
A Less Elementary Tutorial for the PVSSpeci�cation and Veri�cation System1Technical Report CSL-95-10J. M. Rushby and D. W. J. Stringer-Calvert2Computer Science LaboratorySRI InternationalMenlo Park CA 94025 USAfRushby,Dave SCg@csl.sri.comAugust 22, 1996
1This work was partially sponsored by NASA Langley under Contract NAS1-20334.2Main a�liation: Department of Computer Science, University of York, U.K.

AbstractPVS is a veri�cation system that provides a speci�cation language integratedwith support tools and a theorem-prover. It has been used at SRI and elsewhereto perform veri�cations of several signi�cant algorithms (primarily for fault-tolerance) and large hardware designs.This tutorial introduces some of the more powerful strategies provided bythe PVS theorem prover. It consists of two parts: the �rst extends a previoustutorial by Ricky Butler[But93], demonstrating how his proofs may be performedin a more automated manner; the second uses the \unwinding theorem" from thenoninterference formulation of security to introduce theorem-proving strategiesfor induction that cannot be demonstrated in the framework of Ricky Butler'sexample.Using the more powerful strategies of PVS to automate easy proofs (and theeasy parts of hard proofs) frees users to concentrate on truly di�cult proofs. Au-tomation also makes proofs more robust to changes in the speci�cation, therebyfacilitating active design exploration and adaptation to changed requirements.This tutorial also shows how speci�cations and proofs may be better pre-sented using the LaTEX and PostScript generating facilities of PVS. The PVS �lesfor these examples are available at http://www.csl.sri.com/pvs/examples/csl-95-10.html.

Contents1 Introduction 11.1 Why Seek Highly Automated Proofs? : 11.2 PVS : 21.3 Obtaining PVS : 4Acknowledgments : 42 Seat Reservation Problem 52.1 Requirements : 52.2 The PVS speci�cation : 62.3 Theory Dependencies : 92.4 Adjustments to the Speci�cations : 102.4.1 Nonempty Types and Type Correctness Conditions : : : : : : : : : : 112.4.2 Choose vs. Epsilon : 122.4.3 De�nitional version of Next seat : 152.5 The Proofs : 222.5.1 PVS Proof Commands : 222.5.2 Cancel assn inv : 242.5.3 MAe : 322.5.4 MAu : 352.5.5 Make assn inv : 362.5.6 initial state inv : 362.5.7 Cancel inv one per seat : 372.5.8 Make inv one per seat : 372.5.9 Initial one per seat : 382.5.10 Make Cancel : 382.5.11 Cancel putative : 412.5.12 Make putative : 412.5.13 Lookup putative : 422.6 Summary : 49i

ii Contents3 Noninterference and the Unwinding Theorem 533.1 Machines : 533.2 Security : 583.3 Information Flow : 633.4 Unwinding : 653.4.1 Implicit Quanti�cation : 753.4.2 LaTEX-printed Speci�cation : 773.5 Summary : 79Bibliography 83A Ascii Listings of the Speci�cations 87A.1 Ascii Listing of the Airline Reservation Speci�cations : : : : : : : : : : : : : 87A.1.1 Theory basic defs : 87A.1.2 Theory ops : 88A.2 Ascii Listing of the Noninterference Speci�cations : : : : : : : : : : : : : : : 91A.2.1 Theory K Conversion : 91A.2.2 Theory noninterference : 91B A More Advanced Speci�cation for the Seat Reservation Problem 94

List of Figures2.1 Expanded Proof for Cancel assn inv : 302.2 Proof Tree for Theorem Cancel assn inv : : : : : : : : : : : : : : : : : : : 31B.1 Partial Injections De�ned as a Subtype of Relations : : : : : : : : : : : : : 98

iii

iv

Chapter 1IntroductionThis tutorial invites you to explore some of the more powerful theorem proving capabilitiesof the PVS veri�cation system, moving from long, mundane proof scripts full of trivialdetails, to more automatic theorem proving where the user directs only the key steps. Itis suggested that you follow through the tutorial with PVS running on your workstation.You can obtain the speci�cations and proofs developed here over the World Wide Web fromhttp://www.csl.sri.com/csl-95-10.html or by ftp from ftp://ftp.csl.sri.com/pub/pvs/examples/elementary-tutorial.1.1 Why Seek Highly Automated Proofs?The motivations for performing proofs in an automated manner are: �rst, to liberate humanusers from the drudgery of low-level details, so that they can best direct their energies tothe truly di�cult and signi�cant steps in a proof; second, to make it feasible to provebig theorems; and, third, to make the investment in a proof an incentive|rather than adisincentive|to the exploration of alternative speci�cations and designs.The �rst of these motivations should need little justi�cation: exposure to the tedium oflow-level \proof assistants" has convinced many that mechanized proof is infeasible for realexamples. This is unfortunate, because many formal speci�cations contain signi�cant errorswhen �rst written, and automated proof checking can be one of the fastest ways to detecterrors early in the lifecycle. Note, however, that the theorem prover needs to be designedto facilitate this: most highly automated approaches to proof are intended to prove truetheorems|not to help detect errors in untrue ones|so that when an automated prover failsto complete a proof, it can be di�cult to determine whether the cause is a false theorem oran inadequate proof method. For this reason, the basic PVS proof steps are powerful, butdeterministic (being based on decision procedures), and are used under interactive control.When one of the more powerful heuristic proof strategies fails, the user can explore thecause of failure by interactively invoking the more basic steps.The second motivation concerns the fact that formal veri�cation is often applied to theo-rems that are large, but shallow|such as those that assert the correctness of the microcode1

2 Chapter 1. Introductionor the pipeline control circuitry of a microprocessor. Formal veri�cation can accomplishwhat massive simulation and testing cannot: examination of the behaviors of these de-signs under all circumstances. But to be practical, it must be possible to actually carryout the formal veri�cations for industrial-scale designs. This is simply infeasible withoutmassively automated theorem proving. Advances over the last few years have broughttheorem proving to the point where it is now feasible to tackle such industrial-scale prob-lems [SM96, RSS96, PD96].The third motivation is prompted by the observation that formal speci�cations areseldom static: they change as
aws are corrected, as new requirements emerge, and asimproved approaches and designs are discovered. Mechanization of formal methods shouldsupport such changes and should encourage active design exploration in the same way thatcomputational
uid dynamics supports the re�nement of aerofoil designs. To achieve this, itis important that previously developed proofs should be robust in the face of small changesto the speci�cation|since otherwise investment in an existing proof will discourage changeand experimentation. For proofs to be robust, they must be recorded at a fairly highlevel|giving just the main steps of the argument, and leaving automation to �ll in thedetails|since highly detailed, line-by-line arguments are unlikely to remain correct in theface of changes. In the case of PVS proofs, the goal should generally be to use the highestlevel, most automatic proof strategies possible, and to use explicit proof steps (e.g., thosenaming a speci�c sequent formula) as sparingly as possible. Such proof descriptions guidethe prover along the main steps of the argument (which is likely to be robust), and allowautomation to calculate the details afresh each time.This tutorial introduces some of the higher-level PVS proof strategies and explains, byexample, how to use them e�ectively. The remainder of this chapter provides a brief intro-duction to the PVS veri�cation system. Chapter two presents an extension to a tutorialby Ricky Butler [But93], describing how more automated proofs can be developed for hisexamples. The third and �nal chapter uses a veri�cation of Goguen and Meseguer's unwind-ing theorem for noninterference security policies [GM84] to illustrate some PVS inductionstrategies, and also demonstrates how PVS can be used to formalize a pencil-and-paperdevelopment.1.2 PVSPVS is the most recent in a line of speci�cation languages, theorem provers, and ver-i�cation systems developed at SRI, dating back over 20 years. That line includesthe Jovial Veri�cation System [EGMS79], the Hierarchical Development Methodology(HDM) [RLS79, SLR78], STP [SSMS82], and Ehdm [MSR85, RvHO91]. PVS stands for\Prototype Veri�cation System," because it was built partly as a lightweight prototype toexplore \next generation" technology for Ehdm, though it has now outgrown that role.PVS consists of a speci�cation language, a number of prede�ned theories, a theoremprover, various utilities, documentation, and several examples that illustrate di�erent meth-ods of using the system in several application areas. PVS exploits the synergy between a

