authenticated Byzantine agreement protocols: se-
cure systems that must maintain coordination in the
face of capture and active subversion of system compo-
nents (e.g., the AT&T “Rampart” architecture [24]),
and safety-critical embedded control systems (e.g., the
MAFT architecture for aircraft flight control [15]).
Sophisticated cryptographic and other attacks are a
given in the first class of applications, so our concern
about the security of authentication needs no further
justification here (the literature is replete with broken
cryptographic protocols [1,21]).

Intelligent malicious attack is not considered a se-
rious possibility in embedded systems, and the argu-
ment in these cases is a little different. Byzantine-
resilient architectures are attractive in these contexts
because they simplify the case for assurance and cer-
tification: instead of a collection of fault-tolerance
mechanisms to counter specific failure modes, and for
which it is necessary to provide evidence of coverage
and noninterference, we have a single mechanism that
can withstand any kind of fault, up to some num-
ber, and it is only necessary to provide evidence for
correctness and for the estimated overall fault arrival
rate. Written message protocols compromise the pu-
rity of this position: faulty processors can no longer
do absolutely anything, but are constrained by cer-
tain assumptions. Real processors can do absolutely
anything when faulty, and in implementations using
signed messages, it is the authentication mechanism
that constrains them within the assumed fault mode.
For certification, it is therefore necessary to provide
strong evidence that the authentication mechanism
does accomplish this: broken authentication is not just
another fault to be tolerated, it is a violation of the
assumptions under which correctness of the protocol—
and hence of the entire architecture—is established.

We have seen that cryptographically strong au-
thenticated protocols require even small data mes-
sages to be encapsulated in large signature and
freshness-indicating wrappers, and to carry various
key-management indicators. Hence, embedded sys-
tems may prefer to dispense with truly secure au-
thenticated protocols and to use short keyed check-
sums (Lamport, Pease, and Shostak suggest a suit-
able checksum algorithm [16, page 400]), with fixed
keys and simple sequence-numbers to indicate fresh-
ness. The authentication assumptions may sometimes
fail to hold in this arrangement. In the following sec-
tions we present and study protocols that take ad-
vantage of authentication if it is present, but that re-
tain Byzantine resilience even when signatures may be



forged. Since checksums will only rarely be “forged”
by random malfunctions, these protocols are very well
suited to the needs of embedded systems.

The discussion has so far focussed on authentication
failure in one direction: failure to adequately constrain
the behavior of a faulty processor. Authentication can
also fail in the other direction: causing good messages
to be rejected as bad. There are two ways this can
come about: the authentication mechanism may be
algorithmically incorrect or nonrobust (e.g., vulnera-
ble to loss of crypto-synch), or a hardware fault might
damage a key. The issues enumerated earlier in this
section are intended to help designers avoid the first
of these dangers; the second is more likely, but less
serious, because it is just another fault, and will be
tolerated to the same extent as other faults.

4 Signed messages with hybrid faults

We have argued that great care in implementa-
tion is necessary in order to satisfy the assumptions
of the authenticated protocols. This care would be
justified if the authenticated protocols had significant
advantages over oral message protocols. However, for
the case of practical importance—that is, two-round
protocols there appears little to choose between the
two classes of protocols: the signed message proto-
col SM(1) and the oral messages protocol OM(1) of
Lamport, Pease, and Shostak [16] both require two
rounds?, and both tolerate only a single arbitrary
fault. The difference is that OM(1) requires four pro-
cessors, while SM(1) requires but three. However, a
variation on OM(1) called OMH(1) [19] that oper-
ates under the Hybrid fault model can tolerate a arbi-
trary, s symmetric, and m manifest faults simultane-
ously, provided n, the number of processors, satisfies
n > 2a+2s+m+1and a < 1. Thus, OMH(1) appears
to tolerate more faults than SM(1) under certain cir-
cumstances. Of course, this comparison is unfair be-
cause the analysis for OMH(1) considers the hybrid
fault model, whereas that for SM(1) treats all faults
as arbitrary. So one item that warrants examination
is the behavior of SM(1) under the hybrid fault model.

The classical signed messages protocol, SM(r) pro-
ceeds as follows [16, p. 391]:

SM(r)
The transmitter sends a signed message to
each receiver. Each receiver adds its sig-
nature to the message and sends it to the
other receivers who add their signatures and

2The parameter 7 to these protocols starts at zero, so that
the number of rounds is r + 1.

send it to the others, and so on for r rounds.
When all the exchanges are completed, each
receiver discards any improperly signed mes-
sages, extracts the values sent by the trans-
mitter from those that remain and applies a
deterministic choice function to those values.

