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AbstractWe describe PVS's capabilities for representing tabular speci�cations of the kindadvocated by Parnas and others, and show how PVS's Type Correctness Conditions(TCCs) are used to ensure certain well-formedness properties.We then show how these and other capabilities of PVS can be used to repre-sent the AND/OR tables of Leveson and the Decision Tables of Sherry, and wedemonstrate how PVS's TCCs can expose and help isolate errors in the latter.We extend this approach to represent the mode transition tables of the SoftwareCost Reduction (SCR) method in an attractive manner. We show how PVS cancheck these tables for well-formedness, and how PVS's model checking capabilitiescan be used to verify invariants and reachability properties of SCR requirementsspeci�cations, and inclusion relations between the behaviors of di�erent speci�ca-tions.These examples demonstrate how several capabilities of the PVS language andveri�cation system can be used in combination to provide customized support forspeci�c methodologies for documenting and analyzing requirements. Because theyuse only the standard capabilities of PVS, users can adapt and extend these cus-tomizations to suit their own needs. Those developing dedicated tools for individualmethodologies may �nd these constructions in PVS helpful for prototyping purposes,or as a useful adjunct to a dedicated tool when the capabilities of a full theoremprover are required.The examples also illustrate the power and utility of an integrated general-purpose system such as PVS. For example, there was no need to adapt or extendthe PVS model checker to make it work with SCR speci�cations described using thePVS TABLE construct: the model checker is applicable to any transition relation,independently of the PVS language constructs used in its de�nition.PVS speci�cation �les for several of the examples used here can be downloadedfrom http://www.csl.sri.com/pvs/examples/tables; PVS itself is available athttp://www.csl.sri.com/pvs.html.Note: this revised edition of the report di�ers signi�cantly from the draft issuedin June 1995.
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Chapter 1IntroductionAn obstacle to the transfer of formal methods technology, as embodied in tools suchas PVS, is that there is rather little method in formal methods. Prospective usersof PVS, say, are provided with a powerful tool for formal speci�cation and analysis,but are given little guidance on how best to apply this capability to their individualproblems.On the other hand, substantial methodologies for system speci�cation and re�ne-ment have developed in some application areas, but these have generally not beensupported by mechanized formal analysis. Several of these methodologies derivedfrom work at the U.S. Naval Research Laboratory (NRL) in the 1970s on softwarerequirements for the A-7E aircraft [21,22]. Such methods include Parnas's \four vari-able method" [42,43], the Software Cost Reduction (SCR) method of NRL [11], theConsortium Requirements Engineering (CoRE) method of the Software Productiv-ity Consortium [12] and, more distantly, Harel's Statecharts [14] and its derivativessuch as Leveson's Requirements State Machine Language (RSML) [29]. These meth-ods are intended for reactive systems|that is, systems that operate continuouslyand interact with their environment|and model system requirements and behaviorsas the traces (i.e., sequences of system states, inputs, and outputs) of interactingstate machines. Some of these methods (notably Parnas's and SCR and, in di�erentforms, RSML and the decision tables of Sherry [39]) also stress the use of tables tospecify functions and state transition relations.These methods provide organizing principles, systematic checks for well-formedness of speci�cations and, in some cases, simulators. For example, Heitmeyerand others at NRL have developed a mechanized toolset that performs systematicchecks for well-formedness of SCR speci�cations and also provides a simulator forthese speci�cations [18, 20], while Heimdahl and Leveson have developed a checkerfor RSML [16,17] and Hoover and others at ORA have mechanized the decision ta-bles used by Sherry [23]. As yet, however, these and other tools for reactive systems1



2 Chapter 1. Introductiondo not provide the kind of formal analysis that is feasible with a true veri�cationsystem such as PVS; in particular, their well-formedness checks cannot decide condi-tions that require arbitrary theorem proving, and they cannot examine applicationrequirements such as safety (invariant) and liveness properties.In this report, we describe some modest enhancements recently implemented inPVS that allow it to represent various kinds of tables in a fairly natural manner, andto provide syntactic and semantic well-formedness checks for tabular speci�cations.We also show how PVS's model checking capabilities can be used decide certainproperties of SCR-type state-transition speci�cations. We hope this description willserve three purposes.� To provide some methodological guidance for those who are using PVS inapplication areas where tabular and state-transition speci�cations are appro-priate.� To demonstrate how the resources of a veri�cation system with a rich speci�-cation language and a repertoire of automated proof procedures can be used incombination to provide automated assistance in novel domains. The capabil-ities of PVS that we exploit|namely, its powerful type system, higher-orderfunctions, tables, decision procedures, and model checker|are all useful in-dividually, while their combination provides e�ective automation for variouskinds of tabular speci�cation methods at negligible development cost. Becauseour treatment uses the standard capabilities of PVS, we hope that others willbe able to modify and adapt it to suit their own purposes, or to use it tosuggest ways of using PVS to automate other methodologies.� To provide rapid prototyping and back-end support for those developing spe-cialized tools such as NRL's SCR* toolset [18] and those for RSML [17]. Forexample, we hope that experimenting with SCR model checking in PVS willbe useful to developers of the model checker planned for SCR*, and that theability to call, when necessary, on the full theorem-proving capability of PVSwill free them to provide really e�cient and smooth support for the majorityof well-formedness cases that do not require this capability. Some aspects ofthe TableWise tool [23] were prototyped in PVS in just this way.The body of this report is contained in three chapters. Chapter 2 describes PVS'srepresentation of Parnas-style tables, and its method for generating and dischargingthe proof obligations that ensure completeness and consistency of tabular speci�ca-tions. Chapter 3 shows how Leveson's AND/OR tables and Sherry's decision tablescan be represented in PVS. Chapter 4 combines the methods of the previous twochapters to provide a treatment for SCR-style speci�cations, and shows how PVS'smodel checker can be used to decide application properties of these speci�cations.Brief conclusions are provided in Chapter 5.



Chapter 2Basic TablesTables can be a convenient way to specify certain kinds of functions. An exampleis the function sign(x), which returns �1; 0; or 1 according to whether its integerargument is negative, zero, or positive. As a table, this can be speci�ed as follows.x < 0 x = 0 x > 0sign(x) = �1 0 +1This is an example of a piecewise continuous function that requires de�nition bycases, and the tabular presentation provides two bene�ts.� It makes the cases explicit, thereby allowing checks that none of them overlapand that all possibilities are considered.� It provides a visually attractive presentation of the de�nition that eases com-prehension.The �rst of these bene�ts is a semantic issue that is handled in PVS by the CONDconstruct; the second is a syntactic issue that is handled in PVS by the TABLEconstruct (which is a variation on COND).2.1 The PVS COND ConstructThe PVS COND construct provides for speci�cation by cases. Its general form isCONDc1 ! e1;c2 ! e2;� � �cn ! enENDCOND 3



4 Chapter 2. Basic Tableswhere the ci are Boolean expressions and the ei are values of some single type.The keyword ELSE can be used in place of the �nal condition cn. The constructcan appear anywhere that a value of the type of ei is expected. PVS requires thatexactly one of the ci is true and ensures this by generating two Type CorrectnessConditions (TCCs) for each COND.Disjointness requires that each distinct ci, cj pair is disjoint (i.e., ci ^ cj is false).Coverage requires that the disjunction of all the ci is true.The coverage TCC is suppressed if the ELSE keyword is used; also the ci, cj compo-nent of the disjointness TCC is suppressed when ei and ej are syntactically identical.TCCs are proof obligations that must be discharged before the speci�cation thatgenerated them is considered fully typechecked. (PVS allows proof of these obliga-tions to be postponed, but keeps track of all unsatis�ed obligations.) Given that theTCCs are true, the COND is equivalent to, and is treated internally as, the followingconstruction.IF c1 THEN e1ELSIF c2 THEN e2� � �ELSE enENDIFNotice that the cn condition does not need to be checked in the IF-THEN-ELSEtranslation: if this was given as an explicit ELSE in the COND, then the \fall through"default is exactly what is required; otherwise, the coverage TCC ensures that cn isthe negation of the disjunction of the other ci, and the \fall through" is again correct.Using COND, we can specify the sign function as follows.signs: TYPE = f x: int | x >= -1 & x <= 1gx: VAR intsign_cond(x): signs =CONDx < 0 -> -1,x = 0 -> 0,x > 0 -> 1ENDCONDThis generates the following TCCs, both of which are discharged by PVS's defaultstrategy for TCCs in less than a second. (In addition, subtype TCCs are generatedto ensure that 0, for example, is a valid element of the type signs.)



2.1. The PVS COND Construct 5% Disjointness TCC generated (line 10) for% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCONDsign_cond_TCC2: OBLIGATION(FORALL (x: int):NOT (x < 0 AND x = 0)AND NOT (x < 0 AND x > 0) AND NOT (x = 0 AND x > 0));% Coverage TCC generated (line 10) for% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCONDsign_cond_TCC3: OBLIGATION (FORALL (x: int): x < 0 OR x = 0 OR x > 0);The variant that uses the ELSE clause looks as follows.sign_cond2(x): signs =CONDx < 0 -> -1,x = 0 -> 0,ELSE -> 1ENDCONDIt generates a simpler disjointness TCC (since there is no third case to consider),and no coverage TCC.% Disjointness TCC generated (line 12) for% COND x < 0 -> -1, x = 0 -> 0, ELSE -> 1 ENDCONDsign_cond2_TCC2: OBLIGATION (FORALL (x: int): NOT (x < 0 AND x = 0));Both of these COND are equivalent to the following IF-THEN-ELSE form.sign_traditional(x): signs =IF x < 0 THEN -1 ELSIF x > 0 THEN 1 ELSE 0 ENDIFThe equivalence is demonstrated by the following lemmastrad_cond_same: LEMMA sign_traditional = sign_condtrad_cond2_same: LEMMA sign_traditional = sign_cond2which can each be proved in less than a second by the PVS proof commands(apply-extensionality :hide? t)(grind).1Because COND is treated internally as an IF-THEN-ELSE, proofs involving COND aremechanized in exactly the same way as IF-THEN-ELSE|that is, by the commands(lift-if) and (split) or (bddsimp), and the higher-level commands such as(grind) that use these.1The :hide? t keyword argument is optional: it simply hides the original formula once exten-sionality has been applied, and thereby reduces visual clutter in the sequent.



6 Chapter 2. Basic Tables2.2 The PVS TABLE ConstructPVS provides TABLE constructs that allow speci�cation of one- and two-dimensionaltables. These constructions provide a fairly attractive input syntax and are LaTEX-printed as true tables. Their semantic treatment derives directly from the CONDconstruct.2.2.1 One-Dimensional Vertical TablesThese are the simplest form of table in PVS. They simply replace the -> and ,of COND cases by | and ||, respectively, and introduce each case with |; they alsoadd a �nal || and change the keyword from COND to TABLE. The sign example istherefore transformed from a COND to the following TABLE.sign_vtable(x): signs = TABLE%-------------%| x < 0 | -1 ||%-------------%| x = 0 | 0 ||%-------------%| x > 0 | 1 ||%-------------%ENDTABLENote that the horizontal lines are simply comments (comments are introduced by %in PVS). This speci�cation is equivalent to that of sign cond and generates exactlythe same TCCs and is treated the same in proofs. Note that PVS remembersthe syntactic form used in a speci�cation and always prints it out the same wayit was typed in; thus, the prover will print a table as a table, even though it istreated semantically as a COND (which is itself treated as an IF-THEN-ELSE). Ofcourse, the special syntactic treatment is lost once a proof step (e.g., (lift-if))has transformed the structures appearing in a sequent.2.2.1.1 LATEX-Printing TablesThe PVS LaTEX-printer understands tables and automatically generates the codenecessary to print them as true tables.sign vtable(x) : signs = tablex < 0 � 1x = 0 0x > 0 1endtable



2.2. The PVS TABLE Construct 72.2.1.2 Enumeration TablesThe tables we have seen so far involve general comparison operators in their con-ditions. A special case arises when the intent is simply to enumerate all values ofsome �nite type. In such cases, equality is the only comparison operator used, as inthe following example.few_ints: TYPE = f x : int | x >= -2 & x <= 2gsign_fewv(z:few_ints): signs = TABLE%--------------%| z = -2 | -1 ||%--------------%| z = -1 | -1 ||%--------------%| z = 0 | 0 ||%--------------%| ELSE | 1 ||%--------------%ENDTABLEHere we are de�ning a specialized sign function by enumeration over a type consist-ing of just the integers from -2 to +2, The z = appearing in each case is repetitive,so PVS allows us to factor it out as follows.sign_fewv_enum(z:few_ints): signs = TABLEz%----------%| -2 | -1 ||%----------%| -1 | -1 ||%----------%| 0 | 0 ||%----------%|ELSE| 1 ||%----------%ENDTABLEWhen an identi�er (here z) follows the TABLE keyword, the �rst column is implicitlya list of values for this identi�er, and the individual entries are treated as identifier= value.