1.2. PVS 3highly expressive speci�cation language and powerful automated deduction; for example,some elements of the speci�cation language are made possible because the typechecker canuse theorem proving. This distinguishing feature of PVS has allowed perspicuous and e�-cient treatment of many examples that are considered di�cult for other veri�cation systems.The speci�cation language of PVS is based on classical, typed higher-order logic. Thebase types include uninterpreted types that may be introduced by the user, and built-intypes such as the booleans, integers, reals, and the ordinals up to �0; the type-constructorsinclude functions, sets, tuples, records, enumerations, and recursively-de�ned abstract datatypes such as lists and trees. Predicate subtypes and dependent types can be used to intro-duce constraints, such as the type of prime numbers. These constrained types may incurproof obligations during typechecking, but greatly increase the expressiveness and natural-ness of speci�cations. In practice, most of the obligations are discharged automatically bythe theorem prover. PVS speci�cations are organized into parameterized theories that maycontain assumptions, de�nitions, axioms, and theorems. De�nitions are conservative (i.e.,cannot introduce inconsistencies); to ensure this, recursive function de�nitions generateproof obligations to guarantee termination. PVS expressions provide the usual arithmeticand logical operators, function application, lambda abstraction, and quanti�ers, with a tra-ditional syntax. Names may be freely overloaded, including those of the built-in operatorssuch as AND and +. A case expression provides pattern-matching over the constructors ofabstract data types, and tables allow piecewise-continuous functions to be speci�ed in avisually appealing manner.The PVS theorem prover provides a collection of powerful primitive inference proceduresthat are applied interactively under user guidance within a sequent calculus framework.The primitive inferences include propositional and quanti�er rules, induction, rewriting,and decision procedures for linear arithmetic over both integers and reals and for Park's �-calculus. The implementations of these primitive inferences are optimized for large proofs:for example, propositional simpli�cation and �-calculus use BDDs, and auto-rewrites arecached for e�ciency. User-de�ned procedures can combine these primitive inferences to yieldhigher-level proof strategies, such as those for induction and CTL model checking. Proofsyield scripts that can be edited, attached to additional formulas, and rerun. This allowsmany similar theorems to be proved e�ciently, permits proofs to be adjusted economicallyto follow changes in requirements or design, and encourages the development of readableproofs.PVS is fully documented in separate manuals for the language [OSR93a],prover [SOR93], system [OSR93b], and semantics [SO96]. Tutorials provide a general in-troduction [But93, COR+95], plus more specialized treatments for hardware [ORSS94],abstract data types [Sha93a], and tabular and requirements speci�cations [ORS95].PVS has been installed at hundreds of sites in North America, Europe, and Asia;recent work has developed PVS methodologies for highly automated hardware veri�-cation [CRSS94, RSS96, SM96] (including integration with model checking [RSS95]),and for concurrent and real-time systems [Sha93b, Hoo94, AH96] (including a transpar-ent embedding of the duration calculus [SS94]). Applications have included microcode

4 Chapter 1. Introductionveri�cation for a commercial microprocessor [SM95], veri�cation of fault-tolerant algo-rithms [LR93, LR94] and a cache-coherence protocol [PD96], and formalization of SpaceShuttle requirements [Di 96, CD96], IEEE standards for
oating point [CM95] and multi-media collaborations [RRV95]. A comprehensive bibliography of applications performed inPVS is available [Rus].1.3 Obtaining PVSPVS is implemented in Common Lisp and runs on several modern Unix workstations.Versions in Allegro Lisp for Sun and IBM workstations are available by anonymous ftp.All PVS installations must be licensed by SRI International, but there is no charge. (Wedo charge for tapes and for nonstandard versions.)The speci�cations and proofs presented here require PVS 2, released June 1, 1995.To obtain a copy of PVS by anonymous ftp, retrieve the �le README from directory/pub/pvs/pvs2 on ftp.csl.sri.com [192.12.33.94] and follow the instructions.1 Or viathe World Wide Web, open the URL http://www.csl.sri.com/pvs.html (this also givesaccess to the mirror sites). For further information on PVS, please send a message topvs-request@csl.sri.com.AcknowledgmentsWe are grateful to Ricky Butler, Drew Dean, Piotr Rudnicki, and N. Shankar for readingearlier versions of this report and for providing comments that substantially changed andimproved its content and presentation.
1There are mirror sites at the Universities of York, England (ftp://ftp.cs.york.ac.uk/pub/pvs),Paris VI, France (ftp://ftp.ibp.fr/pub/pvs), Ulm, Germany (ftp://ftp.informatik.uni-ulm.de/pub/KI/pvs), and Tokyo, Japan (ftp://nicosia.is.s.u-tokyo.ac.jp/pub/misc/pvs).

Chapter 2Seat Reservation ProblemThis chapter develops proofs for an example due to Ricky Butler [But93]. Butler's tutorialalso develops proofs for the same theorems, but in a low level, step-by-step manner. Here, weshow how the more powerful rules and strategies of PVS may be used to produce higher level,more automated proofs. As explained in the introduction, the main bene�t of automatedproofs is that they tend to be robust in the face of reasonably small changes to a speci�cation.They are also closer to the level at which you might wish to describe a proof to a humancolleague, and thereby facilitate the extraction of a \journal style" proof description. Also,as you gain experience, you will �nd that it is generally faster and less distracting to letthe automation deal with easy theorems (and the easy parts of hard theorems), leaving youfree to concentrate on the hard theorems and crucial steps.2.1 RequirementsRicky Butler's report considers the formal speci�cation and veri�cation of an automatedairline seat assignment system. This section brie
y outlines the problem covered|for moredetails refer to Ricky Butler's original report.1 The requirements for the system are givenas:1. The system shall make seat assignments for passengers on scheduled airline
ights.2. The system shall maintain a database of seat assignments.3. The system shall support a
eet having di�erent aircraft types.4. Passengers shall be allowed to specify preferences for seat type (e.g., window or aisle).5. The system shall provide the following operations or transactions:� Make a new seat assignment� Cancel an existing seat assignment1This is available electronically from http://atb-www.larc.nasa.gov/ftp/larc/PVS-tutorial; get the�les named \revised-pvs-tutorial.*" and \revised-specs.dmp."5