Note that if the transmitter is not arbitrarily-faulty,
the set of values considered in the choice will be a sin-
gleton. Lamport, Pease and Shostak show [16, Theo-
rem 2] that SM(r) can tolerate up to r faulty proces-
sors, the optimal result [6,11].

To extend SM(r) and its analysis to the hybrid fault
model is straightforward: the hybrid protocol SMH(r)
simply recognizes and discards manifest-faulty val-
ues. Authentication prevents symmetric-faulty re-
ceivers from injecting correctly signed new values, so
these receivers either duplicate other messages (which
is harmless), or they introduce incorrectly signed mes-
sages, which will be discarded. Thus, messages from
both manifest- and symmetric-faulty receivers either
duplicate existing values or are ignored; hence they
play no part in the protocol and it is as if these proces-
sors were absent. It follows that only arbitrary-faulty
processors need be counted in the fault-tolerance cal-
culation. Thus, by direct analogy with the correspond-
ing result (Theorem 2, page 393) in [16], we have the
following result.

Theorem 1 For anyr, Protocol SMH(r) satisfies Va-
lidity and Agreement provided r > a, where a is the
number of arbitrary-faulty processors.

The result is somewhat vacuous unless there are at
least two nonfaulty processors, so we also have n >
a+s+m+1, and r > a. This may be compared
with OMH(r), where we have n > 2a +2s+m +r and
r > a.

It can be seen that OMH(r) and SMH(r) have the
same fault tolerance with regard to rounds, but that
SMH(r) requires considerably fewer processors than
OMH(r) (or, equivalently, can tolerate more faults for
a given number of processors). However, this increased
fault tolerance is obtained at the cost of depending on
authentication: if the authentication assumptions fail
for any reason, then SMH(r) may fail altogether.

5 Combining authentication and oral
messages

The idea of examining SM(r) under the hybrid fault
model suggests the dual inquiry: examining oral mes-
sage protocols in the presence of authentication. It
turns out that this yields protocols that combine the
advantages of the two classes of protocols with few



of their disadvantages. As noted in the discussion
of SMH(r), authentication turns symmetric-faulty re-
ceivers into manifest-faulty ones: they can only gen-
erate messages that are improperly signed. In order
to exploit this in an oral messages protocol, we need
a protocol that has the capability to discard bad mes-
sages. The classical protocol OM(r) does not do this,
but our hybrid protocol OMH(r) does. It therefore
seems the most promising place to start.

The protocol OMH(r) [19] is our modified and for-
mally verified [17] version of Thambidurai and Park’s
protocol Z(r) [29], which is in turn a modification of
the 7 + 1-round oral messages protocol OM(r) of Lam-
port, Shostak, and Pease [16]. The key idea in both
Z(r) and OMH(r) is to introduce a distinguished value
E to record receipt of manifest-faulty messages. E
values are ignored in the majority vote that each pro-
cessor uses to decide its final value. In Z(r), E is
used to record both manifest-faulty messages and the
report of such messages relayed by another processor.
This leads to confusion when there is a manifest-faulty
transmitter and an arbitrary- or symmetrically-faulty
receiver; Z(1) can fail in this circumstance, and this
leads to more complex failures in the r > 1 cases.
OMH(r) repairs this problem by treating the report
of manifest-faulty values differently than those values
themselves: R(E) indicates the report of E, R(R(E))
the report of a report, and so on. An inverse function
UnR is used to “strip off” these Rs at a later stage
in the protocol. Only E (not R(E), R(R(E)), etc.) is
ignored in the majority vote.

As noted in the previous section, OMH(r) is able
to tolerate a arbitrary, s symmetric, and m manifest
faults simultaneously, provided n, the number of pro-
cessors, satisfies n > 2a + 2s +m + r and r > a. This
is optimal when only arbitrary faults are present (we
have a =r, s = m = 0, so that n > 3a, satisfying the
lower bound established by Pease, Shostak, and Lam-
port [23]). Separate analysis shows that the protocol
is also optimal when only manifest faults are present,
and the obtained bound is n > m [18]. When only
symmetric faults are present, however, the protocol is
definitely suboptimal, in that additional rounds can
reduce its resilience. For example, in OMH(0) (where
receivers simply accept whatever value they obtain
from the transmitter), the number of symmetric-faulty
receivers is irrelevant. In OMH(1), however, where re-
ceivers relay information to each other and take the
majority of the values obtained, one symmetric-faulty
receiver can defeat the protocol unless n > 4.

