
Fair Synchronous Transition Systems andtheir Liveness Proofs �Amir PnueliDept. of Applied Math. and CSThe Weizmann Institute of ScienceRehovot, ISRAELNatarajan Shankar Eli SingermanComputer Science LaboratorySRI InternationalMenlo Park CA, USATechnical Report SRI-CSL-98-02AbstractWe present a compositional semantics of synchronous systems thatcaptures both safety and progress properties of such systems. The fairsynchronous transitions systems (fsts) model we introduce in this pa-per extends the basic �sts model [KP96] by introducing operations forparallel composition, for the restriction of variables, and by addressingfairness. We introduce a weak fairness (justice) condition which ensuresthat any communication deadlock in a system can only occur throughthe need for external synchronization. We present an extended version oflinear time temporal logic (eltl) for expressing and proving safety andliveness properties of synchronous speci�cations, and provide a sound andcompositional proof system for it.�This research was supported in part by the Minerva Foundation, by an infrastructuregrant from the Israeli Ministry of Science, by US National Science Foundation grants CCR-9509931 and CCR-9712383, and by US Air Force O�ce of Scienti�c Research Contract No.F49620-95-C0044. Part of this research was done as part of the European Community projectSACRES (EP 20897). The views and conclusions contained herein are those of the authorsand should not be interpreted as necessarily representing the o�cial policies or endorsements,either expressed or implied, of NSF, AFOSR, the European Union, or the U.S. Government.We are grateful to Sam Owre for lending assistance with PVS.
1

1 IntroductionSynchronous languages are rapidly gaining popularity as a high-level program-ming paradigm for a variety of safety-critical and real-time control applicationsand for hardware/software co-design. Synchronous languages are used to de�nesystems that are:� Reactive: Engaged in an ongoing interaction with an environment.� Event-triggered: System computation is triggered by the arrival and ab-sence of external inputs.� Concurrent: A system is composed of subsystems that are computing andinteracting concurrently.� Synchronous: The system response to input stimuli is \instantaneous".The present paper presents a unifying transition system model for synchronouslanguages based on fair synchronous transition systems (fsts) that can be usedas a semantic basis for synchronous languages. Such a unifying semantic modelcan be used to specify the temporal behavior of synchronous systems and torelate di�erent synchronous system descriptions.There are two major classes of synchronous languages [H93]. The imperativelanguages like Esterel [BG92] and Statecharts [Har87], and declarative lan-guages like Lustre [CHPP87] and Signal [BGJ91]. The language Esterelhas statements like:� present signal then statement else statement : Execute then statementwhen signal is present, and else statement otherwise.� emit signal : broadcast signal.� trap id in . . . exit id . . . : A catch-throw mechanism for exception sig-naling and handling.� do statement watching signal : preempt execution of statement whensignal occurs.These are combined with the usual control constructs like conditional branchingand parallel composition.Declarative languages like Lustre and Signal express constraints on sig-nal
ows or in�nite streams. In Lustre, each signal is de�ned in a mutuallyrecursive way in terms of other signals. Lustre applies the various logical andarithmetic operators in a pointwise manner to signals so that X + Y is the signalthat is the pointwise sum of signals X and Y. The basic operators for constructingexpressions that de�ne signals in Lustre are:� pre(X) which is nil; x0; x1; : : :, where X is x0; x1; : : :.2

� X -> Y which is the signal x0; y1; y2; : : : where X is of the form x0; x1; : : :,and Y is of the form y0; y1; : : :.� X when B which is the signal hxi j bii, i.e., the sequences xi1 ; xi2 ; : : : ;,where i1; i2; : : : ; are the positions at which the boolean signal B is true.The resulting clock of X when B is de�ned by the boolean signal B.� current X which speeds up X to the next faster clock in terms of which Xis de�ned. This is done by padding X with the previous xi wherever X isunde�ned with respect to the faster clock.For example,B t f t f f t t f f : : :X 1 2 3 4 5 6 7 8 9 : : :X when B 1 3 6 7 : : :current (X when B) 1 1 3 3 3 6 7 8 8 : : :Lustre programs are functional with respect to the input streams. AllLustre signals in a program are de�ned with respect to sub-clocks of a singlemaster clock.The language Signal is the most liberal of the synchronous languages andis the primary motivation for the fair synchronous transition systems modelpresented here. Signal is similar to Lustre but admits the speci�cation ofnondeterministic constraints and the signals are not all derived from a singlemaster clock.Signal programs may also contain mutually recursive de�nitions of signals.Apart from the usual pointwise arithmetic, logical, and other data operators,the basic operators in Signal are:� X $ init y0 which is the signal having the same clock as X and the samesignal as X but delayed by one clock tick and with initial value y0.� X when B is similar to the corresponding operator in Lustre but X andB can have di�erent clocks. The clock of the resulting signal is the inter-section of the two clocks and takes on the value of X whenever the booleansignal B is true.� X default Y is the signal whose clock is the union of the clocks of X andY and whose value is equal to the value of X when X is de�ned, and thevalue of Y otherwise.Signal programs can be combined by parallel composition PkQ which is theconjunction of the equations in P and Q. Hiding P/X is another operation wherean externally visible signal X in P can be made local to a program P/X.The features common to all these synchronous languages are that3