6 Chapter 2. Seat Reservation Problem2.2 The PVS speci�cationRicky Butler speci�es the basic properties of aircraft and reservations in the PVS theorybasic defs. These include the seating grid of the aircraft (row/position), identi�ers forthe
ight, aircraft type, position preference and passenger ID. Uninterpreted functions areused to specify existence of a particular seat on a particular type of aircraft (not all will holdnrows � nposits passengers), whether a particular seat meets a passenger preference, anda mapping from
ight identi�er to aircraft type.The PVS theory ops then uses these de�nitions to specify the required operations on thedatabase, i.e., to make a reservation/seat assignment and to cancel an assignment. Putativetheorems are speci�ed to validate the speci�cation of these operations, which are also shownto preserve certain invariants.The PVS speci�cation used here di�ers in only minor ways from that given in RickyButler's report. These di�erences are explained below. To format the speci�cation aspresented here, we used the PVS command M-x latex-pvs-file to generate prettyprintedLaTEX output (you will need to use the style option pvs.sty to process the output of thiscommand). Note that comments are dropped in LaTEX-printed speci�cations; this is a bug.The raw ascii representations of the speci�cation are given in Appendix A.1.basic defs : theorybeginnrows : posnatnposits : posnatrow : type = fn : posnat j 1 � n ^ n � nrowsg containing 1position : type = fn : posnat j 1 � n ^ n � npositsg containing 1
ight : typeplane : nonempty typepreference : typepassenger : nonempty typeseat assignment : type = [# seat : [row; position]; pass : passenger #]
ight assignments : type = set[seat assignment]
t db : type = [
ight !
ight assignments]initial state((
t :
ight)) :
ight assignments = ;[seat assignment]seat exists : pred[[plane; [row; position]]]meets pref : pred[[plane; [row; position]; preference]]aircraft : [
ight ! plane]end basic defs

2.2. The PVS speci�cation 7ops : theorybeginimporting basic defs
t : var
ightpas : var passengerdb : var
t dba; b : var seat assignmentpref : var preferenceseat : var [row; position]Cancel assn(
t; pas; db) :
t db =db with [(
t) := fa j a 2 db(
t) ^ pass(a) 6= pasg]pref �lled(db;
t; pref) : bool =8 seat : meets pref(aircraft(
t); seat; pref) � (9 a : a 2 db(
t) ^ seat(a) = seat)Next seat : [
t db;
ight; preference ! [row; position]]Next seat ax : axiom: pref �lled(db;
t; pref) � seat exists(aircraft(
t); Next seat(db;
t; pref))Next seat ax 2 : axiom:pref �lled(db;
t; pref) � (8 a : a 2 db(
t) � seat(a) 6= Next seat(db;
t; pref))Next seat ax 3 : axiom: pref �lled(db;
t; pref) � meets pref(aircraft(
t); Next seat(db;
t; pref); pref)pass on
ight(pas;
t; db) : bool = 9 a : pass(a) = pas ^ a 2 db(
t)Make assn(
t; pas; pref; db) :
t db =if pref �lled(db;
t; pref) _ pass on
ight(pas;
t; db) then dbelse let a = (# seat := Next seat(db;
t; pref); pass := pas #)in db with [(
t) := add(a; db(
t))]endifLookup(
t; pas; db) : [row; position] = seat("(fa j a 2 db(
t) ^ pass(a) = pasg))existence(db) : bool = 8 a;
t : a 2 db(
t) � seat exists(aircraft(
t); seat(a))uniqueness(db) : bool =8 a; b;
t : a 2 db(
t) ^ b 2 db(
t) ^ pass(a) = pass(b) � a = bone per seat(db) : bool =8 a; b;
t : a 2 db(
t) ^ b 2 db(
t) ^ seat(a) = seat(b) � a = bdb invariant(db) : bool = existence(db) ^ uniqueness(db)

8 Chapter 2. Seat Reservation ProblemCancel assn inv : theoremdb invariant(db) � db invariant(Cancel assn(
t; pas; db))MAe : theorem existence(db) � existence(Make assn(
t; pas; pref; db))MAu : theorem uniqueness(db) � uniqueness(Make assn(
t; pas; pref; db))Make assn inv : theoremdb invariant(db) � db invariant(Make assn(
t; pas; pref; db))initial state inv : theorem db invariant(initial state)Cancel inv one per seat : theoremone per seat(db) � one per seat(Cancel assn(
t; pas; db))Make inv one per seat : theoremone per seat(db) � one per seat(Make assn(
t; pas; pref; db))initial one per seat : theorem one per seat(initial state)Make Cancel : theorem: pass on
ight(pas;
t; db)� Cancel assn(
t; pas; Make assn(
t; pas; pref; db)) = dbCancel putative : theorem:(9 (a : seat assignment) :a 2 Cancel assn(
t; pas; db)(
t) ^ pass(a) = pas)Make putative : theorem: pref �lled(db;
t; pref)� (9 (x : seat assignment) : x 2 Make assn(
t; pas; pref; db)(
t) ^ pass(x) = pas)Lookup putative : theorem: (pref �lled(db;
t; pref) _ pass on
ight(pas;
t; db))� meets pref(aircraft(
t); Lookup(
t; pas; Make assn(
t; pas; pref; db)); pref)end opsIncidentally, the exact form of a LaTEX-printed PVS speci�cation is partly determinedby the value of PVS's LaTEX-linelength variable, which in
uences where the prettyprinterchooses to break lines. This variable can be set by M-x latex-set-linelength. Often,some declarations look best set with one value of this parameter, and others with another.In this case, it is often simplest to generate two copies of the LaTEX-printed speci�cationusing di�erent values of the parameter and then select individual declarations from one �leor the other for the �nal version. This was done here, using linelengths of 100 and 120.Editing the LaTEX text generated by PVS is also possible, but requires a good understandingof the macro package pvs.sty.

2.3. Theory Dependencies 92.3 Theory DependenciesRicky Butler structured his speci�cation into two theories: basic defs and ops. In morecomplicated speci�cations it is easy to lose track of the dependencies between theories,and PVS can help (if it is running under X-windows on a machine with Tcl/Tk avail-able) by representing these graphically. On Ricky Butler's example, the command M-xx-theory-hierarchy produces the following display.
ops

basic_defsA much more complicated example might produce something like the following.
bv_top

bv

bit

bv_bitwise

bv_nat

exp2

bv_concat

bv_fract

bv_extractors

bv_int bv_concat_nat

bv_concat_lems bv_sum

sums

bv_shift

bv_rotate bv_manipulations bv_extend

bv_arithmetic

bv_arith_shift

bv_arith_nat

mod

floor_div_props

floor_ceil

integer_bounds

div

bv_bitwise_lems bv_AAMP5 bv_rules

exp2_table mod_lems

10 Chapter 2. Seat Reservation ProblemThe theory names in these displays are mouse sensitive: clicking left-mouse on a theoryname causes PVS to jump to the corresponding theory in its Emacs bu�er. Holding downthe control key and left-mouse simultaneously allows you to rearrange the layout of thegraphical display, while clicking left-mouse on the Gen PS button generates a postscript �lethat can be included in a document such as this.2.4 Adjustments to the Speci�cationsThe di�erences between our speci�cation and Ricky Butler's are �vefold:� We give the declarations in a di�erent order in ops.pvs, and tend to use globalvariable declarations, rather than declarations local to a given declaration. Thesedi�erences are simply stylistic and due to the fact that Ricky Butler rearranged hisspeci�cation in updating it to PVS 2, whereas we independently updated his originalPVS 1 speci�cation.� We de�ne seat exists and meets pref in basic defs.pvs explicitly as predicates(using the PVS identi�er pred), rather than as functions with range type bool. Theseare semantically equivalent, but we consider it closer to their intended interpretationto declare seat exists and meets pref explicitly as predicates.� We use NONEMPTY TYPE and CONTAINING clauses in a few places in order to eliminateTCCs or to automate their proofs. This is the most signi�cant di�erence and isexplained in the section that follows.� At the end of his Section 3.5, Ricky Butler challenges the \ambitious reader" to addthe following de�nition to the speci�cation.Lookup(flt: flight, pas: passenger, db: flt_db): [row,position] =seat(choose(fa | member(a,db(flt)) AND pass(a) = pasg))Our speci�cation uses epsilon in place of choose. The di�erences between these twoapproaches are discussed later in Section 2.4.1.� We add NOT pref filled(db, flt, pref) as an antecedent to the axiomNext seat ax 2 that is introduced by Ricky Butler at the end of his Section 3.4,thereby producing the following modi�ed axiom.Next_seat_ax_2: AXIOMNOT pref_filled(db, flt, pref) IMPLIES(FORALL a: member(a,db(flt)) IMPLIESseat(a) /= Next_seat(db,flt,pref))