8 Chapter 2. Basic Tables2.2.1.3 Data Type TablesA special case of enumeration tables arises when the values are the constructors ofan abstract data type (ADT); this most commonly arises with enumeration types(which are implemented as degenerate ADTs in PVS), such as the following.modes: TYPE = f off, armed, engaged gvalue(m:modes):bool = TABLEm%------------------%| off | false ||%------------------%| armed | true ||%------------------%| engaged | true ||%------------------%ENDTABLEPVS recognizes this case specially and treats the TABLE internally as an ADT CASESconstruct, rather than as a COND. This has no semantic signi�cance, but it allowsmore automated theorem proving to be used, and it allows the check for disjointnessand coverage to be performed at typecheck-time (so the TCCs are not generated).Thus, the example above is semantically equivalent to the following form, whichdoes generates TCCs and translates into the COND form.value_alt(m:modes):bool = TABLE%----------------------%| off?(m) | false ||%----------------------%| armed?(m) | true ||%----------------------%| engaged?(m) | true ||%----------------------%ENDTABLEsame: LEMMA value = value_altThe lemma can be proved by (apply-extensionality :hide? t) and (grind).2.2.2 One-Dimensional Horizontal TablesHorizontal tables are semantically identical to vertical tables, but use a slightlydi�erent syntax to notify PVS that the information is being presented in a di�erent



2.2. The PVS TABLE Construct 9order. The �rst delimiter after the TABLE keyword must be |[ rather than the simple|, and the �nal delimiter on the �rst row is ]| rather than ||. For example, here isthe sign function presented as a horizontal table.sign_htable(x): signs = TABLE%-------------------%|[ x<0 | x=0 | x>0 ]|%-------------------%| -1 | 0 | 1 ||%-------------------%ENDTABLEThe ELSE keyword can be used just as with vertical tables.sign_htable2(x): signs = TABLE%--------------------%|[ x<0 | x=0 | ELSE ]|%--------------------%| -1 | 0 | 1 ||%--------------------%ENDTABLEThe PVS LaTEX-printer deals with these tables properly.sign htable2(x) : signs = tablex < 0 x = 0 else� 1 0 1endtableHorizontal enumeration tables are treated similarly to vertical ones, except thatthe enumerated identi�er must follow a comma (because horizontal tables are actu-ally a species of two-dimensional table).sign_fewh_enum(z:few_ints): signs = TABLE ,%---------------------------------%z |[ -2 | -1 | 0 | ELSE ]|%---------------------------------%| -1 | -1 | 0 | 1 ||%----------------------------------%ENDTABLE



10 Chapter 2. Basic Tables2.2.3 Two-Dimensional TablesThese are similar to one-dimensional horizontal tables, except that there can bemore than two rows, and the �rst row has one less column than the rest. Semanti-cally, two-dimensional tables are treated as nested COND (or CASES) constructs; moreparticularly, the columns are nested within the rows. Here is a trivial example.example(state,input): some_type = TABLEstate, input%--------%|[ x | y |]%--------------%| a | p | q ||%--------------%| b | q | q ||%--------------%ENDTABLEThis translates to the following.CONDstate = a -> COND input = x -> p, input = y -> q ENDCOND,state = b -> COND input = x -> q, input = y -> q ENDCONDENDCONDNotice that this translation causes disjointness and coverage TCCs for the columnsto be generated several times|once for each row. For example, the coverage TCCsgenerated for the two inner CONDs above have the following form.coverage a: OBLIGATION state = a IMPLIES input = x OR input = ycoverage a: OBLIGATION state = b IMPLIES input = x OR input = yThese appear redundant, so we might be tempted to use the following translationinstead.LETx1 = COND input = x -> p, input = y -> q ENDCOND,x2 = COND input = x -> q, input = y -> q ENDCONDINCOND state = a -> x1, state = b -> x2 ENDCONDThis generates the following single, simple coverage TCC for the columns.coverage_TCC: OBLIGATION input = x OR input = y



2.2. The PVS TABLE Construct 11The problem with this translation is that there may be subtype TCCs generatedfrom the terms corresponding to p and q that must be conditioned on the expressionscorresponding to a and b in order to be provable. Here is an example due toParnas [32, Figure 1] that illustrates this.sqrt: [nonneg_real -> nonneg_real]Parnas_Fig1(y,x:real):real = TABLE%----------------------------------------------------%|[ y = 27 | y > 27 | y < 27 ]|%-----------------------------------------------------------%| x = 3 | 27+sqrt(27) | 54+sqrt(27) | y^2 +3 ||%-----------------------------------------------------------%| x < 3 | 27+sqrt(-(x-3)) | y+sqrt(-(x-3)) | y^2 + (x-3)^2 ||%-----------------------------------------------------------%| x > 3 | 27+sqrt(x-3) | 2*y+sqrt(x-3) | y^2 + (3-x)^2 ||%-----------------------------------------------------------%ENDTABLEThe subtype constraint on the argument to the sqrt function generates TCCs in thesecond and third rows that are provable only when the corresponding row constraintsare taken into account. The LET form translation loses this information. Therefore,PVS uses the simple nested COND translation|this sometimes leads to redundancy,but it generates the provable TCCs shown in Figure 2.1 (e.g., the TCCs numbered 2,8, 11, and those numbered 3, 9, 12 are duplicative). These TCCs are all dischargedin seconds by PVS's standard strategy for TCCs. In addition to the disjointness andcoverage TCCs, there are subtype TCCs from the functions sqrt and exponentiation(indicated by ^).The LaTEX-printed form of this speci�cation is as follows.Parnas Fig1((y; x : real)) : real = tabley = 27 y > 27 y < 27x = 3 27 + p27 54 + p27 y2 + 3x < 3 27 + p � (x � 3) y + p � (x � 3) y2 + (x � 3)2x > 3 27 + px � 3 2 � y + px � 3 y2 + (3 � x)2endtable



12 Chapter 2. Basic Tables% Subtype TCC generated (line 60) for 2Parnas_Fig1_TCC1: OBLIGATION(FORALL (x: real, y: real):x = 3 AND NOT y = 27 AND NOT y > 27 AND y < 27IMPLIES y /= 0 OR 2 >= 0);% Disjointness TCC generated for% COND% y = 27 -> 27 + sqrt(27),% y > 27 -> 54 + sqrt(27),% y < 27 -> y ^ 2 + 3% ENDCONDParnas_Fig1_TCC2: OBLIGATION(FORALL (x: real, y: real):x = 3IMPLIES NOT (y = 27 AND y > 27)AND NOT (y = 27 AND y < 27) AND NOT (y > 27 AND y < 27));% Coverage TCC generated for% COND% y = 27 -> 27 + sqrt(27),% y > 27 -> 54 + sqrt(27),% y < 27 -> y ^ 2 + 3% ENDCONDParnas_Fig1_TCC3: OBLIGATION(FORALL (x: real, y: real): x = 3 IMPLIES y = 27 OR y > 27 OR y < 27);% Subtype TCC generated (line 62) for -(x - 3)Parnas_Fig1_TCC4: OBLIGATION(FORALL (x: real, y: real):NOT x = 3 AND x < 3 AND y = 27 IMPLIES -(x - 3) >= 0);% Subtype TCC generated (line 62) for -(x - 3)Parnas_Fig1_TCC5: OBLIGATION(FORALL (x: real, y: real):NOT x = 3 AND x < 3 AND NOT y = 27 AND y > 27 IMPLIES -(x - 3) >= 0);% Subtype TCC generated (line 62) for 2Parnas_Fig1_TCC6: OBLIGATION(FORALL (x: real, y: real):NOT x = 3 AND x < 3 AND NOT y = 27 AND NOT y > 27 AND y < 27IMPLIES y /= 0 OR 2 >= 0);% Subtype TCC generated (line 62) for 2Parnas_Fig1_TCC7: OBLIGATION(FORALL (x: real, y: real):NOT x = 3 AND x < 3 AND NOT y = 27 AND NOT y > 27 AND y < 27IMPLIES (x - 3) /= 0 OR 2 >= 0);Figure 2.1: TCCs Generated from Example Two-Dimensional Table (continues)



2.2. The PVS TABLE Construct 13% Disjointness TCC generated for% COND% y = 27 -> 27 + sqrt(-(x - 3)),% y > 27 -> y + sqrt(-(x - 3)),% y < 27 -> y ^ 2 + (x - 3) ^ 2% ENDCONDParnas_Fig1_TCC8: OBLIGATION(FORALL (x: real, y: real):NOT x = 3 AND x < 3IMPLIES NOT (y = 27 AND y > 27)AND NOT (y = 27 AND y < 27) AND NOT (y > 27 AND y < 27));% Coverage TCC generated for% COND% y = 27 -> 27 + sqrt(-(x - 3)),% y > 27 -> y + sqrt(-(x - 3)),% y < 27 -> y ^ 2 + (x - 3) ^ 2% ENDCONDParnas_Fig1_TCC9: OBLIGATION(FORALL (x: real, y: real):NOT x = 3 AND x < 3 IMPLIES y = 27 OR y > 27 OR y < 27);% Subtype TCC generated (line 63) for x - 3Parnas_Fig1_TCC10: OBLIGATION(FORALL (x: real, y: real):NOT x = 3 AND NOT x < 3 AND x > 3 AND y = 27 IMPLIES x - 3 >= 0);% Disjointness TCC generated for% COND% y = 27 -> 27 + sqrt(x - 3),% y > 27 -> 2 * y + sqrt(x - 3),% y < 27 -> y ^ 2 + (3 - x) ^ 2% ENDCONDParnas_Fig1_TCC11: OBLIGATION(FORALL (x: real, y: real):NOT x = 3 AND NOT x < 3 AND x > 3IMPLIES NOT (y = 27 AND y > 27)AND NOT (y = 27 AND y < 27) AND NOT (y > 27 AND y < 27));% Coverage TCC generated for% COND% y = 27 -> 27 + sqrt(x - 3),% y > 27 -> 2 * y + sqrt(x - 3),% y < 27 -> y ^ 2 + (3 - x) ^ 2% ENDCONDParnas_Fig1_TCC12: OBLIGATION(FORALL (x: real, y: real):NOT x = 3 AND NOT x < 3 AND x > 3 IMPLIES y = 27 OR y > 27 OR y < 27);Figure 2.1: TCCs Generated from Example Two-Dimensional Table (continues)



14 Chapter 2. Basic Tables% Disjointness TCC generated (line 58) for% TABLE% |[ y = 27 | y > 27 | y < 27 ]|% | x = 3 | 27 + sqrt(27) | 54 + sqrt(27) | y ^ 2 + 3 ||% | x < 3 | 27 + sqrt(-(x - 3))% | y + sqrt(-(x - 3)) | y ^ 2 + (x - 3) ^ 2% ||% | x > 3 | 27 + sqrt(x - 3) | 2 * y + sqrt(x - 3) | y ^ 2 + (3 - x) ^ 2% ||% ENDTABLEParnas_Fig1_TCC13: OBLIGATION(FORALL (x: real):NOT (x = 3 AND x < 3)AND NOT (x = 3 AND x > 3) AND NOT (x < 3 AND x > 3));% Coverage TCC generated (line 58) for% TABLE% |[ y = 27 | y > 27 | y < 27 ]|% | x = 3 | 27 + sqrt(27) | 54 + sqrt(27) | y ^ 2 + 3 ||% | x < 3 | 27 + sqrt(-(x - 3))% | y + sqrt(-(x - 3)) | y ^ 2 + (x - 3) ^ 2% ||% | x > 3 | 27 + sqrt(x - 3) | 2 * y + sqrt(x - 3) | y ^ 2 + (3 - x) ^ 2% ||% ENDTABLEParnas_Fig1_TCC14: OBLIGATION (FORALL (x: real): x = 3 OR x < 3 OR x > 3);Figure 2.1: TCCs Generated from Example Two-Dimensional Table



2.2. The PVS TABLE Construct 152.2.4 Blank EntriesSome functions are not de�ned for all values of their arguments|for example, divi-sion is not de�ned when the divisor is zero. PVS is a logic of total functions, anddoes not admit such partial functions directly. However, because of the very precisetyping provided by predicate and dependent types, functions that would be partialin simpler systems can be treated as total in PVS. For example, division in PVS istyped so that its second argument is a nonzero real, and the function is total whenits domain is accurately speci�ed in this way. When specifying such a function bymeans of tables, however, it can be useful to explicitly (though redundantly) indicate\holes" in the domain by means of blank entries. This is particularly convenient fortwo-dimensional tables on dependent types, as will be illustrated later, but we willexplain the idea with a one-dimensional example.A standard \challenge" for speci�cation languages is the partial function subpon the integers de�ned bysubp(i; j) = if i = j then 0 else subp(i; j + 1) + 1 endif:This function is unde�ned if i < j (when i � j; subp(i; j) = i � j) and it is arguedthat if a speci�cation language is to admit this type of de�nition, then it mustprovide a treatment for partial functions [8]. PVS deals easily with this challengeby using dependent typing to specify that the second argument to the function mustnot exceed the value of its �rst argument.subp((i: int), (j: fx: int | x <= ig)): natThe function is total on this accurately speci�ed domain, and can then be de�nedby means of a table as follows.subp((i: int), (j: fx: int | x <= ig)): RECURSIVE nat =TABLE %-----------------------%| i=j | 0 ||%-----------------------%| i>j | subp(i, j+1)+1 ||%-----------------------%ENDTABLEMEASURE i - jThe coverage TCC generated from this speci�cation is the following; it is provedtrivially by the default strategy.subp_TCC5: OBLIGATION(FORALL (i: int, j: fx: int | x <= ig): i = j OR i > j);



16 Chapter 2. Basic TablesThis TCC shows that the \missing" case i<j does not need to be speci�ed in thetable because the types associated with i and j ensure that it can never arise.However, it may sometimes be desirable to make this fact visually explicit in thespeci�cation, and PVS allows blank entries to appear in tables for this purpose.subp((i: int), (j: fx: int | x <= ig)): RECURSIVE nat =TABLE %-----------------------%| i<j | ||%-----------------------%| i=j | 0 ||%-----------------------%| i>j | subp(i, j+1)+1 ||%-----------------------%ENDTABLEMEASURE i - jCoverage TCCs are extended (if necessary) to ensure that blank entries are neverencountered when evaluating such a speci�cation. In this example, the TCC isidentical to that of the previous speci�cation without the blank entry.Evaluation of tables (with or without blank entries) assumes that their TCCshave been discharged. For example, if we had incorrectly given the previous speci-�cation asbadsubp((i: int), (j: fx: int | x <= ig)): RECURSIVE nat =TABLE %--------------------------%| i<j | 0 ||%--------------------------%| i=j | ||%--------------------------%| i>j | badsubp(i, j+1)+1 ||%--------------------------%ENDTABLEMEASURE i - jthen we would obtain the following unprovable TCC.badsubp_TCC4: OBLIGATION(FORALL (i: int, j: fx: int | x <= ig): i < j OR i > j);If we ignore the TCC and try to prove the \theorem"bang: CLAIM badsubp(3, 3) = 99



2.2. The PVS TABLE Construct 17by expanding the de�nition of badsubp, we will obtain unpredictable behavior whenwe encounter the supposedly unreachable blank entry.bang :|-------f1g badsubp(3, 3) = 99Rule? (expand "badsubp")Expanding the definition of badsubp, this simplifies to:bang :|-------f1g (1 + badsubp(3, 4) = 99)Rule?In this case, PVS has applied the case for i>j in place of the missing case for i =j. This example reinforces the fact that PVS speci�cations are not guaranteed tobe well-de�ned unless their TCCs have been discharged.Blank entries may be used in conjunction with ELSE clauses. Recall that acoverage TCC is normally not required if an ELSE clause is given; this is not sowhen blank entries are present. For example, the speci�cationsubp((i: int), (j: fx: int | x <= ig)): RECURSIVE nat =TABLE %------------------------%| i<j | ||%------------------------%| i=j | 0 ||%------------------------%| ELSE | subp(i, j+1)+1 ||%------------------------%ENDTABLEMEASURE i - jgenerates the following TCCsubp_TCC4: OBLIGATION(FORALL (i: int, j: fx: int | x <= ig): i = j OR NOT (i < j OR i = j));to ensure that the blank entry is inaccessible.Strictly, blank entries are unnecessary in one-dimensional tables, since the en-tire case can always be omitted; they are extremely valuable, however, in two-dimensional tables. For example, Figure 2.2 reproduces the quotient lookup table



