Fair Synchronous Transition Systems and
their Liveness Proofs *

Amir Pnueli
Dept. of Applied Math. and CS
The Weizmann Institute of Science
Rehovot, ISRAEL

Natarajan Shankar Eli Singerman
Computer Science Laboratory
SRI International
Menlo Park CA, USA

Technical Report SRI-CSL-98-02

Abstract

We present a compositional semantics of synchronous systems that
captures both safety and progress properties of such systems. The fair
synchronous transitions systems (FsTS) model we introduce in this pa-
per extends the basic @sTs model [KP96] by introducing operations for
parallel composition, for the restriction of variables, and by addressing
fairness. We introduce a weak fairness (justice) condition which ensures
that any communication deadlock in a system can only occur through
the need for external synchronization. We present an extended version of
linear time temporal logic (ELTL) for expressing and proving safety and
liveness properties of synchronous specifications, and provide a sound and
compositional proof system for it.

*This research was supported in part by the Minerva Foundation, by an infrastructure
grant from the Israeli Ministry of Science, by US National Science Foundation grants CCR-
9509931 and CCR-9712383, and by US Air Force Office of Scientific Research Contract No.
F49620-95-C0044. Part of this research was done as part of the European Community project
SACRES (EP 20897). The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of NSF, AFOSR, the European Union, or the U.S. Government.
We are grateful to Sam Owre for lending assistance with PVS.

1 Introduction

Synchronous languages are rapidly gaining popularity as a high-level program-
ming paradigm for a variety of safety-critical and real-time control applications
and for hardware/software co-design. Synchronous languages are used to define
systems that are:

e Reactive: Engaged in an ongoing interaction with an environment.

e Event-triggered: System computation is triggered by the arrival and ab-
sence of external inputs.

e Concurrent: A system is composed of subsystems that are computing and
interacting concurrently.

e Synchronous: The system response to input stimuli is “instantaneous”.

The present paper presents a unifying transition system model for synchronous
languages based on fair synchronous transition systems (FSTS) that can be used
as a semantic basis for synchronous languages. Such a unifying semantic model
can be used to specify the temporal behavior of synchronous systems and to
relate different synchronous system descriptions.

There are two major classes of synchronous languages [H93]. The imperative
languages like ESTEREL [BG92] and STATECHARTS [Har87], and declarative lan-
guages like LUSTRE [CHPP87] and Si1GNAL [BGJ91]. The language ESTEREL
has statements like:

e present signal then statement else statement: Execute then statement
when signal is present, and else statement otherwise.

e emit signal : broadcast signal.

e trap id in ...exit id ...: A catch-throw mechanism for exception sig-
naling and handling.

e do statement watching signal: preempt execution of statement when
signal occurs.

These are combined with the usual control constructs like conditional branching
and parallel composition.

Declarative languages like LUSTRE and SIGNAL express constraints on sig-
nal flows or infinite streams. In LUSTRE, each signal is defined in a mutually
recursive way in terms of other signals. LUSTRE applies the various logical and
arithmetic operators in a pointwise manner to signals so that X + Y is the signal
that is the pointwise sum of signals X and Y. The basic operators for constructing
expressions that define signals in LUSTRE are:

e pre(X) which is nil, g, z1, ..., where X is zq, 1,

e X -> Y which is the signal zq, y1,y2, ... where X is of the form zq,z1,. ..,
and Y is of the form yq, 91,

e X when B which is the signal (z; | b;), i.e., the sequences z;,,x;,,. ..,
where i1,%2,..., are the positions at which the boolean signal B is true.
The resulting clock of X when B is defined by the boolean signal B.

e current X which speeds up X to the next faster clock in terms of which X
is defined. This is done by padding X with the previous x; wherever X is
undefined with respect to the faster clock.

For example,

B T F T F F T T F F
X 1 2 3 4 5 6 7 8 9
X when B 1 3 6 7
current (X when B) 1 1 3 3 3 6 7 8 8...

LUSTRE programs are functional with respect to the input streams. All
LUSTRE signals in a program are defined with respect to sub-clocks of a single
master clock.

The language SIGNAL is the most liberal of the synchronous languages and
is the primary motivation for the fair synchronous transition systems model
presented here. SIGNAL is similar to LUSTRE but admits the specification of
nondeterministic constraints and the signals are not all derived from a single
master clock.

SIGNAL programs may also contain mutually recursive definitions of signals.
Apart from the usual pointwise arithmetic, logical, and other data operators,
the basic operators in SIGNAL are:

e X $ init yo which is the signal having the same clock as X and the same
signal as X but delayed by one clock tick and with initial value yg.

e X when B is similar to the corresponding operator in LUSTRE but X and
B can have different clocks. The clock of the resulting signal is the inter-
section of the two clocks and takes on the value of X whenever the boolean
signal B is true.

e X default Y is the signal whose clock is the union of the clocks of X and
Y and whose value is equal to the value of X when X is defined, and the
value of Y otherwise.