2.4. Adjustments to the Speci�cations 11Without the antecedent, this axiom is false in the case of a full
ight, and renders thewhole speci�cation inconsistent. This
aw was pointed out by Piotr Rudnicki of theUniversity of Alberta2 and illustrates the perennial danger of axiomatic speci�cations:it is all too easy to write inconsistent axioms. PVS speci�cations that do not useaxioms (except those from the prelude) are guaranteed to be consistent (provided allthe TCCs have been proved), but it is not always appropriate to restrict speci�cationsto this de�nitional fragment of PVS. Here, for example, the goal is to develop andto validate a \requirements" speci�cation in which we postulate only the propertiesrequired of the Next seat function; we do not wish to prescribe an implementation. Ade�nitional speci�cation of Next seat would necessarily suggest an implementation.When an axiomatic style of speci�cation seems appropriate, the best approach isindeed to present the speci�cation in this style, but also to supply a de�nitional(and therefore consistent) speci�cation that is proven to satisfy the axioms. This isdescribed in Section 2.4.3.2.4.1 Nonempty Types and Type Correctness ConditionsPVS allows empty types, provided you do not attempt to declare (or assert the existenceof) any constants of such types, since this would be unsound. By default, PVS makes noassumptions about uninterpreted types (such as flight or plane), other than that di�erenttypes are disjoint; in particular, the set that interprets an uninterpreted PVS type may havezero, �nite, countable, or uncountable cardinality. When you declare a constant of a type,however, PVS needs to be sure that the type is nonempty. If both the type and constantare interpreted (e.g., if we added x: row = 1 to basic defs) the typechecker may need togenerate a TCC to check that the constant satis�es the de�nition for the type (i.e., 1 <=1 AND 1 <= nrows). If the type is interpreted but the constant is uninterpreted (e.g., ifwe simply had added x: row to the speci�cation), PVS may generate a TCC requiring youto show that the type is nonempty (i.e., EXISTS (y:row): TRUE). PVS is usually unableto prove such TCCs on its own (because they require exhibition of a member of the typeconcerned) unless you give it a hint by adding a CONTAINING clause to the type declarationconcerned. Finally, if both the type and constant are uninterpreted, PVS requires you toexplicitly declare the type to be nonempty using the NONEMPTY TYPE or TYPE+ keywordsinstead of simply TYPE (otherwise you will get an unprovable TCC).3With the present speci�cation, in the absence of NONEMPTY TYPE and CONTAINING key-words, PVS generates several TCCs for basic defs, including the following one.% Existence TCC generated (line 31) for aircraft: [flight -> plane]aircraft_TCC1: OBLIGATION (EXISTS (x: [flight -> plane]): TRUE);2Piotr Rudnicki has developed a treatment of this example in the Mizar system. The example, and infor-mation about Mizar, are available from http://web.cs.ualberta.ca/~piotr/Mizar/FLT_DB/. Appendix Bto the present report develops a PVS speci�cation in the spirit of Rudnicki's Mizar treatment.3The remaining combination, an uninterpreted type and interpreted constant (e.g., foo: TYPE FROM natand bar: foo = 99), is not meaningful and always generates unprovable TCCs.

12 Chapter 2. Seat Reservation ProblemThis is due to the following declaration.aircraft: [flight -> plane]Here we are asserting the existence of a function of type [flight -> plane]; now, afunction type is nonempty if its range type is nonempty (or if both its domain and rangeare empty, but that is seldom an interesting case unless dependent types are involved), sowe need to ensure that the uninterpreted type plane is declared as a NONEMPTY TYPE.As Ricky Butler noted, typechecking ops.pvs also generates a TCC from the declarationof the function Next seat requiring us to show that its function type is nonempty.% Existence TCC generated (line 22) for% Next_seat: [flt_db, flight, preference -> [row, position]]Next_seat_TCC1: OBLIGATION(EXISTS (x: [[flt_db, flight, preference] -> [row, position]]): TRUE);Ricky Butler discharged this TCC by constructing a suitable function, but we think it isneater to establish that the range type [row, position] is nonempty, thereby allowingPVS to suppress the TCC. To do this, the types row and position must be shown tobe nonempty and, since these are interpreted, we can help PVS to do this by addingCONTAINING 1 clauses to their declarations in basic defs.pvs. This will cause PVS togenerate TCCs to prove that 1 is a member of both these types, and the standard proofstrategy invoked by the M-x tcp command is able to discharge those proof obligationsautomatically.However, we are not done yet, because we �nd that typechecking ops.pvs generates yetanother TCC. This particular TCC does not occur in Ricky Butler's description becausethe de�nition of Lookup is part of one of the examples he left to the reader.% Existence TCC generated (line 47) for epsilonLookup_TCC1: OBLIGATION (EXISTS (x: seat_assignment): TRUE);The function epsilon in the de�nition of Lookup returns a seat assignment, and this typeis therefore required to be nonempty. Inspecting the type seat assignment, we see thatit is a record consisting of a [row, position] pair (which we have just ensured is knownto be nonempty), and a passenger. The latter is an uninterpreted type, so we modify itsdeclaration to be NONEMPTY TYPE and ops.pvs no longer generates TCCs.2.4.2 Choose vs. EpsilonThe function Lookup(flt, pas, db), which Ricky Butler (at the end of his Section 3.5)challenges the \ambitious reader" to add to the speci�cation, is intended to return the [row,position] pair for the seat of passenger pas on
ight flt, as recorded in the database db.

