
The Formal Semanti
s of PVS1Sam Owre and Natarajan Shankarowre�
sl.sri.
om shankar�
sl.sri.
omURL: http://www.
sl.sri.
om/sri-
sl-fm.htmlSRI InternationalComputer S
ien
e LaboratoryMenlo Park CA 94025 USATe
hni
al Report CSL-97-2RAugust 1997, Revised Mar
h 1999

1Funded by National Aeronauti
s and Spa
e Administration Contra
t NAS1-18969, Task 11 and National S
ien
e Foundation Grant CCR 9300444.

ii

Abstra
tA spe
i�
ation language is a medium for expressing what is
omputedrather than how it is
omputed. Spe
i�
ation languages share some featureswith programming languages but are also di�erent in several important ways.For our purpose, a spe
i�
ation language is a logi
 within whi
h the behaviorof
omputational systems
an be formalized. Although a spe
i�
ation
an beused to simulate the behavior of su
h systems, we mainly use spe
i�
ations tostate and prove system properties with me
hani
al assistan
e.We present the formal semanti
s of the spe
i�
ation language of SRI'sPrototype Veri�
ation System (PVS). This spe
i�
ation language is based onthe simply typed lambda
al
ulus. The novelty in PVS is that it
ontains veryexpressive language features whose stati
 analysis (e.g., type
he
king) requiresthe assistan
e of a theorem prover. The formal semanti
s illuminates several ofthe design
onsiderations underlying PVS, parti
ularly the intera
tion betweentheorem proving and type
he
king.

iii

iv

Contents
1 Introdu
tion 11.1 Real versus Idealized PVS . 21.2 Semanti
 Preliminaries . 31.3 Related Work . 51.4 Outline . 72 The Simple Type Theory 92.1 Contexts . 102.2 Type Rules . 102.3 Semanti
s . 122.4 Some Synta
ti
 Operations . 162.5 Type De�nitions . 172.6 Summary . 183 Adding Subtypes 203.1 Summary . 294 Dependent Types 304.1 Summary . 405 Theories and Parametri
 Theories 415.1 Theories without Parameters 415.2 Constant De�nitions . 455.3 Parametri
 Theories . 455.4 Summary . 486 Conditional Expressions and Logi
al Conne
tives 496.1 Summary . 52v

7 Proof Theory of PVS 537.1 PVS Proof Rules . 537.1.1 Stru
tural Rules . 537.1.2 Cut Rule . 547.1.3 Propositional Axioms 547.1.4 Context Rules . 557.1.5 Conditional Rules . 557.1.6 Equality Rules . 557.1.7 Boolean Equality Rules 567.1.8 Redu
tion Rules . 567.1.9 Extensionality Rules 567.1.10 Type Constraint Rule 577.2 Soundness of the Proof Rules 577.3 Summary . 608 Con
lusion 61Bibliography 64

vi

Chapter 1Introdu
tionPVS is a system for spe
ifying and verifying properties of digital hardwareand software systems. The spe
i�
ation language of PVS is designed to admitsu

in
t, readable, and logi
ally meaningful spe
i�
ations. The PVS spe
i�
a-tion language is designed for e�e
tive proof
onstru
tion rather than eÆ
ientexe
ution. The design
onsiderations underlying the language are thereforesomewhat di�erent from those of a
orresponding programming language. Forexample, the language
ontains
onstru
ts that
an be stati
ally type
he
kedonly with the assistan
e of a theorem prover. This is a

eptable be
ause thePVS spe
i�
ation language is intended for use in
onjun
tion with powerfulsupport for automated theorem proving. The logi
 of PVS is based on a sim-ply typed higher-order logi
 with fun
tion, re
ord, and produ
t types, andre
ursive type de�nitions. This type system is extended with subtypes thatare analogous to subsets, and with dependently typed fun
tions, re
ords, andprodu
ts. The resulting type system has several advantages. It is possible, forinstan
e, to stati
ally ensure that all array referen
es are within their respe
-tive array bounds. PVS spe
i�
ations are organized into theories that
an beparametri
 in types as well as individuals. While the semanti
s of the simplytyped fragment is straightforward, the extensions su
h as subtyping, depen-dent typing, and (theory-level) parametri
ity do pose signi�
ant
hallenges.This report presents a
on
ise but idealized de�nition of the PVS spe
i�
a-tion language and its intended formal set-theoreti
 semanti
s. It is neitheran overview of the PVS language nor a guide to the Prototype Veri�
ationSystem (see the PVS user manuals [OSRSC98℄).The primary purpose of the formal semanti
s is as a useful referen
e for thedevelopers and users of PVS. The idealized
ore of the spe
i�
ation languageas presented here serves as a su

in
t foundation for studying the expressive1

2 Chapter 1. Introdu
tionpower of the language. Pertinent questions about PVS are answered dire
tlyby the formal semanti
s presented here:1. What is the semanti

ore of the language, and what is just synta
ti
sugar?2. What are the rules for determining whether a given PVS expression iswell typed?3. How is subtyping handled, and in parti
ular, how are proof obligations
orresponding to subtypes generated?4. What is the meaning, in set-theoreti
 terms, of a PVS expression orassertion?5. Are the type rules sound with respe
t to the semanti
s?6. Are the proof rules sound with respe
t to the semanti
s?7. What is the form of dependent typing used by PVS, and what kinds oftype dependen
ies are disallowed by the language?8. What is the meaning of theory-level parametri
ity, and what, if any, arethe semanti
 limits on su
h parameterization?9. What language extensions are in
ompatible with the referen
e semanti
sgiven here?Chapter 8 summarizes the answers to these questions.1.1 Real versus Idealized PVSThe semanti
 treatment in this report is in
omplete in some important ways.It does not treat the nonlogi
al parts of the language. In parti
ular, it ignoresarithmeti
 and re
ursive de�nitions. It also omits abstra
t datatypes [OS97℄.These will be treated in a future expanded version.The present semanti
s also makes several idealizations from the real PVSfor the purpose of
larity. While the semanti
 treatment is not
omprehensive,the idealization of PVS used here is faithful to the implemented form of PVS.1. No name resolution. All names must be in fully resolved form with theirtheory name and a
tual parameters. We regard name resolution as a
onvenien
e provided by the PVS type
he
ker and not an operation

1.2. Semanti
 Preliminaries 3with any semanti
 relevan
e. A te
hni
al des
ription of name resolutionin PVS will be given elsewhere.2. No overloading. As with name resolution, overloading is a synta
ti

onvenien
e with no semanti
 import.3. No IMPORTINGs. The importing of theories is a hint to name resolution.The semanti
 de�nition assumes that all instan
es of theories de
laredprior to the present one are visible.4. Variable de
larations ignored. All variables must be lo
ally de
lared.Global variable de
larations are regarded as a synta
ti

onvenien
e.5. No re
ords. These are ignored in the semanti
 treatment sin
e produ
ttypes
apture all the semanti
ally essential features of re
ords.1.2 Semanti
 PreliminariesThe PVS spe
i�
ation language is based on higher-order logi
. This meansthat variables
an range over individuals (su
h as numbers) as well as fun
tions,fun
tions of fun
tions, and so on. As is well known, some type distin
tion isneeded; otherwise, it is easy to obtain a
ontradi
tion by de�ning the predi
ateN(P) as :(P (P)) so that both N(N) and :N(N) hold. In the theory oftypes [Chu40℄, the universe is strati�ed into distin
t types so that a predi
ate
an be applied only to a lower type and thus
annot be applied to itself.Types also serve as a powerful me
hanism for dete
ting synta
ti
 and se-manti
 errors through type
he
king. This role of types is best exempli�ed bytheir use in various programming languages su
h as Algol, Ada, and ML, andis also heavily emphasized in the PVS type system.The desirability for strong typing in a spe
i�
ation logi
 is not widely a
-
epted. Fraenkel et al [FBHL84℄ express the opinion that su
h typing is repug-nant in a mathemati
al logi
 sin
e it
onstrains expressiveness by not allowingindividuals of di�ering types to be treated uniformly. Lamport [Lam94℄ arguesthat type
orre
tness is like any other program property and should be estab-lished by means of a proof rather than by synta
ti
 restraints. Lamport andPaulson [LP97℄ analyze the tradeo�s between typed and untyped spe
i�
ationlanguages. We
laim that1. Types impose a useful dis
ipline on the spe
i�
ation.2. Types lead to easy and early dete
tion of a large
lass of synta
ti
 andsemanti
 errors.

4 Chapter 1. Introdu
tion3. Type information is useful in me
hanized reasoning.The semanti
s of a higher-order logi
 is given by mapping the well-formedtypes of the logi
 to sets, and the well-formed terms of the logi
 to elementsof the sets representing their type. The set
onstru
tions we use
an be for-malized within Zermelo-Fraenkel set theory with the axiom of
hoi
e (ZFC).The intended interpretation of a fun
tion type in higher-order logi
 is that itrepresents the set of all fun
tions from the set representing the domain type tothe set representing the range types.1 PVS also has predi
ate subtypes thatare to be interpreted over the subsets of the set representing the parent type.The semanti
s of PVS will be given by
onsidering a sequen
e of in
reas-ingly expressive fragments of PVS. The semanti
s of ea
h fragment of PVSwill be presented in three steps. The �rst step is to de�ne a set-theoreti
universe
ontaining enough sets to represent the PVS types. The se
ond stepis to de�ne a type
he
king operation that determines whether a given PVSexpression is well typed. The third step is to de�ne a semanti
 fun
tion thatassigns a representation in the semanti
 universe to ea
h well-typed PVS typeand term.We �rst lay out the ZFC set
onstru
tions needed for de�ning the semanti
sof PVS. The base types in PVS
onsist of the Booleans bool and the realnumbers real. The Booleans
an be modeled by any two-element set, say 2
onsisting of the elements 0 and 1, where 0 is the empty set and the onlyelement of the set 1. The real numbers
an be
aptured by means of Dedekind
uts or Cau
hy sequen
es, and we label this set R.To de�ne the semanti
s, we need a universe that
ontains the sets 2 andR and is
losed under Cartesian produ
ts (written as X � Y) and power sets(written as }(X)). Note that fun
tions are modeled as graphs, that is, setsof ordered pairs, so that a fun
tion type [A!B℄ is represented by a subset ofthe powerset }([[A℄℄ � [[B℄℄) of the Cartesian produ
t of the sets [[A℄℄ and [[B℄℄representing A and B, respe
tively. A set F that is a subset of X � Y is thegraph of a fun
tion with domain X and range Y if for every x 2 X there isa y 2 Y su
h that hx; yi 2 F , and whenever hx; yi 2 F and hx; y0i 2 F , wehave y = y0. For su
h a set F , Fun
tion(F) holds and dom(F) = X. Theset of graphs of total fun
tions from a set Y to a set X is represented as XY .1It is only in the standard model of higher-order logi
 that the fun
tion type is requiredto represent the set of all fun
tions from the domain set to the range set. Higher-orderlogi

an be interpreted in general models where the fun
tion type
an be interpreted inany manner as long as it satis�es the various axioms su
h as appli
ation, abstra
tion, andextensionality [And86℄. Higher-order logi
 is
omplete with respe
t to the general modelsinterpretation so that a statement that is valid in all models is provable. It is, however,in
omplete with respe
t to the standard model.

1.3. Related Work 5If F is the graph of a fun
tion and t an element in its domain, then F (t)represents the result of applying the fun
tion F to t. At the semanti
 level, afun
tion F will never be applied to an argument t outside dom(F), be
ause inthe PVS language, a fun
tion appli
ation is type
he
ked so that the argumentexpression has the same type as the domain type of the fun
tion expression.We
an model the entire type universe of the simply typed fragment ofPVS by the set U , whi
h is de�ned
umulatively by starting from the basesets 2 and R, and in
luding the Cartesian produ
ts, the fun
tion spa
es, andsubsets of previously in
luded sets, at ea
h stage. Cartesian produ
ts are usedto model produ
ts in PVS, and fun
tion spa
es model fun
tion types. Subsetsare needed to model predi
ate subtypes. It is suÆ
ient to iterate these stagesup to the ordinal !.De�nition 1.1 (type universe)U0 = f2;RgUi+1 = Ui [fX � Y j X; Y 2 Uig [fXY j X; Y 2 Uig [[X2Ui }(X)U! = [i2!UiU = U!We refer to U as the basi
 universe.2 The semanti
 de�nitions below willassign a set in U to ea
h PVS type and an element in SU to ea
h well-typedterm of PVS. The rank of a set X in U is the least i su
h that X 2 Ui. Thenotion of rank plays an important role in the semanti
s of dependent typesand parametri
 theories.1.3 Related WorkThere is a long history of work in spe
i�
ation languages. Many ideas sim-ilar to those underlying the PVS spe
i�
ation language also o

ur in otherspe
i�
ation languages.The wide-spe
trum languages are typi
ally based on set theory or higher-order logi
. The language VDM is one of the earliest su
h spe
i�
ation for-malisms [Jon90℄. It is based on a �rst-order logi
 with partial fun
tions aug-mented with datatype axioms. The datatype theories in VDM in
lude those2The in
lusion of XY in U is a
tually redundant but aids
larity.

6 Chapter 1. Introdu
tionfor �nite sets, maps, sequen
es, and re
ursive datatypes su
h as lists and trees.VDM has a notion of datatype invariants that yields a simple form of predi
atesubtyping. Operations on state are spe
i�ed in terms of pre-
ondition/post-
ondition pairs. Spe
i�
ations are stru
tured into parameterized modules. In
ontrast to VDM, the PVS language is based on stri
tly typed higher-orderlogi
 with a built-in notion of predi
ate subtyping and dependent typing. Theresulting PVS logi
 is more
ompa
t in that many of the datatypes that arepresented axiomati
ally in VDM
an be de�ned within PVS. There is no built-in notion of state in PVS sin
e it is possible to use the higher-order logi
 ofPVS to de�ne a variety of state-based formalisms, in
luding various linear andbran
hing-time temporal logi
s. VDM uses a 3-valued logi
 for the logi
al
on-ne
tives in order to deal with partial fun
tions, whereas PVS uses a
lassi
al2-valued logi
 and predi
ate subtyping to assign a type to a partial fun
tionas a total fun
tion on its domain of de�nition. Jones [Jon90℄ provides only aninformal semanti
s for VDM. The RAISE system is a
omprehensive toolsetbased on the ideas of VDM [RAISE92℄.The Z spe
i�
ation language [Spi88℄ is another wide-spe
trum languagebased on a typed �rst-order set theory. A Z spe
i�
ation is a
olle
tionof s
hemas
onsisting of de
larations of types and
onstants a

ompaniedwith invariants. Z s
hemas
an either spe
ify datatype invariants or pre-
ondition/post-
ondition
onstraints. A s
hema
al
ulus is used to
ombines
hemas using logi
al
onne
tives. Spivey [Spi88℄ presents a formal semanti
sfor Z without giving a proof system or a soundness proof. Spivey's treat-ment of partial fun
tions in the Z semanti
s employs the
ommonly used
onvention that f(a) when a is not in the domain of a is some arbitrarily
hosen value. This is �ne for most purposes but
an be
onfusing when deal-ing with re
ursively de�ned partial fun
tions. For example, the de�nitionbad(x) = 1 + bad(x) is everywhere unde�ned but admitting it as an axiomleads to an immediate
ontradi
tion. Z also la
ks any me
hanism for
onser-vative extensions su
h as de�nitional prin
iples for
onstants and datatypes sothat the
onsisten
y of Z spe
i�
ation has to be demonstrated by exhibiting amodel.Algebrai
 spe
i�
ation languages like OBJ [FGJM85℄ and Lar
h [GH93℄provide an equational/rewriting framework for spe
ifying datatypes and op-erations on datatypes. OBJ has many of the same theory parameterizationme
hanisms as PVS. The subsort me
hanism in OBJ is also similar ex
eptthat it is handled by introdu
ing retra
ts or runtime
he
ks rather than proofobligations generated by the type
he
ker. The OBJ logi
 is quite restri
ted
ompared to PVS sin
e it is based on a �rst-order, equational framework withan initial semanti
s where two ground terms are distin
t unless they
an be