SIGNAL programs can be combined by parallel composition P||Q which is the
conjunction of the equations in P and Q. Hiding P/X is another operation where
an externally visible signal X in P can be made local to a program P/X.

The features common to all these synchronous languages are that

e Signals are not persistent and can be present or absent in a computation
state.

e State transitions can be governed by the presence of a signal in a state,
its value when it is present, and its absence.

e A module specifies constraints on the signal values in each transition.

e Composition yields the conjunction of such constraints since in synchronous
systems, the synchronized transitions occur simultaneously.

In this paper, we present a compositional semantics of synchronous systems
that captures both safety and progress properties of such systems. The se-
mantics is given in terms of the model of fair synchronous transitions systems
(FsTS), which is based on the asTs model [KP96]. The asTs model has been
used as a common semantic domain for both SIGNAL programs and the C-code
generated by compiling them, for proving the correctness of the translation
(compilation) [PSS98]. It has also been used in [BGA97] as a semantics which
is “...fully general to capture the essence of the synchronous paradigm.”

The FsTS model presented here extends asTs by introducing operations for
parallel composition, for the restriction of variables, and by addressing fairness.
It can be used to answer questions such as:

e What is the valid set of runs corresponding to a given synchronous speci-
fication?

e How can we characterize a set of fair computations corresponding to a
given synchronous specification?

e How can linear time temporal logic be adapted to reasoning about fair
synchronous specifications?

e What is a sound compositional proof system for proving temporal safety
and liveness properties of synchronous specifications?

The key characteristics of the FSTS model that make it suitable for capturing
the semantics of synchronous systems are:

e Signals are modeled by variables whose value might be undefined in a state
indicating the absence of the signal.

e The absence of a signal is indicated by having the values of variables
range over a lifted domain that contains an undefined L value in addition
to defined data values.

e The variables of a transition system module are partitioned into

— Synchronization variables that are used for interaction through input
and output with other modules.

— Controlled variables which are entirely controlled by the system con-
sisting of variables that are externally visible and those that are local.

e Transitions can be taken on the basis of whether a signal is present or
absent in a state.

e The crucial compositionality constraints on a rsTS module are :

— A module transition cannot force the synchronization variables to
take on defined values. It should always be possible for the sys-
tem to enter a communication deadlock where the synchronization
variables all remain undefined. This is because the module and its
environment need to cooperate in order to synchronize on a defined
value for a synchronization variable, and it is always possible for the
environment to not cooperate with the module.

— A module transition is invariant with respect to the part of the state
that is unobservable by it. The behavior of the module is only affected
by another module through the values (defined or undefined) of the
synchronization variables that they share.

— If any signal that is controlled by the module is continuously dis-
abled, i.e., undefined, it must be because its definedness depends on
the definedness of some subset of synchronization variables. This re-
striction is captured by means of a justice (weak fairness) condition
that ensures that a variable that is continuously enabled to take on a
defined value even when the synchronization variables are deadlocked,
does eventually do so. The justice condition requires controlled vari-
ables to not deadlock, i.e., remain undefined, unless their definedness
depends on the values of synchronization variables.

The FSTS model is designed to be simple and general. It extends the classical
notion of transition systems with signals that can be present or absent in a given
state, communication as synchronization by means of signals, stuttering as the
absence of signals, and local progress through weak fairness constraints. The
fairness condition ensures that any communication deadlock in a module can
only occur through the need for external synchronization. Except for the fairness
condition, the presence or absence of a signal is treated in a symmetrical manner
as is the case in synchronous languages. The use of weak fairness constraints
ensures that a module can satisfy these constraints without the cooperation of
the environment, i.e., the module is receptive [AL95].

The FsTS model, the compositionality proofs, the extended linear temporal
logic, and the accompanying soundness proofs have all been formally verified
using PVS [Ow95]. The PVS verification pointed out a number of gaps in our
earlier formalization and led to sharper definitions of the basic concepts, and

elegant and rigorous proofs.!

The paper is organized as follows. In Section 2 we introduce the FSTS com-
putational model. In Section 3 we define two important operations on FSTS
modules, parallel composition and restriction, and motivate the definitions by
an intuitive example of progress (liveness). In Section 4 we present a formal
method for proving temporal properties of synchronous systems by introducing
an appropriate logic for expressing these properties and a system of deductive
proof rules. We demonstrate the use of these rules by formalizing the intuitive
arguments used in the example of Section 3. In Section 5 we present the FSTS
semantics of the most expressive synchronous language — SIGNAL. (The FsTS
semantics of ESTEREL and LUSTRE can be obtained in a similar way.)