18 Chapter 2. Basic Tables
q(D, (P: bvec[7] | estimation_bound?(valD(D),valP(P)))): subrange(-2, 2) =LET a = -(2 - P(1) * P(0)),b = -(2 - P(1)),c = 1 + P(1),d = -(1 - P(1)),e = P(1),Dp = bv2pattern(D),Ptruncp = bv2pattern(P^(6,2))INTABLE Ptruncp, Dp|[ 000| 001| 010| 011| 100| 101| 110| 111]|%----------------------------------------------%|01010| | | | | | | | 2 |||01001| | | | | | 2 | 2 | 2 |||01000| | | | | 2 | 2 | 2 | 2 |||00111| | | 2 | 2 | 2 | 2 | 2 | 2 |||00110| | 2 | 2 | 2 | 2 | 2 | 2 | 2 |||00101| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |||00100| 2 | 2 | 2 | 2 | c | 1 | 1 | 1 |||00011| 2 | c | 1 | 1 | 1 | 1 | 1 | 1 |||00010| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |||00001| 1 | 1 | 1 | 1 | e | 0 | 0 | 0 |||00000| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |||11111| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |||11110| -1 | -1 | d | d | 0 | 0 | 0 | 0 |||11101| -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |||11100| a | b | -1 | -1 | -1 | -1 | -1 | -1 |||11011| -2 | -2 | -2 | b | -1 | -1 | -1 | -1 |||11010| -2 | -2 | -2 | -2 | -2 | -2 | b | -1 |||11001| -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 |||11000| | | -2 | -2 | -2 | -2 | -2 | -2 |||10111| | | | -2 | -2 | -2 | -2 | -2 |||10110| | | | | | -2 | -2 | -2 |||10101| | | | | | | -2 | -2 ||%----------------------------------------------%ENDTABLEFigure 2.2: Quotient Lookup Table for an SRT Division Algorithm



2.2. The PVS TABLE Construct 19from the PVS speci�cation of an SRT division algorithm [36,41]. This speci�cationgenerates 23 coverage TCCs to ensure that the blank entries can never be encoun-tered. It is worth noting that the notorious Pentium FDIV bug, which is estimatedto have cost Intel $500 million, was due to an SRT quotient lookup table, very sim-ilar to that of Figure 2.2, that had bad entries in a portion of the table that wasincorrectly believed to inaccessible [34]. The TCCs of the PVS speci�cation ensurethat entries (indicated by blanks) that are believed to be inaccessible, truly are so;veri�cation of the algorithm (which can be done largely automatically in PVS) thenensures that all the nonblank table entries are correct [36].2.2.5 VariationsParnas [32] advocates tabular speci�cations and introduces several kinds of tablesfor de�ning functions and relations; these have been given a formal de�nition byJanicki [26]. The PVS TABLE construct corresponds only to what Parnas calls a\normal" function table. However, other attributes of the PVS speci�cation lan-guage allow speci�cation of certain alternative kinds of tables.For example, Parnas speaks of \vector" tables when de�ning a function whosevalue is a tuple, such as the following.x < 0 x = 0 x > 0y x+ 2 x+ 4:21 5:4 +pxz 5 +p�x x� 4 xIn this example from [33, Figure 1], the interpretation is that the value of thefunction is a pair, whose �rst and second components are represented by y and z,respectively.Tuple types are directly available in PVS, so this function can be speci�ed bysimple tables. Both horizontal and vertical table formats for this example are illus-trated here.



20 Chapter 2. Basic TablesVector_1(x:real): [real, real] =TABLE%-----------------------------------------------------------------%|[ x<0 | x=0 | x>0 ]|%-----------------------------------------------------------------%|(x+2, 5+sqrt(-x)) | (x+4+(21/100), x-4) | (5+(4/10)+sqrt(x), x) ||%-----------------------------------------------------------------%ENDTABLEVector_2(x:real): [real, real] =TABLE% y z%---------------------------------------------%| x<0 | (x+2, 5+sqrt(-x)) ||%---------------------------------------------%| x=0 | (x+4+(21/100), x-4) ||%---------------------------------------------%| x>0 | (5+(4/10)+sqrt(x), x) ||%---------------------------------------------%ENDTABLEDecimal notation is not supported in PVS so we have expressed the values 4.21 and5.4 as fractions.Because it is a higher-order logic with a rich type system, PVS can also dealuniformly with certain other kinds of tables that Parnas treats specially [32]. \Re-lation" and \predicate expression" tables, for example, are simply tables with rangetype bool. Thus, the following PVS speci�cation is an example of what Parnas callsa \relation" table (from [32, Figure 4]).rel(x,y,z:real):bool =TABLE %---------------------------------------------------------%|[ y>=0 & sqrt(y)<27 | y>=0 & sqrt(y)>=27 | y < 0 ]|%----------------------------------------------------------------%| x=3 | x^2+y^2 = z^2 | x^2 = y^2 | true ||%----------------------------------------------------------------%| x<3 | y^2 = z^2 | x^2 = z^2 | false ||%----------------------------------------------------------------%| x>3 | x^2 = z^2 | x-z > 3 | x^2+y^2 = z^2 ||%----------------------------------------------------------------%ENDTABLEPVS can easily establish that (4, -3, 5), for example, is in the relation by usingthe strategy (grind) to prove the conjecture rel(4, -3, 5). Similarly, rel(4, 9,



2.2. The PVS TABLE Construct 214) and rel(4,728, 4) can be proved by (grind) plus elementary properties of thesqrt function.Although the PVS TABLE construct can represent directly many of the kinds oftables introduced by Parnas [32], we have not found a convenient way to representwhat Parnas calls \inverted" tables|but neither have we found a need for these,In the next chapter, we consider rather di�erent kinds of tables from those usedby Parnas.
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Chapter 3AND/OR Tables and DecisionTablesIn this chapter, we �rst consider a tabular representation for Boolean expressionsthat is quite di�erent to any of Parnas's tables and that does not lend itself to thePVS TABLE construct either. We show how PVS can provide an adequate presenta-tion of this kind of table using ordinary function application in a careful way. Thenwe combine a generalization of this approach with the TABLE construct to providea treatment for a type of decision table that has been used for specifying avionicsrequirements.3.1 AND/OR TablesLeveson and her colleagues use a tabular representation for Boolean expressions [29]that is quite di�erent from any of Parnas's tables. These AND/OR tables are mosteasily explained by means of an example. The following table describes some condi-tions under which a TCAS II avionics collision avoidance system should transitionfrom the Threat state to the Other-Traffic state [29, Figure 32].ORAlt-Reportings�202 in state Lost T T T -A Bearing-Validm�298 F - T -N Other-Range-Validv�218 = True - F T -D Proximate-Traffic-Conditionm�317 - - F -Potential-Threat-Conditionm�314 - - F -Other-Air-Statuss�202 in state On-Ground - - - T23



24 Chapter 3. AND/OR Tables and Decision TablesThe idea is that each of the OR columns speci�es one of the conditions underwhich the transition should be taken: the condition represented by a column is true ifeach of the expressions represented by those rows having a T in that column are true,and those having an F in the column are false (dashes indicate \don't care"). Thus,the condition represented by the �rst column is true when Alt-Reportings�202is in state Lost and Bearing-Validm�298 is false. The conditions representedby the individual columns are disjoined (ORed together) to give the full set ofconditions under which the transition should occur. Since the individual entries ineach column are conjoined (ANDed together), the full AND/OR table is a structuredpresentation of a Boolean expression in disjunctive normal form (a disjunction ofconjunctions). Leveson's AND/OR tables are quite e�ective for Boolean expressionsthat are conveniently expressed in disjunctive normal form; they are less so forexpressions that are most naturally expressed in terms of implication, equivalence,or exclusive-or.The TABLE construct of PVS is not well matched to the representation ofAND/OR tables. We show how other constructs of PVS can be used to give anadequate representation for these tables. To describe the approach, we begin withthe following simpli�ed example of an AND/OR table.ORA Expr 1 T - FN Expr 2 - F TD Expr 3 - - FWe can transpose this table to obtain the following equivalent representation.ANDExpr 1 Expr 2 Expr 3O T - -R - F -F T FWritten in this form, we can think of each row as a list of values (e.g., (F, T, F)in the case the bottom row) to be checked against the list of expressions (Expr 1,Expr 2, Expr 3). Now, an existing construction in PVS that uses a list of expres-sions is function application: the arguments to a function application are writtenas a list of expressions. So we could hypothesize a function X that takes such a listas its arguments (e.g., X( F , T , F )) and returns true if Expr 1 is F and Expr 2is T and Expr 3 is F. Then we could write the table something like the following,which does have a fairly acceptable tabular layout.11In the PVS versions, we use ~ instead of - to indicate \don't care." This is because there is anine�ciency in PVS name resolution that is exponential in the number of overloadings (and - has



3.1. AND/OR Tables 251X( T , ~ , ~ ) ORX( ~ , F , ~ ) ORX( F , T , F )We now need to consider the speci�cation of X, and of T, F, and ~. The bottom rowof the table suggests that we might think of T and F as synonyms for true and false,respectively, and then X could be given as follows.X(x, y, z: bool): bool = Expr_1 = x AND Expr_2 = y AND Expr_3 = zThe trouble with this idea is that it does not extend to the \don't care" case: whattruth value can we assign to ~? A more sophisticated idea is to treat T, F, and ~ asthe members of an enumerated type called Extended Bool and to provide a functioncmp that compares an Extended Bool against a Boolean.Extended_Bool: TYPE = f T, F, ~ gcmp(e: Extended_Bool, b:bool): bool =CASES e OFT: b,F: NOT b,~: TRUEENDCASESX(x, y, z: Extended_Bool): bool =cmp(Expr_1, x) AND cmp(Expr_2, y) AND cmp(Expr_3, z)The question now is: how do we supply values for the Expr i? They must surelybe the arguments to the predicate (called Test, say) whose behavior is de�ned by thespeci�cation in speci�cation box 1 on page 25. We can establish this association bymoving the de�nition of the function X inside a LET clause in the following de�nitionof the function Test.Test(Expr_1, Expr_2, Expr_3: bool):bool =LETX(x, y, z: Extended_Bool): bool =cmp(x, Expr_1) AND cmp(y, Expr_2) AND cmp(z, Expr_3)IN X( T , ~ , ~ ) ORX( ~ , F , ~ ) ORX( F , T , F )14 overloadings, whereas ~ has only two). This ine�ciency will be eliminated in a future release ofPVS.



26 Chapter 3. AND/OR Tables and Decision TablesUnfortunately, PVS does not at present allow the applicative kind of function de�-nition inside a LET clause,2 so we must de�ne X with a LAMBDA as follows.Test(Expr_1, Expr_2, Expr_3: bool):bool =LETX = LAMBDA (x, y, z: Extended_Bool):cmp(x, Expr_1) AND cmp(y, Expr_2) AND cmp(z, Expr_3)IN X( T , ~ , ~ ) ORX( ~ , F , ~ ) ORX( F , T , F )Given this speci�cation, PVS can easily prove conjectures about Test (e.g.,Test(FALSE, FALSE, TRUE) is true) using the single command (grind).Following this model, we can construct a PVS rendition of the AND/OR tablethat was used to introduce this section (recall page 23). Notice how this PVSspeci�cation (for the predicate called Transition shown in Figure 3.1) builds theexpressions Alt Reporting = Lost and Other Air Status = On Ground into thede�nition of the function X. We will see di�erent ways to do this in the next section.The speci�cation uses comments and careful layout to provide a tabular appearance,and to suggest the connection between the expressions in the de�nition of X and thecolumns of the table. The example conjecture test (which probes the second rowof the table) is easily proved by the single command (grind).In the requirements speci�cation method developed by Leveson and her col-leagues [29], AND/OR tables are used to indicate the conditions under which statetransitions should occur. The states and the transitions are speci�ed separately,using Statechart-like diagrams for the latter. For that context, Heimdahl has de-veloped tools for checking completeness and consistency of transition conditionsdescribed in AND/OR tables [16,17]. We can reproduce these checks in PVS if thespeci�cation method is reformulated so that the transitions are speci�ed by meansof tables, rather than graphically. An existing method that has this character isdue to Lance Sherry [39]. The next section describes a PVS treatment of Sherry'sdecision tables.
2It will in a future release.



3.1. AND/OR Tables 27
status: TYPE+Lost, On_Ground, Other: statusAlt_Reporting, Other_Air_Status: VAR statusBearing_Valid, Other_Range_Valid, Proximate_Traffic_Condition,Potential_Threat_Condition: VAR boolTransition(Alt_Reporting,Bearing_Valid, Other_Range_Valid,Proximate_Traffic_Condition, Potential_Threat_Condition,Other_Air_Status): bool =LETX = LAMBDA (x1,x2,x3,x4,x5,x6: Extended_Bool):(cmp(Alt_Reporting = Lost, x1) &cmp( Bearing_Valid, x2) &cmp( Other_Range_Valid, x3) &cmp( Proximate_Traffic_Condition, x4) &cmp( Potential_Threat_Condition, x5) &cmp( Other_Air_Status = On_Ground, x6))% | | | | | |% | | | | | |IN % v v v v v v%---|---|---|---|---|---%X( T , F , ~ , ~ , ~ , ~ ) OR%---|---|---|---|---|---%X( T , ~ , F , ~ , ~ , ~ ) OR%---|---|---|---|---|---%X( T , T , T , F , F , ~ ) OR%---|---|---|---|---|---%X( ~ , ~ , ~ , ~ , ~ , T )%---|---|---|---|---|---%test: LEMMA Transition(Lost, TRUE, FALSE, TRUE, TRUE, Other)Figure 3.1: PVS Rendition of the AND/OR Table from Page 23



28 Chapter 3. AND/OR Tables and Decision Tables3.2 Decision TablesWhereas AND/OR tables represent Boolean expressions, decision tables represent acollection of such expressions, together with the \decision" or output to be generatedwhen a particular expression is true. There are many kinds of decision tables; theones considered here are from a requirements engineering methodology developed foravionics systems by Lance Sherry of Honeywell [39], and given mechanized supportin TableWise developed by Doug Hoover and others at ORA [23].Figure 3.2 shows a simple decision table (taken from [23, Table 2]).3 This ta-ble describes the conditions under which each of the four \operational procedures"Takeoff, Climb, Climb Int Level, and Cruise should be selected. The subtablebeneath the name of each operational procedure can be interpreted rather like anAND/OR table, except that the input variables can have types other than Boolean(and * instead of - is used for \don't care"). For example, the third and fourthcolumns in the body of the table indicate that the operational procedure Climbshould be used if the Flightphase is climb, AC Alt is either equal or greater thanAcc Alt, and either Alt Capt Hold is false, or it is true and Alt Target is greaterthan prev Alt Target. Operational ProcedureInput Variables Takeo� Climb Climb Int level CruiseFlightphase climb climb climb climb climb cruiseAC Alt > 400 true true * * * *compare(AC Alt,Acc Alt) LT LT GE GE * GTAlt Capt Hold false true false true true truecompare(Alt Target,prev Alt Target) * GT * GT * EQFigure 3.2: A Simple Decision TableWe can model this decision table by combining the PVS TABLE construct, with ageneralization of the treatment provided for AND/OR tables in the previous section.That treatment used a function X to give an interpretation to a column (transposed3This table is a simpli�ed version of one appearing Sherry's US patent [38, Appendix B]. Sherry'soriginal contains several inconsistencies and incompletenesses of the kind also present in this simpleexample.