1.4. Outline 7proved equal. OBJ has very limited support for proof development and isprimarily intended as an exe
utable spe
i�
ation language.The spe
i�
ation languages that are
loser to PVS are those that a
-
ompany various automated proof
he
king systems. The
losest of these isEhdm [EHDM93℄, whi
h employs a similar higher-order logi
 with subtypingand proof obligation generation. Ehdm la
ks many of the features of PVS:subtyping is restri
ted to type de
larations and there is no dependent typing.Higher-order logi
 is used by other systems su
h as HOL [GM93℄ andTPS [AMCP84℄. Both HOL and TPS employ simply typed higher-order logi
without features su
h as subtyping, dependent typing, or parametri
 theories.Andrews [And86℄ gives a thorough a

ount of the semanti
 aspe
ts of higher-order logi
. The formal semanti
s of the HOL logi
 are
arefully outlined (byPitts) in the book by Gordon and Melham [GM93℄.Systems like Coq [DFH+91℄ and Nuprl [CAB+86℄ are based on intuitionisti
higher-order logi
s. Coq allows quanti�
ation over types, whereas Nuprl hasquanti�
ation over a hierar
hy of type universes. Both logi
s admit dependenttyping. The set-theoreti
 semanti
s of dependently typed intuitionisti
 typetheories has been studied by Dybjer [Dyb91℄ and Howe [How91, How96℄. Notsurprisingly, their semanti
 treatment of dependent typing is similar to theone given here but they do not delimit the possible dependen
ies as is donewith the PVS semanti
s. The PVS semanti
s presented here
learly spe
i�esthe kind of type dependen
ies that are disallowed in the logi
. Dybjer andHowe also do not address subtyping but do des
ribe the semanti
s of languagefeatures missing in PVS (type universes in the
ase of Howe, and indu
tivefamilies in the
ase of Dybjer). Dybjer does not identify the universe overwhi
h terms and types are interpreted. Howe requires an in�nite sequen
e ofina

essible
ardinals for his universe
onstru
tion.1.4 OutlineIn Chapter 2, we de�ne the syntax and semanti
s of the simply typed fragmentof PVS. Type de�nitions are also introdu
ed in this
hapter along with thede�nition of de�nitional equivalen
e on types. Chapter 3 adds subtyping tothe simply typed fragment and spe
i�es the additional type rules and semanti
de�nitions that are needed. Chapter 4 extends the language with dependentfun
tion and produ
t types. Theories and parametri
 theories are introdu
edinto the language in Chapter 5. The type rules and semanti
s for
onditionalexpressions and the logi
al
onne
tives de�ned using
onditional expressions

8 Chapter 1. Introdu
tionare introdu
ed in Chapter 6. Chapter 7 spe
i�es the axioms and inferen
erules of PVS.

Chapter 2The Simple Type TheoryPVS is a strongly typed spe
i�
ation language. The simply typed fragment in-
ludes types
onstru
ted from the base types by the fun
tion and produ
t type
onstru
tions, and expressions
onstru
ted from the
onstants and variablesby means of appli
ation, abstra
tion, and tupling. Expressions are
he
kedto be well typed under a
ontext , whi
h is a partial fun
tion that assigns akind (one of TYPE, CONSTANT, or VARIABLE) to ea
h symbol, and a type tothe
onstant and variable symbols. We use the metavariables �, �, and �to range over
ontexts. The metavariables A, B, and T range over PVS typeexpressions, the metavariables r and s range over symbols (identi�ers), themetavariables x and y range over PVS variables, and the metavariables a, b,f , and g range over PVS terms. Given a
ontext � and a symbol s, we saythat �(s) is unde�ned if s is not de
lared in �.The pretypes of the simple type theory in
lude the base types su
h as booland real. A fun
tion pretype from domain pretype A to range pretype B is
onstru
ted as [A!B℄. A produ
t pretype of A1; A2 is
onstru
ted as [A1; A2℄.A type is a pretype that has been type
he
ked in a given
ontext. Types inthe simple type theory are simple enough that the only distin
tion betweenpretypes and types is that the symbols in a type must be appropriately de
laredin the given
ontext.Example 2.1 (pretypes) bool, real, [bool; real℄, [[real; bool℄!bool℄.The preterms of the language
onsist of the
onstants, variables, pairs,proje
tions, appli
ations, and abstra
tions. The metavariables
 and d rangeover
onstants. Pairs are of the form (a1; a2) where ea
h ai is a preterm.Appli
ations have the form f a where f and a are preterms. A pair proje
tionis an expression of the form pi a, where i 2 f1; 2g. Lambda abstra
tions have9

10 Chapter 2. The Simple Type Theorythe form �(x:T): a, where T is a pretype and a is a preterm. Parentheses areused for disambiguation. A term is a preterm that has been type
he
ked in agiven
ontext.Example 2.2 (preterms) TRUE, : TRUE, � (x : bool): :(x),p2 (TRUE; FALSE), (TRUE; � (x : bool) : : (: x)).2.1 ContextsA
ontext is a sequen
e of de
larations, where ea
h de
laration is either atype de
laration s : TYPE, a
onstant de
laration
 : T where T is a type,or a variable de
laration x : VAR T . Preterms and pretypes are type
he
kedwith respe
t to a given
ontext. The empty
ontext is represented as fg. Thewell-formedness rules for
ontexts are presented below. A
ontext
an alsobe applied as a partial fun
tion so that for a symbol s with de
laration D,(�; s:D)(s) = D and (�; s:D)(r) = �(r) for r 6= s. If s is not de
lared in �,then �(s) is unde�ned. If � is a
ontext, then for any symbol s, the kind ofthe symbol s in � is given by kind(�(s)). If the kind of s in � is CONSTANT orVARIABLE, then the type(�(s)) is the type assigned to s in �.Example 2.3 (
ontext)bool : TYPE; TRUE : bool; FALSE : bool; x : VAR [[bool; bool℄!bool℄2.2 Type RulesThe type rules for the simple type theory are given by a re
ursively de�nedpartial fun
tion � that assigns1. A type �(�)(a) to a preterm a that is well typed with respe
t to a
ontext�.2. The keyword TYPE as the result of �(�)(A) when A is a well-formed typeunder
ontext �.3. The keyword CONTEXT as the result of �(�)(�) when � is a well-formed
ontext under
ontext �. The
ontext � is empty for the simply typedfragment so that type
he
king is always invoked as �()(�).Otherwise, � is unde�ned in the
ase of an ill-typed preterm or an ill-formedtype or
ontext.

2.2. Type Rules 11The type rules are given by the re
ursive de�nition for � . Type
he
kingin PVS assigns a \
anoni
al" type to a preterm. Customarily, type rules arepresented as inferen
e rules, but a fun
tional presentation is more appropriatefor PVS sin
e1. The type assignment is deterministi
. A term
an, in general, thoughnot in the simply typed fragment, be assigned a number of types but italways has at most one
anoni
al type.2. The soundness proof need only show that the meaning of the term is anelement of the meaning of its
anoni
al type. Thus, only the
anoni
altype derivation for a term has to be shown sound and not every validtype derivation.3. The meaning of a term is therefore given by re
ursion on the term itselfand not on its typing derivation. There is no need to show separately thatthis meaning is
oherent , that is, independent of the typing derivation.A fun
tional presentation of the type rules also leads to natural and straight-forward soundness arguments. Note that the well-formedness rules for
ontextsand types are trivial in the simply typed situation but be
ome more mean-ingful when the type theory is extended. Note also that in the type rules forexpressions and types, the well-formedness of the relevant
ontext is not ex-pli
itly
he
ked. These rules do preserve the well-formedness of the
ontext inea
h re
ursive
all so that if the initial
ontext is well formed, then so is everyintermediate one.De�nition 2.4 (type rules)�()(fg) = CONTEXT�()(�; s : TYPE) = CONTEXT; if �(s) is unde�nedand �()(�) = CONTEXT�()(�;
:T) = CONTEXT; if �(
) is unde�ned,�(�)(T) = TYPE;and �()(�) = CONTEXT�()(�; x: VAR T) = CONTEXT; if �(x) is unde�ned,�(�)(T) = TYPE;and �()(�) = CONTEXT�(�)(s) = TYPE; if kind(�(s)) = TYPE�(�)([A!B℄) = TYPE; if �(�)(A) = �(�)(B) = TYPE

12 Chapter 2. The Simple Type Theory�(�)([A1; A2℄) = TYPE; if �(�)(Ai) = TYPE for 1 � i � 2�(�)(s) = type(�(s));if kind(�(s)) 2 fCONSTANT; VARIABLEg�(�)(f a) = B; if �(�)(f) = [A!B℄ and �(�)(a) = A�(�)(�(x:T): a) = [T!�(�; x: VAR T)(a)℄; if �(x) is unde�nedand �(�)(T) = TYPE�(�)((a1; a2)) = [�(�)(a1); �(�)(a2))℄�(�)(pi a) = Ti; where�(�)(a) = [T1; T2℄In the type rule for lambda abstra
tion, the
onstraint that �(x) must beunde�ned
an be satis�ed by suitably renaming the bound variable sin
e wetreat terms as equivalent modulo the renaming of bound variables.Example 2.5 (type rules) Let
 label the
ontext bool : TYPE, TRUE : bool,FALSE : bool �()(fg) = CONTEXT�()(
) = CONTEXT�(
)([[bool; bool℄!bool℄) = TYPE�(
)((TRUE; FALSE)) = [bool; bool℄�(
)(p2(TRUE; FALSE)) = bool�(
)(�(x : bool): TRUE) = [bool!bool℄
2.3 Semanti
sRe
all that a preterm a with a type assigned by � under
ontext � is said to bea term of type �(�)(a) in the
ontext �. If
 is an assignment for the symbolsde
lared in
ontext �, the semanti
s of the simple type theory of PVS is givenby mapping a type T to a (possibly empty) setM(� j
)(T), and a term a withassigned type T to an element of the set M(� j
)(T) in the basi
 universeU . The assignment
 is a list of bindings of the form fs1 t1g : : :fsn tng.The appli
ation of an assignment
 to a symbol s is su
h that
fs tg(s) ist, whereas
fr tg(s) is
(s) when r 6� s.

2.3. Semanti
s 13The meaning fun
tion M returns the meaning of a well-formed type Aand a well-formed expression a in the
ontext � under an assignment
 asM(� j
)(A) and M(� j
)(a),respe
tively. The meanings of type names,
onstants, and variables de
lared in � are obtained from the assignment
.A fun
tion type is mapped to the
orresponding fun
tion spa
e. A produ
ttype is mapped to the
orresponding Cartesian produ
t. An appli
ationterm is interpreted by means of set-theoreti
 fun
tion appli
ation. A lambdaabstra
tion yields the graph of the
orresponding fun
tion. A pair expressionis mapped to the
orresponding set-theoreti
 ordered pair.De�nition 2.6 (meaning fun
tion)M(� j
)(s) =
(s);if kind(�(s)) 2 fTYPE; CONSTANT; VARIABLEgM(� j
)([A!B℄) = M(� j
)(B)M(� j
)(A)M(� j
)([T1; T2℄) = M(� j
)(T1)�M(� j
)(T2)M(� j
)(f a) = (M(� j
)(f))(M(� j
)(a))M(� j
)(�(x:T): a) = fhy; zi j y 2 M(� j
)(T);z =M(�; x: VAR T j
fx yg)(a)gM(� j
)((a1; a2)) = hM(� j
)(a1);M(� j
)(a2)iM(� j
)(pi a) = ti; whereM(� j
)(a) = ht1; t2iExample 2.7 (meaning fun
tion) Let ! be an assignment for the
ontext
 in Example 2.5, of the formfbool 2gfTRUE 1gfFALSE 0gthen M(
 j !)([bool; bool℄) = 2� 2M(
 j !)((TRUE; FALSE)) = h1; 0iM(
 j !)(�(x: bool): TRUE) = fh0; 1i; h1; 1igDe�nition 2.8 (satisfa
tion) A
ontext assignment
 is said to satisfy a
ontext � (in symbols
 j= �) i�1.
(bool) = 2;

14 Chapter 2. The Simple Type Theory2.
(TRUE) = 1;3.
(FALSE) = 0;4.
(s) 2 U whenever kind(�(s)) = TYPE, and5.
(s) 2 M(� j
)(type(�(s)))whenever kind(�(s)) 2 fCONSTANT; VARIABLEg.Example 2.9 (satisfa
tion)1. The assignment ! satis�es
ontext
.2. The assignment !fone 1gfzero 0g satis�es the
ontext
; one : TYPE; zero : one.We need one useful proposition that asserts that typing judgements arenot invalidated when the
ontext is extended.Proposition 2.10 If �()(�) = �()(�0) = CONTEXT and � is a pre�x of �0,then for all pretypes A, �(�)(A) = TYPE implies �(�0)(A) = TYPE, and for allpreterms a, �(�)(a) = A implies �(�0)(a) = A.The following theorems follow from the indu
tion suggested by the de�ni-tions of � and M. The �rst of these is straightforward and is given withoutproof.Theorem 2.11 (type
onstru
tion) If �()(�) = CONTEXT and �(�)(a) =A, then �(�)(A) = TYPE.Theorem 2.12 (type soundness) If �()(�) = CONTEXT,
 satis�es �, and�(�)(A) = TYPE, thenM(� j
)(A) 2 U .Proof. The proof is by indu
tion on the stru
ture of the pretype A. Re
allthat if X 2 U , then for some i, X 2 Ui. This yields three
ases:1. A � s: By De�nition 2.4, �(s) is de�ned and kind(�(s)) is TYPE. Thenby De�nition 2.6,M(� j
)(s) is
(s), and by De�nition 2.8,
(s) 2 U .