2 Fair Synchronous Transition Systems

In this section, we introduce the notion of fair synchronous transition systems.

The Computational Model

We assume a vocabulary V which is a set of typed variables. Variables which are
intended to represent signals are identified as volatile, and their domain contains
a distinguished element | used to denote the absence of the respective signal. In
the translation of synchronous programs to FSTS specifications (see Section 5),
we shall also use persistent variables to simulate the “memorization” operators
of the synchronous languages (e.g., current in LUSTRE, “$” in SIGNAL).

Some of the types we consider are the booleans with domain B = {T,F},
the type of integers whose domain Z consists of all the integers, the type of
pure signals with domain S; = {1, L}, the type of extended booleans with do-
main B, = {1,F, L}, and the type of extended integers with domain Z, =
ZU{L}.

We define a state s to be a type-consistent interpretation of V, assigning
to each variable u € V a value s[u] over its domain. We denote by ¥ the set
of all states. For a subset of variables V' C V, we define a V-state to be a
type-consistent interpretation of V.

Following [MP91] and [KP96], we define a fair synchronous transition system
(FSTS) to be a system

o (V,0,p,E,S),

consisting of the following components:

e V : A finite set of typed system variables.

e O : The initial condition. A satisfiable assertion characterizing the initial
states.

IThe PVS formalization and proofs can be obtained from the URL
www.csl.sri.com/ singermn/fsts/.

e p: A transition relation. This is an assertion p(V, V'), which relates a
state s € X to its possible successors s’ € ¥ by referring to both unprimed
and primed versions of the system variables. An unprimed version of a
system variable refers to its value in s, while a primed version of the same
variable refers to its value in s'. For example, the assertion ' = z + 1
states that the value of z in s’ is greater by 1 than its value in s. If
p(s[V],s'[V]) = T, we say that state s’ is a p-successor of state s.

Remark: As implied by the notation p(V, V'), p can only refer to the
variables of ®, and therefore cannot distinguish between two possible ®-
successors that agree on the values of all the variables of ®. That is, for
all s,s1,s2 € 3,

51|V =52V = (p(s,s1) < p(s,s2)) .
e F C V : Theset of externally observable variables. These are the variables

that can be observed outside the module. We refer to L =V L E as the
local variables. Local variables cannot be observed outside the module.

e S C E : The set of synchronization variables. These are the signal vari-
ables on which the module may (and needs to) synchronize with its envi-
ronment. We refer to C' =V L S as the controllable variables. These are
the variables on whose values the module has full control.

For states s,s’ € X and assertion o(V,V'), we say that ¢ holds over the
joint interpretation (s, s'), denoted

(s,8) = o,

if (V, V") evaluates to T over the interpretation which interprets every z € V
as s[z] and every z' as s'[z].
For an FSTS ®, a state s’ is called a ®-successor of the state s if (s,s') = p.

Definition 1 An FSTS @ is called realizable if every state s € ¥ has a ®-
successor in which all the synchronization variables assume the value L. This
requirement expresses the possibility that the environment might not be ready to
co-operate with the module ® in the current state.

From now on, we restrict our attention to realizable FSTS specifications.

Computations of an FSTS
Let & = <V, 0,p, E, S> be an FSTS. A computation of ® is an infinite sequence

g 80,81,82,-.-,

where, for each i =0,1,..., s; € ¥, and o satisfies the following requirements:

e Initiation: sg is initial, i.e., so |= ©.
e Consecution: For each j =0,1,..., s;41 is a ®-successor of s;.

o Justice (weak fairness): We say that a signal variable 2 € C' is enabled with
respect to S at state s; of o if there exists a ®-successor s of s;, such that

s[z] # LAs[S]={L}.

The justice requirement is that for every signal variable z € C, it is not
the case that = is enabled w.r.t. S in all but a finite number of states along
o, while s;[z] # L, for only finitely many states s; in the computation.

Remark: In the sequel, we shall sometimes use the term “enabled w.r.t. ®”
instead of “enabled w.r.t. S¢”.

The requirement of justice with respect to a controllable signal variable x de-
mands that if z is continuously enabled to assume a non-_L value, from a certain
point on, without the need to synchronize with the environment, it will eventu-
ally assume such a value. The fact that a variable z is enabled to become non-_L
without ‘external assistance’ is evident from the existence of a ®-successor s such
that s[z] # L A s[S] = {L}.

A run of a system @ is a finite or an infinite sequence of states satisfying the
requirements of initiation and consecution, but not necessarily the requirement
of justice.

An FsTs is called viable if every finite run can be extended into a computa-
tion. From now on, we restrict our attention to viable FSTS specifications.