Suppose now that we use digital signatures to add
authentication to OMH(r), thereby creating a proto-

col we can call OMHA(r). First, as Lamport, Shostak,
and Pease observe [16, p.393], there is no point au-
thenticating the final step in the protocol (i.e., the
OMH(0) round), because we have point-to-point com-
munications and the communication port on which a
message arrives serves to authenticate it (this is As-
sumption A2); thus OMHA(0) is the same as OMH(0).
For the general case, we simply modify OMH(r) so
that processors sign all messages that they send, and
improperly signed messages are treated by their re-
ceivers as E.

Notice that as long as authentication does not intro-
duce faults (i.e., as long as a properly signed message
cannot be mistakenly considered improperly signed),
then OMHA (r) must have at least the fault tolerance
of OMH(r), and this is independent of the crypto-
graphic strength of the signature scheme. However, if
we make the usual assumptions about the strength of
the signature scheme, then authentication reduces the
severity of faults that can be introduced by receivers.
In particular, a symmetric-faulty receiver cannot in-
ject a completely false value into the exchanges: at
worst, it can inject an E or R(E) value; similarly,
an arbitrary-faulty receiver can selectively inject FE
and R(FE), or can pass on the true value that it re-
ceived. (Faulty processors cannot inject R(R(E)) etc.,
because this would require an R(E) correctly signed by
another processor.) Unfortunately, the residual abil-
ity to inject R(E) is sufficient to limit the number
and combination of faults that can be tolerated by
OMHA(r) to be no better, in the worst case, than for
OMH(r).

This disappointing result suggests consideration
of a protocol ZA(r), derived from Thambidurai and
Park’s protocol Z(r) in the same way that OMHA((r)
is derived from OMH(r). Since Z(r) and ZA(r) lack
the E, R(FE) distinctions of OMH(r) and OMHA(r), it
follows that symmetric-faulty receivers are reduced to
manifest-faulty in ZA(r). Similarly, arbitrary-faulty
receivers are reduced to manifest-faulty or “nonfaulty
with communications link faults,” which is a case con-
sidered in Section 6. Furthermore, authentication
overcomes the bug in Z(r); this bug arises in Z(1) when
an arbitrary- or symmetric-faulty receiver injects spu-
rious values into the exchanges under a manifest-faulty
transmitter: the E values from the transmitter, and
those relayed by good receivers, are ignored in the ma-
jority votes, which are therefore won by the spurious
values injected by the faulty receiver. ZA(r) elimi-
nates this bug because it prevents the faulty receivers
manufacturing the spurious values that other proces-



sors will incorporate in their majority votes. Protocol
ZA(r) is defined as follows.
ZA(0)

1. The transmitter sends its value to every receiver.

2. Each receiver uses the value received from the
transmitter, or uses the value E if a missing or
manifestly erroneous value is received.

ZA(r), r> 0

1. The transmitter signs and sends its value to every
receiver.

2. For each p, let v, be the value receiver p obtains
from the transmitter, or E if no value, or a man-
ifestly bad value, or incorrectly signed value is
received.

Each receiver p acts as the transmitter in Protocol
ZA(r — 1) to communicate the value v, to the
other n — 2 receivers.

3. For each p and ¢, let v, be the value receiver p
received from receiver ¢ in step (2) (using Proto-
col ZA(r — 1)), or else E if no such value, or a
manifestly bad value, or incorrectly signed value
was received. Each receiver p calculates the ma-
jority value among all non-E values v, received;
if no such majority exists, the receiver uses some
arbitrary, but functionally determined value.

We have the following results, where a, s, and m are
the numbers of arbitrary-, symmetric-, and manifest-
faulty processors, respectively, and n is the total num-
ber of processors.

Lemma 1 If signatures are secure, then for any a, s,
m and r, Protocol ZA(r) satisfies Validity.