� Signals are not persistent and can be present or absent in a computationstate.� State transitions can be governed by the presence of a signal in a state,its value when it is present, and its absence.� A module speci�es constraints on the signal values in each transition.� Composition yields the conjunction of such constraints since in synchronoussystems, the synchronized transitions occur simultaneously.In this paper, we present a compositional semantics of synchronous systemsthat captures both safety and progress properties of such systems. The se-mantics is given in terms of the model of fair synchronous transitions systems(fsts), which is based on the �sts model [KP96]. The �sts model has beenused as a common semantic domain for both Signal programs and the C-codegenerated by compiling them, for proving the correctness of the translation(compilation) [PSS98]. It has also been used in [BGA97] as a semantics whichis \...fully general to capture the essence of the synchronous paradigm."The fsts model presented here extends �sts by introducing operations forparallel composition, for the restriction of variables, and by addressing fairness.It can be used to answer questions such as:� What is the valid set of runs corresponding to a given synchronous speci-�cation?� How can we characterize a set of fair computations corresponding to agiven synchronous speci�cation?� How can linear time temporal logic be adapted to reasoning about fairsynchronous speci�cations?� What is a sound compositional proof system for proving temporal safetyand liveness properties of synchronous speci�cations?The key characteristics of the fsts model that make it suitable for capturingthe semantics of synchronous systems are:� Signals are modeled by variables whose value might be unde�ned in a stateindicating the absence of the signal.� The absence of a signal is indicated by having the values of variablesrange over a lifted domain that contains an unde�ned ? value in additionto de�ned data values.� The variables of a transition system module are partitioned into{ Synchronization variables that are used for interaction through inputand output with other modules.4

{ Controlled variables which are entirely controlled by the system con-sisting of variables that are externally visible and those that are local.� Transitions can be taken on the basis of whether a signal is present orabsent in a state.� The crucial compositionality constraints on a fsts module are :{ A module transition cannot force the synchronization variables totake on de�ned values. It should always be possible for the sys-tem to enter a communication deadlock where the synchronizationvariables all remain unde�ned. This is because the module and itsenvironment need to cooperate in order to synchronize on a de�nedvalue for a synchronization variable, and it is always possible for theenvironment to not cooperate with the module.{ A module transition is invariant with respect to the part of the statethat is unobservable by it. The behavior of the module is only a�ectedby another module through the values (de�ned or unde�ned) of thesynchronization variables that they share.{ If any signal that is controlled by the module is continuously dis-abled, i.e., unde�ned, it must be because its de�nedness depends onthe de�nedness of some subset of synchronization variables. This re-striction is captured by means of a justice (weak fairness) conditionthat ensures that a variable that is continuously enabled to take on ade�ned value even when the synchronization variables are deadlocked,does eventually do so. The justice condition requires controlled vari-ables to not deadlock, i.e., remain unde�ned, unless their de�nednessdepends on the values of synchronization variables.The fsts model is designed to be simple and general. It extends the classicalnotion of transition systems with signals that can be present or absent in a givenstate, communication as synchronization by means of signals, stuttering as theabsence of signals, and local progress through weak fairness constraints. Thefairness condition ensures that any communication deadlock in a module canonly occur through the need for external synchronization. Except for the fairnesscondition, the presence or absence of a signal is treated in a symmetrical manneras is the case in synchronous languages. The use of weak fairness constraintsensures that a module can satisfy these constraints without the cooperation ofthe environment, i.e., the module is receptive [AL95].The fsts model, the compositionality proofs, the extended linear temporallogic, and the accompanying soundness proofs have all been formally veri�edusing PVS [Ow95]. The PVS veri�cation pointed out a number of gaps in ourearlier formalization and led to sharper de�nitions of the basic concepts, and5