For the case that ® is a finite-state system, i.e., all system variables range
over finite domains, there exist (reasonably) efficient symbolic model-checking
algorithms for testing whether @ is viable.

A state s' is a stuttering variant of a state s if all volatile (i.e., signal)
variables are undefined in s’ and s’ agrees with s on all persistent variables.
A state sequence o is said to be a stuttering variant of the state sequence o :
50,81,..., if & can be obtained from o by repeated transformations where a
state s in o is replaced with s,s’ in &, or a pair of adjacent states s,s’ in o is
replaced with s in & where s’ is a stuttering variant of s. A set of state sequences
S is called closed under stuttering if, for every state sequence o, o € S iff all
stuttering variants of o belong to S. An FsTS @ is called stuttering robust if the
set of ®-computations is closed under stuttering.

3 Operations on FSTS Modules

There are two important operations on FSTS modules: parallel composition and
restriction.

3.1 Parallel Composition

Let ®4: <V1, @1, P1, E1,51> and ®5: <V2, @2, P2, EQ, 5’2> be two FSTS modules.
These systems are called syntactically compatible if they satisfy

01 n V2 = V1 n 02 = w (OI“ equivalently V1 n V2 = Sl n Sz)

That is, only synchronization variables can be common to both systems. We
define the parallel composition of syntactically compatible ®; and ®,, denoted
® = &, || Do, to be the FsTs @: (V,0,p, E,S), where

V = T uUW
O = 0, A O,y
p= p1 N p2
E = E U E,
S = S US,

To indicate the relation between computations of a composed system and
computations of its constituents, we first prove the following lemma:

Lemma 1 Let ®1: (V1,01,p1,E1,S1) and ®y: (Vo, 09, p2, B, S2) be two com-
patible FSTS modules, x be a controlled signal variable of ®1, and o: sq, 81, 82, . ..
be a sequence of states. For every j > 0:

x is enabled in s; w.r.t. &1 < =z is enabled in s; w.r.t. ;|| Po.

Proof: (=) First, note that since z is a controlled signal variable of ®4, it is
also a controlled signal variable of ®; || ®2. Now, assume that s is a ®;-successor
of sj, s.t. s[z] # L and s[S1] = L. By the realizability requirement applied to
®, (see Definition 1), there exists a state s, s.t. pa(s,s’) and s'[S»] = L. Let
s" be the state that valuates each variable of ®; as s and all other variables
as s'. Since ®; and ®, are syntactically compatible, we have s"[z] # L and
s"[S1 U Sy] = L. Hence, by recalling that p; and ps can only refer to variables
in V7 and Vs, respectively, we have that p;(s,s") and pa(s,s”); ie., s is a
®; || ®y-successor of s;, and we are done.

The argument in the other direction is similar. o
We can now prove the following theorem:

Theorem 2 Let ®1: (V1,01,p1, E1,S1) and ®2: (Va, Oy, p2, B, So) be two com-
patible FSTS modules, and o: sg, s1,82,... be a sequence of states.

o is a computation of @1 || @2 <= o is both a computation of ®1 and of s.

Proof: (=) Due to symmetry, it suffices to prove that o is a computation of
®,. The fact that o satisfies the initiation and consecution requirements for ®;
follows easily from the definition of ®; || ;. What remains is to show that o is
fair (just) w.r.t. ®;. Let = be a controlled variable of ®; which is continuously

enabled w.r.t. ®;. We have to prove that z # L infinitely often. By Lemma 1,
we conclude that z is continuously enabled w.r.t. ®; || ®2. So, by the assump-
tion that ¢ is a computation of ®; || ®2, and is therefore just w.r.t. ®; || ®o,
we have x # L infinitely often.

(«<=) Again, it is easy to see that o satisfies the the initiation and consecu-
tion requirements for @, || ®5. To prove that o is fair w.r.t. ®; || @2, let = be a
controlled variable of ®; || ®2 which is continuously enabled w.r.t. ®; || ®5. By
the definition of ® || @2, z € (V1 \ S1) U (V2 '\ S2). Without loss of generality,
assume z € (V4 \ S1), i.e., z is a controlled variable of ®;. Using Lemma 1, we
see that x is continuously enabled w.r.t. @1, so that by the fact that o is fair
w.r.t. to ®;, we have x # L infinitely often. d

3.2 Restriction

In the operation of restriction, we identify a set of synchronization variables and
close off the system for external synchronization on these variables.
Let W C S be a set of synchronization variables of the rFsTs ®: (V,0,p, E, S).
We define the W -restriction of ®, denoted [own W: @], to be the FsTs 3: (Y~/ o, P, E, §>,
where

v 1%
© = 0
p = p
E = E
S = S\ W

Thus the effect of W-restricting the system ® amounts to moving the vari-
ables in W from S to C'. This movement may have a considerable effect on the
computations of the system.