Proof: In the first round, the transmitter signs and
sends its value to all receivers. Validity assumes a
nonfaulty transmitter, so all nonfaulty receivers will
obtain the correct value in this round. The receivers
exchange values in subsequent rounds, and faulty re-
ceivers may inject faulty values into this process. How-
ever, authentication prevents the injection of any cor-
rectly signed value other than that sent by the original
transmitter. Thus the only values entering the major-
ity vote will be this value and, possibly, E. Since all
good receivers obtained at least one copy of the value
v directly from the transmitter, and some combination
of vs and Es from other receivers, the hybrid majority
will always be v. O

Theorem 2 If signatures are secure, then for any r,
Protocol ZA (r) satisfies conditions Validity and Agree-
ment if r > a.

Proof: The proof is by induction on r. In the base
case r = ( there can be no arbitrary-faulty processors,
since r > a. If there are no arbitrary-faulty processors
then the previous lemma ensures that ZA(0) satisfies
Agreement, and Validity follows. We therefore assume
that the theorem is true for ZA(r — 1) and prove it for
ZA(r), r > 0.

First consider the case in which the transmitter
is not arbitrary-faulty. Then Validity is ensured by
Lemma 1, and Agreement follows from Validity. Now
consider the case where the transmitter is arbitrary-
faulty. There are at most a arbitrary-faulty proces-
sors, and the transmitter is one of them, so at most
a — 1 of the receivers are arbitrary-faulty. At the next
stage, we have one less round to perform, and one less
arbitrary fault to tolerate. Since we assume r > a, we
also know r—1 > a—1, and we may therefore apply the
induction hypothesis to conclude that ZA(r — 1) sat-
isfies conditions Agreement and Validity. Hence, for
each ¢, any two nonfaulty receivers get the same value
for v, in step (3). (This follows from Validity if one of
the two receivers is processor ¢, and from Agreement
otherwise). Hence, any two nonfaulty receivers get the
same vector of values vy,...,v,_1, and therefore ob-
tain the same value hybrid-majority(vi,...,v,_1) in
step (3) (since this value is functionally determined),
thereby ensuring Agreement. O

Theorem 2 shows that ZA(r) has the same (opti-
mal) fault tolerance as SMH(r) when signatures are
secure; however, ZA(r) has the significant advantage
that it is not totally broken if authentication fails.
In the presence of authentication failure, ZA(r) re-
verts to, at worst, the fault tolerance of Z(r). To
be sure, Z(r) is vulnerable to certain configurations
of two faults no matter how many rounds and re-
ceivers are used (that is why we developed OMH(r)),
but in the important case r = 1, its failure mode is
very precisely characterized (manifest-faulty receiver
and at least one symmetric-fault or arbitrary-faulty
receiver the latter is required to break Agreement).
An alternative is to use the protocol OMHA(r), whose
fallback, OMH(r) is fully robust against arbitrary and
manifest faults, but whose resilience in the presence
of working authentication is inferior to that of ZA(r).
Table 1 compares the various protocols we have dis-
cussed in terms of worst-case bounds.



Protocol Authentication Assumptions
Violated | Sound

M(r) a=s=0,n>m+1 n > a+s+m+1, r>a
SMH( ) a=s=0,n>m+l n>a+s+m+l, r>a

M(r) n > 2a+2s+2m+r, r > a | n > 2a+2s+2m+r, r > a (same)
OMH(T) n > 2a+2s+m+r, r>a | n> 2a+2s+m+r, r > a (same)
OMHA(r) || n > 2a+2s+m+r, r>a | n> 2a+2s+m+r, r > a (same)
Z(r) n > 2a+2s+m+r, r>al [ n > 2a+2s+m+r, r > al(same)
ZA(r) n > 2a+2s+m+r, r>al [ n>ats+m+l, r>a

T Z(1) also fails with a manifest-faulty transmitter and one symmetric-

or arbitrary-faulty receiver; Z(r

au
), r > 1, fails in additional cases.

Table 1: Comparison of Byzantine Agreement Protocols

6 Link faults

Communications failures represent an important
class of faults; we call them link faults, with the char-
acterization that when a nonfaulty processor sends its
value v to a nonfaulty recipient over a faulty link, the
value received may be either v or E.

Because they arise frequently in practice (wires and
connectors are prone to noise and breakage), it is de-
sirable to tolerate link faults efficiently. Notice that
a link fault is not attributed to a processor; thus, a
processor at the receiving end of a faulty link may be
nonfaulty and the protocol must ensure that it satisfies
the Agreement and Validity conditions. The difficulty
in extending Byzantine agreement protocols to link
faults is due to the fact that these faults do introduce
asymmetry and are therefore as expensive to tolerate
as arbitrary failures in the worst case.