elegant and rigorous proofs.1The paper is organized as follows. In Section 2 we introduce the fsts com-putational model. In Section 3 we de�ne two important operations on fstsmodules, parallel composition and restriction , and motivate the de�nitions byan intuitive example of progress (liveness). In Section 4 we present a formalmethod for proving temporal properties of synchronous systems by introducingan appropriate logic for expressing these properties and a system of deductiveproof rules. We demonstrate the use of these rules by formalizing the intuitivearguments used in the example of Section 3. In Section 5 we present the fstssemantics of the most expressive synchronous language { Signal. (The fstssemantics of Esterel and Lustre can be obtained in a similar way.)2 Fair Synchronous Transition SystemsIn this section, we introduce the notion of fair synchronous transition systems.The Computational ModelWe assume a vocabulary V which is a set of typed variables. Variables which areintended to represent signals are identi�ed as volatile , and their domain containsa distinguished element ? used to denote the absence of the respective signal. Inthe translation of synchronous programs to fsts speci�cations (see Section 5),we shall also use persistent variables to simulate the \memorization" operatorsof the synchronous languages (e.g., current in Lustre, \$" in Signal).Some of the types we consider are the booleans with domain B = ft; fg,the type of integers whose domain Z consists of all the integers, the type ofpure signals with domain S? = ft;?g, the type of extended booleans with do-main B? = ft; f;?g, and the type of extended integers with domain Z? =Z [f?g.We de�ne a state s to be a type-consistent interpretation of V , assigningto each variable u 2 V a value s[u] over its domain. We denote by � the setof all states. For a subset of variables V � V , we de�ne a V -state to be atype-consistent interpretation of V .Following [MP91] and [KP96], we de�ne a fair synchronous transition system(fsts) to be a system �: hV;�; �; E; Si;consisting of the following components:� V : A �nite set of typed system variables.� � : The initial condition . A satis�able assertion characterizing the initialstates.1The PVS formalization and proofs can be obtained from the URLwww.csl.sri.com/~singermn/fsts/. 6

� � : A transition relation . This is an assertion �(V; V 0), which relates astate s 2 � to its possible successors s0 2 � by referring to both unprimedand primed versions of the system variables. An unprimed version of asystem variable refers to its value in s, while a primed version of the samevariable refers to its value in s0. For example, the assertion x0 = x + 1states that the value of x in s0 is greater by 1 than its value in s. If�(s[V]; s0[V]) = t, we say that state s0 is a �-successor of state s.Remark: As implied by the notation �(V; V 0), � can only refer to thevariables of �, and therefore cannot distinguish between two possible �-successors that agree on the values of all the variables of �. That is, forall s; s1; s2 2 �, s1jV = s2jV ! (�(s; s1), �(s; s2)) :� E � V : The set of externally observable variables . These are the variablesthat can be observed outside the module. We refer to L = V � E as thelocal variables . Local variables cannot be observed outside the module.� S � E : The set of synchronization variables . These are the signal vari-ables on which the module may (and needs to) synchronize with its envi-ronment. We refer to C = V � S as the controllable variables . These arethe variables on whose values the module has full control.For states s; s0 2 � and assertion '(V; V 0), we say that ' holds over thejoint interpretation hs; s0i, denotedhs; s0i j= ';if '(V; V 0) evaluates to t over the interpretation which interprets every x 2 Vas s[x] and every x0 as s0[x].For an fsts �, a state s0 is called a �-successor of the state s if hs; s0i j= �.De�nition 1 An fsts � is called realizable if every state s 2 � has a �-successor in which all the synchronization variables assume the value ?. Thisrequirement expresses the possibility that the environment might not be ready toco-operate with the module � in the current state.From now on, we restrict our attention to realizable fsts speci�cations.Computations of an FSTSLet � =
V;�; �; E; S� be an fsts. A computation of � is an in�nite sequence�: s0; s1; s2; : : : ;where, for each i = 0; 1; : : : ; si 2 �, and � satis�es the following requirements:7

� Initiation : s0 is initial, i.e., s0 j= �.� Consecution: For each j = 0; 1; : : : ; sj+1 is a �-successor of sj .� Justice (weak fairness): We say that a signal variable x 2 C is enabled withrespect to S at state sj of � if there exists a �-successor s of sj , such thats[x] 6= ?^ s[S] = f?g.The justice requirement is that for every signal variable x 2 C, it is notthe case that x is enabled w.r.t. S in all but a �nite number of states along�, while sj [x] 6= ?, for only �nitely many states sj in the computation.Remark: In the sequel, we shall sometimes use the term \enabled w.r.t. �"instead of \enabled w.r.t. S�".The requirement of justice with respect to a controllable signal variable x de-mands that if x is continuously enabled to assume a non-? value, from a certainpoint on, without the need to synchronize with the environment, it will eventu-ally assume such a value. The fact that a variable x is enabled to become non-?without `external assistance' is evident from the existence of a �-successor s suchthat s[x] 6= ?^ s[S] = f?g.A run of a system � is a �nite or an in�nite sequence of states satisfying therequirements of initiation and consecution, but not necessarily the requirementof justice.An fsts is called viable if every �nite run can be extended into a computa-tion. From now on, we restrict our attention to viable fsts speci�cations.For the case that � is a �nite-state system, i.e., all system variables rangeover �nite domains, there exist (reasonably) e�cient symbolic model-checkingalgorithms for testing whether � is viable.A state s0 is a stuttering variant of a state s if all volatile (i.e., signal)variables are unde�ned in s0 and s0 agrees with s on all persistent variables.A state sequence b� is said to be a stuttering variant of the state sequence � :s0; s1; : : : ; if b� can be obtained from � by repeated transformations where astate s in � is replaced with s; s0 in b�, or a pair of adjacent states s; s0 in � isreplaced with s in b� where s0 is a stuttering variant of s. A set of state sequencesS is called closed under stuttering if, for every state sequence �, � 2 S i� allstuttering variants of � belong to S. An fsts � is called stuttering robust if theset of �-computations is closed under stuttering.3 Operations on FSTS ModulesThere are two important operations on fsts modules: parallel composition andrestriction . 8