2.3. Semanti
s 152. A � [B!C℄: We then have that �(�)(B) = �(�)(C) = TYPE. Letting XlabelM(� j
)(B), and Y labelM(� j
)(C), we have by the indu
tionhypothesis that X 2 U and Y 2 U . Let j be the least rank su
hthat M(� j
)(B) 2 Uj and M(� j
)(C) 2 Uj. By De�nition 2.6,M(� j
)(A) = Y X , and hen
eM(� j
)(A) 2 Uj+1 by De�nition 1.1.3. A � [A1; A2℄: Again by De�nition 2.4 and the indu
tion hypothesis, wehave for ea
h i 2 f1; 2g, thatM(� j
)(Ai) 2 U . Let j be the least ranksu
h that for i 2 f1; 2g, M(� j
)(Ai) 2 Uj. Then, it is easy to verifyfrom De�nition 1.1 thatM(� j
)(A) 2 Uj+1.Theorem 2.13 (term soundness) If �()(�) = CONTEXT,
 satis�es �, and�(�)(a) is de�ned and equal to A, thenM(� j
)(a) 2 M(� j
)(A).Proof. The proof is by indu
tion on the stru
ture of preterms.1. a � s: By De�nition 2.4, we have that type(�(s)) = A. By De�nitions 2.6and 2.8, we have thatM(� j
)(a) =
(s) and
(s) 2 M(� j
)(A).2. a � (f b): By De�nition 2.4, �(�)(f) = [B!A℄, and �(�)(b) = B,for some B su
h that �(�)(B) = TYPE. Let M(� j
)(A) be X andM(� j
)(B) be Y , then by De�nitions 2.4 and 2.6, and the indu
-tion hypothesis, we have M(� j
)(f) 2 XY and M(� j
)(b) 2Y . It therefore follows by De�nition 2.6 that M(� j
)((f b)) =(M(� j
)(f))(M(� j
)(b)), and hen
eM(� j
)((f b)) 2 X.3. a � (�(x:C): b): By De�nition 2.4, we have that �(�)(a) is [C!B℄,where �(�; x: VAR C)(b) is B. Let X be M(� j
)(C), and Y beM(�; x: VAR C j
fx ug))(B). By the indu
tion hypothesis, wehave that for any u 2 Y , M(�; x: VAR C j
fx ug)(b) 2 X. Sin
eM(� j
)(a) is fhu; vi j u 2 X; v =M(�; x: VAR C j
fx ug)(b)g, wehave thatM(� j
)(a) 2 XY .4. a � (a1; a2): By De�nition 2.4, �(�)(a) = [A1; A2℄, where �(�)(ai) =Ai for i 2 f1; 2g. By the indu
tion hypothesis, M(� j
)(ai) 2M(� j
)(Ai) for i 2 f1; 2g. By De�nition 2.6, M(� j
)(a) =hM(� j
)(a1);M(� j
)(a2)i and hen
e M(� j
)(a) is an elementofM(� j
)(A) whi
h isM(� j
)(A)�M(� j
)(An).

16 Chapter 2. The Simple Type Theory5. a � pi b: In this
ase, we know by De�nition 2.4 that �(�)(b) = [A1; A2℄with i 2 f1; 2g, and �(�)(a) = Ai. By the indu
tion hypothesis,M(� j
)(b) = ht1; t2i, and by De�nition 2.6, M(� j
)(a) = ti andM(� j
)(�(�)(b)) =M(� j
)(A1)�M(� j
)(A2), hen
eM(� j
)(a) 2M(� j
)(Ai).These three theorems (2.11, 2.12, and 2.13) are the key invariants thatmust be satis�ed by the semanti
s when the language is extended below withtype de�nitions, subtypes, dependent types, and parametri
 theories.2.4 Some Synta
ti
 OperationsWe �rst de�ne the operation of
olle
ting the free variables of a term a in agiven
ontext � as FV (�)(a), and then de�ne the operation of substitution.De�nition 2.14 (free variables)FV (�)(s) = � fsg; if kind(�(s)) = VARIABLE;; otherwiseFV (�)(f a) = FV (�)(f) [FV (�)(a)FV (�)(�(x:T): a) = FV (�; x: VAR T)(a)� fxgFV (�)((a1; a2)) = FV (�)(a1) [FV (�)(a2)FV (�)(pi a) = FV (�)(a)De�nition 2.15 (substitution)s[a1=x1; : : : ; an=xn℄ = � ai; if for some minimal i; s � xis; otherwise(f a)[a1=x1; : : : ; an=xn℄ = (f [a1=x1; : : : ; an=xn℄a[a1=x1; : : : ; an=xn℄)(�(y:T): a)[a1=x1; : : : ; an=xn℄ = (�(y0:T): a[y0=y; a1=x1; : : : ; an=xn℄);where y0 is a fresh variable(b1; b2)[a1=x1; : : : ; an=xn℄ = (b1[a1=x1; : : : ; an=xn℄;b2[a1=x1; : : : ; an=xn℄)(pi a)[a1=x1; : : : ; an=xn℄ = (pi a[a1=x1; : : : ; an=xn℄)

2.5. Type De�nitions 17Re
all that terms are treated as synta
ti
ally equivalent modulo alpha
onversion. The above de�nitions must be extended as more features areadded to the language.2.5 Type De�nitionsHere we enri
h
ontexts so that type symbols may have de�nitions. PVS doesnot allow re
ursive type de�nitions1 so a type de
laration/de�nition in a
on-text may use only the symbols de
lared in the prior part of the
ontext. Themain di�eren
e in the extended language is that type names
an have de�-nitions. In su
h
ases, the de�nitions rather than the type names are usedto determine the a
tual type of an expression. In other words, two type ex-pressions are treated as the same if they are de�nitionally equivalent . Mostother spe
i�
ation languages tend to employ the weaker notion of name equiv-alen
e where synta
ti
ally di�erent types are treated as distin
t even whentheir de�nitions
oin
ide.To a

ommodate type de�nitions, a
ontext
an
ontain type de
larationsof the form s : TYPE = T , where T is a type. If
ontext �
ontains su
ha de
laration for s, then de�nition(�(s)) is T . To extend � to handle typede�nitions under de�nitional equivalen
e, we must ensure that � returns the
anoni
al form of a type where all de�ned types have been repla
ed by theirde�nitions. The operation Æ(�)(T) returns the expanded form of a type relativeto the
ontext �.De�nition 2.16 (expanded type)Æ(�)(s) = s; if de�nition(�(s)) is emptyÆ(�)(s) = Æ(�)(de�nition(�(s))); if de�nition(�(s)) is nonemptyÆ(�)([A!B℄) = [Æ(�)(A)!Æ(�)(B)℄Æ(�)([T1; T2℄) = [Æ(�)(T1); Æ(�)(T2)℄The typing rules are augmented to return the type in expanded form. Themain issue here is to determine that the de�nition part of a type de
larationin a
ontext is well formed relative to the pre
eding
ontext. We also needto ensure that � returns the expanded form of the type
orresponding to apreterm.1For the moment, we are not
onsidering the PVS DATATYPE me
hanism, whi
h is a formof re
ursive type de�nition [OS97℄. Re
ursive datatypes in the
ontext of the HOL proof
he
king system are des
ribed by Melham [Mel89℄.

18 Chapter 2. The Simple Type TheoryDe�nition 2.17 (type rules with type de�nitions)�()(�; s : TYPE = T) = CONTEXT; if �(s) is unde�ned;�()(�) = CONTEXT;and �(�)(T) = TYPE�(�)(s) = Æ(�)(type(�(s)));if kind(�(s)) 2 fCONSTANT; VARIABLEgNote that the Æ operator is idempotent, and �(�)(a) for a term a alwaysreturns an expanded type, that is, Æ(�(�)(a)) = �(�)(a).We do not need to update the de�nition of M from De�nition 2.6 sin
ethe syntax for terms is un
hanged, but we do need to revise the notion of asatisfying
ontext assignment (from De�nition 2.8) to respe
t the type de�ni-tions.De�nition 2.18 (satisfa
tion with type de�nitions) An assignment
satis�es a
ontext � if in addition to the
onditions in De�nition 2.8, wheneverkind(�(s)) = TYPE and de�nition(�(s)) (abbreviated as T) is nonempty, then
(s) =M(� j
)(T).Theorems 2.11 and 2.12 and 2.13
ontinue to hold under these extensions,and the proofs are easily adapted to the modi�ed de�nitions.Example 2.19 (type de�nition) Let
0 be the
ontext
; boolop: TYPE = [[bool; bool℄!bool℄;_: boolop. Then�()(
0) = CONTEXTÆ(
0)(boolop) = [[bool; bool℄!bool℄;�(
0)(_) = [[bool; bool℄!bool℄
2.6 SummaryWe have de�ned the simply typed fragment of PVS by introdu
ing the syn-tax for pretypes and preterms, the type rules and semanti
s for well-formed
ontexts, types, and terms. The type rules are presented in a novel fun
tionalstyle where ea
h well-formed
ontext is assigned the label CONTEXT, ea
h well-formed type is assigned the label TYPE, and ea
h well-formed term is assigned

2.6. Summary 19a
anoni
al type. The semanti
s takes a satisfying assignment for a
ontextand maps a well-formed type to a set and a well-formed term to an elementof the set
orresponding to its
anoni
al type. We then de�ned the synta
ti
operations of
olle
ting the free variables in an expression and for substitutingterms for variables in an expression.The simple type theory is then extended with type de�nitions. With thisextension, two type expressions are treated as equivalent if they are identi
alafter all type de�nitions have been expanded. The operation Æ returns theexpanded form of a given type expression.

Chapter 3Adding SubtypesSubtyping is one of the main features of the PVS spe
i�
ation language.1 Sub-typing in PVS
orresponds to the set-theoreti
 notion of a subset. It raisesseveral deli
ate issues that were absent in the language presented thus far. Inthe simply typed fragment, ea
h type
orresponds to a set of values that issomehow stru
turally di�erent from the set of values for another type so thata term has at most one type. Subtyping makes it possible to introdu
e thenatural numbers as a subtype of the reals, and to treat the primes, the evennumbers, and the odd numbers as subtypes of the natural numbers. Withsubtyping, a term
an obviously have several possible types, but the type-
he
king fun
tion � may return only a single type. We
onstrain � to returna natural
anoni
al type of an expression that is given by the de
larations ofthe symbols in the expression. If the expression is used in a
ontext wherethe expe
ted type is a supertype of its
anoni
al type, then the type
orre
t-ness is straightforward. If the expe
ted type is a subtype that is
ompatiblewith the
anoni
al type of the expression, then type
he
king generates proofobligations asserting that the expression satis�es the predi
ate
onstraints im-posed by the expe
ted type. Two types are
ompatible if they have equivalentmaximal supertypes. Type equivalen
e in the presen
e of subtypes is not asimple notion. Subtyping also introdu
es the possibility of types being empty.Typed lambda
al
uli with possibly empty types have been studied by Meyer,Mit
hell, Moggi, and Statman [MMMS90℄. This
hapter introdu
es predi
atesubtypes and de�nes the notions of
ompatibility and type equivalen
e priorto presenting the type rules and semanti
s.We restri
t our attention to
ontexts � that extend the de
larations:bool : TYPE,1The form of subtyping used in PVS is derived from a suggestion of Friedri
h von Henke.20

21TRUE : bool,FALSE : bool,boolop : [[bool; bool℄!bool℄,: : [bool!bool℄,_ : boolop,^ : boolop,� : boolopWe will abuse PVS notation to employ the
ustomary in�x forms of operationslike _, ^, and �. The pretype
orresponding to a predi
ate subtype has theform fx:T j ag where x is a symbol, T is a pretype, and a is a preterm.A predi
ate type in PVS is a fun
tion type where the range is the primitivetype bool. A predi
ate is a term that has a predi
ate type. If a is a termof type bool, then we
an de�ne the subtype fx:T j ag
onsisting of thoseelements e of T satisfying a[e=x℄ (e substituted for x in a). Sin
e the elementsof the subtype fx:T j ag satisfy the predi
ate �(x:T): a, we
all this type apredi
ate subtype to distinguish it from other forms of subtyping. Universalquanti�
ation 8(x:T): a is just an abbreviation for the term (�(x:T): a) =(�(x:T): TRUE). Although we use the equality predi
ate in the de�nition ofuniversal quanti�
ation and in the de�nitions below, the a
tual introdu
tionof equality is deferred to a later se
tion following the introdu
tion of parametri
theories. The equality between PVS terms of fun
tion type is to be interpretedas extensional equality. Note that the `=' symbol is used both for the formalequality symbol in the language and for metatheoreti
 equality.Our �rst step will be to de�ne the notion of a maximal supertype of a giventype as �(T). Amaximal type T is one su
h that �(T) = T . In a given
ontext,we will apply � only to the expanded form (given by Æ) of a type expression.De�nition 3.1 (maximal supertype)�(s) = s�(fx:T j ag) = �(T)�([A!B℄) = [A!�(B)℄�([A1; A2℄) = [�(A1); �(A2)℄Note that sin
e subtypes
orrespond to subsets, in taking the maximal super-type of a fun
tion type, the domain type is held �xed. In most type theo-ries with subtypes, the rule for subtyping between fun
tion types [A!B℄ and[A0!B0℄ requires showing that A0 is a subtype of A, and B is a subtype of B0.

22 Chapter 3. Adding SubtypesSubtyping between fun
tion types is therefore said to be
ontravariant in thedomain type and
ovariant in the range type. Subtyping on fun
tion types inPVS is
ovariant in the range type but is neither
ovariant nor
ontravariantin the domain type. This means that the fun
tion type [nat!nat℄ is not asupertype of the fun
tion type [int!nat℄. Su
h a subtyping relation wouldviolate extensionality . Two fun
tions on nat are extensionally equal whenthey return equal values when applied to equal arguments in nat. Considertwo fun
tions in [nat!nat℄: abs whi
h returns the absolute value, and idnatwhi
h behaves as an identity fun
tion on natural numbers and returns 0 other-wise. These two fun
tions will be erroneously identi�ed if they
an be viewedas being of type [nat!nat℄, and the subset interpretation of subtypes wouldbe lost.We will also employ a weaker supertype �0(T) or the dire
t supertype, thatonly
onsiders supertypes of expli
itly given subtypes of the form fx:T j ag.De�nition 3.2 (dire
t supertype)�0(fx:T j ag) = �0(T)�0(T) = T; otherwiseExample 3.3 (maximal supertype) Given a
ontext
ontaining the de
la-rationsint: TYPE;0: int;�: [[int; int℄!bool℄;nat: TYPE = fi: int j 0 � ignatinje
tion: TYPE = ff : [nat!nat℄ j 8(i; j: nat): f(i) = f(j) � i = jgwe have�(natinje
tion) = �([nat!nat℄)= [nat!�(nat)℄= [nat!int℄�0(natinje
tion) = [nat!nat℄Note that �(�(A)) = �(A). Note also that a maximal supertype is never asubtype. We
an in fa
t
olle
t the predi
ates that
onstrain a type A relativeto its maximal supertype �(A) as �(A).

23De�nition 3.4 (subtype
onstraints)�(s) = �(x: s): TRUE�(fy:T j ag) = �(x:�(T)): (�(T)(x) ^ a[x=y℄)�([A!B℄) = �(x: [A!�(B)℄): (8(y:A): �(B)(x(y)))�([A1; A2℄) = �(x: [�(A1); �(A2)℄): (�(A1)(p1 x) ^ �(A2)(p2 x))Observe that in De�nition 3.4, if �(�)(A) = TYPE, then �(�)(�(A)) =[�(A)!bool℄.2Example 3.5 (subtype
onstraints)�(nat)= �(j: int): 0 � j�([nat!nat℄)= �(g: [nat!int℄): 8(i: nat): (�(j: int): 0 � j)(g(i))�(natinje
tion)= �(f : [nat!int℄): �([nat!nat℄)(f)^ (8(i; j: nat): f(i) = f(j) � i = j)= �(f : [nat!int℄):(�(g: [nat!int℄): 8(i: nat): (�(j: int): 0 � j)(g(i)))(f)^ (8(i; j: nat): f(i) = f(j) � i = j)Observe that �(�(A)) is essentially equivalent to �(x:�(A)): TRUE.Sin
e the subtype fx:T j p(x)^ q(x)g
an also be written as fx:T j q(x)^p(x)g, we need a notion of equivalen
e between types. One way to do this is tomake types \�rst-
lass" and to allow expli
it theorems to be proved about typeequivalen
e and subtyping. Sin
e this would be a fairly drasti
 extension to thespe
i�
ation language, we have designed the PVS type system so as to avoid2This is somewhat tri
ky in the
ase of �(fy:T j ag) sin
e in a[x=y℄, x has type�(T), whereas y has type T . As shown in Chapter 6, the type rules for
onjun
-tion are su
h that �(�; x: VAR �(T))(�(T)(x) ^ a) redu
es to �(�; x: VAR �(T))(�(T)(x))and �(�; x: VAR �(T); �(T)(x))(a[x=y℄) where the �rst
onjun
t is added to the
ontext as a
ontextual assumption. One
an then show by indu
tion that�(�; x: VAR �(T); �(T)(x))(a[x=y℄) = �(�; y: VAR T)(a).