3.2. Decision Tables 29to a row) of an AND/OR table, such as X(T, ~, F); now we need to generalize thistreatment to give an interpretation to a construct likeX(climb, true, LT, false, *)(from the �rst column of Figure 3.2). The previous treatment considered the argu-ments to X as extended Boolean constants to be compared with the correspondinginput value using a function cmp. This treatment is satisfactory when all the argu-ments to X are of this same type, but it becomes rather clumsy when, as here, theycan all be of di�erent types (we would need a separate cmp function for each type).A better solution is to treat the arguments to X as predicates rather than constants,as shown in Figure 3.3.tablewise: THEORYBEGINb:VAR booltrue(b): bool = bfalse(b): bool = NOT b ;*(b): bool = TRUEx,y:VAR natGT(x, y): bool = x > yLT(x, y): bool = x < yEQ(x, y): bool = x = yGE(x, y): bool = x >= yLE(x, y): bool = x <= y ;*(x, y): bool = TRUEoperational_procedures: TYPE = fTakeoff, Climb, Climb_Int_Level, Cruisegflight_phases: TYPE = fclimb, cruisegFlightphase: VAR flight_phasesAC_Alt, Acc_Alt, Alt_Target, prev_Alt_Target: VAR natAlt_Capt_Hold: VAR boolFigure 3.3: Preliminary PVS Constructions for the Decision Table in Figure 3.2Here, true and false, for example, are not constants to be compared againstthe value of an expression such as AC Alt > 400, but predicates that, when appliedto this expression, indicate whether it is true or false, respectively. The symbol *,which in this example represents \don't care," is a predicate that always returns



30 Chapter 3. AND/OR Tables and Decision Tablestrue. Slightly more complex are the predicates such as GT, which takes a pair ofarguments and returns true if the �rst is greater than the second. Similarly, climb?and cruise? are predicates that can be applied to Flightphase and return truejust in case it has the value climb or cruise, respectively.4 The PVS speci�cationcorresponding to Figure 3.2 continues in Figure 3.4, where this generalization ofdecision_table(Flightphase,AC_Alt,Acc_Alt,Alt_Target,prev_Alt_Target,Alt_Capt_Hold): operational_procedures =LET X = (LAMBDA (a: pred[flight_phases]),(b: pred[bool]),(c: pred[[nat,nat]]),(d: pred[bool]),(e: pred[[nat,nat]]):a(Flightphase) &b(AC_Alt > 400) &c(AC_Alt,Acc_Alt) &d(Alt_Capt_Hold) &e(Alt_Target,prev_Alt_Target)) IN TABLE% | | | | |% | | | | |% | | | | |% v v v v v Operational Procedure%----------|-------|-------|-------|-------|------------- ----%| X(climb? , true , LT , false , * ) | Takeoff ||%----------|-------|-------|-------|-------|------------------%| X(climb? , true , LT , true , GT) | Takeoff ||%----------|-------|-------|-------|-------|------------------%| X(climb? , * , GE , false , * ) | Climb ||%----------|-------|-------|-------|-------|------------------%| X(climb? , * , GE , true , GT) | Climb ||%----------|-------|-------|-------|-------|------------------%| X(climb? , * , * , true , * ) | Climb_Int_Level ||%----------|-------|-------|-------|-------|------------------%| X(cruise?, * , GT , true , EQ) | Cruise ||%----------|-------|-------|-------|-------|------------------%ENDTABLEEND tablewiseFigure 3.4: PVS Rendition of the Decision Table in Figure 3.24Note that flight phases is speci�ed as the enumeration type fclimb, cruiseg, which auto-matically creates the predicates climb? and cruise?.



3.2. Decision Tables 31the technique previously used for AND/OR tables is combined with use of the PVSTABLE construct.Because the speci�cation of Figure 3.4 uses the TABLE construct, PVS generatesdisjointness and coverage TCCs. The disjointness TCC (reformatted to �t the page)is shown in Figure 3.5.% Disjointness TCC generated (line 44) for% TABLE% | X(climb?, TRUE, LT, FALSE, *) | Takeoff ||% | X(climb?, TRUE, LT, TRUE, GT) | Takeoff ||% | X(climb?, *, GE, FALSE, *) | Climb ||% | X(climb?, *, GE, TRUE, GT) | Climb ||% | X(climb?, *, *, TRUE, *) | Climb_Int_Level ||% | X(cruise?, *, GT, TRUE, EQ) | Cruise ||% ENDTABLE% unfinisheddecision_table_TCC1: OBLIGATION(FORALL (X, AC_Alt, Acc_Alt, Alt_Capt_Hold,Alt_Target, Flightphase, prev_Alt_Target):X = (LAMBDA (a: pred[flight_phases]),(b: pred[bool]),(c: pred[[nat, nat]]), (d: pred[bool]), (e: pred[[nat, nat]]):a(Flightphase)& b(AC_Alt > 400)& c(AC_Alt, Acc_Alt)& d(Alt_Capt_Hold) & e(Alt_Target, prev_Alt_Target))IMPLIES NOT (X(climb?, TRUE, LT, FALSE, *) AND X(climb?, *, GE, FALSE, *))AND NOT (X(climb?, TRUE, LT, FALSE, *) AND X(climb?, *, GE, TRUE, GT))AND NOT (X(climb?, TRUE, LT, FALSE, *) AND X(climb?, *, *, TRUE, *))AND NOT (X(climb?, TRUE, LT, FALSE, *) AND X(cruise?, *, GT, TRUE, EQ))AND NOT (X(climb?, TRUE, LT, TRUE, GT) AND X(climb?, *, GE, FALSE, *))AND NOT (X(climb?, TRUE, LT, TRUE, GT) AND X(climb?, *, GE, TRUE, GT))AND NOT (X(climb?, TRUE, LT, TRUE, GT) AND X(climb?, *, *, TRUE, *))AND NOT (X(climb?, TRUE, LT, TRUE, GT) AND X(cruise?, *, GT, TRUE, EQ))AND NOT (X(climb?, *, GE, FALSE, *) AND X(climb?, *, *, TRUE, *))AND NOT (X(climb?, *, GE, FALSE, *) AND X(cruise?, *, GT, TRUE, EQ))AND NOT (X(climb?, *, GE, TRUE, GT) AND X(climb?, *, *, TRUE, *))AND NOT (X(climb?, *, GE, TRUE, GT) AND X(cruise?, *, GT, TRUE, EQ))AND NOT (X(climb?, *, *, TRUE, *) AND X(cruise?, *, GT, TRUE, EQ)));Figure 3.5: Disjointness TCC for the Speci�cation of Figure 3.4The PVS proof command (GRIND :EXCLUDE ("<" ">" "<=" ">=")) discharges 11of the 13 cases in the TCC, but fails on two of them. After eliminating irrelevant def-



32 Chapter 3. AND/OR Tables and Decision Tablesinitions with the command (HIDE -1 -2 -3 -4 -5), these reduce to the followingsubgoals.decision_table_TCC1.1 :[-1] climb?(Flightphase!1)[-2] AC_Alt!1 > 400[-3] AC_Alt!1 < Acc_Alt!1[-4] Alt_Capt_Hold!1[-5] Alt_Target!1 > prev_Alt_Target!1|-------Rule? (POSTPONE)decision_table_TCC1.2 :[-1] climb?(Flightphase!1)[-2] Alt_Capt_Hold!1[-3] AC_Alt!1 >= Acc_Alt!1[-4] Alt_Target!1 > prev_Alt_Target!1|-------Rule?Since these sequents have nothing below the turnstile line, the only way theycould be true is if the formulas above the line are mutually contradictory. PVS isunable to establish such contradictions, and thereby identi�es 
aws in the originaltable corresponding to the cases where all the formulas above the line in each sequentare true. The �rst sequent identi�es a circumstance that satis�es both columns 2 and5 of the original table in Figure 3.2 (corresponding to rows 2 and 5 of the PVS tablein Figure 3.4), thereby leading to the con
icting selection of two di�erent operationalprocedures (Takeoff and Climb Int Level). The second sequent identi�es a similarcon
ict between columns 4 and 5. These 
aws are identical to those identi�ed bythe special-purpose tool TableWise [23, Table 3].The coverage TCC generated from the speci�cation of Figure 3.4 is shown inFigure 3.6. The same proof commands as those used for the disjointness TCC pro-duce the four unprovable subgoals shown in Figure 3.7. As before, PVS's inability todischarge these proof obligations identi�es 
aws in the speci�cation. These sequentshave nothing above the turnstile line, so for them to be true it is enough that justone of the formulas below the line should be true in each case. Since PVS cannotestablish this, we must consider the case when all the formulas below the line ineach sequent are false. The �rst sequent, for example, identi�es the failure to selectan operational procedure when AC Alt is not greater than 400, Alt Capt Hold is
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% Coverage TCC generated (line 44) for% TABLE% | X(climb?, TRUE, LT, FALSE, *) | Takeoff ||% | X(climb?, TRUE, LT, TRUE, GT) | Takeoff ||% | X(climb?, *, GE, FALSE, *) | Climb ||% | X(climb?, *, GE, TRUE, GT) | Climb ||% | X(climb?, *, *, TRUE, *) | Climb_Int_Level ||% | X(cruise?, *, GT, TRUE, EQ) | Cruise ||% ENDTABLE% unfinisheddecision_table_TCC2: OBLIGATION(FORALL (X, AC_Alt, Acc_Alt, Alt_Capt_Hold,Alt_Target, Flightphase, prev_Alt_Target):X = (LAMBDA (a: pred[flight_phases]),(b: pred[bool]),(c: pred[[nat, nat]]), (d: pred[bool]), (e: pred[[nat, nat]]):a(Flightphase)& b(AC_Alt > 400)& c(AC_Alt, Acc_Alt)& d(Alt_Capt_Hold) & e(Alt_Target, prev_Alt_Target))IMPLIES X(climb?, TRUE, LT, FALSE, *)OR X(climb?, TRUE, LT, TRUE, GT)OR X(climb?, *, GE, FALSE, *)OR X(climb?, *, GE, TRUE, GT)OR X(climb?, *, *, TRUE, *)OR X(cruise?, *, GT, TRUE, EQ));Figure 3.6: Coverage TCC for the Speci�cation of Figure 3.4
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decision_table_TCC2.1 :|-------[1] AC_Alt!1 > 400[2] Alt_Capt_Hold!1[3] AC_Alt!1 >= Acc_Alt!1Rule? (POSTPONE)Postponing decision_table_TCC2.1.decision_table_TCC2.2 :|-------[1] climb?(Flightphase!1)[2] Alt_Target!1 = prev_Alt_Target!1Rule? (POSTPONE)Postponing decision_table_TCC2.2.decision_table_TCC2.3 :|-------[1] climb?(Flightphase!1)[2] AC_Alt!1 > Acc_Alt!1Rule? (POSTPONE)Postponing decision_table_TCC2.3.decision_table_TCC2.4 :|-------[1] climb?(Flightphase!1)[2] Alt_Capt_Hold!1Rule? Figure 3.7: False Subgoals from the Coverage TCC of Figure 3.6



3.2. Decision Tables 35false, and AC Alt is less than Acc Alt. As before, the four 
aws identi�ed by thesefalse subgoals are identical to those identi�ed by the special-purpose tool Table-Wise [23, Table 4].Unlike PVS, TableWise presents the anomalies that it discovers in a tabular formsimilar to that of the original decision table; TableWise can also generate executableAda code and English language documentation from decision tables. These bene�tsare representative of those that can be achieved with a special-purpose tool. On theother hand, PVS's more powerful deductive capabilities also provide bene�ts. Forexample, PVS can settle disjointness and coverage TCCs that depend on propertiesmore general than the simple Boolean and arithmetic relations built in to Table-Wise and similar tools. Heimdahl, who with Leveson developed a completeness andconsistency checking tool for the AND/OR tables of RSML [17], describes spuri-ous error reports when that tool was applied to TCAS II [16]. These were due tothe presence of arithmetic and de�ned functions whose properties are beyond thereach of the BDD-based5 tautology checker incorporated in the tool. As Heimdahlnotes [16, page 81], a theorem prover is needed to settle such properties.A theorem prover such as PVS can also examine questions beyond simple com-pleteness and consistency. For example, Figure 3.8 presents a speci�cation thatcorrects the incompleteness and inconsistencies detected in the speci�cation of Fig-ure 3.4. (The incompleteness is remedied by adding an ELSE clause, and the in-consistencies by replacing the \don't care" entries in the second and third columnsof row 5 by false and LT, respectively.) Since the single TCC generated by thisspeci�cation is provable (using (grind)), we may examine additional properties ofthe function decision table2. To check that the speci�cation matches our intent,we can use conjectures that we believe to be true as \challenges." For example, wemay believe that when AC Alt = Acc Alt, the operational procedure selected shouldmatch the Flightphase. We can check this in the case that the Flightphase iscruise using the following challenge.test: THEOREM AC_Alt = Acc_Alt =>decision_table2(cruise, AC_Alt, Acc_Alt,Alt_Target, prev_Alt_Target, Alt_Capt_Hold) = CruiseThis is easily proved using (grind).However, when we try the corresponding challenge for the case whereFlightphase is climb,test2: THEOREM AC_Alt = Acc_Alt =>decision_table2(climb, AC_Alt, Acc_Alt,Alt_Target, prev_Alt_Target, Alt_Capt_Hold) = Climb5Ordered Binary Decision Diagrams (BDDs) are a very e�cient representation for reasoningabout Boolean functions and propositional calculus [5].
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decision_table2(Flightphase,AC_Alt,Acc_Alt,Alt_Target,prev_Alt_Target,Alt_Capt_Hold): operational_procedures =LET X = (LAMBDA (a: pred[flight_phases]),(b: pred[bool]),(c: pred[[nat,nat]]),(d: pred[bool]),(e: pred[[nat,nat]]):a(Flightphase) &b(AC_Alt > 400) &c(AC_Alt,Acc_Alt) &d(Alt_Capt_Hold) &e(Alt_Target,prev_Alt_Target)) IN TABLE% | | | | |% | | | | |% | | | | |% v v v v v Operational Procedure%----------|-------|-------|-------|-------|------------- ----%| X(climb? , true , LT , false , * ) | Takeoff ||%----------|-------|-------|-------|-------|------------------%| X(climb? , true , LT , true , GT) | Takeoff ||%----------|-------|-------|-------|-------|------------------%| X(climb? , * , GE , false , * ) | Climb ||%----------|-------|-------|-------|-------|------------------%| X(climb? , * , GE , true , GT) | Climb ||%----------|-------|-------|-------|-------|------------------%| X(climb? , false , LT , true , * ) | Climb_Int_Level ||%----------|-------|-------|-------|-------|------------------%| X(cruise?, * , GT , true , EQ) | Cruise ||%----------|-------|-------|-------|-------|------------------%| ELSE | Cruise ||%------------------------------------------|------------------%ENDTABLEEND tablewiseFigure 3.8: Corrected Version of the Decision Table in Figure 3.4