Example 1 Consider the FsTS &, where

V=E=S : {z:{1,1}}
O =T
p =1V =1

Let ®: [own z. ®] denote the z-restriction of ®. The sequence below, in which
next to each state appears the set of all possible successors,

o: s (z1), {{z:1), (z:71)}
spz(m: L), {{z: 1), (z:71)}

is a computation of ® but is not a computation of ®. Note that 2 assumes a
non-_L value only at sg. The sequence ¢ is a computation of ® since z is not in

10

C (z € S), and therefore is not enabled w.r.t. S in any state of 0. On the other
hand, x is no longer a synchronization variable in i, since it belongs to C. The
sequence ¢ is not a computation of ® since it is unfair to x. This is because
now, r is enabled w.r.t. S; in every state of o, but s[z] # L only in so. From

this we can deduce that all computations of ® contain infinitely many states in
which = # L, but this is not necessarily the case for computations of ®.

The following lemma (whose proof is left for the final version) describes the
relation between computations of unrestricted and restricted systems.

Lemma 3 The infinite sequence
0. 80,851,582, - -
is a computation of [own W. ®] iff
1. o is a computation of ¢, and
2. o satisfies the justice requirement w.r.t. S\ W.

Thus, the computations of [own W. ®] can be obtained from those of ®.

Example 2 Consider the FsTs ®; defined by

Vi=E : {z,y:7Z,}
Sy {x}
0, : z=y=1
poo Y =3)A('=4) Vv (yY=1)A (@ #4)

and the rFsTS ®, defined by

Vo=FEy=8y : z:7,
O, : z=_1
p2 (=4 V(' =5V (z'=1).

Both of these FSTS modules have computations satistying [] <>(y = 3). There
exists, however, a computation of both ®; and ®; which by Theorem 2 is
therefore also a computation of ®; || ®, which does not satisfy [O(y = 3).
This computation is

In o, the variable y does not get the value 3 even once. This is fair, since y is
not enabled w.r.t. Sg, g, in any state of . This is because y' # L Az’ = L is

11

false in every state of 0. Now, suppose we close off & with respect to z, to get
the FsTS module B
®: [own z. [P || ®o]].

In 5, z is no longer a synchronization variable, and therefore y is continuously
enabled w.r.t. Sz in o (in every state, in fact). However, it is obviously not
the case that y # L is satisfied infinitely often in o, and hence o is not a
computation of ®. In conclusion, we see that only the restriction of z guarantees

OOy =3).

4 Compositional Verification of FsTs Modules

In this section we show how to construct compositional verification of the tem-
poral properties of FSTS’s, concentrating on liveness properties.

First, we define an appropriate logic. Let ELTL be LTL extended with the unary
predicate ready. An ELTL model is a pair M = (L,o0), where o is an infinite
sequences of the form

o: 5¢,51,82,..., where s; € X, for every j > 0,
and L : ¥ — 2. ELTL formulas are interpreted as follows.

e For a state formula p, (M, j) =p < s; =p.

o (M,j)E-p & (M,)) ¥ p.

o (M,j)EpVa < (Mj)Ep or (M,j)FEaq

s (M. j)EOp & (Mj+1)FEp.

e (M,j) EpUq + (M,k) = q for some k > j and (M, i) | p for all i,
j<i<k.

e For a state formula p, (M, j) |= ready(p) < 3Is € L(s;) s.t. s = p.

As usual, we use the abbreviations < p for TUp and [Jp for = —p.

We say that a model M satisfies an ELTL formula p, written M |= p, if
(M,0) = p-

Notation: For an ELTL model M = (L,o), we denote by o(i), the i + 1-th
element of o.

For an FsTs @, the ELTL model M = (L, 0) is called a ®-model, if

1. o is a computation of ®, and

12

1. & O Oready(zr = a1 Ao Az =c¢y), where {z1,...,2,} D So, N So,
2. OO Oready(zr = Ao oAz =cp)

O || P EO Oready(zr =1 Ao Az =)

Figure 1: Rule READY.

2. Forevery j =0,1,2,..., L(o(j)) is the set of all possible ®-successors of
a(j), ie., L(a(j)) = image(p, {o(j)})-

We write ® |= p, and say that p is valid over ®, if M = p, for every ®-model
M.

Definition 2 An ELTL formula is called universal, if it does not contain ready
or if each occurrence of ready appears under an odd number of negations.

We present our method by formalizing the intuitive arguments used in Example
2. In the proof, we introduce several deductive rules that we believe may be
useful in typical liveness proofs. The soundness of these rules is proved in the
sequel.