24 Chapter 3. Adding Subtypesany �rst-
lass treatment of types. It turns out that all the needed propertiesabout types (su
h as equality and subtyping)
an be obtained by generatingordinary proof obligations rather than by expli
itly proving theorems abouttypes.We introdu
e below a metatheoreti
 operation that generates the proofobligations needed to establish that two (maximal) types are equivalent. Thisequivalen
e is denoted by ' and is applied only to maximal types and re-turns a list of the proof obligations that must be proved. Note the invariantin the de�nition below that the arguments to ' are always maximal. Thede�nition of ' makes use of the PVS equality predi
ate that will be intro-du
ed later. A list of formulas is represented as a1; : : : ; an. Given two su
hlists a1; : : : ; am and b1; : : : ; bn, the
on
atenation of these two lists is writtenas a1; : : : ; am ; b1; : : : ; bn.De�nition 3.6 (type equivalen
e proof obligations)(s ' s) = TRUE([A!B℄ ' [A0!B0℄) = ((�(A) ' �(A0)); (�(A) = �(A0)); (B ' B0))3([A1; A2℄ ' [B1; B2℄) = ((A1 ' B1); (A2 ' B2))(A ' B) = FALSE; otherwise
Example 3.7 (type equivalen
e) Building on the
ontext given in Exam-ple 3.3, if we have the following variants of nat and natinje
tion:NAT: TYPE = fi: int j i � 0 � i = 0gNATinje
tion: TYPE = ff : [NAT!NAT℄ j 8(i; j: NAT): f(i) = f(j) � i = jgwe get�([natinje
tion!natinje
tion℄) = [natinje
tion![nat!int℄℄�([NATinje
tion!NATinje
tion℄) = [NATinje
tion![NAT!int℄℄�([natinje
tion!natinje
tion℄) ' �([NATinje
tion!NATinje
tion℄)= (�(natinje
tion) ' �(NATinje
tion));(�(natinje
tion) = �(NATinje
tion));([nat!int℄ ' [NAT!int℄)3The type
orre
tness of the proof obligation (�(A) = �(A0)) depends on the prior proofobligations �(A) ' �(A0).

25(�(natinje
tion) = �(NATinje
tion))= (�(f : [nat!int℄): (�(g: [nat!int℄): 8(i: nat): 0 � g(i))(f)^ (8(i; j: nat): f(i) = f(j) � i = j)= �(f : [NAT!int℄):(�(g: [NAT!int℄): 8(i: NAT): g(i) � 0 � g(i) = 0)(f)^ (8(i; j: NAT): f(i) = f(j) � i = j))([nat!int℄ ' [NAT!int℄)= (int ' int);(�(i: int): 0 � i) = (�(i: int): i � 0 � i = 0); (int ' int)A basi
 question during type
he
king is whether two types are
ompatible,that is, have the same maximal supertype. Two types are said to be
om-patible if the type equivalen
e proof obligations on their respe
tive maximalsupertypes are provable. The provability of a formula a under
ontext � isrepresented as `� a.De�nition 3.8 (
ompatible) Two types A and B are said to be
ompatiblein
ontext � (in notation, (A � B)�) if `� a, for ea
h a in (�(A) ' �(B)).4We now extend the de�nition of Æ to the
ase of subtypes so that it leavesthe predi
ate un
hanged but expands the de�nition of the supertype.De�nition 3.9 (expanded type with subtypes)Æ(�)(fx:T j ag) = fx: Æ(�)(T) j agWe now extend the de�nition � to the
ase of subtypes. Here we
ould for
e� to always return a maximal supertype but this is not done in De�nition 3.10sin
e it would weaken the soundness theorem without signi�
antly simplify-ing the de�nition of the type rules. The type
he
king of
ontexts has to bemodi�ed to generate a nonemptiness proof obligation for the type of any
on-stant de
laration. A
onstant of an empty type would lead to an in
onsistent
ontext, and this would mean that
onstant de
larations are not
onservativeextensions. This modi�
ation to De�nition 2.4 is not needed for soundnesssin
e an in
onsistent
ontext makes soundness trivial. It is needed to show4The PVS proof rules are des
ribed in Chapter 7.

26 Chapter 3. Adding Subtypesthat
onstant de
larations and de�nitions are
onservative extensions. Notethat with subtypes, the type rule for an appli
ation is modi�ed to
he
k thatthe domain type of the fun
tion is
ompatible with the type of its argument,and that the argument satis�es any
onstraints imposed by the domain typeof the fun
tion. The
ase of proje
tion expressions is also not straightforwardsin
e the argument type
an be a subtype of a tuple type. In this
ase, we usethe dire
t supertype (see De�nition 3.2) whi
h must be a tuple type.De�nition 3.10 (type rules with subtypes)�()(�;
:T) = CONTEXT; if �(
) is unde�ned;�(�)(T) = TYPE;�()(�) = CONTEXT; and`� (9(x:T): TRUE)�(�)(fx:T j ag) = TYPE; if �(x) is unde�ned;�(�)(T) = TYPE; and �(�; x: VAR T)(a) = bool�(�)(f a) = B; where �0(�(�)(f)) = [A!B℄;�(�)(a) = A0;(A � A0)�;`� �(A)(a)�(�)(pi a) = Ai; where �0(�(�)(a)) = [A1; A2℄Example 3.11 (type
he
king subtypes) Let �
ontain the above de
lara-tions of int, nat, 0, �, and natinje
tion.�(�)(fi: int j 0 � ig)= TYPE�(�)((�(f : natinje
tion): f(0))(�(i: nat): i))= Æ(�)(nat); if(natinje
tion � [nat!nat℄)�;`� 8(j; k: nat): (�(i: nat): i)(j) = (�(i: nat): i)(k) � j = k;(int � nat)�; and`� 0 � 0

27Only one additional
lause to De�nition 2.6 is needed to
apture the se-manti
s of predi
ate subtypes.De�nition 3.12 (meaning fun
tion with subtypes)M(� j
)(fx:T j ag)= fy 2 M(� j
)(T) j M(�; x: VAR T j
fx yg)(a) = 1gExample 3.13 (semanti
s of predi
ate subtypes) If we assign the usualtruth table interpretation to the Boolean fun
tion �:M(� j
)(ff : [bool!bool℄ j 8(x: bool): x � f(x)g)= ffh0; 0i; h1; 1ig; fh0; 1i; h1; 1igg:The following useful propositions are easily proved from the de�nitionsgiven above. Proposition 3.14 asserts that the maximal supertype of a type iswell typed. Proposition 3.15 asserts that the denotation of a type is a subsetof the denotation of its maximal supertype. Proposition 3.16 asserts that ifall the proof obligations in (A ' A0) are valid relative to a given assignment
 for
ontext �, then the denotations of A and A0 under
 are equal.Proposition 3.14 If �()(�) = CONTEXT and �(�)(A) = TYPE, then�(�)(�(A)) = TYPE.Proposition 3.15 If �()(�) = CONTEXT, �(�)(A) = TYPE, and
 satis�es �,then1. M(� j
)(A) �M(� j
)(�(A)) and2. M(� j
)(A) �M(� j
)(�0(A)).Proposition 3.16 If A and A0 are maximal types in
ontext �, i.e.,1. �()(�) = CONTEXT,2. �(�)(A) = �(�)(A0) = TYPE,3. �(A) = A and �(A0) = A0and for ea
h a in (A ' A0),

28 Chapter 3. Adding Subtypes1. a � TRUE, or2. a � (a1 = a2) andM(� j
)(a1) =M(� j
)(a2) holds,thenM(� j
)(A) =M(� j
)(A0).5Proposition 3.17 If �()(�) = CONTEXT and �(�)(T) = TYPE, thenM(� j
)(T) =M(� j
)(fx:�(T) j �(T)(x)g).We
an now examine the updated forms of the invariants given by Theo-rems 2.11, 2.12, and 2.13. The proof of Theorem 2.11 remains straightforward.The statement of Theorem 2.13 must now be strengthened to in
lude sound-ness, that is, if `� a and
 satis�es �, then M(� j
)(a) = 1. For now, weassume soundness (Theorem 7.2) sin
e we have not yet presented the proofrules.Theorem 3.18 (type soundness) If �()(�) = CONTEXT,
 satis�es �, and�(�)(A) = TYPE thenM(� j
)(A) 2 U .Proof. There is only one new
ase to add to the indu
tion proof of The-orem 2.12, namely, when A � fx:T j ag. In this
ase, by De�nition 3.10,�(�)(T) = TYPE, so by the indu
tion hypothesis,M(� j
)(T) 2 U . Sin
e, byDe�nition 3.12,M(� j
)(A) � M(� j
)(T), we have M(� j
)(A) 2 U byDe�nition 1.1.Theorem 3.19 (term soundness) If �()(�) = CONTEXT,
 satis�es �, and�(�)(a) = A thenM(� j
)(a) 2 M(� j
)(A).Proof. There are two a�e
ted
ases in the proof from that of Theorem 2.13,namely, those of appli
ation and proje
tion. The
ase of proje
tion expressionsis straightforward given Proposition 3.15.When a � (f b), by De�nition 3.10, we have that �(�)(f) = [B!A℄and �(�)(b) = B0. Let X be M(� j
)(B), X 0 be M(� j
)(B0), and Y beM(� j
)(A). Then by De�nition 2.6,M(� j
)([B!A℄) = Y X . By the indu
-tion hypotheses,M(� j
)(f) 2 Y X andM(� j
)(b) 2 X 0. By De�nition 3.10,soundness of the proof rules (Theorem 7.2), and Propositions 3.15 and 3.16,there is a maximal supertype �(B) of both B and B0 su
h that X and X 0 areboth subsets ofM(� j
)(�(B)). Sin
e, by De�nition 3.10, `� �(B)(b), andby Proposition 3.17,M(� j
)(B) =M(� j
)(fx:�(B) j �(B)(x)g), we haveM(� j
)(b) 2 M(� j
)(B), and hen
e by De�nition 2.6,M(� j
)((f b)) 2M(� j
)(A).5We remind the reader that the formulas a in (A ' A0) are equalities, but we have notyet formally introdu
ed equality into the language.

3.1. Summary 293.1 SummaryPVS features a form of subtyping where it is possible to form the subtypeof a type satisfying a given predi
ate on the type. This kind of subtypingintrodu
es several deli
ate semanti
 issues into PVS. A term
an now haveseveral types sin
e, for example, the term
orresponding to the number 2
anbe a prime number, an even number, a natural number, an integer, a rationalnumber, or a real number. When the expe
ted type is a subtype, the
anoni
altype of the a
tual term must be
ompatible with the expe
ted type, that is,the two maximal supertypes must be equivalent and the a
tual term must sat-isfy any subtype
onstraints imposed by the expe
ted type. We have de�nedthe notions of maximal supertype, subtype
onstraints, type equivalen
e, and
ompatibility. These notions are used to de�ne the type rules and semanti
sof the simply typed fragment of PVS extended with subtypes. Note that bothtype equivalen
e (and hen
e,
ompatibility) and type
orre
tness are unde
id-able. Proof obligations generated during type
he
king are the only sour
e ofsu
h unde
idability. The modularization of the type system into a de
idablepart
onsisting of the simply typed fragment, and the proof obligations gener-ated by subtyping, is perhaps the most signi�
ant design
onsideration in thePVS language.

Chapter 4Dependent TypesThe PVS language fragment des
ribed thus far is already quite expressive. Itemploys de�nitional equivalen
e between types and
ontains predi
ate sub-types. It is unde
idable whether an expression in this fragment is type-
orre
tbe
ause of the proof obligations that arise with respe
t to predi
ate subtypesand type equivalen
e. The next step is the addition of type dependen
iesbetween the
omponents of a type. This extension
onsiderably enhan
es theutility of this type system. It is also a natural extension given predi
ate subtyp-ing whi
h already allows types that depend on free variables in the predi
ates.With dependent typing, we
an make the type of one
omponent of a prod-u
t depend on the value of another
omponent, or the type of the range of afun
tion vary a

ording to its argument value.A dependent produ
t type is written as [x:A;B℄. A dependent fun
tiontype is written as [x:A!B℄. Any produ
t or fun
tion type
an be transformedinto a dependent type by inserting dummy type bindings. Conversely, anydummy type bindings that do not a
tually bind any variable o

urren
es
anbe removed. The type rules and semanti
s below will assume that all produ
tand fun
tion types are presented as dependent types.Example 4.1 (dependent types)[i: nat; fj: nat j j � ig℄;[i: nat; [fj: nat j j � ig!bool℄℄;[i: int!fj: int j i � jg℄:Before we treat dependent types, we update the de�nitions of the set offree variables and substitution to a

ount for the fa
t that with subtyping and30

31dependent typing, both free and bound variables
an o

ur in terms and types.This is needed for the next step where we try to remove type dependen
ies bysubstituting a term into a dependent type.De�nition 4.2 (free variables for types)FV (�)([x:A!B℄) = FV (�)(A) [(FV (�; x: VAR A)(B)� fxg)FV (�)([x:A;B℄) = FV (�)(A) [(FV (�; x: VAR A)(B)� fxg)FV (�)(fx:A j ag) = FV (�)(A) [(FV (�; x: VAR A)(a)� fxg)De�nition 4.3 (substitution for types)[x:A!B℄[a1=x1; : : : ; an=xn℄= [y:A[a1=x1; : : : ; an=xn℄!B[y=x; a1=xn; : : : ; an=xn℄℄[x:A;B℄[a1=x1; : : : ; an=xn℄= [y:A[a1=x1; : : : ; an=xn℄; B[y=x; a1=x1; : : : ; an=xn℄℄fx:A j ag[a1=xn; : : : ; an=xn℄= fy:A[a1=x1; : : : ; an=xn℄ j a[y=x; a1=xn; : : : ; an=xn℄gwhere y is a fresh variable.The de�nition of � has to be modi�ed slightly for dependent types.The de�nition is �rst extended to type bindings, �(x:T) = x:�(T). Thede�nition for the
ase of dependent fun
tion types is un
hanged so that�([x:A!B℄) = [x:A!�(B)℄. The de�nition for the produ
t
ase is moredeli
ate sin
e the de�nition �([x:A;B℄) = [x:�(A); �(B)℄ results in a loss oftype information regarding the o

urren
es of x in B.1 To ensure that typeinformation regarding x is retained, we de�ne a new operation Tna whi
h
onstrains the subtype assertions in type T with an additional assertion a.De�nition 4.4 (Adding subtype
onstraints)sna = sfx:T jbgna = fx:T ja ^ bg[A!B℄na = [Ana!Bna℄[A;B℄na = [Ana; Bna℄1Doug Howe brought this problem to our attention.