3.2. Decision Tables 37we discover that (grind) produces the following unproven goal.test2 :f-1g Acc_Alt!1 >= 0f-2g Alt_Target!1 >= 0f-3g prev_Alt_Target!1 >= 0f-4g AC_Alt!1 = Acc_Alt!1f-5g Alt_Capt_Hold!1|-------f1g Alt_Target!1 > prev_Alt_Target!1Rule?The �rst three formulas are simply type predicates for the natural numbers con-cerned, and the next is the hypothesis to this challenge, but formulas -5 and 1 re-veal that we have overlooked the case where Alt Capt Hold is true and Alt Target<= prev Alt Target (the latter condition is negated because it appears below theturnstile line). Further examination of the table (or another mechanically checkedchallenge) will disclose that the value of the function is not Climb but Cruise inthis case, thereby exposing a 
aw in either our expectations or our formalizationof this function. Mechanically supported challenges of this kind illustrate the util-ity of undertaking the analysis of tabular speci�cations in a context that providestheorem proving. Special-purpose tools for tabular speci�cations generally provideonly completeness and consistency checking, and perhaps some form of simulation.Such tools would help identify the 
aw described only if we happened to choose tosimulate a case where Alt Capt Hold is true and Alt Target <= prev Alt Target.Decision tables provide a way to specify the selection of operational proceduresto be executed at each step. However, the model of computation that repeatedlyperforms these selection and execution steps is understood informally and is notexplicit in the PVS speci�cations. Consequently, it is not possible to pose and ex-amine overall system properties|such as whether a certain property is invariant, oranother is reachable|without formalizing more of the underlying model of compu-tation. In the following chapter, we will do this for the requirements speci�cationmethodology known as SCR.
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Chapter 4State Transition Systems andSCR RequirementsSpeci�cationsA common way to model distributed, concurrent, or reactive systems is by meansof transition relations. The instantaneous state of the system is represented by anassignment of values to its variables. As it executes, the system progresses from onestate to another, and the transition relation speci�es the possible successors to eachstate. The sequence of states visited in one run of the system is called a trace; theset of all traces is called the behavior of the system.Usually, the transition relation for a system is not speci�ed monolithically, butas the interaction of several subsystems operating in parallel. Each subsystem willbe characterized by its own transition relation and the composite, overall transitionrelation can then be de�ned as either the disjunction of the individual relations(\interleaving" concurrency) or their conjunction1 (\true" concurrency).Veri�cation questions one might ask of transition relations include whether thebehavior induced by one (regarded as an implementation) implies that of another(regarded as a speci�cation), whether a certain property is true of all reachable states(i.e., an invariant), and whether a state having a certain property is reachable onsome or all traces starting from some given state (these are examples of \liveness"properties). Many such properties of sets of traces can be speci�ed compactly bymeans of temporal logic. To ask whether the behavior speci�ed by a certain tran-sition relation satis�es a property speci�ed by a certain formula of temporal logiccan be viewed as asking whether the relation is a Kripke model of the formula. Forcertain temporal logics and for transition relations that induce a �nite state space,1The individual relations must usually allow \stuttering" (i.e., no change) steps in this case.39



40 Chapter 4. State Transition Systems and SCR Requirements Speci�cationsthis model checking question can be decided very e�ciently (i.e., in time linear inthe length of the temporal logic formula and the number of states in the transitionsystem) by a rather sophisticated form of brute force search. The invention and pop-ularization of this approach is due to Edmund Clarke and his students [6,9,10]. Forcertain classes of systems and properties, model checking is an attractive alterna-tive, or adjunct, to veri�cation by theorem proving, because of its largely automaticcharacter.Using an e�cient decision procedure2 based on BDDs for a logic known as thePark's �-calculus (this is basically quanti�ed Boolean logic with least and greatest�xpoint operators [31]), PVS provides model checking for a temporal logic knownas Computation Tree Logic (CTL) and transition relations de�ned on heriditarily�nite types [35].3Here, we consider the use of PVS to examine transition relations derived from theNaval Research Laboratory's SCR method for requirements speci�cation [11]. Webegin by considering how PVS can represent certain aspects of SCR speci�cationsin a natural manner, and how it can check those speci�cations for well-formedness.This treatment builds directly on that developed in the previous chapter. We thenconsider use of PVS's model checker to examine application properties of SCR spec-i�cations. Finally, we consider speci�cations composed of more than one transitionrelation and use PVS's model checker to decide equivalence of the behaviors inducedby di�erent transition relations.4.1 Representing SCR Speci�cations in PVSIn the SCR method [19], a system is described in terms of state machines that in-teract with their environment by periodically sampling the values of monitored (i.e.,input) variables and calculating values to be assigned to controlled (i.e., output)variables. The states of an individual state machine are called modes. A condi-tion is a predicate on the monitored variables; an event occurs when a monitoredvariable changes value. The mode transitions of an individual state machine aretriggered by events, or by conditioned events|these are events that occur whilecertain conditions hold constant. Mode transitions are generally speci�ed by a tablesuch as the one shown in Figure 4.1. Complex systems are de�ned by several state2This procedure, and also the BDD-based propositional simpli�er invoked by PVS's (bddsimp)command, were provided by Geert Janssen of the Electrical Engineering Department of EindhovenUniversity of Technology in the Netherlands [27].3This capability is similar to that of the SMV model checker [30]. Note that the �-calculusis strictly more expressive than CTL, and is also used to de�ne \fair" versions of the CTL oper-ators within PVS. We are currently investigating the extension of PVS's �-calulus-based modelchecking to linear-time temporal logic (CTL is a \branching-time" logic [28]), and to languagecontainment [15].



4.1. Representing SCR Speci�cations in PVS 41Current Conditions NextMode Ignited Running Toofast Brake Activate Deactivate Resume ModeO� @T - - - - - - InactiveInactive @F - - - - - - O�T T - F @T - - CruiseCruise @F - - - - - - O�- @F - - - - - Inactive- - @T - - - - Inactive- - - @T - - - Override- - - - - @T - OverrideOverride @F - - - - - - O�- @F - - - - - InactiveT T - F @T - - CruiseT T - F - - @T CruiseFigure 4.1: Original Mode Transition Table for Cruise Controlmachines operating in parallel and will have several such mode transition tables.Also, in such cases, the conditions in one table may refer to the modes of another,and events may include mode transitions of other state machines. These extensionsrequire elaborations of the treatment given here, and we ignore them for brevity.However, we do consider interacting state machines in Section 4.3.The mode transition table of Figure 4.1, taken from Atlee and Gannon [3, Table2],4 describes an automobile cruise control system.5 This system has four modes:off, inactive, cruise, and override. The system is in exactly one of these fourmodes at all times. The system starts in the off mode, which represents the casewhere the car's ignition is o�. The inactive mode stands for the case where thecar's ignition is on, but the cruise control is o�. The cruise mode is the case whereboth ignition and cruise control are on, and the cruise control is actually controllingthe vehicle's speed. Finally, the override mode applies when both the ignition andcruise control are on, but the cruise control is not controlling the vehicle's speed.The table of Figure 4.1 uses the following conditions on the system's monitoredvariables.Ignited: The ignition is on.Running: The engine is running.Toofast: The vehicle speed is above that which the system can control.4The same example is used in two papers by Atlee and Gannon [3, Tables 2 and 3], [4, Tables IVand V], and one by Atlee and Buckley [2, Figure 4]; however, the SCR tables are slightly di�erentin each paper.5This description does not resemble any real cruise control; we use it because it has been studiedby others and thereby facilitates comparison between our methods and theirs.



42 Chapter 4. State Transition Systems and SCR Requirements Speci�cationsBrake: The brake is being applied.Activate: The cruise control lever is set to the \activate" position.Deactivate: The cruise control level is set to the \deactivate" position.Resume: The cruise control level is set to the \resume" position.An @T entry in the mode transition table indicates an event where the conditionin that column goes from false to true. For example, the @T in the �rst columnof the �rst row of the table signi�es an event that ignited goes from false totrue. An @F entry similarly indicates an event that the condition correspondingto that column goes from true to false. The simple entries T and F indicate thatthe condition in their column remains true or false, respectively. The rows of themode transition table specify conditioned events that trigger their associated modetransitions. For example, the third row speci�es that a transition from the inactiveto the cruise mode takes place when an activate event occurs while ignited andrunning remain true and brake remains false (the dashes indicate \don't care"conditions). The system remains in its current mode until an event causes it totransition to another mode.To specify this system in PVS, we �rst need to model the basic constructs ofthe SCR method, such as the notions of events and conditions, and the meaningof notations such as @T. The notions of the SCR method are de�ned relative tothe input (monitored) and output (controlled) variables, and the system modes: acondition, for example, is formally a predicate on the inputs. We therefore specifythe SCR constructs in a theory that is parameterized by the input, mode, andoutput types. This theory begins as follows.scr[ input, mode, output: TYPE ]: THEORYBEGINcondition: TYPE = pred[input]event: TYPE = pred[[input, input]]state: TYPE = [# mode: mode, vars: input #]: : :It speci�es that a condition is a predicate on inputs, while an event is a predicateon pairs of inputs (or, equivalently, a relation on inputs).6 The instantaneoussystem state is a record composed of the current mode and current values of theinputs.It turns out to be very convenient to be able to apply a condition to a state,with the interpretation that the condition is actually to be applied to the inputs of6In the declaration for the event type, the outer pair of brackets encloses the parameter to thepred type-constructor; the inner pair is the tuple-type constructor.



4.1. Representing SCR Speci�cations in PVS 43that state. The higher-order function liftcmakes it possible to do this in a uniformfashion: if cnd is a condition, then liftc(cnd) is a predicate on states that hasthe desired behavior (i.e., it applies cnd to the vars component of the state). Byfurther declaring liftc to be a CONVERSION, we tell the PVS typechecker that itmay insert an application of liftc wherever it will turn a type-incorrect applicationinto a type-correct one. Thus, we can write cnd(s), where cnd is a condition ands is a state, and PVS will automatically convert this to liftc(cnd)(s).liftc(cnd:condition): pred[state] = LAMBDA (s:state): cnd(vars(s))CONVERSION liftcliftm(mde: pred[mode]): pred[state] = LAMBDA (s:state): mde(mode(s))CONVERSION liftmThe conversion liftm is de�ned similarly for predicates on modes.A trace is a sequence of states whose adjacent members are related by sometransition relation. The important item to capture here is the notion of transitionrelation.transition_relation: TYPE = pred[[state, state]]This says that a transition relation is a predicate on pairs of states (i.e., arelation on states).The instantaneous values of the input variables are determined by the environ-ment and are not under our control. When we specify the behavior of a particularstate machine, we must be careful, therefore, to do so in a way that does not con-strain how input variables may change from one state to another.7 Hence, we donot specify the transition relation directly (since it would then be hard to check thatwe were not constraining the way in which inputs could change from one state toanother), but do so implicitly by means of a mode table that allows us to specifyonly the part of the system that is under our control (i.e., in this case, just themodes).mode_table: TYPE = [mode, input, input -> mode]A mode table speci�es a new mode for the system as a function of its previousmode, and previous and current inputs. We can then specify a function trans thatconstructs a transition relation from a mode table by specifying that two statess and t are in the relation whenever the mode of t equals that required by the modetable when given the mode of s and the inputs of s and t.7It is acceptable to constrain the way input variables change if this is an explicit property or as-sumption about the environment (we will see an example of this shortly in the axiom engine prop);it is not acceptable to do it accidentally while specifying the part of the system that we intend toimplement.



44 Chapter 4. State Transition Systems and SCR Requirements Speci�cationstrans(mt: mode_table): transition_relation =(LAMBDA (s,t: state): mode(t) = mt(mode(s), vars(s), vars(t)))An output table speci�es the current output in a manner similar to that ofa mode table. For brevity, we will not specify particular output tables for ourexamples.output_table: TYPE = [mode, input, input -> output]To specify a particular mode table such as Figure 4.1, we need to de�ne theoperators such as @T that appear within it. The operator @T in the column forignited really stands for @T(ignited), and represents the event where the conditionignited goes from false to true. Thus, @T is a function from conditions to events.We say that such functions have type event constructor, or EC for short.event_constructor: TYPE = [condition -> event]EC: TYPE = event_constructorNow if P is a condition, @T(P) is the event that is true of two sets of inputvalues p and q if P goes from false to true between them: that is, if P(p) is falseand P(q) is true. We can de�ne this in PVS as follows (because @ cannot be usedin a PVS identi�er we use atT instead of @T). Observe the explicitly higher-ordercharacter of this de�nition.p,q: VAR inputP: VAR conditionatT(P)(p,q): bool = NOT P(p) & P(q) % @T(P)We can de�ne atF (i.e., @F) dually, and similarly the transition constructors T andF, which are true if their argument condition P remains true (resp. false) in thetransition from p to q. We will also need the \don't care" transition constructor dc,which is always true.atF(P)(p,q): bool = P(p) & NOT P(q) % @F(P)T(P)(p,q): bool = P(p) & P(q)F(P)(p,q): bool = NOT P(p) & NOT P(q)dc(P)(p,q): bool = true % don't care



4.1. Representing SCR Speci�cations in PVS 45This gives us all the generic constructions we need for the time being, and wecan proceed to specify the particular mode transition table given in Figure 4.1.To begin, we need to specify the inputs and the system modes for this example.Among the inputs, we know that there is a cruise control lever that can take onthree positions: activate, deactivate, and resume. We can specify these valuesas the components of a PVS enumerated type, as follows.cruise: THEORYBEGINlever_pos: TYPE = factivate, deactivate, resumegSimilarly, the engine can be in one of three states; off, running, and an intermediatestate where the ignition is on but the engine is not running.engine_state: TYPE = f off, ignition, running gThe input to the system will be a record of several �elds: as well as the cruisecontrol lever position and engine state, we need Boolean-valued �elds that recordwhether the vehicle is going toofast, and whether the brake is on.monitored_vars: TYPE = [#engine: engine_statetoofast: bool,brake: bool,lever: lever_pos#]We also de�ne the modes of this system as an enumerated type.modes: TYPE = f off, inactive, cruise, override gSince we will not specify the output behavior of the system, we will use an uninter-preted type null for this purpose.null: TYPENow that we have de�ned all the components of the system state, we can importthe appropriate instance of the scr theory.IMPORTING scr[ monitored_vars, modes, null ]