Let us begin by noting that

@1, ®y = O ready(y = 3 A7 = 4), (1)

can be verified independently for ®; and for ®;. From (1) and the temporal
tautology ¢ — < ¢, we can derive

&y, &y = O ready(y =3 Az =4). (2)
Applying rule READY, presented in Fig. 1, to (2) yields
Py || @2 = O Oready(y =3Ax =4). (3)
From the latter, we can easily derive
By || B = < O ready(y # 1). (4)
By applying rule ownN (Fig. 2) to (4), with W = {z}, we get

[own z.[®, || ®,]] = O [ready(y # 1) (5)

~ >l
'

P

Now, since S¢ = 0}, we can use axiom CONT (Fig. 3), and (5) with z = y, to
derive

eEOOW#L). (6)

13

® |= p, where p € ELTL

[own W.®] = p

Figure 2: Rule OWN.

O =C Oready(z # LASep =1) = OOz # L), where z € Cy

Figure 3: Axiom CONT.

It is not difficult to prove
o =0@=3Vvy=1). (7)
By applying rule comp (Fig. 4) to the latter, we get
P || @ =0O@=3vy=1). (8)
We now apply rule own (Fig. 2) to (8), to get
DO =3vy=1). (9)

The latter, together with (6) implies ® = [] <>(y = 3) which completes the
proof.

Now, as promised, we prove the soundness of the deductive rules. We start with
two lemmas that follow from Theorem 2, and characterize the relation between
ELTL models of a composed system and those of its constituents.

Lemma 4 Let &, and ®, be two compatible fsts modules, My = (L1,0) be a
&, -model, and My = (Ls,0) be a ®o-model. Then

(Ln,0) is a ®1 || @2 -model, where Ln(s) = L1(s) N La(s), for every s € X.

Lemma 5 Let @1 and ®o be two compatible fsts modules, and M = (L,0) be a
@, || Po-model. Then

(Le,,0) is a ®1 -model, where Lo, (s) = image(pas,,{s}), for every s € X.

Theorem 6 The rule READY is sound. That is, let ®1: (V1,01,p1, F1,S1) and
Dy (Va, 09, p2, Ea, So) be two compatible FSTS’s, and {z1,..., zn} be a set of

14

®, = p, where p € ELTL is universal

Py [[Q2= p

Figure 4: Rule comp.

variables s.t. {z1,...,2,} 2 S1 N Sa:

(@1 = O Oready(zi = a1 Ao Az =) A
(P =S dready(zr =i Ao Az = cn))) —
(@1 || P2 = & Oready(z1 = a1 Ao Az = ¢p)).

Proof: [(sketch)] Let M = (L,0) be a ®; || ®2-model. Use Lemma 5 to con-
struct a ®;-model, My = (Lo,,0), and a ®y-model, My = (Ls,,0). By the
assumption,

M, = O QOready(zr =ci A...Nzp =cp) and
My, = O Oready(zr = N... Az, =cp).

Hence, there exists an ig s.t. for all 7 > ig,

(Mlzj)
(Ms,5) E ready(zi =c1 A... Az,

= ready(zi =c1 A...Azy =¢y) and

Cn).

Note that
{#1,..., 20} 251 NS, DVI N5,

so that using the realizability requirement (see Def. 1), it is not too difficult to
prove that for every j > iq:

(Lo, N Lo,,0),j) = ready(zn =c1 A ... Az = cp).

That is
M= Oready(zn = Ao Az = cp).

ol

Theorem 7 The rule OWN (Fig. 2) is sound. That is, let ®: (V,0,p,E,S) be
an FSTS, W C S be a set of variables, and p be an ELTL formula. Then

(®F=p) — (fown W.Q] = p).

15

Proof: Let Mown = (L,0) be a [own W.®]-model. First, note that o is a
computation of [own W. @], so by Lemma 3 it is also a computation of ®. Next,
recall that for every j > 0, L(o(7)) is the set of all possible [own W. ®]-successors
of o(j); but since ® and [own W. ®] have the same transition relation, L(o(j))
is also the set of all possible ®-successors of o(j). Thus, Mown is a ®-model,
and by the assumption Mown E p. a

Theorem 8 The aziom CONT (Fig. 3) is valid. That is, let ®: (V,0,p, E,S)
be an FSTS, and z be a controlled variable of ®. Then

= O Oready(z# LAS=1) - OOz # 1).

Proof: (sketch) Suppose that M = (L,0) is an ®-model, and z € Cp. o is a
computation of ®, and is therefore fair w.r.t. z. The observant reader would
notice that

O Oready(z# LAS=1) - O O(z# 1)

is simply a reformulation of the justice requirement w.r.t. z. From this it is not
difficult to complete the proof. o
To prove the soundness of the COMP, we need some preparation.

Definition 3 An ELTL formula is called existential, if it does not contain ready
or if each occurrence of ready appears under an even number of negations.