32 Chapter 4. Dependent TypesWe
an now de�ne the maximal supertype operation for dependent tupletypes.De�nition 4.5 (Maximal supertype for dependent produ
t types)�([x:A;B℄) = [x:�(A); Bn�(A)(x)℄The de�nition of � for a dependent fun
tion type [y:A!B℄ is slightlydi�erent from that of an ordinary fun
tion type sin
e �(B)
an
ontain freeo

urren
es of the variable y. For example, �([i: int!fj: int j i � jg℄) mustbe �(f : [i: int!int℄): (8(i: int): i � f(i)). The de�nition for dependent tuplesremains essentially un
hanged from that of ordinary produ
ts.De�nition 4.6 (
onstraint predi
ates for dependent types)�([y:A!B℄) = (�(x: [y:A!�(B)℄): (8(y:A): �(B)(x(y))))�([y:A;B℄) = (�(x: [y:�(A); �(B)n�(A)(y)℄):�(A)(p1 x) ^ �(B)(p2 x)[(p1 x)=y℄)Example 4.7 (dependent type predi
ates)�([i: int!fj: int j i � jg℄) = [i: int!int℄�([i: int!fj: int j i � jg℄) = �(f : [i: int!int℄):8(i: int): (�(j: int): i � j)(f(i))The de�nition of ' must also be massaged slightly for dependent types.Re
all that '
he
ks whether two maximal types are equivalent by generatingproof obligations as needed. This is the basi
 operation for
he
king whetherthe expe
ted type of an expression is
ompatible with its a
tual type. The sub-tlety now is that the expe
ted type might be a dependent type where the a
tualtype is not. Consider the
ase of the pair h5; (�(x: fj: nat j j � 5g): x)i whosetype would be
omputed by � as [i: nat; [fj: nat j j � 5g!fj: nat j j � 5g℄℄where the expe
ted type might be [i: nat; [fj: nat j j � ig!fj: nat j j � ig℄℄.To
ope with this, we will allow the option of two maximal types, say A andB, to be
ompared using ' in the
ontext of an expression a. This is indi
ated

33by the notation (A ' B)=a. Note that (A ' B)=a is sensible only when A andB are maximal types. The missing
ases in De�nition 3.6 are in
luded in Def-inition 4.8. For a list of formulas a1; : : : ; an, let (8(x:T): a1; : : : ; an) representthe list (8(x:T): a1); : : : ; (8(x:T): an).2De�nition 4.8 (type equivalen
e for dependent types)(s ' s)=a = TRUE([x:A!B℄ ' [x0:A0!B0℄) = (�(A) ' �(A0));(�(A) = �(A0));(8(x:A): (B ' B0[x=x0℄))([x:A!B℄ ' [x0:A0!B0℄)=a = (�(A) ' �(A0));(�(A) = �(A0));(8(x:A): (B ' B0[x=x0℄)=a(x))([x:A1; A2℄ ' [y:B1; B2℄) = (A1 ' B1);(8(x:A1): (A2 ' B2[x=y℄))([x:A1; A2℄ ' [y:B1; B2℄)=a = (A1 ' B1)=(p1 a);(A2[(p1 a)=x℄ ' B2[(p1 a)=y℄)=(p2 a)(A ' B)=a = FALSE; otherwise.As with (A � B)�, the notation (A a� B)� indi
ates that all the proof obliga-tions a0 in (�(A) ' �(B))=a are provable, that is, `� a0.With dependent types, the type rules must be modi�ed so as to augmentthe
ontext suitably to a

ount for any dependen
ies. We will give the de�ni-tions only for dependent type
onstru
tions.De�nition 4.9 (type rules with dependent types)�(�)([x:A;B℄) = TYPE; if �(x) is unde�ned;�(�)(A) = TYPE; and�(�; x: VAR A)(B) = TYPE�(�)([x:A!B℄) = TYPE; if �(x) is unde�ned;�(�)(A) = TYPE; and�(�; x: VAR A)(B) = TYPE2Note that the type-
orre
tness of the proof obligation (�(A) = �(A0)) in De�nition 4.8depends on the prior proof obligations �(A) ' �(A0).

34 Chapter 4. Dependent Types�(�)(f a) = B0; where �0(�(�)(f)) = [x:A!B℄;�(�)(a) = A0;(A a� A0)�;B0 is B[a=x℄;`� �(A)(a)�(�)(�(x:A): a) = [x:A!B℄; whereB = �(�; x: VAR A)(a)�(�)(p1 a) = A1; where �0(�(�)(a)) = [x:A1; A2℄�(�)(p2 a) = A2[(p1 a)=x℄; where �0(�(�)(a)) = [x:A1; A2℄
Example 4.10 (dependent typing)�(�)([x: bool; fy: bool j x � yg℄) = TYPE�(�)([x: bool!fy: bool j x � yg℄) = TYPEBefore we
an assign meanings to dependent types, we must augment our def-inition of the universe U to
ontain sets
orresponding to these
onstru
tions.If F is a fun
tion with domain set X and a range Y , whi
h is a set of sets, we
an de�ne �F to be the set fhx; yi j x 2 dom(F); y 2 F (x)g and �F to be theset ff j (8x 2 dom(F): f(x) 2 F (x))g. Note that �F � SX2�F }(X) but wein
lude �F in the universe U de�ned below for simpli
ity. We
an drop X�Yand XY from the universe de�nition sin
e X�Y
an be obtained from �F byde�ning an F with domain X that always returns Y , and similarly, XY
anbe obtained by �F where F is de�ned to with domain Y to always return X.The universe U
an then be rede�ned as below.De�nition 4.11 (type universe with dependent types)U0 = f2;RgUi+1 = Ui[[X2Ui }(X)[f�F j F 2 Wig

35[f�F j F 2 WigWi = [X2Ui UXiU! = [i2!UiU = U!One very important
onsequen
e of the above extension of the universe isthat all type dependen
ies must be bounded in the sense that if B is a typeexpression with a single free variable x of type A, then it must be the
ase thatfor any set [[A℄℄ representing A, there is a bound n su
h that for any z in [[A℄℄,the meaning of B under fx zg must be in Un. This property is easily provedby indu
tion on the stru
ture of a PVS type sin
e the parameter x
an appearonly in the predi
ate part of a subtype where the rank of the meaning of theresulting type
annot vary with the value of x. In parti
ular, there is no wayto de�ne a type
onstru
tor T n in PVS that returns the n-tuple [T; [: : : ; T ℄| {z }n ℄for a given n sin
e this would entail an unbounded dependen
y. If unboundedtype dependen
ies were allowed in PVS, one
an
onstru
t a dependent typesu
h as [n:nat!T n℄ whose representation is not in U as de�ned above.The meaning fun
tion for dependent types is obtained by adding the
ases
orresponding to dependent produ
t and fun
tion types. All the other
asesare un
hanged from De�nition 3.12. Note that the semanti
 de�nition fordependent types is equivalent to the nondependent one when there are nodependen
ies.De�nition 4.12 (meaning fun
tion with dependent types)M(� j
)([x:A;B℄) = �F; whereF maps z 2 M(� j
)(A) toM(�; x: VAR A j
fx zg)(B)M(� j
)([x:A!B℄) = �F; whereF maps z 2 M(� j
)(A) toM(�; x: VAR A j
fx zg)(B)

36 Chapter 4. Dependent TypesExample 4.13 (meaning fun
tion with dependent types)M(� j
)([x: bool; fy: bool j x � yg℄) = fh0; 0i; h0; 1i; h1; 1igM(� j
)([x: bool!fy: bool j x � yg℄) = ffh0; 0i; h1; 1ig;fh0; 1i; h1; 1igg
We now need to show that the extensions
orresponding to dependent typespreserve the properties in Theorems 3.18 and 3.19, namely,M(� j
)(T) 2 Uand M(� j
)(a) 2 M(� j
)(�(�)(a)). For the former, we prove a strongertheorem that in
orporates the rank-boundedness of dependent types.Theorem 4.14 (rank bounded type semanti
s) If B is a pretype,x1; : : : ; xn is a list of symbols, A1; : : : ; An is a list of pretypes su
h that1. �()(�; x1: VAR A1; : : : ; xn: VAR An) = CONTEXT,2. �(�; x1: VAR A1; : : : ; xn: VAR An)(B) = TYPE, and3.
 is an assignment satisfying �,then there is an i su
h that for any list of values z1; : : : ; zn where
fx1 z1g : : :fxn zng is a satisfying assignment for �; x1: VAR A1; : : : ; xn: VAR An,we haveM(�; x1: VAR A1; : : : ; xn: VAR An j
fx1 z1g : : : fxn zng)(B) 2 Ui:Proof. The proof is by stru
tural indu
tion on the pretype B. Let �0 denote�; x1: VAR A1; : : : ; xn: VAR An,
0 denote
fx1 z1g : : : fxn zng, and [[C℄℄denoteM(�0 j
0)(C).1. B � s: Sin
e [[B℄℄ is just
(B) by De�nition 2.6, we have that there isan i su
h that [[B℄℄ 2 Ui regardless of the
hoi
e of values z1; : : : ; zn.2. B � fy:T j ag: By the indu
tion hypothesis, we know that for some j,it is always the
ase that [[T ℄℄ 2 Uj. By De�nition 3.12, we have that[[B℄℄ � [[T ℄℄ so if we let i = j +1, then by De�nition 4.11, it is always the
ase that [[B℄℄ 2 Ui.

373. B � [y:C!D℄: By De�nition 4.9, �0(y) is unde�ned, �(�0)(C) =TYPE, �()(�0; y: VAR C) = CONTEXT, and �(�0; y: VAR C)(D) = TYPE.By the indu
tion hypothesis, for some j, it is always the
ase thatM(�0 j
0)(C) 2 Uj, and for some k, it is always the
ase thatfor any satisfying assignment
0fy wg for �0; y: VAR C, we haveM(�0; y: VAR C j
0fy wg)(D) 2 Uk. Then the fun
tion F mapping winM(�0)(C) toM(�0; y: VAR C j
0fy wg)(D) is an element of Wj+k.Letting i be j + k + 1, we have by De�nition 4.12 thatM(�0 j
0)(B) is�F and is hen
e an element of Ui by De�nition 4.11.4. B � [y:C;D℄: Similar to the previous
ase.By
hoosing n to be 0, the previous theorem yields the result that when�(�)(B) = TYPE,M(� j
)(B) 2 U .We next need to establish that for any preterm a, if �(�)(a) = A, thenM(� j
)(a) 2 M(� j
)(A). The �rst step in this dire
tion is the proof ofthe substitution lemma below.Proposition 4.15 If �()(�) = �()(�0) = CONTEXT where for ea
h s, �(s) isde�ned if and only if �0(s) is de�ned, and
 is an assignment satisfying both� and �0, then1. If �(s) = �0(s) (i.e., they are equal when either �(s) or �0(s) is de�ned),then(a) �(�)(a) = �(�0)(a), for any preterm a.(b) �(�)(A) = �(�0)(A), for any pretype A.2. M(� j
)(A) =M(�0 j
)(A), when �(�)(A) = TYPE.3. M(� j
)(a) = M(�0 j
)(a), for any preterm a su
h that �(�)(a) isde�ned.Lemma 4.16 (substitution lemma) If �()(�; x: VAR A) = CONTEXT,�(�)(a) = A, then1. If �(�; x: VAR A)(b) = B, thenM(� j
)(b[a=x℄) =M(�; x: VAR A j
fx M(� j
)(a)g)(b).2. If �(�; x: VAR A)(C) = TYPE, thenM(� j
)(C[a=x℄) =M(�; x: VAR A j
fx M(� j
)(a)g)(C).

38 Chapter 4. Dependent TypesProof. The proof is by simultaneous stru
tural indu
tion on the preterm band the pretype C. The following
ases deal with the preterm b.1. b � s: If s � x, then by De�nition 4.12, the left-handside M(� j
)(b[a=x℄) is M(� j
)(a), and the right-hand sideM(�; x: VAR A j
fx M(� j
)(a)g)(b) is alsoM(� j
)(a).If s 6� x, then by De�nition 4.12, the left-hand side and the right-handside are both equal to
(s).2. b � (�(y:C): d): Sin
e C
an
ontain free o

urren
es of x, wehave by the indu
tion hypothesis that M(� j
)(C[a=x℄) =M(�; x: VAR A j
fx M(� j
)(a)g)(C). Also,M(� j
)((�(y:C): d)[a=x℄) is equal to the set of ordered pairs hv; zisu
h that v 2 M(� j
)(C[a=x℄) and z =M(�; y: VAR C[a=x℄ j
fy vg)(d[a=x℄).By the indu
tion hypothesis,M(�; y: VAR C[a=x℄ j
fy vg)(d[a=x℄) =M(�; y: VAR C[a=x℄; x: VAR A j
fy vgfx M(� j
)(a)g)(d). Sin
ex does not o

ur free in C[a=x℄, by Proposition 4.15 we
an ex
hangethe o

urren
es of y and x so thatM(�; y: VAR C[a=x℄; x: VAR A j
fy vgfx M(� j
)(a)g)(d) = M(�; x: VAR A; y: VAR C[a=x℄ j
fx M(� j
)(a)gfy vg)(d).By De�nition 4.12, the right-hand side is the set of ordered pairs of theform hv; zi su
h that v 2 M(�; x: VAR A j
fx M(� j
)(a)g)(C)and z = M(�; x: VAR A; y: VAR C j
fx M(� j
)(a)gfy vg)(d). By Proposition 4.15 and the indu
tion hypothesis, we knowthat M(�; x: VAR A; y: VAR C j
fx M(� j
)(a)gfy vg)(d) =M(�; x: VAR A; y: VAR C[a=x℄ j
fx M(� j
)(a)gfy vg)(d), andhen
e it follows that the two sets of ordered pairs are equal.3. b � (f
): In this
ase, b[a=x℄ � (f [a=x℄
[a=x℄) and the
on
lusionfollows easily from the indu
tion hypothesis and De�nition 4.12.4. b � (b1; b2): The
on
lusion follows easily from De�nitions 2.15, 4.12,and the indu
tion hypotheses.5. b � (pi
): This
ase is also straightforward sin
e b[a=x℄ �(pi
[a=x℄), and by the indu
tion hypothesis, M(�; x: VAR a j
fx M(� j
)(a)g)(
) =M(� j
)(
[a=x℄).The remaining
ases deal with the pretype C.

391. C � s: This
ase is trivial sin
e by De�nition 2.15, C[a=x℄ � C and theleft-hand and right-hand sides both redu
e to
(C).2. C � fy:T j dg: The argument here follows along the lines of the b �(�(x:C):D)
ase above. By the indu
tion hypotheses, we know thatM(�; x: VAR A j
fx M(� j
)(a)g)(T)= M(� j
)(T [a=x℄)M(�; y: VAR T [a=x℄; x: VAR A j
fy zgfx M(� j
)(a)g)(d)= M(�; y: VAR T [a=x℄ j
fy zg)(d[a=x℄);for any z 2 M(� j
)(T [a=x℄)The
on
lusion follows from Proposition 4.15 and De�nition 4.12.3. C � [y:C1!C2℄: The argument here is similar to that of the previ-ous
ase. Essentially, by the indu
tion hypothesis and Proposition 4.15,the fun
tion mapping z 2 M(�; x: VAR A j
fx M(� j
)(a))(C1)to M(�; y: VAR C1[a=x℄; x: VAR A j
fy zgfx M(� j
)(a)g)(C2)is the same as the fun
tion mapping z 2 M(� j
)(C1[a=x℄) toM(�; y: VAR C1[a=x℄ j
fy zg)(C2[a=x℄).4. C � [y:C1; C2℄: Similar to the previous
ase.Proposition 4.17 is stated below without proof. It asserts the semanti
equivalen
e with respe
t to term a of types A and B when (A a� B)� holds.Note that its
orre
tness depends on the soundness of the proof rules.Proposition 4.17 If �()(�) = CONTEXT, a is a preterm su
h that �(�)(a) =B, and (A a� B)�, then M(� j
)(a) 2 M(� j
)(A) i� M(� j
)(a) 2M(� j
)(B).Theorem 4.18 If �()(�) = CONTEXT,
 is an assignment satisfying �, and ais a preterm su
h that �(�)(a) = A, thenM(� j
)(a) 2 M(� j
)(A).Proof. The proof is by indu
tion on the stru
ture of the preterm a.1. a � s: Then by De�nition 4.12, M(� j
)(a) =
(a), and by De�ni-tion 2.8, we have that
(a) 2 M(� j
)(A).