46 Chapter 4. State Transition Systems and SCR Requirements Speci�cationsTo formally specify the mode transition table of Figure 4.1 in PVS, we nextneed to specify the conditions that label its columns. The condition activate, forexample, is true when the lever �eld of the monitored vars has the value activate(note, activate will be overloaded here as both a condition and the value of anenumerated type). Because lever pos is an enumerated type, activate? is thepredicate that recognizes this value, and so the speci�cation is written as follows.activate: condition = LAMBDA (m:monitored_vars): activate?(lever(m))The conditions deactivate, resume, and running are de�ned similarly.deactivate: condition = LAMBDA (m:monitored_vars): deactivate?(lever(m))resume: condition = LAMBDA (m:monitored_vars): resume?(lever(m))running: condition = LAMBDA (m:monitored_vars): running?(engine(m))The condition ignited is a little more complicated. It is to be true whenever theignition is on, and this is obviously so when the engine state is ignition; however,it is also so when engine state is running, because the ignition must surely be onfor the engine to be running. Hence, we have the following speci�cation.ignited: condition = LAMBDA (m:monitored_vars):ignition?(engine(m)) OR running?(engine(m))The condition brake is to be true whenever the brake �eld in the monitored varsis true. The condition toofast is de�ned similarly.brake : condition = LAMBDA (m:monitored_vars): brake(m)toofast: condition = LAMBDA (m:monitored_vars): toofast(m)These two de�nitions may seem redundant, but they are not. In their absence, theterm brake(m) may look like a condition (i.e., predicate) applied to a variable m oftype monitored vars, but it is not: this brake is a record �eld selector and cannotappear on its own (i.e., not applied to a record m). It is necessary to explicitlyoverload brake by the de�nition above to be able to use it as a condition.We now need to de�ne the mode table of Figure 4.1 in PVS. This kind of tableis rather di�erent than any we have seen before, but it can be recast in the following



4.1. Representing SCR Speci�cations in PVS 47generic form. Current Mode Conditioned Event New Modem1 e1;1 m1;1e1;2 m1;2� � � � � �e1;k1 m1;k1m2 e2;1 m2;1e2;2 m2;2� � � � � �e2;k2 m2;k2� � � � � � � � �mp ep;1 mp;1ep;2 mp;2� � � � � �ep;kp mp;kpThis is actually the way mode transition tables are presented in formal treat-ments of the SCR method [19] and is similar to that used in the SCR* toolset [20].Tables of this form can be speci�ed in PVS using a one-dimensional vertical tableto enumerate the Current Mode, with the Conditioned Event/New Mode subtables(inside the doubled lines) speci�ed in the manner used for decision tables in the pre-vious chapter. Using this approach, we can represent the mode table of Figure 4.1by the PVS speci�cation shown in Figure 4.2. In this speci�cation, the function PCis imported from the generic scr theory and is de�ned as follows.A,B,C,D,E,FF,G,H,I,J: VAR ECa,b,c,d,e,f,g,h,i,j: VAR conditionPC(A)(a)(p,q):bool = A(a)(p,q)PC(A,B)(a,b)(p,q):bool = A(a)(p,q) & B(b)(p,q)� � �PC(A,B,C,D,E,FF,G)(a,b,c,d,e,f,g)(p,q):bool = A(a)(p,q) & B(b)(p,q) &C(c)(p,q) & D(d)(p,q) & E(e)(p,q) & FF(f)(p,q) & G(g)(p,q)8� � �That is, PC (the name is short for \pairwise conjunction") is de�ned as a collectionof functions that each take a list of event constructors and a list of conditionsand conjoins their pairwise applications. The collection contains versions of PC for8The variable FF is used rather than F because the latter is already de�ned in this context asthe event constructor that is true when both its arguments are false.



48 Chapter 4. State Transition Systems and SCR Requirements Speci�cationsoriginal(s: modes, (p, q: monitored_vars)): modes =LETx: conds7 = (ignited, running, toofast, brake, activate, deactivate, resume),X = (LAMBDA (a,b,c,d,e,f,g:EC): PC(a,b,c,d,e,f,g)(x)(p,q))IN TABLE s|off| TABLE%----|----|----|----|----|----|----|----|-----------|||X( atT , dc , dc , dc , dc , dc , dc)| inactive ||%----|----|----|----|----|----|----|----|-----------||| ELSE | off ||%----|----------------------------------|-----------||ENDTABLE |||inactive| TABLE%----|----|----|----|----|----|----|-----|----------|||X( atF , dc , dc , dc , dc , dc , dc )| off ||%----|----|----|----|----|----|----|-----|----------|||X( T , T , dc , F ,atT , dc , dc )| cruise ||%----|----|----|----|----|----|----|-----|----------||| ELSE | inactive ||%----|-----------------------------------|----------||ENDTABLE |||cruise| TABLE%----|----|----|----|----|----|----|-----|----------|||X( atF, dc, dc, dc, dc, dc, dc )| off ||%----|----|----|----|----|----|----|-----|----------|||X( dc ,atF , dc , dc , dc , dc , dc )| inactive ||%----|----|----|----|----|----|----|-----|----------|||X( dc , dc ,atT , dc , dc , dc , dc )| inactive ||%----|----|----|----|----|----|----|-----|----------|||X( dc , dc , dc ,atT , dc , dc , dc )| override ||%----|----|----|----|----|----|----|-----|----------|||X( dc , dc , dc , dc , dc ,atT , dc )| override ||%----|----|----|----|----|----|----|-----|----------||| ELSE | cruise ||%----|-----------------------------------|----------||ENDTABLE |||override| TABLE%----|----|----|----|----|----|----|-----|----------|||X( atF , dc dc , dc , dc , dc , dc )| off ||%----|----|----|----|----|----|----|-----|----------|||X( dc ,atF , dc , dc , dc , dc , dc )| inactive ||%----|----|----|----|----|----|----|-----|----------|||X( T , T , dc , F ,atT , dc , dc )| cruise ||%----|----|----|----|----|----|----|-----|----------|||X( T , T , dc , F , dc , dc ,atT )| cruise ||%----|----|----|----|----|----|----|-----|----------||| ELSE | override ||% ---|-----------------------------------|----------||ENDTABLE ||ENDTABLEFigure 4.2: PVS Version of the Original Speci�cation of Figure 4.1



4.1. Representing SCR Speci�cations in PVS 49di�erent numbers of arguments; PVS resolves the overloading by the number ofarguments provided in any particular application. The type conds7 appearing inthe LET clause of Figure 4.2 is also de�ned in the generic scr theory.conds1:type = [condition]conds2:type = [condition, condition]� � �conds7:type = [condition, condition, condition, condition,condition, condition, condition]� � �4.1.1 Well-Formedness Checking for SCR Speci�cations in PVSTypechecking the de�nition original of Figure 4.2 generates three TCCs; theseare disjointness TCCs from the nested tables that specify the transitions from themodes inactive, cruise, and override. No disjointness TCC is generated for thetransitions frommode off, since there is only a single non-ELSE case in its table. Andno coverage TCCs are generated from any of these tables because they all have ELSEcases. No TCCs are generated from the outermost table, since PVS recognizes thatit is simply enumerating the values of an enumerated type. The disjointness TCCfrom the table giving the transitions from mode inactive is proved automaticallyby PVS's default strategy for TCCs, but the other two are not. After applying thedefault (cond-disjoint-tcc) proof strategy to the disjointness TCC from the tablegiving the transitions from mode cruise, and eliminating some irrelevant formulaswith (hide -1 -2), we are presented with the following sequent.Trying repeated skolemization, instantiation, and if-lifting,this yields 8 subgoals:original_TCC2.1 :f-1g cruise?(s!1)f-2g toofast(q!1)f-3g deactivate?(lever(q!1))|-------f1g toofast(p!1)f2g deactivate?(lever(p!1))Rule?This sequent is inviting us to contemplate the case where toofast and deactivateboth go from false to true when in cruisemode. Referring back to the speci�cation,we see that the �rst of these causes a transition to inactivemode, while the secondcauses a transition to override mode. The other subgoals of this failed proof



50 Chapter 4. State Transition Systems and SCR Requirements Speci�cationsreveal further similar ambiguities in the mode transitions from cruisemode; similaranalysis of the third TCC reveals comparable problems in the mode transitions fromoverride mode.It seems clear that the speci�cation should be modi�ed so that the transitionsfrom cruise mode to override mode are conditioned on toofast remaining false,and running remaining true. There are similar problems in the transitions fromthe cruise and override modes to the off and inactive modes: the transitionsto off occur when ignited goes false, while those to inactive can occur whenrunning goes false, and both of these events can occur at once. It seems that thetransitions to inactive need to be conditioned on ignited staying true.But what about the apparent ambiguity in the transitions from cruise to offwhen ignited goes false, and to inactive when toofast goes true? Atlee andGannon [3,4] argue that there is no real ambiguity here, because these events cannotoccur together|the engine surely has to be running (and therefore ignited) forthe vehicle to go toofast. Atlee and Gannon add an assumption to this e�ect totheir speci�cation; we also add it to our speci�cation as the axiom engine prop.9engine_prop: AXIOM toofast(p) => running(p)With this assumption, we can simplify the table by removing the condition thatignited stays true from any transitions where running stays or goes true. Noticethat unlike Atlee and Gannon [3, 4], we do not need to add axioms to ensure dis-jointness of the conditions activate, deactivate, and resume, since these followautomatically by their derivation from an enumerated type. Also, we do not needto be concerned that (for example) the last two transitions from cruise mode haveoverlapping conditions|because the destination mode is override in both cases.PVS suppresses the disjointness TCC on COND (and hence TABLE) entries that havesyntactically identical actions. The revised mode transition table incorporatingthese corrections and simpli�cations is shown in Figure 4.3, and the correspondingPVS speci�cation is shown in Figure 4.4. The three disjointness TCCs generatedby the revised speci�cation are all proved by the following command.(then (grind)(lemma "engine_prop")(grind :if-match all))In the next section we show how the model checking capabilities of PVS can beused to examine application-speci�c properties of this speci�cation.9Atlee and Gannon conjoin running(p) => ignited(p) to this axiom; we do not need to doso because this property is built in to the way we de�ned the condition ignited. We could haveavoided the need for the axiom altogether by suitably modifying the de�nitions of ignited andrunning, but chose not to do so for variety.



4.2. Model Checking SCR Speci�cations in PVS 51Current Conditions NextMode Ignited Running Toofast Brake Activate Deactivate Resume ModeO� @T - - - - - - InactiveInactive @F - - - - - - O�- T - F @T - - CruiseCruise @F - - - - - - O�T @F - - - - - Inactive- - @T - - - - Inactive- T F @T - - - Override- T F - - @T - OverrideOverride @F - - - - - - O�T @F - - - - - Inactive- T - F @T - - Cruise- T - F - - @T CruiseFigure 4.3: Deterministic Mode Transition Table for Cruise Control4.2 Model Checking SCR Speci�cations in PVSTCCs generated by PVS's COND (and hence TABLE) construct provided useful well-formedness checks on our SCR requirements speci�cation for the automobile cruisecontrol example. The TCCs led us to discover 
aws in the speci�cation, and en-abled us to demonstrate the absence of these 
aws in the corrected speci�cation.Deeper assurance that the speci�cation captures our intent and intuitive under-standing requires that we go beyond static attributes of the transition relation andexamine properties of the behavior that it induces. A useful class of properties canbe expressed in the branching time temporal logic called CTL, and their satisfac-tion by the behavior induced by a given transition relation can be determined verye�ciently by model checking. Atlee and Gannon [3, 4] were the �rst to apply thisidea to SCR speci�cations. Their approach used a rather indirect encoding of SCRspeci�cations and the MCB model checker. Later, Atlee [1] developed a more directencoding suitable for the SMV symbolic model checker [30] that has subsequentlybeen applied to large examples [40]. Here, we apply PVS's model checker directlyto the PVS speci�cations already developed.CTL is a branching time temporal logic that extends propositional logic withmodal operators: AX(P ) is true when the state predicate (i.e., SCR condition) Pholds in every immediate successor to the current state; EX(P ) is true when P holdsin some immediate successor to the current state; AF (P ) (resp. EF (P )) means thatalong every (resp. some) path (i.e., trace, or succession of states) from the currentstate there exists some future state in which P holds; �nally, AG(P ) (resp. EG(P ))means that P holds in every state along every (resp. some) path from the currentstate.