3.1 Parallel CompositionLet �1: hV1;�1; �1; E1; S1i and �2: hV2;�2; �2; E2; S2i be two fsts modules.These systems are called syntactically compatible if they satisfyC1 \ V2 = V1 \ C2 = ; (or equivalently V1 \ V2 = S1 \ S2):That is, only synchronization variables can be common to both systems. Wede�ne the parallel composition of syntactically compatible �1 and �2, denoted� = �1 k �2, to be the fsts �: hV;�; �; E; Si, whereV = V1 [V2� = �1 ^ �2� = �1 ^ �2E = E1 [E2S = S1 [S2To indicate the relation between computations of a composed system andcomputations of its constituents, we �rst prove the following lemma:Lemma 1 Let �1: hV1;�1; �1; E1; S1i and �2: hV2;�2; �2; E2; S2i be two com-patible fsts modules, x be a controlled signal variable of �1, and �: s0; s1; s2; : : :be a sequence of states. For every j � 0:x is enabled in sj w.r.t. �1 () x is enabled in sj w.r.t. �1 k �2:Proof: (=)) First, note that since x is a controlled signal variable of �1, it isalso a controlled signal variable of �1 k �2. Now, assume that s is a �1-successorof sj , s.t. s[x] 6= ? and s[S1] = ?. By the realizability requirement applied to�2 (see De�nition 1), there exists a state s0, s.t. �2(s; s0) and s0[S2] = ?. Lets00 be the state that valuates each variable of �1 as s and all other variablesas s0. Since �1 and �2 are syntactically compatible, we have s00[x] 6= ? ands00[S1 [S2] = ?. Hence, by recalling that �1 and �2 can only refer to variablesin V1 and V2, respectively, we have that �1(s; s00) and �2(s; s00); i.e., s00 is a�1 k �2-successor of sj , and we are done.The argument in the other direction is similar.We can now prove the following theorem:Theorem 2 Let �1: hV1;�1; �1; E1; S1i and �2: hV2;�2; �2; E2; S2i be two com-patible fsts modules, and �: s0; s1; s2; : : : be a sequence of states.� is a computation of �1 k �2 () � is both a computation of �1 and of �2:Proof: (=)) Due to symmetry, it su�ces to prove that � is a computation of�1. The fact that � satis�es the initiation and consecution requirements for �1follows easily from the de�nition of �1 k �2. What remains is to show that � isfair (just) w.r.t. �1. Let x be a controlled variable of �1 which is continuously9

enabled w.r.t. �1. We have to prove that x 6= ? in�nitely often. By Lemma 1,we conclude that x is continuously enabled w.r.t. �1 k �2. So, by the assump-tion that � is a computation of �1 k �2, and is therefore just w.r.t. �1 k �2,we have x 6= ? in�nitely often.((=) Again, it is easy to see that � satis�es the the initiation and consecu-tion requirements for �1 k �2. To prove that � is fair w.r.t. �1 k �2, let x be acontrolled variable of �1 k �2 which is continuously enabled w.r.t. �1 k �2. Bythe de�nition of �1 k �2, x 2 (V1 n S1) [(V2 n S2). Without loss of generality,assume x 2 (V1 n S1), i.e., x is a controlled variable of �1. Using Lemma 1, wesee that x is continuously enabled w.r.t. �1, so that by the fact that � is fairw.r.t. to �1, we have x 6= ? in�nitely often.3.2 RestrictionIn the operation of restriction, we identify a set of synchronization variables andclose o� the system for external synchronization on these variables.LetW � S be a set of synchronization variables of the fsts �: hV;�; �; E; Si.We de�ne theW -restriction of �, denoted [ownW : �], to be the fsts e�: heV ; e�; e�; eE; eSi,where eV = Ve� = �e� = �eE = EeS = S n W:Thus the e�ect of W -restricting the system � amounts to moving the vari-ables in W from S to C. This movement may have a considerable e�ect on thecomputations of the system.Example 1 Consider the fsts �, whereV = E = S : fx : ft;?gg� : x = t� : x0 = t _ x0 = ?:Let e�: [own x:�] denote the x-restriction of �. The sequence below, in whichnext to each state appears the set of all possible successors,�: s0: hx:ti; fhx:?i; hx:tigs1: hx:?i; fhx:?i; hx:tigs2: hx:?i; : : :is a computation of � but is not a computation of e�. Note that x assumes anon-? value only at s0. The sequence � is a computation of � since x is not in10