40 Chapter 4. Dependent Types2. a � (�(x:C): b): By De�nition 4.9, we have �(�)(a) = A =[x:C!�(�; x: VAR C)(b)℄. Let B label �(�; x: VAR C)(b). We know thatM(� j
)(A) is of the form �F where F maps z 2 M(� j
)(C) toM(�; x: VAR C j
fx zg)(B).By the indu
tion hypothesis on b, we know that for any z 2 M(� j
)(C),M(�; x: VAR C j
fx zg)(b) 2 M(�; x: VAR C j
fx zg)(B). Sin
eby De�nition 4.12,M(� j
)(a) is a fun
tion mapping z 2 M(� j
)(C)to M(�; x: VAR C j
fx zg)(b), we have M(� j
)(a) 2 �F by thede�nition of �.3. a � (f b): By De�nition 4.9, we have that �(�)(f) = [x:B!A0℄,�(�)(b) = B0, (B a� B0)�, A � A0[a=x℄, and `� �(B)(b). We knowby the indu
tion hypothesis that M(� j
)(f) 2 M(� j
)([x:B!A0℄)and M(� j
)(b) 2 M(� j
)(B0). By Propositions 4.17 and 3.17,M(� j
)(b) 2 M(� j
)(�(B)). We therefore have by Proposi-tion 3.17 that M(� j
)(b) 2 M(� j
)(B). By De�nition 4.12,M(� j
)(a) 2 M(�; x: VAR B j
fx M(� j
)(b)g)(A0), and hen
e byLemma 4.16 it follows thatM(� j
)(a) 2 M(� j
)(A0[b=x℄).4. a � (a1; a2): The
on
lusion follows easily from the indu
tion hypothesisand De�nition 4.9.5. a � (pi b): The
on
lusion follows easily from Proposition 3.17, theindu
tion hypothesis, and De�nition 4.9. The (p2 b)
ase also employsLemma 4.16.
4.1 SummaryDependent typing is a signi�
ant enhan
ement to PVS sin
e it adds an im-portant degree of
exibility and pre
ision to the type system. Notions su
has subtype
onstraints and type equivalen
e that were introdu
ed for subtyp-ing
an be extended for the
ase of dependent types. The semanti
 universemust be extended to in
lude additional sets to a

ommodate the semanti
sof dependent types. The rank-boundedness of type dependen
ies is
ru
ialin demonstrating that dependent types
an be interpreted in this extendedsemanti
 universe.

Chapter 5Theories and Parametri
TheoriesThe next extension of the PVS language introdu
es theories and parametri
theories. The theory
onstru
t of PVS provides a way of pa
kaging togethera related
olle
tion of de
larations. Theories
an be parametri
 in individualor type parameters. Thus, PVS permits polymorphism or type parametri
ityonly at the theory level rather than at the de
laration level as in HOL [GM93℄.We �rst
onsider PVS theories without parameters. The main
hange now isthat
ontexts are no longer simple and
an
ontain theory de
larations as well.A theory de
laration has the formm: THEORY = �, where � is a simple
ontextwith no variable or theory de
larations. If �(m) is the de
larationm: THEORY =�, then kind(�(m)) = THEORY, and de�nition(�(m)) = �. Correspondingly,
onstants and type names are no longer just symbols but
an be
ompoundnames of the form m:s where m is a symbol naming a theory and s is a symbol
orresponding to the
onstant or type name.5.1 Theories without ParametersTo de�ne the type rules for theories, we �rst modify the de�nition of � forsimple
ontexts so that the
ontext argument is not always empty. Here �; �represents the
on
atenation of
ontexts.De�nition 5.1 (type rules for
ontexts)�(�)(fg) = CONTEXT�(�)(�; s : TYPE = T) = CONTEXT; if �(s) and �(s) are unde�ned,�(�)(�) = CONTEXT; and41

42 Chapter 5. Theories and Parametri
 Theories�(�; �)(T) = TYPE�(�)(�;
:T) = CONTEXT; if �(
) and �(
) are unde�ned,�(�)(�) = CONTEXT; and�(�; �)(T) = TYPE�(�)(�; x: VAR T) = CONTEXT; if �(x) and �(x) are unde�ned,�(�)(�) = CONTEXT; and�(�; �)(T) = TYPEExample 5.2 (type rules for
ontexts)�(
)(real: TYPE; 0: real;�: [[real; real℄!bool℄) = CONTEXTThe following rule handles theory de
larations.De�nition 5.3 (type rule for
ontexts with theory de
larations)�(�)(�; m: THEORY = �) = CONTEXT if �(m);�(m) are unde�ned� only has
onstant and type de
larations,�(�; �)(�) = CONTEXT;�(�)(�) = CONTEXTExample 5.4 (
ontexts with theory de
larations)�(
)(reals: THEORY = (real: TYPE; 0: real;�: [[real; real℄!bool℄))= CONTEXTAny referen
e to a type name or a
onstant s de
lared in a theory moutside of this theory must be pre�xed by the theory name, as in m:s. Notethat referen
es to a type name or
onstant that is de
lared in the same theoryshould not be given a theory pre�x. Before we
an give the type rules, we mustupdate the de�nition of the type expansion operation Æ to pre�x symbols withtheir theory names. Let �(m)(s) abbreviate de�nition(�(m))(s), whi
h is the

5.1. Theories without Parameters 43de
laration of the symbol s in the de�nition of the theory m. Let �(�; m)(a)be the result of pre�xing every unpre�xed type or
onstant symbol in a by m,where a is either an individual or type expression. We omit the de�nition of� sin
e it is straightforward.We modify the de�nition of Æ in De�nition 2.16 with the following
lauses.De�nition 5.5 (expanded type for pre�xed symbols)Æ(�)(m:s) = Æ(�)(�(�; m)(de�nition(�(m)(s)))); ifde�nition(�(m)(s)) is nonempty.Æ(�)(m:s) = m:s if de�nition(�(m)(s)) is empty.Example 5.6 (expanded type for pre�xed symbols) Let
00 be the
on-text
; reals: THEORY = (real: TYPE;0: real;�: [[real; real℄!bool℄;nonneg real: TYPE = fx: real j � (0; x)g;1: nonneg real)Æ(
00)(reals:nonneg real) = fx: reals:real j reals:� (reals:0; x)gThe type rules for pre�xed symbols are given below.De�nition 5.7 (type rules for pre�xed symbols)�(�)(m:s) = TYPE; if kind(�(m)) = THEORY andkind(�(m)(s)) = TYPE�(�)(m:s) = Æ(�)(�(�; m)(type(�(m)(s))));if kind(�(m)) = THEORY andkind(�(m)(s)) = CONSTANT

44 Chapter 5. Theories and Parametri
 TheoriesExample 5.8 (type rules for pre�xed symbols)�(
00)(reals:nonneg real) = TYPE�(
00)(reals:1) = fx: reals:real j reals:� (reals:0; x)gThe operations �, and � remain un
hanged. An assignment
 now maps atheory name m to an assignment
(m).De�nition 5.9 (meaning fun
tion for pre�xed symbols)M(� j
)(m:s) =
(m)(s)Example 5.10 (meaning fun
tion for pre�xed symbols) Let !00 be asatisfying assignment for
00 of the form: : : freals freal Rgf0 0g : : :g : : : :M(
00 j !00)(reals:real) = RM(
00 j !00)(reals:0) = 0De�nition 5.11 (satisfa
tion for
ontexts with theories) An assign-ment
 satis�es a
ontext � if in addition to the
onstraints stated inDe�nition 2.18,
 maps every theory m de
lared in � to a satisfying assign-ment for the body of the theory given by de�nition(�(m)), that is for ea
hde
lared symbol s in m:1. If kind(�(m)(s)) = TYPE, then
(m)(s) 2 U .2. If kind(�(m)(s)) = CONSTANT, then
(m)(s) 2 M(� j
)(�(�)(m:s)).3. If de�nition(�(m)(s)) is nonempty, then
(m)(s) =M(�j
)(�(�; m)(de�nition(�(m)(s)))):

5.2. Constant De�nitions 455.2 Constant De�nitionsWe �rst extend the subset of PVS des
ribed so far to in
lude
onstant def-initions in a manner similar to type de�nitions. This extension is used informalizing the semanti
s of parametri
 theories. The syntax for a
onstantde�nition is
:T = a where de�nition(�(
)) is a. These de�nitions are ex-pli
it, that is, not re
ursive. With this extension, the type rule for
onstantde
larations in
ontexts
hanges from that of De�nition 3.10.De�nition 5.12 (type rule with
onstant de�nitions)�(�)(�;
:T = a) = T; if �(
) is unde�ned;�(
) is unde�ned;�(�)(�) = CONTEXT;�(�; �)(a) = T 0;(T � T 0)�;`� �(T)(a)The notion of satisfa
tion must be extended from that of De�nition 5.11to ensure that an assignment for a de�ned
onstant satis�es the de�nition.De�nition 5.13 (satisfa
tion with
onstant de�nitions) An assign-ment
 satis�es a
ontext � if in addition to the
onditions in De�nition 5.11,whenever kind(�(s)) = CONSTANT and de�nition(�(s)) is nonempty, then
(s) =M(� j
)(de�nition(�(s))).5.3 Parametri
 TheoriesThe extension to parametri
 theories is obtained by permitting theories to bede
lared as m[�℄: THEORY = �, where � is a
ontext listing the parametersand � is the body of the theory. If the above de
laration of m o

urs in
ontext �, then � is formals(�(m)), and � is de�nition(�(m)). For nonpara-metri
 theories, formals(�(m)) is empty. Types or
onstants de
lared in aparametri
 theory are referen
ed outside the theory as m[�℄:s, where � is alist of a
tual parameters
onsisting of types and terms. The type rule fromthe nonparametri

ase must be modi�ed to
he
k the parameters.

46 Chapter 5. Theories and Parametri
 TheoriesDe�nition 5.14 (type rule for
ontexts with parametri
 theories)�(�)(�; m[�℄: THEORY = �)= CONTEXT if �(m);�(m);�(m) are unde�ned�(�)(�) = CONTEXT�(�; �)(�) = CONTEXT;� has only
onstant andtype de
larations without de�nitions,�(�; �; �)(�) = CONTEXT� only has type and
onstant de
larationsThe type rules for pre�xed symbols are given below. The notation � = �,where � is of the form s1:�1; : : : ; sn:�n, and � is of the form �1; : : : ; �n,is short for the
ontext s1:�1 = �1; : : : ; sn:�n = �n. The de�nition of� is now extended to substitute a
tual theory parameters for formals, sothat �(�; m[�℄)(a) pre�xes every unpre�xed symbol s in a that is de
laredin de�nition(�(m)) by m[�℄, and repla
es any si in a that is de
lared informals(�(m)) by the
orresponding �i in �.De�nition 5.15 (type rules for pre�xed names with a
tuals) Let �be formals(�(m)).�(�)(m[�℄:s) = TYPE; ifkind(�(m)) = THEORYkind(�(m))(s) = TYPE and�(�)(� = �) = CONTEXT�(�)(m[�℄:s) = Æ(�)((�(�; m[�℄)(type(�(m)(s))));if kind(�(m)) = THEORYkind(�(m)(s)) = CONSTANT and�(�)(� = �) = CONTEXTDe�nition 5.16 (type expansion with parametri
 theories)Æ(�)(m[�℄:s) = Æ(�)((�(�; m[�℄)(de�nition(�(m)(s))))); ifde�nition(�(m)(s)) is nonempty.Æ(�)(m[�℄:s) = m[�℄:s; if de�nition(�(m)(s)) is empty.

5.3. Parametri
 Theories 47The de�nition of an assignment for a
ontext with parametri
 theoriesis a bit
ompli
ated. In the nonparametri

ase,
(m) simply returns anassignment of values for the types and
onstants de
lared in the theory m.For the
ase of parametri
 theories m,
(m) returns a fun
tion that maps themeaning of the given a
tuals � to an assignment
(m)(M(� j
)(�)) for thetypes and
onstants de
lared in the theorym. There is an important restri
tionthat
(m) must be rank-preserving, that is, if $ and $0 are assignments for �so that for ea
h i where �i is a type parameter, the rank of $(�i) equals therank of $0(�i), then the ranks of
(m)($)(s) and
(m)($0)(s) must be thesame for ea
h type symbol s de
lared in m.It is also important to observe that the semanti
s of parametri
 theoriesmakes use of the axiom of
hoi
e sin
e the assignment
orresponding to atheory m of the form m[t: TYPE℄: THEORY = f
: tg is essentially a
hoi
e fun
tion.Let
f� $g represent the assignment su
h that
f� $g(s) = $(s)for s in the domain of the
ontext �, and
(s), otherwise. The meaning ofsymbols of the form m[�℄:s
an then be de�ned as below.De�nition 5.17 (meaning fun
tion for pre�xed symbols with a
tuals)M(� j
)(m[�℄:s)= M(�; �;� j
f� $gf�
(m)($)g)(s); where� = formals(�(m))� = de�nition(�(m))$(r) =M(� j
)((� = �)(r)); for r 2 �The de�nition of a satisfying assignment given in De�nition 5.11 also mustbe strengthened. Let � be the formal parameters to theory m in
ontext �;then, an assignment $ is said to be satisfying parameter assignment for �under the assignment
 to � i�
f� $g is a satisfying assignment for �.De�nition 5.18 (satisfa
tion for
ontexts with parametri
 theories)An assignment
 satis�es a
ontext � if in addition to the
onstraints statedin De�nition 5.11,
 maps every parametri
 theory m de
lared in � withparameters � and de�nition �, to a fun
tion that maps any satisfying pa-rameter assignment $ for the theory parameters � (namely, formals(�(m)))to a satisfying assignment
f� $gf�
(m)($)g for � (given byde�nition(�(m))).

48 Chapter 5. Theories and Parametri
 Theories5.4 SummaryTheories are used to pa
kage related de
larations together. Parametri
 the-ories
an be used to pa
kage together de
larations that are generi
 in typeand individual parameters. The type rules for
ontexts must be extended toa

ommodate the theories. The type rules for simple (nonparametri
) theoriesare straightforward given this extension. The operation of expanding a typeusing type de�nitions must be enhan
ed so that symbols de
lared in a theoryare pre�xed with their theory name when referen
ed outside the theory. As-signments now have the same nested stru
ture as
ontexts, and the semanti
de�nition is easily extended to handle pre�xed symbols. Parametri
 theoriesare more
omplex. The theory pre�xes now
ontain a
tual parameters thathave to be type
he
ked relative to the expe
ted formal parameters. The as-signments
orresponding to parametri
 theories are fun
tions that map givenassignments for the formals to assignments for the de
larations within a the-ory. Su
h a mapping must be
onstrained to be rank-preserving. Parametri
theories
an have subtype parameters, and assumptions on the parameters.The rules for subtype parameters and assumptions are omitted for now butwill be in
luded in an expanded version of this report.