52 Chapter 4. State Transition Systems and SCR Requirements Speci�cationsdeterministic(s: modes, (p, q: monitored_vars)): modes =LETx: conds7 = (ignited, running, toofast, brake, activate, deactivate, resume),X = (LAMBDA (a,b,c,d,e,f,g:EC): PC(a,b,c,d,e,f,g)(x)(p,q))IN TABLE s|off| TABLE%----|----|----|----|----|----|----|----|-----------|||X( atT , dc , dc , dc , dc , dc , dc)| inactive ||%----|----|----|----|----|----|----|----|-----------||| ELSE | off ||%----|----------------------------------|-----------||ENDTABLE |||inactive| TABLE%----|----|----|----|----|----|----|-----|----------|||X( atF , dc , dc , dc , dc , dc , dc )| off ||%----|----|----|----|----|----|----|-----|----------|||X( dc , T , dc , F ,atT , dc , dc )| cruise ||%----|----|----|----|----|----|----|-----|----------||| ELSE | inactive ||%----|-----------------------------------|----------||ENDTABLE |||cruise| TABLE%----|----|----|----|----|----|----|-----|----------|||X( atF, dc, dc, dc, dc, dc, dc )| off ||%----|----|----|----|----|----|----|-----|----------|||X( T ,atF , dc , dc , dc , dc , dc )| inactive ||%----|----|----|----|----|----|----|-----|----------|||X( dc , dc ,atT , dc , dc , dc , dc )| inactive ||%----|----|----|----|----|----|----|-----|----------|||X( dc , T , T ,atT , dc , dc , dc )| override ||%----|----|----|----|----|----|----|-----|----------|||X( dc , T , T , dc , dc ,atT , dc )| override ||%----|----|----|----|----|----|----|-----|----------||| ELSE | cruise ||%----|-----------------------------------|----------||ENDTABLE |||override| TABLE%----|----|----|----|----|----|----|-----|----------|||X( atF , dc dc , dc , dc , dc , dc )| off ||%----|----|----|----|----|----|----|-----|----------|||X( T ,atF , dc , dc , dc , dc , dc )| inactive ||%----|----|----|----|----|----|----|-----|----------|||X( dc , T , dc , F ,atT , dc , dc )| cruise ||%----|----|----|----|----|----|----|-----|----------|||X( dc , T , dc , F , dc , dc ,atT )| cruise ||%----|----|----|----|----|----|----|-----|----------||| ELSE | override ||% ---|-----------------------------------|----------||ENDTABLE ||ENDTABLEFigure 4.4: PVS Version of the Revised Speci�cation of Figure 4.3



4.2. Model Checking SCR Speci�cations in PVS 53Following Atlee and Gannon, we examine certain \mode invariants" of the SCRrequirements speci�cation of Figures 4.3 and 4.4. The properties examined by Atleeand Gannon are the following.101. When the mode is off, the ignition is o� (i.e., ignited is false).2. In modes other than off, the ignition is on (i.e., ignited is true).3. In inactive mode, either the engine is not running or the cruise control isnot activated.4. In cruise mode, the engine is running, the vehicle is not going toofast, thebrake is not on, and deactivate is not selected.5. In override mode, the engine is running.All of these can be expressed in CTL as AG properties as follows.1. AG((mode = o� )) :ignited)2. AG((mode 6= o� )) ignited)3. AG((mode = inactive)) (:running _ :active))4. AG((mode = cruise)) running ^ :brake)5. AG((mode = override)) running)In PVS, a CTL formula is speci�ed by an expression of the following form.AG( transition relation, predicate )( state )This example uses the AG operator to assert that the predicate is true on all pathsinduced by the given transition relation from the speci�ed state. (All the otherCTL operators, as well as their fair variants, are available in PVS.) Usually, suchexpressions appear as the conclusion to an implication whose antecedent assertsproperties of the speci�ed initial state. Usually, too, the predicate is de�ned in placeby means of a LAMBDA abstraction. For example, if init characterizes the initialstate, the �rst invariant above would be speci�ed in PVS as follows.10By virtue of the second of these properties, we have eliminated the clause \and the ignitionis on (i.e., ignited is true)" from Atlee and Gannon's statements of the third, fourth, and �fthproperties.



54 Chapter 4. State Transition Systems and SCR Requirements Speci�cationsIMPORTING MU@ctlops, cruise_tabp,q,r: var statetrans: transition_relation = trans(deterministic)init(p): bool = off?(p) & NOT ignited(p)safe1: THEOREM init(p)=> AG(trans, (LAMBDA q: off?(q) => NOT ignited(q)))(p)Here, cruise tab is the PVS theory that de�nes the mode table concerned, andctlops is the PVS library theory that de�nes the CTL operators. The MU@ctlopsconstruction indicates that it can be found in the �le MU.pvs in the directory con-taining the standard PVS libraries (these are distributed with PVS).Next, we apply the function trans (from the scr theory) to the mode tabledeterministic to construct a transition relation (also called trans). Then wecharacterize the initial state as one whose mode is off and in which the engineis not ignited, and state the theorem corresponding to the formulas numbered 1above.When all the types involved are �nite, formulas such as this can be proved usingthe PVS model checker by �rst setting up all the theories concerned as auto-rewrites,and then giving the (model-check) command. This will rewrite all the de�nedterms down to their primitive forms, reduce CTL operations to expressions in Park's�-calculus, and then call an external BDD-based �-calculus decision procedure. Ifthe theorem is true, the decision procedure will so report it. If it is not, the proofwill terminate unsuccessfully. PVS does not, at present, return a falsifying trace inthe case of untrue CTL conjectures. The theorem safe1 is indeed veri�ed by themodel checker using the following prover commands.(auto-rewrite-theories("scr" :defs t) "cruise" "cruise_tab" "cruise_test")(model-check)Here, scr is the PVS generic SCR theory, cruise is the theory that speci�es thetypes used for the cruise control example, cruise tab is the theory that speci-�es the mode table deterministic, and cruise test is the theory containing thede�nitions we have given for trans and init. The :defs t quali�er for the scrtheory instructs the prover to rewrite only de�nitions (as opposed to all conditionalequations of the right form), and is important because PVS can �gure out the cor-rect theory instantiation on the 
y in this case. Without this quali�er, it would



4.2. Model Checking SCR Speci�cations in PVS 55be necessary to explicitly specify the required instance(s) of the scr theory in theauto-rewrite-theories command.The other four CTL properties listed above are speci�ed by the following PVSformulas.safe2: THEOREM init(p)=> AG(trans, (LAMBDA q: NOT off?(q) => ignited(q)))(p)safe3: THEOREM init(p)=> AG(trans,(LAMBDA q: inactive?(q) =>NOT running(q) OR NOT activate?(q)))(p)safe4: THEOREM init(p)=> AG(trans,(LAMBDA q: cruise?(q) =>running(q) & NOT toofast(q)& NOT brake(q) & NOT deactivate?(q)))(p)safe5: THEOREM init(p)=> AG(trans, (LAMBDA q: override?(q) => running(q)))(p)Theorems safe2 and safe5 are proved by model checking in the same way as safe1,but safe3 and safe4 fail. The failure to prove safe4 motivates closer examinationof the speci�cation|this reveals that although cruisemode is exited when toofastgoes true, the transitions into cruise mode neglect to check that toofast is falsebefore making the transition. The correction is to add the condition F(toofast)to the three transitions into cruise mode. The corrected speci�cation is shown inFigures 4.5 and 4.6.The problem with conjecture safe3 is of a di�erent kind from that with thetheorem safe4. Examination of the speci�cation reveals that safe3 is false because,for example, it is possible for ignited, running, and activate to become truesimultaneously when the system is in off mode. This will cause a transition toinactive mode in a state that violates the invariant of safe3. Contemplation ofthe intent of the speci�cation suggests that this is acceptable: it is not the transitionrelation that is wrong, but our formulation of the intended invariant for inactivemode. Atlee [1, page 9] suggests that a more appropriate invariant is one thatstates that if the current mode is inactive and the invariants for cruise modeapply when activate goes true, then the next mode will not be inactive. Thiscan be expressed by the following formula, which is shown to be a theorem by thePVS model checker.



56 Chapter 4. State Transition Systems and SCR Requirements Speci�cationsCurrent Conditions NextMode Ignited Running Toofast Brake Activate Deactivate Resume ModeO� @T - - - - - - InactiveInactive @F - - - - - - O�- T F F @T - - CruiseCruise @F - - - - - - O�T @F - - - - - Inactive- - @T - - - - Inactive- T F @T - - - Override- T F - - @T - OverrideOverride @F - - - - - - O�T @F - - - - - Inactive- T F F @T - - Cruise- T F F - - @T CruiseFigure 4.5: Corrected Mode Transition Table for Cruise Controltrans:transition_relation = trans(corrected)safe6: THEOREM init(p)=> AG(trans, (LAMBDA q:inactive?(q) & ignited(q) & running(q)& NOT toofast(q) & NOT brake(q) & NOT activate?(q))IMPLIESNOT EX(N, (LAMBDA r: inactive?(r) & ignited(r)& running(r) & NOT toofast(r) & NOT brake(r)& activate?(r))))(p)Perhaps the most interesting feature here is not the utility of this particular formula,but its exempli�cation of nested CTL operators.The most interesting feature of the overall exercise, however, is its integratedcharacter: completeness and consistency checking, model checking of applicationproperties, and (although we did not demonstrate these) direct evaluation of testcases and proof of general properties are all driven from the same speci�cation. Thisis not only more convenient than, say, the translation to the language of the SMVmodel checker employed by Atlee, but it provides the assurance of working within asingle semantics. Because the di�erent methods of analysis are integrated and sharea common semantics in PVS, they can be used in combination, so that arbitrarytheorem proving (and not just propositional tautology checking) can be used to settleconsistency checks, and theorem proving can be used to augment model checkingin di�cult cases. Furthermore, it is not just di�erent methods of analysis that canbrought to bear: the full resources of the PVS language are available within tableentries, and other methods of speci�cation can be combined with tabular forms.In the next section, we will exploit this capability to allow tables representing SCR



4.2. Model Checking SCR Speci�cations in PVS 57corrected(s: modes, (p, q: monitored_vars)): modes =LETx: conds7 = (ignited, running, toofast, brake, activate, deactivate, resume),X = (LAMBDA (a,b,c,d,e,f,g:EC): PC(a,b,c,d,e,f,g)(x)(p,q))IN TABLE s|off| TABLE%----|----|----|----|----|----|----|----|-----------|||X( atT , dc , dc , dc , dc , dc , dc)| inactive ||%----|----|----|----|----|----|----|----|-----------||| ELSE | off ||%----|----------------------------------|-----------||ENDTABLE |||inactive| TABLE%----|----|----|----|----|----|----|-----|----------|||X( atF , dc , dc , dc , dc , dc , dc )| off ||%----|----|----|----|----|----|----|-----|----------|||X( dc , T , F , F ,atT , dc , dc )| cruise ||%----|----|----|----|----|----|----|-----|----------||| ELSE | inactive ||%----|-----------------------------------|----------||ENDTABLE |||cruise| TABLE%----|----|----|----|----|----|----|-----|----------|||X( atF, dc, dc, dc, dc, dc, dc )| off ||%----|----|----|----|----|----|----|-----|----------|||X( T ,atF , dc , dc , dc , dc , dc )| inactive ||%----|----|----|----|----|----|----|-----|----------|||X( dc , dc ,atT , dc , dc , dc , dc )| inactive ||%----|----|----|----|----|----|----|-----|----------|||X( dc , T , T ,atT , dc , dc , dc )| override ||%----|----|----|----|----|----|----|-----|----------|||X( dc , T , T , dc , dc ,atT , dc )| override ||%----|----|----|----|----|----|----|-----|----------||| ELSE | cruise ||%----|-----------------------------------|----------||ENDTABLE |||override| TABLE%----|----|----|----|----|----|----|-----|----------|||X( atF , dc dc , dc , dc , dc , dc )| off ||%----|----|----|----|----|----|----|-----|----------|||X( T ,atF , dc , dc , dc , dc , dc )| inactive ||%----|----|----|----|----|----|----|-----|----------|||X( dc , T , F , F ,atT , dc , dc )| cruise ||%----|----|----|----|----|----|----|-----|----------|||X( dc , T , F , F , dc , dc ,atT )| cruise ||%----|----|----|----|----|----|----|-----|----------||| ELSE | override ||% ---|-----------------------------------|----------||ENDTABLE ||ENDTABLEFigure 4.6: PVS Version of the Corrected Speci�cation of Figure 4.5



58 Chapter 4. State Transition Systems and SCR Requirements Speci�cationstransition relations to be combined using ordinary relational composition and we willshow how to establish that di�erent transition relations induce identical behavior.4.3 Interacting Transition Speci�cationsThe cruise control example has only a single mode transition table. Matters canbecome much more complex when multiple, interacting transition systems are con-sidered. In the case of Statecharts, for example, von der Beeck [44] identi�es 21di�erent proposed semantics|most of these di�er only in their treatment of inter-acting systems. One of the central di�culties is that of accounting for transitionsdue to internal events. In the cruise control example, it was understood that eventssuch as brake becoming true, or running becoming false, happen in the externalenvironment; with interacting systems, however, an event may be a mode transitionin another system. Thus, a transition in one system may trigger one in another,leading to a potentially in�nite cycle of activity without reference to the externalenvironment. In the SCR method, such potential cycles are broken by requiring thatevents are ordered in some way. Here, we consider a simple example and show thatthe resources of PVS allow transition relations to be composed in a variety of ways.We argue that rather than build the treatment of interaction into the methodology,it may be best to allow this to be speci�ed directly.4.3.1 A Requirements Speci�cationOur example derives from an autopilot speci�cation developed by Ricky Butlerof NASA Langley Research Center [7]. Whereas an automobile's cruise controlis concerned with only a single attribute|speed|an autopilot is responsible formany attributes and the functions controlling the di�erent attributes interact withone another. For example, one function is responsible for acquiring and holding aparticular altitude, while another is responsible for climbing at a particular rate.If a pilot dials in a desired altitude signi�cantly higher than the present altitude,the altitude function does not become active immediately|a desired rate of climbmust also be speci�ed. Similarly, dialing in a desired rate of climb does not cause theplane immediately to start climbing|a target altitude must also be speci�ed. Thus,these two functions cannot become active independently. When only one of themis selected, it is held in an intermediate \armed" state; when the other is selected,both jump to the \on" state. Conversely, if one of them is subsequently deselected,the other must drop back from its \on" to its \armed" state.We might attempt to write a requirements speci�cation for this behavior inwhich each component (\altitude level" and \climb angle") is speci�ed as a sepa-rate transition system whose transitions are partly contingent on those of the other.



4.3. Interacting Transition Speci�cations 59The complexity in this treatment would be compounded if we also desire that theindividual speci�cations are those of components that could be developed indepen-dently. In this case, the individual speci�cations must serve a double duty: theircomposition must specify the behavior required of the overall system, and they mustalso serve as speci�cations of components. It seems to us that this approach con-
ates the issue of overall requirements speci�cation with that of re�nement to animplementation. We prefer to specify the overall requirement as the interaction ofseparate transition systems that are chosen for simplicity and clarity of expression,rather than because they correspond to components in an implementation. We canthen develop a separate implementation speci�cation and show that it induces thesame behavior as the requirement speci�cation.We exemplify this approach with a drastically simpli�ed version of the autopilot.We will have two attributes: climb and level, both of which may be either off,armed, or on. Each attribute is controlled by a separate button. If the climbattribute is off when its button is pressed, then it may change to either the armedor on states; otherwise, it stays off. If the button is pressed when the climbattribute is either armed or on, then the attribute is turned off; otherwise (if thebutton is not pressed) it may nondeterministically transition between either of thesestates (the nondeterminism will be resolved later). The level attribute is speci�eddually. Notice that these two speci�cations are completely independent: that forclimb does not mention level, nor vice versa. If we specify the overall system as thedisjunction of the separate climb and level speci�cations, then the overall systemincludes all the behaviors we require, but also many that we do not. We complete thespeci�cation by simply conjoining it with one that excludes the undesired behaviors:namely, one that says that climb is on if and only if level is also on, and that climband level cannot both be armed.A PVS rendition of this speci�cation in SCR-style is shown in Figures 4.7 and 4.8.Coff, Carm, and Con indicate whether the climb attribute is off, armed, or on,respectively, and Cbutton indicates whether its button is pressed. Loff, Larm, Lon,and Lbutton perform dual roles for the level attribute.The individual transition relations are speci�ed directly as Ctransition andLtransition rather than indirectly by means of mode tables. This is because thetransitions are deliberately nondeterministic: the next mode for Ctransition in theoff mode when the Cbutton is pressed is either the arm or the on mode. If we triedto specify this as a mode transition table, we would get unprovable TCCs, sincesuch a table is intended to de�ne the new mode as a function of the present oneand the events. By using disjunctions in the \action" parts of the tables specifyingthe transition relations, we make the nondeterminism explicit and no TCCs aregenerated. Notice that, for variety, Ctransition explicitly enumerates over allmodes, whereas Ltransition collapses the cases for armed and on into the ELSEcase.