2.4. Adjustments to the Speci�cations 13Now db(flt) is the set of seat assignments for
ight flt, so the seat of passenger pas isseat(a), where a is the seat assignment such that member(a, db(flt)) and pass(a)=pas.We know that if the passenger is on the
ight, there will be exactly one seat assignment awith this property, but this is not self-evident from the speci�cation (it has to be establishedby proving the several \invariant" theorems). However, we can identify the set of relevantseat assignments as 1f a | member(a, db(flt)) AND pass(a) = pas gand can then choose one member of that set. (We \know" that the set will be a singleton,and the choice will therefore be deterministic.) A choice function choose is de�ned in thePVS prelude, so it looks as though we can write the speci�cation of Lookup as follows. 2Lookup(flt, pas, db): [row,position] =seat(choose(f a | member(a, db(flt)) AND pass(a) = pas g))The problem with this speci�cation, which is the one proposed by Ricky Butler, is that itdoes not deal with the case where the passenger is not booked on the
ight. The set in box1 will be empty in this case, and it is not obvious how to apply a choice function to anempty set. In fact, the choice function choose may be applied only when the set concernedis nonempty, and a TCC is generated to ensure this. Thus, Ricky Butler's speci�cationgenerates the following unprovable TCC from the de�nition 2.4% Subtype TCC generated (line 51) for fa | member(a, db(flt)) AND pass(a) = pasgLookup_TCC1: OBLIGATION(FORALL (db, flt, pas):nonempty?[seat_assignment](fa | member[seat_assignment](a, db(flt))AND pass(a) = pasg));There are three ways to deal with this di�culty. One is to cause Lookup to return somespeci�c, �ctitious seat, such as (0, 0) when the passenger is not booked on the
ight; thesecond is to cause it to return an arbitrary seat in this circumstance; and the third is toconstrain Lookup so that it can be applied only when the passenger is known to be on the
ight. The �rst of these has nothing to recommend it, the second and third are describedbelow.The PVS prelude provides two \choice" functions: choose and epsilon. Of these,epsilon is more basic, and less restrictive.5 If p is a predicate (or, equivalently, a set) onsome type T, then epsilon(p) is a value of type T; furthermore, if p is satis�able (nonempty),then epsilon(p) satis�es (is a member of) it. This is speci�ed in the de�ning axiom forepsilon, given in the PVS prelude as follows.4Drew Dean of Princeton University �rst reported this.5The name comes from Hilbert's use of the symbol " (epsilon) for this operator [Lei69].

14 Chapter 2. Seat Reservation Problemepsilon_ax: AXIOM (EXISTS x: p(x)) => p(epsilon(p))Notice that if p is unsatis�able (or, interpreted as a set, is empty), then epsilon(p) is somearbitrary value of type T.When we know that p is satis�able, it can be preferable to use choose instead ofepsilon; choose is de�ned as follows.choose(p: (nonempty?)): (p) = epsilon(p)Notice that the return type speci�ed is (p); this is shorthand for the predicate subtype fx:T|p(x)g|so the fact that choose(p) satis�es p is embedded in its type, where the theoremprover can make automatic use of it, rather than requiring invocation of epsilon ax. Theprice for this convenience is the need to establish during typechecking that the predicate pis indeed satis�able (or, interpreted as a set, nonempty).Since we do not know that the set given by speci�cation 1 is nonempty, we cannot usechoose and must revert to epsilon as follows.Lookup(flt, pas, db) : [row, position] =seat(epsilon(fa | member(a, db(flt)) AND pass(a) = pasg))With this de�nition, which generates no TCCs, Lookup returns an arbitrary seat when thepassenger has no seat assignment; this might not be what is expected, but it is su�cientto prove the challenge theorem Lookup putative, in which the relevant seat assignment issure to exist (because it is explicitly constructed by Make assn).Lookup_putative: THEOREMNOT (pref_filled(db, flt, pref) OR pass_on_flight(pas, flt, db)) IMPLIESmeets_pref(aircraft(flt),Lookup(flt, pas, Make_assn(flt,pas,pref,db)),pref)This de�nition is the one used in this report. It may be considered unsatisfactory,however, to return an arbitrary seat when the passenger is not on the
ight. An alternativeapproach is to disallow application of Lookup in this circumstance. This can be accomplishedby modifying the argument types in the speci�cation of Lookup as follows. 3Lookup(flt,pas,(db: fd : flt_db | pass_on_flight(pas, flt, d)g)): [row, position] =seat(choose(fa | member(a, db(flt)) AND pass(a) = pasg))The function Lookup is said to be dependently typed in this version, since the type of theargument db depends on the values of the earlier arguments pas and flt: speci�cally, itis restricted to the subtype of flt db consisting of those databases in which passenger pasis on
ight flt. This de�nition generates the following TCC to establish that choose isapplied to a nonempty argument.

2.4. Adjustments to the Speci�cations 15% Subtype TCC generated (line 54) for fa | member(a, db(flt)) AND pass(a) = pasgLookup_TCC1: OBLIGATION(FORALL (flt, pas, db: fd: flt_db | pass_on_flight(pas, flt, d)g):nonempty?[seat_assignment](fa | member[seat_assignment](a, db(flt))AND pass(a) = pasg));The dependent typing ensures that this TCC is true|and, in fact, it is proved automaticallyby the default TCC proof strategy. A consequence of the dependent typing in this versionof Lookup is that TCCs are generated to ensure that the typing is respected whenever it isapplied. Thus, the following TCC is generated from the theorem Lookup putative.% Subtype TCC generated (line 147) for Make_assn(flt, pas, pref, db)Lookup_putative_TCC1: OBLIGATION(FORALL (db: flt_db, flt: flight, pas: passenger, pref: preference):NOT((pref_filled(db, flt, pref) OR pass_on_flight(pas, flt, db)))IMPLIES pass_on_flight(pas, flt, Make_assn(flt, pas, pref, db)));This TCC is also discharged by the default TCC proof strategy.2.4.3 De�nitional version of Next seatWe noted earlier that to show that the axiomatic speci�cation of Next seat is consistent, wecan provide a de�nitional version of the function and show that it satis�es all of the axiomsasserted of the uninterpreted function. We could develop a truly constructive de�nitionfor Next seat, but since our purpose here is merely to demonstrate consistency, we use ade�nition based on the epsilon operator. This is a convenient approach because we havethree properties we wish the returned seat to have and do not care which seat the functionreturns when none satisfy these conditions.We use here a syntactic variation of epsilon|epsilon!. The expression epsilon!(x : T) : p(x) is equivalent to, and we suggest more readable than, the standard formsepsilon(fx : T | p(x)g) and epsilon(lambda (x:T): p(x)). All functions that takea predicate as their argument can use this variant form, which transforms their syntax tothat of variable-binding constructions such as quanti�er and � expressions.Next seat defn(db,flt,pref) : [row, position] =epsilon! (seat : [row,position]) : seat exists(aircraft(flt),seat)AND (FORALL a : member(a,db(flt)) IMPLIES seat(a) /= seat)AND meets pref(aircraft(flt),seat,pref)We now reformulate our three axioms about Next seat as theorems aboutNext seat defn.66This is clumsy and rather tedious; a forthcoming version of PVS will provide theory interpretations tosimplify and automate this process.

16 Chapter 2. Seat Reservation ProblemNext seat th : THEOREMNOT pref filled(db, flt, pref) IMPLIESseat exists(aircraft(flt),Next seat defn(db,flt,pref))Next seat th 2: THEOREMNOT pref filled(db, flt, pref) IMPLIES(FORALL a: member(a,db(flt)) IMPLIESseat(a) /= Next seat defn(db,flt,pref))Next seat th 3: THEOREMNOT pref filled(db, flt, pref) IMPLIESmeets pref(aircraft(flt),Next seat defn(db,flt,pref),pref)It turns out that these are not true theorems|there is an assumption underlying ourspeci�cation that needs to be made explicit before these theorems can be proved. We usethe attempted proof of the �rst theorem to demonstrate how theorem proving can assistthe development of formal speci�cations by highlighting such missing assumptions. Sincewe have not yet introduced the powerful proof commands that are the subject of the latterpart of this chapter, we perform this proof in rather small steps.Our proof begins with the following sequent.Next_seat_th :|-------f1g (FORALL (db: flt_db, flt: flight, pref: preference):NOT pref_filled(db, flt, pref)IMPLIES seat_exists(aircraft(flt), Next_seat_defn(db, flt, pref)))We use (skosimp) to Skolemize the universal quanti�er, and to simplify the implication:Rule? (skosimp)Skolemizing and flattening,this simplifies to:Next_seat_th :|-------f1g pref_filled(db!1, flt!1, pref!1)f2g seat_exists(aircraft(flt!1), Next_seat_defn(db!1, flt!1, pref!1))Next, we expand the de�nitions of pref filled and Next seat defn and use (skosimp)again.