Lemma 9 Let My = (0, L1) and My = (o, L) be two ELTL models, s.t. La(o(j)) C

Ly(0(j)), for each j = 0,1,2,.... Then, for every ELTL formula p, and every
i=0,1,2,.. .

1. (M1,3) =pA (p is universal) — (Ms,i) = p), and
2. ((Ma,i) EpA (pis existential) — (My,i) = p).

Proof: [(sketch)] The proof is carried out by mutual induction on the structure
of p. Let us only mention that for the p = —(q) case, observe that if —(q)
is universal then ¢ is existential, and if —(q) is existential then ¢ is universal.
Hence, (1) follows from the induction hypothesis for (2), and vice-versa. a4

Theorem 10 The rule comp (Fig. 4) is sound. That is, let ®1 and @2 be two
compatible fsts modules, and p be a universal ELTL formula. Then

(@Fp) = (2] P2 D).
Proof: Suppose M|| = (L,0) is a ®; || ®s-model. By Lemma 5, the ELTL model
M, = (Le,0), where Lo, (s) = image(ps,, {s}), for every s € X, is a ®;-model.
So, by the assumption, M; |= p. Now, for every state s € X:

L(s) = image(pa, |o,, {s}) C image(pa,,{s}) = La,(s).

16

Hence, recall that p is universal, so that by using Lemma 9 (with My = M and
i =0), we can conclude M = p. a4

We conclude with a practical remark. Verification of FSTS specification can be
done by using existing symbolic model-checking algorithms. Computing the L-
sets comes at no extra cost, since the predicate ready(p) is equivalent to the CTL
formula E X p which every model checker knows how to compute very efficiently.

5 The FSTS semantics of SIGNAL

As mentioned in the introduction, the FSTS model is a significant extension of
the previous, more basic, asTs model [KP96] obtained by introducing oper-
ations (parallel composition and restriction) and by addressing fairness. The
translation from SIGNAL programs to corresponding FSTS specifications, how-
ever, is not affected by these extensions, and can be carried out exactly as with
asTs simply by taking the input/output variables as the externally observable
variables and also as the synchronization variables. Nevertheless, to make the
paper more self-contained, we present below the translation given by Kesten
and Pnueli [KP96].
For a variable v, clocked(v) denotes the assertion:

clocked(v) :v # L

In the following, we describe how to construct an FsTS ®p corresponding to
a given SIGNAL program P.

System Variables

The system variables of ® are given by V = U U X, where U are the SIGNAL
variables explicitly declared and manipulated in P, and X is a set of auxiliary
variables. An auxiliary variable by the name of z.v is included in X for each
expression of the form v § appearing in P. For simplicity, we assume that the §$
operator is only applied to variables and not to more general expressions. The
value of z.v is intended to represent the value of v at the previous instance
(present excluded) that v was different from L.

Externally observable and synchronization variables

The externally observable variables E and also the synchronization variables S
are those explicitly declared in P as input/output variables.

17

Initial Condition
The initial condition for ® is given by
O: /\ u=1 A /\ zw=1
uelU z.velU

As will result from our FSTS translation of SIGNAL programs, they are all stut-
tering robust. Consequently, we can simplify things by assuming that the first
state in each run of the system is a stuttering state.

Transition Relation

The transition relation p will be a conjunction of assertions, where each SIGNAL
statement gives rise to a conjunct in p.

We list the statements of SIGNAL and, for each statement S, we present the
conjunct contributed to p by S.

Basic Instructions

e Consider the SIGNAL statement y := f(v1,...,v,), where f is a state-
function. Its contribution to p is given by:

clocked(y') = clocked(vy) = ... = clocked(v),)
A (clocked(y') — y' = flvi,...,v)))
This formula requires that the signals y, vy, ..., v, are present at precisely
the same time instants, and that at these instants y = f(vy,...,v,).

e The contribution of the statement

y:=ov$ init vy

is given by:
z'.v = if clocked(v') then v' else z.v
if —clocked(v') then L
Aoy = else if z.wv=1 then g
else T.v

The first conjunct of this formula defines the new value of z.v. If the new
value of v is different from L, then the new value of x.v is the new value
of v. Otherwise, xz.v retains its current value.

The second conjunct of the formula defines the new value of y by consid-
ering three cases. The first case requires that y' = L whenever v = L.
This together with the other two cases implies that the clocks of v and

18

y are identical. The second considered case is the first position at which
v" # 1. Observe that the fact that we are at the else clause of the test
—clocked (v') implies that o' # L, and that z.v = L implies that there was
no previous position at which v # L. In this case, we take the new value
of y (y') to be vg. The last case considers subsequent positions at which
v’ # L. At all of these positions, y' is taken to be the value of z.v, i.e., the
value of v as it were at the previous (v’ # L)-position and as memorized
in z.v.

e The contribution of the statement
y:=v when b

is given by:
y' = if (b' =7) then v’ else L.

e The contribution of the statement
y := u default v
is given by:

y' = if clocked(u') then v’ else v'.