60 Chapter 4. State Transition Systems and SCR Requirements Speci�cations
linkedmodes: THEORYBEGINmodes: TYPE = foff, armed, ongcombined_modes: TYPE = [# climbmode, levelmode: modes #]m, n: VAR combined_modesCoff(m): bool = off?(climbmode(m))Carm(m): bool = armed?(climbmode(m))Con(m): bool = on?(climbmode(m))Loff(m): bool = off?(levelmode(m))Larm(m): bool = armed?(levelmode(m))Lon(m): bool = on?(levelmode(m))monitored_vars: TYPE = [# Cbutton, Lbutton: bool #]p, q: VAR monitored_varsnull: TYPEIMPORTING MU@ctlops, scr[monitored_vars, combined_modes, null]r, s, t: VAR stateCbutton: condition = LAMBDA p: Cbutton(p)Lbutton: condition = LAMBDA p: Lbutton(p)Figure 4.7: Preamble to PVS Requirements Speci�cation for Interacting AutopilotModes



4.3. Interacting Transition Speci�cations 61Ctransition(s,t): bool =LET x: conds2 = (Cbutton, Lbutton),X = (LAMBDA (a,b:EC): PC(a,b)(x)(vars(s),vars(t)))IN TABLE climbmode(mode(s))|off| TABLE%---------------------------------%|X( atT, dc) | Carm(t) OR Con(t) |||ELSE | Coff(t) ||%---------------------------------%ENDTABLE |||armed| TABLE%---------------------------------%|X( atT, dc) | Coff(t) |||ELSE | Carm(t) OR Con(t) ||%---------------------------------%ENDTABLE |||on| TABLE%---------------------------------%|X( atT, dc) | Coff(t) |||ELSE | Carm(t) OR Con(t) ||%---------------------------------%ENDTABLE ||ENDTABLELtransition(s, t): bool =LET x: conds2 = (Cbutton, Lbutton),X = (LAMBDA (a,b:EC): PC(a,b)(x)(vars(s),vars(t)))IN TABLE levelmode(mode(s))|off| TABLE%---------------------------------%|X( dc, atT) | Larm(t) OR Lon(t) |||ELSE | Loff(t) ||%---------------------------------%ENDTABLE |||ELSE| TABLE%---------------------------------%|X( dc, atT) | Loff(t) |||ELSE | Larm(t) OR Lon(t) ||%---------------------------------%ENDTABLE ||ENDTABLEexclude(s): bool = (Con(s) IFF Lon(s)) AND NOT (Carm(s) AND Larm(s))req(s,t): bool =(Ctransition(s,t) OR Ltransition(s,t)) AND exclude(s) AND exclude(t)init(s): bool = Coff(s) AND Loff(s)Figure 4.8: Transition Relations of PVS Requirements Speci�cation for InteractingAutopilot Modes



62 Chapter 4. State Transition Systems and SCR Requirements Speci�cationsThe overall transition relation req is the disjunction of the climb and levelmode transitions, conjoined with the predicate that excludes undesired states. Thispredicate, exclude, states that the climb and level attributes must both be ontogether, and cannot both be armed. The initial state init is speci�ed as one whereboth climb and level are off.We can determine that this speci�cation preserves the safety properties we areinterested in by checking the following \challenge" theoremssafe1: THEOREM init(s) => AG(req, (LAMBDA t: Con(t) => Lon(t)))(s)safe2: THEOREM init(s) => AG(req, (LAMBDA t: NOT (Carm(t) & Larm(t))))(s)Of course, these are trivially ensured by the speci�cation and can be deduced byinspection, but they are also easily proved by the PVS (model-check) command.More interesting here are liveness properties: we may wonder whether we havenot excluded too many behaviors, so that the system can never get to states whereboth attributes are on, or one is armed and the other off. We can test theseexpectations by the following formulas (the CTL EF operator requires the propertyto be true at some point on some path).live1: THEOREM init(s) => EF(req, (LAMBDA t: Carm(t) & Loff(t)))(s)live2: THEOREM init(s) => EF(req, (LAMBDA t: Con(t) & Lon(t)))(s)These properties are easily be shown to be true by the PVS (model-check) com-mand.We consider that our speci�cation is a clear and direct speci�cation of require-ments for the autopilot. The Ctransition and Ltransition relations separatelyconstrain the possible successors to any state in terms of the climb and levelmodesand buttons, and the exclude predicate completes the speci�cation by disallowingcertain combinations of modes. A more traditional speci�cation would have madethe climb and level transition speci�cations interdependent in order to excludethe disallowed combinations of modes. We regard such a speci�cation more as adescription of an implementation than as a statement of requirements. In the fol-lowing section, we show how a deterministic implementation can be speci�ed andshown to have the same behavior as our requirements speci�cation.4.3.2 An Implementation Speci�cation, andVeri�cation of EquivalenceAn implementation of the requirements described in Figure 4.8 might have a muchmore monolithic and sequential character than suggested by the highly nondeter-ministic requirements speci�cation. One approach might involve two phases. In



4.3. Interacting Transition Speci�cations 63the �rst, button presses for climb and level are processed independently, but de-terministically (pressing the climb button in off mode sends it to armed mode;pressing it in armed or on mode sends it to off mode; the button for level workssimilarly). Then, in the second phase, the modes of the two attributes are broughtinto alignment: if the �rst phase has resulted in both attributes not being off, bothare turned on; if one is on but the other off, then on changes to armed. We canthink of button pushes being latched by some underlying operating system compo-nent; the state of these latches is examined in the �rst phase only. Consequently,the state of the buttons is held constant in the second phase. The two phases canbe speci�ed in PVS as shown in Figure 4.9. These transition relations are speci�edin IF-THEN-ELSE style, as be�ts their sequential interpretation. The overloadings inthe LET clauses simply allow the mode �eld accessor to be omitted in references tothe state variables s and t. The sequential composition of the two phases into theoverall implementation transition relation impl is speci�ed as ordinary relationalcomposition.We can check this \implementation" against the same reasonableness checks asthe requirements.safe1_i: THEOREM init(s) => AG(impl, (LAMBDA r: Con(r) => Lon(r)))(s)safe2_i: THEOREM init(s) =>AG(impl, (LAMBDA r: NOT (Carm(r) & Larm(r))))(s)live1_i: THEOREM init(s) => EF(impl, (LAMBDA r: Carm(r) & Loff(r)))(s)live2_i: THEOREM init(s) => EF(impl, (LAMBDA r: Con(r) & Lon(r)))(s)The PVS model checker quickly veri�es these.What we really want to know, however, is whether the behavior speci�ed bythe implementation relation impl satis�es the requirements speci�cation req. Therelations impl and req need not be equal or similar as relations: what matters iswhether they induce similar behaviors. A CTL formula that expresses the propertythat the behavior of a transition relation A is a superset of that of a transitionrelation B (i.e., A can do anything B can do) is the following.A, B: VAR transition_relationsuper(A, B)(s:state):bool =AG(B, (LAMBDA t: AX(B, (LAMBDA r: A(t,r)))(t)))(s)What this formula says is that it is invariantly the case, at all states t reachable byB from the state s, that any state reachable in one step from t by B, is also reachable



64 Chapter 4. State Transition Systems and SCR Requirements Speci�cations
P: VAR conditionPhase1(s, t): bool =LET atT = (LAMBDA P: atT(P)(vars(s),vars(t))),climbmode = (LAMBDA s: climbmode(mode(s))),levelmode = (LAMBDA s: levelmode(mode(s)))IN IF atT(Cbutton) THENIf Coff(s) THEN Carm(t) ELSE Coff(t) ENDIFELSE climbmode(s) = climbmode(t)ENDIFORIF atT(Lbutton) THENIf Loff(s) THEN Larm(t) ELSE Loff(t) ENDIFELSE levelmode(t) = levelmode(s)ENDIFPhase2(s, t): bool =LET climbmode = (LAMBDA s: climbmode(mode(s))),levelmode = (LAMBDA s: levelmode(mode(s)))IN IF NOT (Coff(s) OR Loff(s)) THEN Con(t) AND Lon(t)ELSIF Coff(s) AND Lon(s) THEN Coff(t) AND Larm(t)ELSIF Loff(s) AND Con(s) THEN Loff(t) AND Carm(t)ELSE climbmode(t) = climbmode(s)AND levelmode(t) = levelmode(s)ENDIFAND Cbutton(t) = Cbutton(s)AND Lbutton(s) = Lbutton(t)impl(s, t): bool = (EXISTS r: Phase1(s, r) AND Phase2(r, t))Figure 4.9: PVS Implementation Speci�cation for Autopilot



4.3. Interacting Transition Speci�cations 65in one step by A. We can then assert that the behavior of req is a superset of thatof impl, and vice versa (i.e., the behaviors induced by the two speci�cations are thesame), by the following formulas.req_impl: LEMMA init(s) => super(req, impl)(s)impl_req: LEMMA init(s) => super(impl, req)(s)The PVS model checker veri�es both of these.A subtle point in these speci�cations is the disjunction that appears in the de�ni-tion of req and in the de�nition of Phase1. These indicate interleaving concurrency.It is possible to replace both ORs by ANDs (indicating true concurrency) and still ver-ify all the results in this section. If only one is changed, the safety and liveness resultsremain true, but only one of the superset properties connecting req and impl willhold (the behavior of the one using true concurrency will be a strict superset ofthe other). The ability to represent di�erent models of concurrency is another ofthe bene�ts that follows from undertaking this development within a fully generalspeci�cation and veri�cation environment.Overall, this \autopilot" speci�cation demonstrates the 
exibility provided bya general-purpose system such as PVS: the resources of the system allow us toreproduce methodologies such as SCR when these are appropriate, but also allowus to depart from them when necessary.
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Chapter 5ConclusionWe have shown previously [37] how PVS can be used to discharge the well-de�nedness proof obligations that arise in Parnas's tabular speci�cation style [33].Those proof obligations were generated by hand. In this report, we have describedthe COND construct, recently added to PVS, that generates the proof obligationsautomatically, and the TABLE construct that provides a visually appealing renditionof tabular speci�cations.These new constructs required no change to the core of PVS; the COND constructrequired small extensions to the typechecker, but none to the prover, and TABLE issimply a syntactic variation on COND. In the future, we hope to make the imple-mentation of PVS more \open," so that similar customizations can be made veryeasily.We have also shown how standard notation for function application can beadapted to provide a tolerable representation for the AND/OR tables used inRSML [29], and then showed how this technique can be combined with the newTABLE construct to provide a treatment for the Decision Tables advocated bySherry [39].We then described how an independent enhancement to PVS|the incorpora-tion of a decision procedure for Park's �-calculus and its use to provide CTL modelchecking [35]|enables properties of �nite-state transition systems to be examinedautomatically. These two developments|tables and model checking|come togetherto provide support for the Naval Research Laboratory's SCR method for require-ments speci�cation [11].The generic support provided for tables and for model checking in PVS may becompared with the more specialized support provided in tools such as ORA's Table-Wise [23], NRL's SCR* [18,20], and Leveson and Heimdahl's consistency checker forRSML [17]. Dedicated, lightweight tools such as these are likely to be superior to67



68 Chapter 5. Conclusiona heavyweight, generic system such as PVS for their chosen purposes. Our goal inproviding these capabilities in PVS is not to compete with specialized tools but tocomplement them. The generic capabilities of PVS can be used to prototype someof the capabilities of specialized tools (this was done in the development of Table-Wise), and can also be used to supplement their capabilities when comprehensivetheorem proving and model checking power is needed. Heimdahl, for example, hasnoted that consistency analysis of the TCAS II requirements speci�cation in RSMLproduced many spurious error reports because only simple propositional reasoningwas available [16]. As well as being able to settle more demanding consistency andcompleteness checks, we have illustrated how the general theorem proving power ofPVS can be used to probe tabular speci�cations by attempting to prove \challenge"theorems. We also showed how the PVS model checker can be used to test proper-ties of the behaviors speci�ed by SCR mode transition tables, and even to establishinclusion or equivalence between the behaviors of di�erent speci�cations. All thesecapabilities are available within a common framework and can be used together.In addition to being of interest to tool developers, we hope that these examplesshowing how PVS can represent the speci�cation styles of some existing methodolo-gies will encourage PVS users to incorporate these styles in their own speci�cationswhere appropriate, and will also help users to develop support for other methodolo-gies within PVS.The methodologies we have examined here are primarily concerned with require-ments speci�cations for avionics applications. Hoover, Guaspari, and Humenn pro-vide a general examination of the use of formal methods in these applications [24].Requirements speci�cations are particularly challenging to formalize: because thereis no \higher" speci�cation against which to verify them, it is particularly importantthat they should be perspicuous and well suited to human review. Tabular forms ofexpression seem to serve these needs well. But because veri�cation against a higherspeci�cation is impossible, we believe that it is also important that requirementsspeci�cations should be subjected to a great deal of mechanized analysis. Mecha-nization is needed for reliability and e�ciency and, since requirements speci�cationsevolve continuously, repeatability. Tabular speci�cations also serve these needs well:their completeness and consistency checks catch many errors very quickly. However,deterministic speci�cations are not always the most appropriate and it is importantnot to become overly committed to a single style of speci�cation. In our deliberatelynondeterministic \autopilot" example, we were able to retain the tabular style ofan SCR speci�cation, while consciously eschewing its normal consistency checks.We could do his because we had direct access to the representation and model ofcomputation employed. We were able to resolve the nondeterminism using otherresources of the PVS speci�cation language (conjunction and disjunction of transi-tion relations) and to explore the speci�cation using model checking. This ability



69to depart from the \standard" SCR approach would be absent from tools dedicatedto that standard approach.In future work, we plan to examine use of nondeterministic state transitionrelations for top-level requirements speci�cation of interacting systems (as in the\autopilot" example) in more detail. We are also considering a sublanguage toPVS based on state transition relations that would serve as a convenient interme-diate form for a number of analyses (e.g., simulation, explicit state enumeration,model checking, synthesis) in a variety of application domains (e.g., requirements,hardware, protocols). We also plan to explore the rather di�erent approach to re-quirements speci�cations used in synchronous data
ow languages, exempli�ed byLustre [13].
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