C (x 2 S), and therefore is not enabled w.r.t. S in any state of �. On the otherhand, x is no longer a synchronization variable in e�, since it belongs to eC. Thesequence � is not a computation of e� since it is unfair to x. This is becausenow, x is enabled w.r.t. Se� in every state of �, but s[x] 6= ? only in s0. Fromthis we can deduce that all computations of e� contain in�nitely many states inwhich x 6= ?, but this is not necessarily the case for computations of �.The following lemma (whose proof is left for the �nal version) describes therelation between computations of unrestricted and restricted systems.Lemma 3 The in�nite sequence�: s0; s1; s2; : : :is a computation of [own W:�] i�1. � is a computation of �, and2. � satis�es the justice requirement w.r.t. S nW .Thus, the computations of [own W:�] can be obtained from those of �.Example 2 Consider the fsts �1 de�ned byV1 = E1 : fx; y : Z?gS1 : fxg�1 : x = y = ?�1 : (y0 = 3) ^ (x0 = 4) _ (y0 = ?) ^ (x0 6= 4)and the fsts �2 de�ned byV2 = E2 = S2 : x : Z?�2 : x = ?�2 : (x0 = 4) _ (x0 = 5) _ (x0 = ?):Both of these fsts modules have computations satisfying 0 1 (y = 3). Thereexists, however, a computation of both �1 and �2 which by Theorem 2 istherefore also a computation of �1 k �2, which does not satisfy 0 1 (y = 3).This computation is�: s0: h x?; y?i; fh?;?i; h4; 3i; h5;?igs1: h?;?i; fh?;?i; h4; 3i; h5;?igs2: h?;?i; : : :In �, the variable y does not get the value 3 even once. This is fair, since y isnot enabled w.r.t. S�1k�2 in any state of �. This is because y0 6= ?^ x0 = ? is11

false in every state of �. Now, suppose we close o� � with respect to x, to getthe fsts module e�: [own x: [�1 k �2]]:In e�; x is no longer a synchronization variable, and therefore y is continuouslyenabled w.r.t. Se� in � (in every state, in fact). However, it is obviously notthe case that y 6= ? is satis�ed in�nitely often in �, and hence � is not acomputation of e�. In conclusion, we see that only the restriction of x guarantees0 1 (y = 3).4 Compositional Veri�cation of fsts ModulesIn this section we show how to construct compositional veri�cation of the tem-poral properties of fsts's, concentrating on liveness properties.First, we de�ne an appropriate logic. Let eltl be ltl extended with the unarypredicate ready . An eltl model is a pair M = (L; �), where � is an in�nitesequences of the form�: s0; s1; s2; : : : ; where sj 2 �; for every j � 0;and L : �! 2�. eltl formulas are interpreted as follows.� For a state formula p, (M; j) j= p $ sj j= p:� (M; j) j= :p $ (M; j) 6j= p:� (M; j) j= p _ q $ (M; j) j= p or (M; j) j= q:� (M; j) j= 2 p $ (M; j + 1) j= p:� (M; j) j= pU q $ (M;k) j= q for some k � j and (M; i) j= p for all i;j � i < k:� For a state formula p, (M; j) j= ready(p) $ 9s 2 L(sj) s.t. s j= p:As usual, we use the abbreviations 1 p for tU p and 0 p for : 1 :p.We say that a model M satis�es an eltl formula p, written M j= p, if(M; 0) j= p.Notation: For an eltl model M = (L; �), we denote by �(i), the i + 1-thelement of �.For an fsts �, the eltl model M = (L; �) is called a �-model , if1. � is a computation of �, and 12

1: �1 j= 1 0 ready(z1 = c1 ^ : : : ^ zn = cn); where fz1; : : : ; zng � S�1 \ S�22: �2 j= 1 0 ready(z1 = c1 ^ : : : ^ zn = cn)�1 k �2 j= 1 0 ready(z1 = c1 ^ : : : ^ zn = cn)Figure 1: Rule ready.2. For every j = 0; 1; 2; : : : ; L(�(j)) is the set of all possible �-successors of�(j), i.e., L(�(j)) = image(�; f�(j)g).We write � j= p, and say that p is valid over �, if M j= p, for every �-modelM .De�nition 2 An eltl formula is called universal, if it does not contain readyor if each occurrence of ready appears under an odd number of negations.We present our method by formalizing the intuitive arguments used in Example2. In the proof, we introduce several deductive rules that we believe may beuseful in typical liveness proofs. The soundness of these rules is proved in thesequel.Let us begin by noting that�1; �2 j= 0 ready(y = 3 ^ x = 4); (1)can be veri�ed independently for �1 and for �2. From (1) and the temporaltautology q ! 1 q, we can derive�1; �2 j= 1 0 ready(y = 3 ^ x = 4): (2)Applying rule ready, presented in Fig. 1, to (2) yields�1 k �2 j= 1 0 ready(y = 3 ^ x = 4): (3)From the latter, we can easily derive�1 k �2 j= 1 0 ready(y 6= ?): (4)By applying rule own (Fig. 2) to (4), with W = fxg, we get[own x: [�1 k �2]]| {z }� j= 1 0 ready(y 6= ?): (5)Now, since S� = ;, we can use axiom cont (Fig. 3), and (5) with z = y, toderive � j= 0 1 (y 6= ?): (6)13