Shorthand Instructions

e The contribution of the statement
p(synchro v,),
which states that v and y have the same clock, is given by:

clocked (v') = clocked (y')

e The contribution of the statement
y := when(v),
which is an abbreviation for: y := v when v, for a boolean variable v, is
given by:
y' = if (v' = T) then T else L.
e The contribution of the statement
y := event(v),

which defines y to be a pure signal representing the clock of v, is given by:

y' = if clocked(v') then T else 1.

19

GUARD_COUNT {input event fill, output boolean empty}

synchro (when(zn = 0)), fill
| n:= (10 when fill) default (zn L 1)
| zn:= n $ init 0
| empty := when(n = 0) default (not fill)

Figure 5: A sample SIGNAL program.

Example

In Fig. 5, we present a SIGNAL program example, taken from [BGJ91]. We
simplified the program to make it more self-contained. This small program
models a system with a replenishable resource, for example, a water reservoir.
The input event fill signals that that the reservoir is filled to the top. The local
integer variable n measures the current water level. At each fill signal, the level
is set to 10 (assumed maximal capacity). Then the level gradually decreases
until it reaches 0. The output signal empty will register T when the water level
drops to 0, and will register ¥ when the reservoir is next filled.

The program as an FSTS

The FsTs translation of the SIGNAL program of Fig. 5 is defined as follows:
The system variables are given by:

: i ty, zn, n, T.n }.
Ve {f ,empvy, zn, n, x.n}
U X

The externally observable and synchronization variables are given by:
E=5: {fill, empty}.
The initial condition is given by:

O: fil=empty=2zn=n=z.n= 1.

20

The transition relation p is given by:

(zn' =0) = clocked(fill")
if fill' =71 then 10
A n = else if clocked(zn') then zn' 11
else 1
A xz.n' = if clocked(n') then n' else z.n
if =clocked(n') then L
A zn' = elseif z.n= 1 then 0
else z.n
if n' =0 then T
A empty’ = elseif fill' =T then F
else 1

6 Conclusions and Future Work

We have presented FSTS, a compositional semantics of synchronous systems that
captures both safety and progress properties. We have motivated the fairness
requirement and the operations of parallel composition and of restriction of
variables by means of intuitive examples.

We have then introduced an extended version of linear temporal logic (ELTL),
in which it is convenient to express safety and liveness properties of synchronous
specifications, and have presented (and demonstrated) a sound compositional
proof system for it.

We have concluded by specifying how to translate programs written in an
expressive representative of the synchronous school, namely SIGNAL, to FSTS.

Directions in future work which we intend to pursue are

e Specifying in detail the FSTS semantics of LUSTRE, ESTEREL and STATECHARTS.

e Apply the deductive proof system developed here together with existing
symbolic model-checking algorithms to the verification of FSTS specifica-
tions that result from actual synchronous programs.

References

[AL95] M. Abadi and L. Lamport. Conjoining Specifications. TOPLAS,
17(3), pages 507 534, 1995.

[BGA97] A. Benveniste, P. Le Guernic, and P. Aubry. Compositionality in
dataflow synchronous languages: specification & code generation.
Proceedings of COMPOS’97.

21

[BGJI1]

[BG92

[CHPPSY]

[H93)]

[Har87]

[KPIG6]

[MP91]

[Ow95]

[PSS98]

A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous
programming with event and relations: the SIGNAL language and
its semantics. Science of Computer Programming, 16, pages 103
149, 1991.

G. Berry and G. Gonthier. The ESTEREL Synchronous Program-
ming Language: Design, semantics, implementation. Science of
Computer Programming, 19(2), 1992.

P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. LUSTRE,
a Declarative Language for Programming Synchronous Systems.
POPL’87, ACM Press, pages 178 188, 1987.

N. Halbwachs. Synchronous Programming of Reactive Systems.
Kluwer, Dordrecht, The Netherlands, 1993.

D. Harel. Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming, 8, pages 231-274, 1987.

Y. Kesten and A. Pnueli. An asTs-based common semantics for
SIGNAL and STATECHARTs, March 1996. Sacres Manuscript.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems: Specification. Springer-Verlag, New York, 1991.

S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal Verifi-
cation for Fault-Tolerant Architectures: Prolegomena to the Design
of PVS. IEEE trans. on software eng., 21(2), pages 107 125, 1995.

A. Pnueli, M. Siegel, and E. Singerman. Translation Validation.
TACAS’98, LNCS, 1998.

22