2.4. Adjustments to the Speci�cations 17Rule? (then (expand* "pref_filled" "Next_seat_defn")(skosimp))Expanding the definition(s) of (pref_filled Next_seat_defn),this simplifies to:: : : intermediate sequent omittedSkolemizing and flattening,this simplifies to:Next_seat_th :f-1g meets_pref(aircraft(flt!1), seat!1, pref!1)|-------f1g (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)[2] seat_exists(aircraft(flt!1),epsilon! (seat: [row, position]):seat_exists(aircraft(flt!1), seat)AND(FORALL (a: seat_assignment):member(a, db!1(flt!1)) IMPLIES seat(a) /= seat)AND meets_pref(aircraft(flt!1), seat, pref!1))There are now no more useful expansions to perform, so we introduce the epsilon ax axiomto reason about the application of the epsilon! operator.

18 Chapter 2. Seat Reservation ProblemRule? (use "epsilon_ax[[row,position]]")Using lemma epsilon_ax[[row,position]],this simplifies to:Next_seat_th :f-1g (EXISTS (x: [row, position]):(LAMBDA (seat: [row, position]):seat_exists(aircraft(flt!1), seat)AND(FORALL (a: seat_assignment):member(a, db!1(flt!1)) IMPLIES seat(a) /= seat)AND meets_pref(aircraft(flt!1), seat, pref!1))(x))=>(LAMBDA (seat: [row, position]):seat_exists(aircraft(flt!1), seat)AND(FORALL (a: seat_assignment):member(a, db!1(flt!1)) IMPLIES seat(a) /= seat)ANDmeets_pref(aircraft(flt!1), seat,pref!1))(epsilon(LAMBDA (seat: [row, position]):seat_exists(aircraft(flt!1), seat)AND(FORALL (a: seat_assignment):member(a, db!1(flt!1))IMPLIES seat(a) /= seat)ANDmeets_pref(aircraft(flt!1),seat, pref!1)))[-2] meets_pref(aircraft(flt!1), seat!1, pref!1)|-------[1] (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)[2] seat_exists(aircraft(flt!1),epsilon! (seat: [row, position]):seat_exists(aircraft(flt!1), seat)AND(FORALL (a: seat_assignment):member(a, db!1(flt!1)) IMPLIES seat(a) /= seat)AND meets_pref(aircraft(flt!1), seat, pref!1))The square brackets around formula numbers -2, 1, and 2 indicate that these are unchangedfrom the previous sequent; the curly braces around -1 indicate that it is new, and a goodplace to focus our attention. Using (ground) to simplify formula -1 generates two subgoals;the �rst of these is trivial and is discharged with another (ground), leaving us with thefollowing sequent.

2.4. Adjustments to the Speci�cations 19Rule? (repeat (ground))Applying propositional simplification and decision procedures,this yields 2 subgoals:: : : intermediate sequent omittedApplying propositional simplification and decision procedures,This completes the proof of Next_seat_th.1.Next_seat_th.2 :[-1] meets_pref(aircraft(flt!1), seat!1, pref!1)|-------f1g (EXISTS (x: [row, position]):seat_exists(aircraft(flt!1), x)AND(FORALL (a: seat_assignment):member(a, db!1(flt!1)) IMPLIES seat(a) /= x)AND meets_pref(aircraft(flt!1), x, pref!1))[2] (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)[3] seat_exists(aircraft(flt!1),epsilon! (seat: [row, position]):seat_exists(aircraft(flt!1), seat)AND(FORALL (a: seat_assignment):member(a, db!1(flt!1)) IMPLIES seat(a) /= seat)AND meets_pref(aircraft(flt!1), seat, pref!1))Formula 3 is no longer needed, so we hide it and then, comparing formulas -1 and 1, selectseat!1 to instantiate the existential quanti�er in formula 1.Rule? (then (hide 3)(inst 1 "seat!1"))Hiding formulas: 3,this simplifies to:: : : intermediate sequent omittedInstantiating the top quantifier in 1 with the terms:seat!1,this simplifies to:Next_seat_th.2 :[-1] meets_pref(aircraft(flt!1), seat!1, pref!1)|-------f1g seat_exists(aircraft(flt!1), seat!1)AND(FORALL (a: seat_assignment):member(a, db!1(flt!1)) IMPLIES seat(a) /= seat!1)AND meets_pref(aircraft(flt!1), seat!1, pref!1)[2] (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)

20 Chapter 2. Seat Reservation ProblemWe use (prop) to simplify the conjunction in formula 1, which generates 2 subgoals. Wepostpone examination of the �rst and examine the second.Rule? (prop)Applying propositional simplification,this yields 2 subgoals:: : : intermediate sequent omittedRule? (postpone)Postponing Next_seat_th.2.1.Next_seat_th.2.2 :[-1] meets_pref(aircraft(flt!1), seat!1, pref!1)|-------f1g (FORALL (a: seat_assignment):member(a, db!1(flt!1)) IMPLIES seat(a) /= seat!1)[2] (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)We notice that formulas 1 and 2 are quite similar, so use (skolem!) then (inst?) toSkolemize the universal quanti�er in 1, and then use the generated Skolem constant in 2Rule? (then (skolem!)(inst?))Skolemizing,this simplifies to:: : : intermediate sequent omittedFound substitution:a gets a!1,Instantiating quantified variables,this simplifies to:Next_seat_th.2.2 :[-1] meets_pref(aircraft(flt!1), seat!1, pref!1)|-------[1] member(a!1, db!1(flt!1)) IMPLIES seat(a!1) /= seat!1f2g member(a!1, db!1(flt!1)) AND seat(a!1) = seat!1This subgoal now completes with (prop), and the postponed �rst subgoal returns.Rule? (prop)Applying propositional simplification,This completes the proof of Next_seat_th.2.2.Next_seat_th.2.1 :[-1] meets_pref(aircraft(flt!1), seat!1, pref!1)|-------f1g seat_exists(aircraft(flt!1), seat!1)[2] (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)

2.4. Adjustments to the Speci�cations 21Examining this sequent, we can see no clear way to proceed. Formula 2 (and thepreviously hidden formula 3) provide little of interest, and we conclude that we really needto deduce that formula 1 follows from -1|that is, if a seat meets a preference, then that seatreally exists on the aircraft type concerned. The speci�cation provides no way to deducethis|it seems to be an implicit assumption. In order to complete the proof, we need tomake the assumption explicit. We do this by adding a new axiom to the speci�cation. 4new_ax: AXIOM meets_pref(aircraft(flt), seat, pref)IMPLIES seat_exists(aircraft(flt), seat)We could do this by abandoning the current proof, modifying the speci�cation, and thenrerunning the proof to return to the current state. This would be obviously ine�cient, soPVS allows declarations to be modi�ed and added to the speci�cation mid-proof. Here, weposition the cursor in the speci�cation bu�er above Next seat th, and give the commandM-x add-declaration. A new bu�er is created and we type the declaration new ax from4 into it, indicating when we are �nished by C-c C-c. PVS parses and typechecks thedeclaration and incorporates it into the speci�cation. We can then return to the proofbu�er and make use of this new axiom.Rule? (use "new_ax")Using lemma new_ax,this simplifies to:Next_seat_th.2.1 :f-1g meets_pref(aircraft(flt!1), seat!1, pref!1)IMPLIES seat_exists(aircraft(flt!1), seat!1)[-2] meets_pref(aircraft(flt!1), seat!1, pref!1)|-------[1] seat_exists(aircraft(flt!1), seat!1)[2] (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)The proof then completes with (prop).Rule? (prop)Applying propositional simplification,This completes the proof of Next_seat_th.2.1.This completes the proof of Next_seat_th.2.Q.E.D.Context was modified in mid-proof.Would you like to rerun the proof?