� j= p; where p 2 eltl[own W:�] j= pFigure 2: Rule own.� j= 1 0 ready(z 6= ?^ S� = ?) ! 0 1 (z 6= ?); where z 2 C�Figure 3: Axiom cont.It is not di�cult to prove �1 j= 0 (y = 3 _ y = ?): (7)By applying rule comp (Fig. 4) to the latter, we get�1 k �2 j= 0 (y = 3 _ y = ?): (8)We now apply rule own (Fig. 2) to (8), to get� j= 0 (y = 3 _ y = ?): (9)The latter, together with (6) implies � j= 0 1 (y = 3) which completes theproof.Now, as promised, we prove the soundness of the deductive rules. We start withtwo lemmas that follow from Theorem 2, and characterize the relation betweeneltl models of a composed system and those of its constituents.Lemma 4 Let �1 and �2 be two compatible fsts modules, M1 = (L1; �) be a�1-model, and M1 = (L2; �) be a �2-model. Then(L\; �) is a �1 k �2 -model; where L\(s) = L1(s) \ L2(s); for every s 2 �:Lemma 5 Let �1 and �2 be two compatible fsts modules, and M = (L; �) be a�1 k �2-model. Then(L�1 ; �) is a �1 -model; where L�1(s) = image(��1 ; fsg); for every s 2 �:Theorem 6 The rule ready is sound. That is, let �1: hV1;�1; �1; E1; S1i and�2: hV2;�2; �2; E2; S2i be two compatible fsts's, and fz1; : : : ; zng be a set of14

�1 j= p; where p 2 eltl is universal�1 k �2 j= pFigure 4: Rule comp.variables s.t. fz1; : : : ; zng � S1 \ S2:��1 j= 1 0 ready(z1 = c1 ^ : : : ^ zn = cn)) ^(�2 j= 1 0 ready(z1 = c1 ^ : : : ^ zn = cn))� !(�1 k �2 j= 1 0 ready(z1 = c1 ^ : : : ^ zn = cn)):Proof: [(sketch)] Let M = (L; �) be a �1 k �2-model. Use Lemma 5 to con-struct a �1-model, M1 = (L�1 ; �), and a �2-model, M2 = (L�2 ; �). By theassumption, M1 j= 1 0 ready(z1 = c1 ^ : : : ^ zn = cn) andM2 j= 1 0 ready(z1 = c1 ^ : : : ^ zn = cn):Hence, there exists an i0 s.t. for all j � i0,(M1; j) j= ready(z1 = c1 ^ : : : ^ zn = cn) and(M2; j) j= ready(z1 = c1 ^ : : : ^ zn = cn):Note that fz1; : : : ; zng � S1 \ S2 � V1 \ V2;so that using the realizability requirement (see Def. 1), it is not too di�cult toprove that for every j � i0:(((L�1 \ L�2 ; �); j) j= ready(z1 = c1 ^ : : : ^ zn = cn):That is M j= 1 0 ready(z1 = c1 ^ : : : ^ zn = cn):Theorem 7 The rule own (Fig. 2) is sound. That is, let �: hV;�; �; E; Si bean fsts, W � S be a set of variables, and p be an eltl formula. Then(� j= p) ! ([own W:�] j= p) :15