Chapter 6Conditional Expressions andLogi
al Conne
tivesWe have, so far, introdu
ed the
ore of PVS
ontaining types, type de�nitions,
onstant and variable de
larations, subtypes, dependent types, and theories.In extending the language with both expli
it and re
ursive
onstant de�nitionsand formulas, a
ru
ial di�eren
e is that the logi
al
ontext under whi
h atype-
orre
tness
ondition is generated provides additional assumptions that
an be used in proving any proof obligations. Examples of expressions wherean extended
ontext is needed to establish type
orre
tness by dis
hargingproof obligations in
lude1. x 6= y � (x+y)=(x�y) � 0. The type of the division operator
onstrainsthe denominator to be nonzero, that is, fx: real j x 6= 0g. In the givenexpression, the denominator
an be shown to be nonzero only in the
ontext of the ante
edent x 6= y.2. IF(i > 0; i;�i) has type nat given integer i provided the then and elseparts are type
he
ked with the assumptions i > 0 and :(i > 0), respe
-tively.PVS has a polymorphi
 primitive equality predi
ate:equality[T : TYPE℄ : THEORY = f =: [[T, T℄ -> bool℄ gNote that an equality of the form equality[T ℄:=(a; b) is informally writtenas a = b. When it is relevant to indi
ate the type parameter, we write theequality as a =T b. It
an be dedu
ed from the meaning of equality that ifS is a subtype of T , then for a and b in S, it must be the
ase that a =S b49

50 Chapter 6. Conditional Expressions and Logi
al Conne
tivesi� a =T b. Thus, we
an assume that equality is always parameterized bya maximal type. We assume that any relevant
ontext �
ontains the abovede
laration of the theory equality. Furthermore, any satisfying assignment
 for su
h a � must satisfy
(equality)(X)(=) = fhx; xi j x 2 Xg:The negation operation
an be de�ned in terms of equality as shown below.We assume that the
ontext
ontains a de
laration of the form: : [bool!bool℄ = (� (x : bool): x = FALSE)As is
lear, a satisfying assignment
 for a
ontext �
ontaining the abovede
laration must be su
h that
(:) yields the usual truth-table semanti
s, thatis, fh0; 1i; h1; 0ig.We
an then introdu
e the polymorphi
 IF-THEN-ELSE operation as fol-lows:if_def [T: TYPE℄: THEORY = f IF:[bool,T,T -> T℄ gIn type
he
king
onditional expressions, the notion of
ontext has to beextended to in
lude formulas so that the type
he
king of the subterm b inIF(a; b;
) is done in the
ontext of a, and the type
he
king of
 is done in the
ontext of :a. There is one new type
he
king rule for
ontexts with formulas.�()(�; a) = CONTEXT; if�()(�) = CONTEXT; and(�(�)(a) � bool)�Note that the type rule
he
ks that the type of a is
ompatible with boolrather than equivalent to it sin
e it is possible that the type of a might be asubtype of bool.De�nition 6.1 (satisfa
tion for
ontexts with formulas) An assign-ment
 satis�es
ontext � when in addition to the
onditions in De�nition 5.18,for ea
h pre�x �0; a of �,M(�0 j
)(a) = 1.The type
he
king of
onditional expressions is di�erent from that of otherappli
ation expressions sin
e the test part of the
onditional expression isintrodu
ed into the
ontext as a
ontextual assumption.

51De�nition 6.2 (type rule for
onditional expressions)�(�)(if def[T ℄:IF(a; b;
)) = T; if (�(�)(a) � bool)�;�(�; a)(b) = B;(B � T)�;a;`�;a �(T)(b)�(�;:a)(
) = C;(C � T)�;:a;`�;:a �(T)(
)The meaning of
onditional expressions must be treated in a spe
ial waysin
e the else part need not denote when the test part is true and,
orrespond-ingly, the then part need not denote if the test part is false. We assume thatany relevant
ontexts �
ontain the above de
laration of the if def theory.Conditional expressions
an be regarded as a new
onstru
t in the languagerather than a form of appli
ation. However, it is
onservative to regard
on-ditional expressions as appli
ations sin
e the latter introdu
e the additional
onstraint that all the arguments must already denote, that is, appli
ationsare stri
t.De�nition 6.3 (meaning fun
tion for
onditional expressions)M(� j
)(if def[T ℄:IF(a; b;
)) = � M(� j
)(b); ifM(� j
)(a) = 1M(� j
)(
); otherwiseThe semanti
s for
onditional expressions raises an important issue. Theequality if def[bool℄:IF(x; y; FALSE) = if def[bool℄:IF(y; x; FALSE)is semanti
ally valid for variables x and y of type bool. An expression likeif def[bool℄:IF(i 6= 0; 1=i > 0; FALSE)
an be type
he
ked to have the typebool sin
e it generates a valid proof obligation i 6= 0 � i 6= 0, but the seem-ingly equivalent expression if def[bool℄:IF(1=i > 0; i 6= 0; FALSE) generatesan unveri�able proof obligation i 6= 0. This may seem
ontradi
tory sin
e theequality suggests a transformation of a type
orre
t
onditional expression toa type in
orre
t expression. The resolution here is that equality
annot be

52 Chapter 6. Conditional Expressions and Logi
al Conne
tivesinstantiated with i 6= 0 for x and 1=i > 0 for y sin
e the expression 1=i > 0type
he
ks as having type bool only when i 6= 0 is known from the
ontext.The same applies in the
ase of the other propositional
onne
tives, thus en-suring that ea
h expression is type
orre
t in the
ontext in whi
h it o

urs.We
an then de�ne the propositional
onne
tives in terms of
onditionalexpressions.^: [[bool; bool℄!bool℄ = �(x: bool; y: bool): if def[bool℄:IF(x; y; FALSE)_: [[bool; bool℄!bool℄ = �(x: bool; y: bool): if def[bool℄:IF(x; TRUE; y)�: [[bool; bool℄!bool℄ = �(x: bool; y: bool): if def[bool℄:IF(x; y; TRUE)In the type
he
king of terms of the form a^ b, we follow the
orrespondingrule for the de�nition so that the term a is assumed in the
ontext whentype
he
king term b. Similarly, for a _ b, the formula :a is assumed in the
ontext when type
he
king b, and for a � b, the formula a is assumed in the
ontext when type
he
king b. The Boolean equivalen
e operator IFF has nospe
ial rules for adding formulas to
ontexts during type
he
king.6.1 SummaryThe use of assumption formulas enables expressions to be type
he
ked withinthe narrow
ontext of their use so that the governing assumptions
an be usedin dis
harging any proof obligations. The type rules for
onditional expressionsand the Boolean
onne
tives ^, _, and � make use of
ontextual assumptions.

Chapter 7Proof Theory of PVSThe �nal step in the presentation of the semanti
s is the presentation of theproof rules for the idealized subset of PVS des
ribed thus far. As already indi-
ated, the proof theory is an integral part of the semanti
s sin
e type
he
kingand proof
he
king are
losely intertwined. Fortunately, the proof rules turnout to be mu
h less
ompli
ated than the type rules.The PVS proof theory is presented in terms of a sequent
al
ulus. Asequent is of the form � `� �, where � is the
ontext, � is a set of ante
edentformulas, and � is a set of
onsequent formulas. Su
h a sequent should be readas stating that the
onjun
tion of the formulas in � implies the disjun
tion offormulas in �.Inferen
e rules are presented in the formpremise(s)
on
lusion name side
ondition7.1 PVS Proof Rules7.1.1 Stru
tural RulesThe stru
tural rules permit the sequent to be rearranged or weakened via theintrodu
tion of new sequent formulas into the
on
lusion. All the stru
turalrules
an be expressed in terms of the single powerful weakening rule shownbelow. It allows a weaker statement to be derived from a stronger one byadding either ante
edent formulas or
onsequent formulas. The relation �1 ��2 holds between two lists when all the formulas in �1 o

ur in the list �2.�1 `� �1�2 `� �2 W if �1 � �2 and �1 � �253

54 Chapter 7. Proof Theory of PVSBoth the Contra
tion and Ex
hange rules shown below are absorbed by theabove weakening rule W. The Contra
tion rules C ` and ` C allow multipleo

urren
es of the same sequent formula to be repla
ed by a single o

urren
e.a; a;� `� �a;� `� � C ` � `� a; a;�� `� a;� ` CThe Ex
hange rule asserts that the order of the formulas in the ante
edentand the
onsequent parts of the sequent is immaterial. It
an be stated as�1; b; a;�2 `� ��1; a; b;�2 `� � X ` � `� �1; b; a;�2� `� �1; a; b;�2 ` XAs seen above, inferen
e rules have the general form�1 ` �1 � � � �n ` �n� ` � R:This says that if we are given a leaf of a proof tree of the form � ` �, then byapplying the rule named R, we may obtain a tree with n new leaves.7.1.2 Cut RuleThe
ut rule Cut
an be used to introdu
e a
ase split on a formula a into aproof of a sequent � `� � so as to yield the subgoals �; a `� � and � `� a;�,whi
h
an be seen as assuming a along one bran
h and :a along the other.(�(�)(a) � bool)� �; a `� � � `� a;�� `� � Cut7.1.3 Propositional AxiomsThe axioms rule Ax simply asserts that a follows from a.�; a `� a;� AxThe next two rules assert that any sequent with either an ante
edent o
-
urren
e of FALSE or a
onsequent o

urren
e of TRUE is an axiom.�; FALSE `� � FALSE ` � `� TRUE;� ` TRUE

7.1. PVS Proof Rules 557.1.4 Context RulesCertain formulas hold in a
ontext simply be
ause they are already assertedin the
ontext either as a formula or a
onstant de�nition.`� a ContextFormula if a is a formula in �`� s = a ContextDe�nition if s:T = a is a
onstant de�nition in �The
ontext �
an be extended with ante
edent formulas or negations of
onsequent formulas using the following two rules.�; a `�;a ��; a `� � Context ` � `�;:a a;�� `� a;� ` ContextThe following
ontext-weakening rule is useful sin
e it shows that provabil-ity is monotoni
 with respe
t to the
ontext.� `� �� `�0 � ContextW if � is a pre�x of �07.1.5 Conditional RulesThe rules governing the elimination of IF-THEN-ELSE in a proof are unusualsin
e they augment the
ontext with the test part or its negation, as in the
orresponding type rules.�; a; b `�;a � �;
 `�;:a a;��; IF(a; b;
) `� � IF `�; a `�;a b;� � `�;:a a;
;�� `� IF(a; b;
);� ` IF7.1.6 Equality RulesThe rules for equality
an be stated as below. The rules of transitivity andsymmetry for equality
an be derived from these rules. The notation a[e℄ isused to highlight one or more o

urren
es of e in the formula a su
h that thereare no free variable o

urren
es in e.1 The notation �[e℄ similarly highlightso

urren
es of e in �.1We enfor
e an invariant on a sequent that it must not
ontain any free variables. Thisinvariant is preserved by ea
h of the proof rules.

56 Chapter 7. Proof Theory of PVS� `� a = a;� Re
 a = b;�[b℄ `� �[b℄a = b;�[a℄ `� �[a℄ Repl7.1.7 Boolean Equality RulesThe rule Repl TRUE asserts that an ante
edent formula a
an be treated as anante
edent equality of the form a = TRUE, and
orrespondingly, a
onsequentformula a
an be treated as an ante
edent equality of the form a = FALSE.�[TRUE℄; a `� �[TRUE℄�[a℄; a `� �[a℄ Repl TRUE �[FALSE℄; a `� �[FALSE℄�[a℄ `� a;�[a℄ Repl FALSEThe rule TRUE-FALSE asserts that TRUE and FALSE are distin
t Boolean
onstants. �; TRUE = FALSE `� � TRUE-FALSE7.1.8 Redu
tion RulesThe redu
tion rules are equality rules (axioms) that provide the obvious sim-pli�
ations for appli
ations involving lambda abstra
tions and produ
t proje
-tions. `� (�(x:T): a)(b) = a[b=x℄ �`� pi(a1; a2) = ai �7.1.9 Extensionality RulesThe extensionality rules are also equality rules for establishing equality be-tween two expressions of fun
tion or produ
t type. The extensionality rulefor fun
tions, FunExt, introdu
es a Skolem
onstant s to determine that twofun
tions f and g are equal when the results of applying them to an arbitraryargument s are equal.� `�;s:A (f s) =B[s=x℄ (g s);�� `� f =[x:A!B℄ g;� FunExt �(s) unde�ned

7.2. Soundness of the Proof Rules 57The extensionality rule for produ
ts asserts that two produ
ts are equal iftheir
orresponding proje
tions are equal.� `� p1(a) =T1 p1(b);� � `� p2(a) =T2[(p1 a)=x℄ p2(b);�� `� a =[x:T1T2℄ b;� TupExtRe
all that the quanti�ers
an be de�ned in terms of lambda abstra
tionand equality so that (8(x:T): a) is just (�(x:T): a) = (�(x:T): TRUE). Exis-tential quanti�
ation (9(x:T): a)
an easily be de�ned as :(8(x:T)::a). Theproof rules for quanti�ers
an then be derived from the rules �, TupExt, andthe equality rules.7.1.10 Type Constraint RuleWe need a rule to introdu
e the type
onstraint on a term as an ante
edentformula of the given goal sequent.�(�)(a) = A �(A)(a);� `� �� `� � Typepred7.2 Soundness of the Proof RulesProposition 7.1 If � is a pre�x of �0, �()(�) = �()(�0) = CONTEXT,
0 isa satisfying assignment for �0, and
 =
0 � � then for any a su
h that�(�)(a) = �(�0)(a), it is the
ase thatM(� j
)(a) =M(�0 j
0)(a).Theorem 7.2 (soundness) If �()(�) = CONTEXT su
h that for every formulaa in �;�, (�(�)(a) � bool)�, and � `� � is provable, then for any satisfyingassignment
 for �, either there is a formula b in �, su
h thatM(� j
)(b) = 0or a formula
 in �, su
h that M(� j
)(
) = 1.Proof. The proof is by indu
tion on the stru
ture of the proof of � `� �.Re
all that this proof is a
tually part of a simultaneous indu
tion that in
ludesthe soundness of the type rules relative to the semanti
 fun
tion, that is,Theorems 4.14 and 4.18. Spe
i�
 invo
ations of the soundness theorem o

urin the proofs of Theorem 3.19 and Proposition 4.17.1. Stru
tural Rules: Sin
e the subset of formulas in the premise and the
on
lusion of these rules are the same, the
on
lusion follows easily fromthe indu
tion hypothesis.

58 Chapter 7. Proof Theory of PVS2. Cut : By the semanti
 soundness of the type rules, we haveM(� j
)(a) 22. If M(� j
)(a) = 0, then by the indu
tion hypothesis on the se
-ond subgoal of the proof rule, there must be some b in � su
h thatM(� j
)(b) = 0 or a
 in � su
h thatM(� j
)(
) = 1. The
ase whenM(� j
)(a) = 1 is symmetri
al.3. Propositional Axioms: Obvious.4. Context Rules:ContextFormula: If
 satis�es � and a 2 �, thenM(� j
)(a) = 1.ContextDe�nition: If
 satis�es � and s:T = a is a de
laration in �,then by the de�nition of satisfa
tion,M(� j
)(s) =M(� j
)(a).Context `: The argument is trivial when M(� j
)(a) = 0. Oth-erwise,
 satis�es the extended
ontext �; a, and the
on
lusionfollows from the indu
tion hypothesis.` Context: Similar to Context ` above.ContextW: If
 satis�es �0, then it also satis�es �, and hen
e theproof.5. Conditional Rules: We only
onsider IF ` sin
e the ` IF proof is similar.IfM(� j
)(IF(a; b;
)) = 0, the
on
lusion follows trivially. Otherwise,If
 satis�es �, then M(� j
)(a) 2 2. If M(� j
)(a) = 1, thenM(� j
)(b) = 1. The indu
tion hypothesis on the subgoal �; a; b `�;a �yields the desired
on
lusion. Similarly, if M(� j
)(a) = 0, we haveM(� j
)(
) = 1 and the indu
tion hypothesis on the se
ond subgoalyields the desired
on
lusion.6. Equality Rules: The Re
 rule is obvious. For the Repl rule, ifM(� j
)(a = b) = 0, the
on
lusion follows trivially. Otherwise,M(� j
)(a) = M(� j
)(b). Hen
e,
 satis�es the extended
on-text �; a = b. Then for ea
h
[a℄ in �[a℄ or �[a℄, M(� j
)(
[a℄) =M(� j
)(
[b℄).7. Boolean Equality Rules: The Repl TRUE and Repl FALSE rules fol-low easily sin
e when M(� j
)(a) = 1, we have M(� j
)(
[a℄) =M(� j
)(
[TRUE℄). A similar argument applies to Repl FALSE.The soundness of TRUE-FALSE is easy sin
eM(� j
)(TRUE = FALSE) = 0.