We can observe that ZA(r) achieves Validity in the
presence of link faults and hybrid processor faults, pro-
vided that there is path of length r + 1 links or less
from the transmitter to each nonfaulty receiver that
passes through only nonfaulty processors and good
links. SMH(r) has the same bounds on Validity as
ZA(r), while that of OMHA(r) is worse and difficult
to characterize. We can also observe that for Agree-
ment, a link fault is as disruptive, in the worst case, as
an arbitrary fault at either the sender or receiver on
the link. Thus, if link faults are attributed to either
their sender or receiver, and [ is the minimum number
of processors needed to account for all such faults, then
ZA(r) will achieve Agreement provided r > a+I. Simi-
lar worst case bounds apply for Agreement in SMH(r),
while OMHA (r) requires n > 2a 4 2s+m+r + 2] and
r>a+l.

7 Examining fault tolerance
state-exploration techniques

using

The worst-case bounds given above are based on
rather crude ways of counting faults: there are many
scenarios for the behavior of a system with, say, one
arbitrary-faulty and one manifest-faulty processor and
two link faults, but the worst-case analyses treat them
all alike. It is therefore interesting to enquire how well
the protocols perform under more fine-grained analysis
and, in particular, how they perform in regions beyond
those characterized by the simple worst-case bounds.

Simulation could be used to sample the behavior
of the protocols, but a more attractive alternative is
to use a formal state-exploration tool to examine their
behavior in specific configurations under all scenarios.
The idea is to model the system as the composition
of two concurrent processes: one that injects faults
and one that tolerates or diagnoses them. A state-
exploration tool will then systematically explore all
possible scenarios for their interaction.

We have used the Mur¢ (pronounced “Murphy”)
system from David Dill’s group at Stanford [20] for
this purpose. Essentially, we provided Mur¢ programs
for the OMH(1), OMHA(1), Z(1), ZA(1), and SMH(1)
protocols in the n = 5 case, and caused Mur¢ to non-
deterministically perform a symbolic “fault injection”
(of both link faults and hybrid processor faults) and
then run the protocols. By exploring all different runs
(there are over 20,000 of them), Mur¢ essentially un-
dertakes exhaustive fault injection on these protocols
(the process takes a couple of minutes on a SPARC
10). Of course, it would be straightforward to write a
program to do this, but we consider the use of formal
state-exploration tools a very promising and general



technique for the examination of algorithms for fault
tolerance and diagnosis.

Our experiments confirmed the worst-case bounds
on fault tolerance claimed for the various protocols
in the case n = 5 and r = 1, and rediscovered the
known vulnerability of Z(1) to manifest-faulty trans-
mitters [19]. That is to say, exhaustive search of all
fault configurations satisfying the bounds claimed in
Table 1 for the case of n = 5 and r = 1 found no vi-
olations of Validity nor of Agreement, except for the
known cases in Z(1).

However, much more interesting results were ob-
tained when we allowed fault-injection to continue be-
yond the simple characterizations of worst-case fault
tolerance for the protocols concerned. For example,
although no five-processor, two-round protocol can
withstand two link faults in the worst case, we found
ZA(1) does tolerate two such faults in most cases.
We therefore used our Mur¢ fault-injection system to
count how many scenarios caused each protocol to fail
with and without the assumption of secure authenti-
cation.

Protocol Authentication Assumptions
Violated | Sound

OMH(1) 25 25

OMHA(1) 25 23

Z(1) 24 24

ZA(D) 24 12

SMH(1) 43 13

Table 2: Percentage of fault configurations in a 5-plex
where each protocol fails

Table 2 compares the various protocols we have dis-
cussed, using exhaustive state exploration to calculate
the percentage of fault configurations that caused the
protocols to fail. Overall, it seems that ZA(1) is the
most resilient of these protocols under the combination
of hybrid and link faults, though more experiments are
needed to confirm this.

Fault configurations consist of an assignment of
fault class (good, manifest, symmetric, or arbitrary)
to each processor, and an assignment of up to three
faulty links between processors. We excluded config-
urations with link faults emanating from arbitrary or
manifestly faulty transmitters, or arriving at faulty re-
ceivers (such link faults have no real impact on system
behavior). For each configuration, we tested whether
any scenario of messages by the faulty processors could
cause good receivers to disagree or cause a good re-
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ceiver to fail to agree with the transmitter. For each
protocol, we then calculated the percentage of all fault
configurations for which such failure was possible.