Proof: Let Mown = (L; �) be a [own W:�]-model. First, note that � is acomputation of [own W:�], so by Lemma 3 it is also a computation of �. Next,recall that for every j � 0, L(�(j)) is the set of all possible [ownW:�]-successorsof �(j); but since � and [own W:�] have the same transition relation, L(�(j))is also the set of all possible �-successors of �(j). Thus, Mown is a �-model,and by the assumption Mown j= p.Theorem 8 The axiom cont (Fig. 3) is valid. That is, let �: hV;�; �; E; Sibe an fsts, and z be a controlled variable of �. Then� j= 1 0 ready(z 6= ?^ S = ?) ! 0 1 (z 6= ?):Proof: (sketch) Suppose that M = (L; �) is an �-model, and z 2 C�. � is acomputation of �, and is therefore fair w.r.t. z. The observant reader wouldnotice that 1 0 ready(z 6= ?^ S = ?) ! 0 1 (z 6= ?)is simply a reformulation of the justice requirement w.r.t. z. From this it is notdi�cult to complete the proof.To prove the soundness of the comp, we need some preparation.De�nition 3 An eltl formula is called existential, if it does not contain readyor if each occurrence of ready appears under an even number of negations.Lemma 9 LetM1 = (�; L1) andM2 = (�; L2) be two eltl models, s.t. L2(�(j)) �L1(�(j)), for each j = 0; 1; 2; : : :. Then, for every eltl formula p, and everyi = 0; 1; 2; : : ::1. ((M1; i) j= p ^ (p is universal) ! (M2; i) j= p) ; and2. ((M2; i) j= p ^ (p is existential) ! (M1; i) j= p) :Proof: [(sketch)] The proof is carried out by mutual induction on the structureof p. Let us only mention that for the p = :(q) case, observe that if :(q)is universal then q is existential, and if :(q) is existential then q is universal.Hence, (1) follows from the induction hypothesis for (2), and vice-versa.Theorem 10 The rule comp (Fig. 4) is sound. That is, let �1 and �2 be twocompatible fsts modules, and p be a universal eltl formula. Then(� j= p) ! (�1 k �2 j= p) :Proof: Suppose Mk = (L; �) is a �1 k �2-model. By Lemma 5, the eltl modelM1 = (L�; �), where L�1(s) = image(��1 ; fsg), for every s 2 �, is a �1-model.So, by the assumption, M1 j= p. Now, for every state s 2 �:L(s) = image(��1k�2 ; fsg) � image(��1 ; fsg) = L�1(s):16

Hence, recall that p is universal, so that by using Lemma 9 (with M2 =Mk andi = 0), we can conclude Mk j= p.We conclude with a practical remark. Veri�cation of fsts speci�cation can bedone by using existing symbolic model-checking algorithms. Computing the L-sets comes at no extra cost, since the predicate ready(p) is equivalent to the CTLformula EXp which every model checker knows how to compute very e�ciently.5 The fsts semantics of SignalAs mentioned in the introduction, the fsts model is a signi�cant extension ofthe previous, more basic, �sts model [KP96] obtained by introducing oper-ations (parallel composition and restriction) and by addressing fairness. Thetranslation from Signal programs to corresponding fsts speci�cations, how-ever, is not a�ected by these extensions, and can be carried out exactly as with�sts simply by taking the input/output variables as the externally observablevariables and also as the synchronization variables. Nevertheless, to make thepaper more self-contained, we present below the translation given by Kestenand Pnueli [KP96].For a variable v, clocked (v) denotes the assertion:clocked (v) : v 6= ?In the following, we describe how to construct an fsts �P corresponding toa given Signal program P .System VariablesThe system variables of � are given by V = U [X , where U are the Signalvariables explicitly declared and manipulated in P , and X is a set of auxiliaryvariables. An auxiliary variable by the name of x:v is included in X for eachexpression of the form v $ appearing in P . For simplicity, we assume that the $operator is only applied to variables and not to more general expressions. Thevalue of x:v is intended to represent the value of v at the previous instance(present excluded) that v was di�erent from ?.Externally observable and synchronization variablesThe externally observable variables E and also the synchronization variables Sare those explicitly declared in P as input/output variables.
17

Initial ConditionThe initial condition for � is given by�: û2U u = ? ^ ^x:v2U x:v = ?As will result from our fsts translation of Signal programs, they are all stut-tering robust. Consequently, we can simplify things by assuming that the �rststate in each run of the system is a stuttering state.Transition RelationThe transition relation � will be a conjunction of assertions, where each Signalstatement gives rise to a conjunct in �.We list the statements of Signal and, for each statement S, we present theconjunct contributed to � by S.Basic Instructions� Consider the Signal statement y := f(v1; : : : ; vn), where f is a state-function. Its contribution to � is given by:clocked (y0) � clocked (v01) � : : : � clocked (v0n)^ (clocked (y0) ! y0 = f(v01; : : : ; v0n))This formula requires that the signals y; v1; : : : ; vn are present at preciselythe same time instants, and that at these instants y = f(v1; : : : ; vn).� The contribution of the statementy := v$ init v0is given by: x0:v = if clocked (v0) then v0 else x:v^ y0 = 0@ if :clocked (v0) then ?else if x:v = ? then v0else x:v 1AThe �rst conjunct of this formula de�nes the new value of x:v. If the newvalue of v is di�erent from ?, then the new value of x:v is the new valueof v. Otherwise, x:v retains its current value.The second conjunct of the formula de�nes the new value of y by consid-ering three cases. The �rst case requires that y0 = ? whenever v0 = ?.This together with the other two cases implies that the clocks of v and18