7.2. Soundness of the Proof Rules 598. Redu
tion Rules: The �-redu
tion rule follows be
auseM(� j
)((�(x:T): a)(b)) isM(�; x: VAR T j
fx M(� j
)(b)g)(a)whi
h by the Substitution Lemma 4.16 is equal toM(� j
)(a[b=x℄).The soundness �-redu
tion rule is a dire
t
onsequent of De�nition 2.6.9. Extensionality Rules:FunExt: First
onsider the
ase when the domain typeM(� j
)(A) isempty. Then by De�nition 4.12,M(� j
)(f) =M(� j
)(g) = ;.ThereforeM(� j
)(f = g) = 1 and hen
e the
on
lusion.2The
ase whenM(� j
)(A) is nonempty, we have for any
 satisfy-ing � and s 2 M(� j
)(A), that
0 given by
fs zg is a satisfyingassignment for �; s:A. By the indu
tion hypothesis, there is eitheran a in � su
h thatM(�; s:A j
0)(b) = 0 or a
 in (f s) = (g s);�su
h that M(�; s:A j
0)(
) = 1. If we have su
h a b in �, byProposition 7.1, we also have that M(� j
)(b) = 0. A similarargument
an be used if we have su
h a
 in �. If
 is (f s) = (g s),thenM(� j
)(f)(z) =M(� j
)(g)(z) for every z inM(� j
)(A).By set-theoreti
 extensionality, this means that M(� j
)(f) andM(� j
)(g) are identi
al elements of �F where F maps z inM(� j
)(A) to an element of M(�; x: VAR A j
fx zg)(B).ThereforeM(� j
)(f = g) = 1 as desired.TupExt: If there is some d in � su
h that by applying the indu
tionhypothesis to any of the subgoalsM(� j
)(d) = 0, then the sameholds for the
on
lusion sequent. Similarly, if the indu
tion hypoth-esis on some subgoal yields a
 in � su
h that M(� j
)(
) = 1,then the same holds for the
on
lusion sequent. So the remain-ing
ase is when, by the indu
tion hypothesis, M(� j
)(pi(a)) =M(� j
)(pi(b)) for ea
h i 2 f1; 2g. It is therefore easy to
on
ludeby set-theoreti
 extensionality thatM(� j
)(a) and M(� j
)(b)are identi
al elements of M(� j
)(a=[T1; T2℄). We
an then useProposition 4.17 to
on
lude thatM(� j
)(a) andM(� j
)(b) areidenti
al elements ofM(� j
)([T1; T2℄).10. Type Constraint Rule: Re
all from Proposition 3.17 that when �(�)(a) =A, then M(� j
)(�(A)(a)) = 1. Given this and the indu
tion hy-2Sin
e the subgoal sequent � `�;s:A (f s) = (g s);� is valid when M(� j
)(A) = ; forall assignments
, it is natural to ask how it is a
tually proved. The only way a type A
anbe empty under any assignment
 is if M(� j
)(�(A)(a) = 0). The Typepred rule
antherefore be used on the Skolem
onstant s to
omplete the proof.

60 Chapter 7. Proof Theory of PVSpothesis, it must either be the
ase that we have a b in � su
h thatM(� j
)(b) = 0 or a
 in � su
h thatM(� j
)(
) = 1.To tie the development so far into a single simultaneous indu
tion aspromised, we state the key theorem whose subproofs have been given by thetheorems presented thus far, namely, Theorems 4.14, 4.18, and 7.2.Theorem 7.3 If �()(�) = CONTEXT, then1. If �;� is a list of preterms su
h that for every a in �;�, (�(�)(a) �bool)�, and � `� � is provable, then for any satisfying assignment
 for�, either there is a b in �, su
h thatM(� j
)(b) = 0 or a
 in �, su
hthatM(� j
)(
) = 1.2. If A is a pretype su
h that �(�)(A) = TYPE, then for any assignment
satisfying �,M(� j
)(A) 2 U .3. If a is a preterm su
h that �(�)(a) = A, then for any assignment
satisfying �,M(� j
)(a) 2 M(� j
)(A).7.3 SummaryThe logi
al inferen
e rules for the PVS logi
 have been presented in a sequent
al
ulus format. The formal semanti
s presented in the earlier
hapters is usedto establish the soundness of these proof rules.

Chapter 8Con
lusionWe have presented the syntax and semanti
s of idealized PVS in several stages.In the �rst stage we introdu
ed the simply typed fragment, whi
h was then ex-tended with type de�nitions. The third su
h fragment in
luded subtyping; thefourth fragment introdu
ed dependent typing. Finally, we introdu
ed
onstantde�nitions and parametri
 and nonparametri
 theories.The semanti
 de�nition was given in a novel, fun
tional style where a
anoni
al type was assigned to ea
h type
orre
t term. The interplay be-tween types and proofs in PVS introdu
ed subtleties and
omplexities intothe semanti
 de�nition. We
an now answer some of the questions raised inChapter 1:� What is the semanti

ore of the language, and what is just synta
ti
sugar?The semanti

ore of the language is a typed lambda
al
ulus with simplefun
tion and tuple types, predi
ate subtypes, dependent types, paramet-ri
 theories, and
onditional expressions. Many of the other features ofthe PVS language su
h as re
ords and update expressions
an be ex-plained in terms of the
ore language.� What are the rules for determining whether a given PVS expression iswell typed?The type
he
king rules have been presented in terms of the de�nition ofthe � operator in Chapters 2, 3, 4, 5, and 6.� How is subtyping handled, and in parti
ular, how are proof obligations
orresponding to subtypes generated?Type
he
king an expression a with respe
t to predi
ate subtype
on-straint fx:T jp(x)g is done by generating the proof obligation p(a) under61

62 Chapter 8. Con
lusionthe logi
al
ontext in whi
h a is being type
he
ked. This is made pre-
ise in De�nitions 3.10 and 6.2. Proof obligations are generated whentype
he
king
ontexts (for nonemptiness), type
he
king expressions withrespe
t to expe
ted subtypes, and
omparing two types
ontaining sub-type expressions for
ompatibility.� What is the meaning, in set-theoreti
 terms, of a PVS expression orassertion?The set-theoreti
 meaning of well-formed PVS types and expressions isgiven by a meaning fun
tionM that assigns a setM(� j
)(T) from theuniverse U to ea
h type T , and an elementM(� j
)(a) ofM(� j
)(T)to a given term a of type T .� Are the type rules sound with respe
t to the semanti
s?The type
he
king fun
tion � is de�ned to
he
k
ontexts, preterms, andpretypes for type
orre
tness. The type rules are shown to be sound withrespe
t to the given semanti
s in Theorem 7.3.� Are the proof rules sound with respe
t to the semanti
s?The proof rules are given in Chapter 7 in a sequent
al
ulus format andproved to be sound with respe
t to the semanti
s in Theorem 7.3.� What is the form of dependent typing used by PVS, and what kinds oftype dependen
ies are disallowed by the language?The semanti
 analysis of dependent typing in Chapter 4 revealed thattype dependen
ies were
onstrained to be rank-bounded. This is true be-
ause the dependen
ies in dependent typing only
onstrain the predi
atepart of predi
ate subtypes. Thus, when there is a dependent type T (n)that depends on a parameter n, the meaning of T (n) has a �xed rank re-gardless of the meaning assigned to n. The PVS language features usedto de�ne dependent types all preserve the rank-boundedness. Languageextensions violating rank-boundedness su
h as a type dependen
y of theform [n:nat!T n℄ are disallowed. One
an extend the language withsu
h dependent types, but the semanti
s would then be
onsiderablymore
ompli
ated.� What is the meaning of theory-level parametri
ity, and what, if any, arethe semanti
 limits on su
h parameterization?

63The semanti
s of parametri
 theories is des
ribed in Chapter 5. In par-ti
ular, the semanti
s for parametri
 theories is given in terms of rank-preserving maps between the meanings of the parameters and the mean-ings of the identi�ers de
lared in the theory. These maps must be su
hthat the rank of an assignment to a type in a theory depends only onthe ranks of the (meanings of the) type parameters.� What language extensions are in
ompatible with the referen
e semanti
sgiven here?We have already indi
ated that any language extension, su
h as an n-tuple type T n, that violates rank-boundedness would be in
ompatiblewith the semanti
s presented here.This report presents only the
ore language of PVS. A more
ompletesemanti
 treatment would in
lude arithmeti
, re
ursive
onstant de�nitions,indu
tive de�nitions, re
ursive datatypes, assumptions on theory parameters,and type judgements.A
knowledgments. The advi
e and en
ouragement of John Rushby, Ri
kButler, Paul Miner, Pat Lin
oln, and Mandayam Srivas are greatly appre
i-ated, as are the useful expert
omments of Peter Dybjer, Mike Gordon, DougHowe, and Paul Ja
kson. Bruno Dutertre, Paul Miner, and Harald Rue� sug-gested numerous improvements to earlier drafts.

Bibliography[AMCP84℄ P. B. Andrews, D. A. Miller, E. L. Cohen, and F. Pfenning. Au-tomating higher-order logi
. In W. W. Bledsoe and D. W. Love-land, editors, Automated Theorem Proving: After 25 Years, pages169{192. Ameri
an Mathemati
al So
iety, Providen
e, R.I., 1984.[And86℄ Peter B. Andrews. An Introdu
tion to Logi
 and Type Theory: ToTruth through Proof. A
ademi
 Press, New York, NY, 1986.[CAB+86℄ R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland,J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblo
k, N. P.Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Imple-menting Mathemati
s with the Nuprl Proof Development System.Prenti
e-Hall, Englewood Cli�s, NJ, 1986.[Chu40℄ A. Chur
h. A formulation of the simple theory of types. Journalof Symboli
 Logi
, 5:56{68, 1940.[DFH+91℄ Gilles Dowek, Amy Felty, Hugo Herbelin, G�erard Huet, ChristinePaulin-Mohring, and Benjamin Werner. The COQ proof assis-tant user's guide: Version 5.6. Rapports Te
hniques 134, INRIA,Ro
quen
ourt, Fran
e, De
ember 1991.[Dyb91℄ Peter Dybjer. Indu
tive sets and families in Martin-L�of's typetheory and their set-theoreti
 semanti
s. In Logi
al Frameworks,pages 280{306. Cambridge University Press, 1991.[EHDM93℄ User Guide for the Ehdm Spe
i�
ation Language and Veri�
ationSystem, Version 6.1. Computer S
ien
e Laboratory, SRI Interna-tional, Menlo Park, CA, February 1993. Three volumes.[FBHL84℄ A. A. Fraenkel, Y. Bar-Hillel, and A. Levy. Foundations of SetTheory, volume 67 of Studies in Logi
 and the Foundations of64

Bibliography 65Mathemati
s. North-Holland, Amsterdam, The Netherlands, se
-ond printing, se
ond edition, 1984.[FGJM85℄ Koki
hi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, andJos�e Meseguer. Prin
iples of OBJ2. In Brian K. Reid, editor,12th ACM Symposium on Prin
iples of Programming Languages,pages 52{66. Asso
iation for Computing Ma
hinery, 1985.[GH93℄ John V. Guttag and James J. Horning with S. J. Garland, K. D.Jones, A. Modet, and J. M. Wing. Lar
h: Languages and Toolsfor Formal Spe
i�
ation. Texts and Monographs in ComputerS
ien
e. Springer-Verlag, 1993.[GM93℄ M. J. C. Gordon and T. F. Melham, editors. Introdu
tion toHOL: A Theorem Proving Environment for Higher-Order Logi
.Cambridge University Press, Cambridge, UK, 1993.[How91℄ Douglas J. Howe. On
omputational open-endedness in Martin-L�of's type theory. In Pro
eedings, Sixth Annual IEEE Symposiumon Logi
 in Computer S
ien
e, pages 162{172, Amsterdam, TheNetherlands, 15{18 July 1991. IEEE Computer So
iety Press.[How96℄ Douglas J. Howe. Semanti
 foundations for embedding HOL inNuprl. In Martin Wirsing and Mauri
e Nivat, editors, Algebrai
Methodology and Software Te
hnology, 5th International Confer-en
e, AMAST'96, pages 85{101. Number 1101 in Le
ture Notesin Computer S
ien
e, Springer Verlag, 1996.[Jon90℄ Cli� B. Jones. Systemati
 Software Development Using VDM.Prenti
e Hall International Series in Computer S
ien
e. Prenti
eHall, Hemel Hempstead, UK, se
ond edition, 1990.[Lam94℄ Leslie Lamport. The temporal logi
 of a
tions. ACM TOPLAS,16(3):872{923, May 1994.[LP97℄ Leslie Lamport and Lawren
e C. Paulson. Should your spe
i�-
ation language be typed? SRC Resear
h Report 147, DigitalSystems Resear
h Center, Palo Alto, CA, May 1997. Available athttp://www.resear
h.digital.
om/SRC.[Mel89℄ Thomas F. Melham. Automating re
ursive type de�nitions inhigher order logi
. In G. Birtwistle and P. A. Subrahmanyam,

66 Bibliographyeditors, Current Trends in Hardware Veri�
ation and TheoremProving, pages 341{386, New York, NY, 1989. Springer-Verlag.[MMMS90℄ Albert R. Meyer, John C. Mit
hell, Eugenio Moggi, and Ri
hardStatman. Empty types in polymorphi
 lambda
al
ulus. In Ger-ard Huet, editor, Logi
al Foundations of Fun
tional Programming,University of Texas at Austin Year of Programming, pages 273{284. Addison-Wesley, 1990.[OS97℄ S. Owre and N. Shankar. Abstra
t datatypes in PVS. Te
hni
alreport, Computer S
ien
e Laboratory, SRI International, MenloPark, CA, De
ember 1997. Revised version of SRI-CSL-93-9. Toappear as a NASA Contra
tor Report.[OSRSC98℄ S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.User Guide for the PVS Spe
i�
ation and Veri�
ation System.Computer S
ien
e Laboratory, SRI International, Menlo Park,CA, September 1998. Three volumes: Language, System, andProver Referen
e Manuals.[RAISE92℄ The RAISE Language Group. The RAISE Spe
i�
ation Lan-guage. BCS Pra
titioner Series. Prenti
e-Hall International,Hemel Hempstead, UK, 1992.[Spi88℄ J. M. Spivey. Understanding Z: A Spe
i�
ation Language and itsFormal Semanti
s. Cambridge Tra
ts in Theoreti
al ComputerS
ien
e 3. Cambridge University Press, Cambridge, UK, 1988.