22 Chapter 2. Seat Reservation ProblemSince the speci�cation was modi�ed during proof, the proof is regarded as provisional, andPVS o�ers to rerun it \clean" against the newly expanded speci�cation. It is prudent todo so. No errors detected in this example, and the formula is considered proved.We have seen how the act of attempting to prove consistency revealed an implicit as-sumption in the speci�cation. This assumption was noted independently by Piotr Rudnickiin his Mizar treatment. Proofs of Next seat th 2 and Next seat th 3 do not reveal theneed for any further assumptions,7 and we deduce that our axiomatization of the Next seatfunction is consistent.2.5 The ProofsIn this section, we develop automated proofs for the theorems and lemmas in the theory ops.Ricky Butler's proofs mainly use a fairly restricted set of PVS prover commands: skosimp*,assert, expand, lift-if, lemma, inst, inst?, case, and apply-extensionality. In orderto develop higher-level, more automated proofs, it is useful to have an idea of how the varioushigher-level prover commands are related to each other.2.5.1 PVS Proof CommandsBelow is a list of many of the PVS commands; the most useful are underlined. Noteparticularly those commands marked with p; these package the functionality of those thatprecede them in a convenient way and are the workhorses of automated proofs.� Using decision procedures and auto-rewrites: assert, simplify, do-rewrites, record� Basic propositional reasoning: bddsimp, prop, iff, flatten, splitp Combine prop and assert: ground� Simplifying if-then-else and with structures: lift-ifp Iterate lift-if with bddsimp: smash� Case split: case-replace, case (also split in combination with lift-if automatesmany case-splits)� Note type information: typepred� Skolemization: skosimp*, skosimp, skolem-typepred, skolem!, skolem7Suitable proofs are(GRIND :IF-MATCH NIL) (USE "epsilon ax[[row,position]]") (GROUND) (("1" (REDUCE)) ("2"(INST?) (GROUND) (("1" (USE "new ax") (ASSERT)) ("2" (SKOSIMP) (INST?) (ASSERT))))))and(GRIND) (USE "epsilon ax[[row,position]]") (GROUND) (INST?) (USE "new ax") (REDUCE)respectively.

2.5. The Proofs 23� Instantiation: inst?, instp Combine inst? with skosimp*, smash, and assert: bashp Iterate bash: reduce� Setting up auto-rewrites: install-rewritesauto-rewrite, auto-rewrite-theory, auto-rewrite-theoriesp Set up auto-rewrites and then reduce: grind, tcc, termination-tcc� Beta reduction: beta� Lemma introduction: use*, use, forward-chain, lemma� Equality reasoning: replace, replace*� De�nition expansion: expand (also see auto-rewriting)� Conditional rewriting: rewrite, simplify-with-rewrites (also see auto-rewriting)� Extensionality: replace-extensionality, apply-extensionality, extensionalityThe commands listed above are su�cient to do the proofs in this chapter. In the thirdchapter we will meet some of the commands for induction.� induction: induct-and-simplify, measure-induct-and-simplify, generalize,measure-induct, name-induct, inductWhen large formulas (or nonlinear arithmetic) is involved, it can be helpful to name selectedterms.� Naming: name-replace*, name-replace, name, same-nameMore advanced tutorials will introduce the eta rules and the model-checking commands.� Eta rule: replace-eta, apply-eta, eta� CTL model checking and �-calculus: model-checkIt is also necessary to know the commands for controlling the main functions of the prover.� Control: quit, undo, postpone, rerun, help (also delete, hide, reveal, copy)And for writing or understanding strategies, it is useful to know the combinators.� Combinators: apply, then, repeat, try, branch, spread, else, let, skip, fail, lispArmed with this list of prover commands, we will now work through the proofs fromRicky Butler's tutorial.

24 Chapter 2. Seat Reservation Problem2.5.2 Cancel assn invThis, the �rst theorem in the speci�cation, asserts that the db invariant is preserved whena seat assignment is been canceled.Cancel_assn_inv : THEOREMdb_invariant(db) IMPLIES db_invariant(Cancel_assn(flt,pas,db))The proof session begins with the following sequent.Cancel_assn_inv :|-------f1g (FORALL (flt: flight, pas: passenger, db: assn_state):db invariant(db) IMPLIESdb invariant(Cancel assn(flt, pas, db)))This theorem is an \obvious" one whose proof simply requires expansion of de�nitions andstraightforward propositional calculus and equality reasoning. PVS 2 provides a strategycalled grind to do this. It is based on the tcc strategy from PVS 1 (the default strategyapplied to TCCs by the M-x typecheck-prove or M-x tcp command). Grind performsSkolemization, heuristic instantiation, if-lifting, rewriting and propositional simpli�cation.The rewriting and instantiation can be closely controlled, as sometimes grind can be toolarge a hammer for the nut you are trying to crack. By default, grind sets up all thede�nitions relevant to the theorem as automatic rewrites, but uses them in a fairly cautiousmanner: any top-level conditions in a de�nition (i.e., antecedents to implications, or thecondition of an if-then-else) must simplify to true or false in the context of a potentialrewrite in order for the rewrite to take e�ect.The Emacs interface to the PVS prover provides a number of shortcuts for commoncommands: rather than type (grind), it is su�cient to simply strike the two keys TABG. To see a list of all these shortcut keystrokes (which were originally developed by C.Michael Holloway of NASA Langley Research Center), type TAB h. In the present case, thecommand (grind) fails to prove the theorem; following a
urry of messages about rewriting(these messages can be globally turned o� by the prover command (rewrite-msg nil),or made terse by the prover command (rewrite-msg 0) or by the Emacs command M-xset-rewrite-depth), the strategy terminates with the following sequent.