y are identical. The second considered case is the �rst position at whichv0 6= ?. Observe that the fact that we are at the else clause of the test:clocked (v0) implies that v0 6= ?, and that x:v = ? implies that there wasno previous position at which v 6= ?. In this case, we take the new valueof y (y0) to be v0. The last case considers subsequent positions at whichv0 6= ?. At all of these positions, y0 is taken to be the value of x:v, i.e., thevalue of v as it were at the previous (v0 6= ?)-position and as memorizedin x:v.� The contribution of the statementy := v when bis given by: y0 = if (b0 = t) then v0 else ?:� The contribution of the statementy := u default vis given by: y0 = if clocked (u0) then u0 else v0:Shorthand Instructions� The contribution of the statement'(synchro v; y);which states that v and y have the same clock, is given by:clocked (v0) � clocked (y0)� The contribution of the statementy := when(v);which is an abbreviation for: y := v when v, for a boolean variable v, isgiven by: y0 = if (v0 = t) then t else ?:� The contribution of the statementy := event(v);which de�nes y to be a pure signal representing the clock of v, is given by:y0 = if clocked (v0) then t else ?:19

GUARD COUNT finput event �ll ; output boolean emptyg=synchro (when(zn = 0));�llj n := (10 when �ll) default (zn� 1)j zn := n $ init 0j empty := when(n = 0) default (not �ll)Figure 5: A sample Signal program.ExampleIn Fig. 5, we present a Signal program example, taken from [BGJ91]. Wesimpli�ed the program to make it more self-contained. This small programmodels a system with a replenishable resource, for example, a water reservoir.The input event �ll signals that that the reservoir is �lled to the top. The localinteger variable n measures the current water level. At each �ll signal, the levelis set to 10 (assumed maximal capacity). Then the level gradually decreasesuntil it reaches 0. The output signal empty will register t when the water leveldrops to 0, and will register f when the reservoir is next �lled.The program as an fstsThe fsts translation of the Signal program of Fig. 5 is de�ned as follows:The system variables are given by:V : f�ll ; empty; zn; n| {z }U ; x:n|{z}X g:The externally observable and synchronization variables are given by:E = S: f�ll ; emptyg:The initial condition is given by:�: �ll = empty = zn = n = x:n = ?:
20

The transition relation � is given by:(zn0 = 0) � clocked (�ll 0)^ n0 = 0@ if �ll 0 = t then 10else if clocked (zn0) then zn0 � 1else ? 1A^ x:n0 = if clocked (n0) then n0 else x:n^ zn0 = 0@ if :clocked (n0) then ?else if x:n = ? then 0else x:n 1A^ empty0 = 0@ if n0 = 0 then telse if �ll 0 = t then felse ? 1A6 Conclusions and Future WorkWe have presented fsts, a compositional semantics of synchronous systems thatcaptures both safety and progress properties. We have motivated the fairnessrequirement and the operations of parallel composition and of restriction ofvariables by means of intuitive examples.We have then introduced an extended version of linear temporal logic (eltl),in which it is convenient to express safety and liveness properties of synchronousspeci�cations, and have presented (and demonstrated) a sound compositionalproof system for it.We have concluded by specifying how to translate programs written in anexpressive representative of the synchronous school, namely Signal, to fsts.Directions in future work which we intend to pursue are� Specifying in detail the fsts semantics of Lustre, Esterel and Statecharts.� Apply the deductive proof system developed here together with existingsymbolic model-checking algorithms to the veri�cation of fsts speci�ca-tions that result from actual synchronous programs.References[AL95] M. Abadi and L. Lamport. Conjoining Speci�cations. TOPLAS,17(3), pages 507{534, 1995.[BGA97] A. Benveniste, P. Le Guernic, and P. Aubry. Compositionality indata
ow synchronous languages: speci�cation & code generation.Proceedings of COMPOS'97.21

[BGJ91] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronousprogramming with event and relations: the SIGNAL language andits semantics. Science of Computer Programming, 16, pages 103{149, 1991.[BG92] G. Berry and G. Gonthier. The ESTEREL Synchronous Program-ming Language: Design, semantics, implementation. Science ofComputer Programming, 19(2), 1992.[CHPP87] P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. LUSTRE,a Declarative Language for Programming Synchronous Systems.POPL'87, ACM Press, pages 178{188, 1987.[H93] N. Halbwachs. Synchronous Programming of Reactive Systems.Kluwer, Dordrecht, The Netherlands, 1993.[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Systems.Science of Computer Programming, 8, pages 231{274, 1987.[KP96] Y. Kesten and A. Pnueli. An �sts-based common semantics forsignal and statecharts, March 1996. Sacres Manuscript.[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-current Systems: Speci�cation. Springer-Verlag, New York, 1991.[Ow95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal Veri�-cation for Fault-Tolerant Architectures: Prolegomena to the Designof PVS. IEEE trans. on software eng., 21(2), pages 107{125, 1995.[PSS98] A. Pnueli, M. Siegel, and E. Singerman. Translation Validation.TACAS'98, LNCS, 1998.

22