The newest release of the Mur¢g system automati-
cally detects and exploits symmetry in appropriately
written specifications, reducing the search space dra-
matically. For example, the configuration where all
processors are good except that the third receiver is
manifest-faulty is isomorphic to the case when all pro-
cessors are good except the second receiver, and Mur¢
only explores one of these alternatives. Symmetries
are used in the assignment of faulty links as well as
in the assignment of behaviors to processors. Be-
cause of these symmetry reductions, not all config-
urations are counted individually, so the numbers in
Table 2 should be taken to indicate relative, not ab-
solute, performance. We further reduced the set of
configurations to require at least one good receiver,
since otherwise validity and agreement are trivially
satisfied. We excluded symmetric-faulty processors
sending manifestly bad (E) values, since this would
amount to the same thing as a manifest fault, and we
also excluded the case of a symmetric-faulty transmit-
ter since there is very little difference between this case
and that when the transmitter is good. However, we
did allow an arbitrary-faulty transmitter to behave in
any way, including the possibility of behaving as good,
symmetric- or manifest-faulty, as well as sending var-
ious combinations of good, wrong, and E values.

For the authenticated protocols, faulty receivers
were not allowed to send data values other than that
received from the transmitter. Thus for algorithm
ZA(1) arbitrary-faulty receivers are only able to send
manifestly bad (E) values or the correct value. In algo-
rithm OMHA(1), arbitrary-faulty receivers also have
the opportunity to send R(E) and, as discussed ear-
lier, this is the main source of brittleness of OMHA(1).
We further make the assumption in these experiments
that authentication never leads to good processors dis-
carding good messages. These factors, taken together,
significantly reduce the total number of configurations
that need to be considered, but do not effect the rel-
ative numbers of configurations where the various al-
gorithms behave acceptably.

The table shows that the authenticated protocol
ZA(1) wrings the maximum fault tolerance from a
given amount of redundant hardware, and outper-
forms the classical Signed Messages protocol whether
or not signatures are secure (dramatically so if signa-
tures are insecure). ZA(1) is also superior in overall
resilience to OMHA(1). This is not to say that ZA(1)
is uniformly superior to OMHA(1). Consider a good



transmitter with link faults to all receivers except p,
and p has a link fault to receiver q. Under ZA(1), ¢
decides on E and all the other receivers decide on the
value sent by the transmitter to p, thereby violating
Agreement. Under OMHA(1) all receivers settle on
E.

Note that we are testing the fault tolerance of these
protocols well beyond their usually claimed fault tol-
erance: only approximately five percent of all fault
configurations we studied fall within the worst-case
bounds of the protocols. Thus, all these protocols are
far more tolerant of faults than their simple worst-case
bounds would suggest.

8 Conclusion

The assumptions required of the authentication
mechanism in Byzantine agreement protocols that use
“signed messages” are stronger than generally real-
ized, and require that digital signatures are used with
great care. Violation of these assumptions can cause
the protocols to fail. We have presented new proto-
cols that combine authentication with “oral messages”
protocols so that additional resilience is obtained when
the authentication assumptions are sound, but the re-
silience of the unauthenticated protocol is retained
when authentication assumptions are violated.

When the authentication assumptions are sound,
one of these new protocols, called ZA(r), matches the
fault tolerance of the classical signed messages proto-
col under a hybrid fault model, and surpasses it when
communications link faults are considered. ZA(r) also
performs well overall when authentication assump-
tions are violated, but has an unfortunate “hole” in its
worst-case bound (it is vulnerable when the transmit-
ter is manifest-faulty). Another of the new protocols,
OMHA (r) may be preferred if this case is considered
important, though it is less resilient to link faults than
ZA(r).

These new protocols are superior to other known
protocols in properties and measures of practical in-
terest, and we recommend them for general use. They
are particularly attractive in security-critical systems
where authentication may be subjected to sophisti-
cated cryptographic attack, and in safety-critical em-
bedded systems where maximum resilience is required
but where only short or cryptographically weak signa-
tures (e.g., checksums) may be feasible. Selection of
the most suitable protocol for a given system must ob-
viously depend on the expected modes and frequencies
of faults, and the consequences of system failure.

Our use of the state-exploration system Mur¢ to
perform symbolic “fault injection” is, we believe,
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novel. It suggests a very promising new application
area for this class of formal methods tools, and one
that we intend to pursue in future work.
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