The Proofs: Cancel assn inv 25Rule? (grind): : : reporting of rewrites omittedTrying repeated Skolemization, instantiation, and if-lifting,this yields 3 subgoals:Cancel_assn_inv.1 :f-1g db!1(flt!2)(a!1)f-2g db!1(flt!2)(b!1)f-3g pass(a!1) = pass(b!1)|-------f1g db!1(flt!1)(a!1)f2g flt!1 = flt!2f3g a!1 = b!1We notice that the formulas -1 and 1 are almost the same, except for the di�erent Skolemconstants flt!1 and flt!2. We can inspect the other sequents at the leaves of the prooftree with the command (postpone) (its shortcut is TAB P).Rule? (postpone)Postponing Cancel_assn_inv.1.Cancel_assn_inv.2 :f-1g seat_exists(aircraft(flt!1), seat(a!1))f-2g db!1(flt!2)(a!1)|-------f1g flt!1 = flt!2f2g seat_exists(aircraft(flt!2), seat(a!1))Rule? (postpone)Postponing Cancel_assn_inv.2.Cancel_assn_inv.3 :f-1g db!1(flt!2)(a!1)|-------f1g db!1(flt!1)(a!1)f2g flt!1 = flt!2f3g seat_exists(aircraft(flt!2), seat(a!1))Rule?Again, we see formulas above and below the line that are similar, except for the Skolemconstants flt!1 and flt!2. Circumstances like these indicate that the grind strategyprobably chose the wrong instantiation somewhere along the way. Suitable responses are totry the strategy again, but with an additional argument that can tell grind either to leavethe instantiation to us or to use a di�erent criterion for choosing instantiations than itsdefault method. Here, we'll try the manual approach. We undo the grind proof step with

26 Chapter 2. Seat Reservation Problemthe (undo) command (TAB u), and then give the command (grind :if-match nil). The:if-match token is a keyword that is used to indicate that the token following (here nil)is the value of an optional argument to grind called if-match. You can see the availablearguments to a PVS strategy by giving a command such as (help grind) to the proverRule? prompt, or by giving the Emacs command M-x pvs-help-prover-command grind(the Emacs command has completion|just hit the space bar or ? to �nish o�, or to seethe options for, a partly-typed command). Alternatively, you can give the command M-xx-prover-commands to create a persistent mouse-sensitive display of all prover commands,and then click the middle mouse button on grind. In all cases, the help given for grind isas follows (the vertical dots indicate material deleted for brevity).(GRIND/$ &OPTIONAL (DEFS !) THEORIES REWRITES (IF-MATCH T) EXCLUDE (UPDATES? T)):A super-duper strategy.aDoes auto-rewrite-defs/theories,auto-rewrite then applies skolem!, inst?, lift-if, bddsimp, andassert, until nothing works. Here...IF-MATCH is either NIL (no instantiation), T (yes instantiation),ALL (all instances) or BEST (best instance) depending on which versionof INST? is required.aThe term ``super-duper" here is a reference to [ALW93].This tells us that the optional arguments to grind are defs, theories, rewrites, exclude,if-match, and updates? (upper/lower case distinctions are not important). Parenthesesare used to indicate default values (so the default value for if-match is t). If we wish tosupply values for each of these arguments, we can just supply them in order; but if we wishto supply values only for some of them, we must indicate the ones concerned by precedingeach value with a keyword derived by pre�xing a colon to name of the relevant argument.From the help display, we see that the :if-match nil argument tells grind to not attemptheuristic instantiation.Here, (grind :if-match nil) generates four subgoals, the �rst of which is the follow-ing.

The Proofs: Cancel assn inv 27Rule? (grind :if-match nil): : : reporting of rewrites omittedTrying repeated Skolemization, instantiation, and if-lifting,this yields 4 subgoals:Cancel_assn_inv.1 :f-1g FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):db!1(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a))f-2g FORALL (a: [# pass: passenger, seat: [row, position] #]),(b: [# pass: passenger, seat: [row, position] #]), (flt: flight):db!1(flt)(a) AND db!1(flt)(b) AND pass(a) = pass(b) IMPLIES a = bf-3g flt!1 = flt!2f-4g db!1(flt!2)(a!1)f-5g db!1(flt!2)(b!1)f-6g pass(a!1) = pass(b!1)|-------f1g (pass(b!1) = pas!1)f2g a!1 = b!1It looks as though the obvious instantiations for the variables of formula -2should take care of this branch and, indeed, the sequence of proof commands(inst? -2)(inst? -2)(prop) discharges it and presents us with the next sequent.Rule? (prop)Applying propositional simplification,This completes the proof of Cancel_assn_inv.1.Cancel_assn_inv.2 :f-1g FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):db!1(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a))f-2g FORALL (a: [# pass: passenger, seat: [row, position] #]),(b: [# pass: passenger, seat: [row, position] #]), (flt: flight):db!1(flt)(a) AND db!1(flt)(b) AND pass(a) = pass(b) IMPLIES a = bf-3g db!1(flt!2)(a!1)f-4g db!1(flt!2)(b!1)f-5g pass(a!1) = pass(b!1)|-------f1g flt!1 = flt!2f2g a!1 = b!1This should follow in the same way, but we note that the (inst?) and (prop) commandsused on the previous sequent are subsumed by the functionality of (grind), so we try(grind) instead. It works|and (grind) also takes care of the other two proof branchesas well. We have now �nished the proof, and can inspect the saved proof description usingM-x edit-proof. This looks as follows.

28 Chapter 2. Seat Reservation Problem(""(GRIND :IF-MATCH NIL)(("1" (INST? -2) (INST? -2) (PROP)) ("2" (GRIND)) ("3" (GRIND))("4" (GRIND))))We conjecture that the �rst branch of the proof tree could also have been discharged by(grind), yielding a more uniform proof. We check this conjecture by starting the proofagain, and giving the following single proof command.(then (grind :if-match nil)(grind))In this command, then is a proof sequencing strategy|it successively applies the proofssteps supplied as its argument. More particularly, it �rst applies its �rst argument, thenrecursively applies the rest of its arguments to the subgoals so created.If we examine (with M-x edit-proof) the proof saved after running this strategy, wesee that it has the following form.(""(GRIND :IF-MATCH NIL)(("1" (GRIND)) ("2" (GRIND)) ("3" (GRIND)) ("4" (GRIND))))Notice that this is not the command we typed in, but the collection of proof steps that itgenerated. If we had wished to save the (then: : :) form, we could have run the proof as anatomic step by wrapping it in an apply as follows.(apply (then (grind :if-match nil)(grind))).Most of the standard strategies of PVS automatically run and are saved in this atomicmanner; they can be caused to run in the expanded, verbose manner by appending a $symbol to their names. This can be useful if you want to know how a strategy such asgrind actually performed a proof at the level of primitive steps. In the present example,we can discover the primitive steps generated by the applications of grind by giving thefollowing proof command.(then (grind$:if-match nil)(grind$)).The result is shown in Figure 2.1. It is sometimes di�cult to follow the structure in a fairlylong proof such this, and a graphical display can be very helpful. PVS can produce suchgraphical displays of proof-trees by the command M-x x-show-current-proof whilst inthe prover, or by M-x x-show-proof to see the saved proof for a formula under the cursor.The graphical display can be adjusted interactively and saved as a postscript �le that canthen be included in a LaTEX document by commands such as the following (using the LaTEXepsf style option).

The Proofs: Cancel assn inv 29\begin{figure}[htp]\begin{center}\leavevmode\epsfxsize=.65\hsize\epsfbox{ops_Cancel_assn_inv.ps}\end{center}\caption{\label{proof-tree}Proof Tree for Theorem {\tt Cancel_assn_inv}}\end{figure}The result is shown in �gure 2.2.We might wonder why the sequence (then: : :) of grind steps succeeds in proving thistheorem, when (grind) on its own does not. The explanation is that grind is a fairlysimple heuristic that iteratively simpli�es and looks for instantiations|and sometimes it�nds the wrong instantiations because it looks for them too early. The strategy (then(grind :if-match nil)(grind)) e�ectively postpones the search for instantiations untilall simpli�cation has been completed. We might consider this a su�ciently useful strategythat we would like to save it for future use. We can do this by placing the following lispcode in the �le pvs-strategies in our current or home directories.(defstep lazy-grind ()(then (grind$:if-match nil)(grind$))"Equiv. to (grind) with instantiations postponed until after simplification.""By skolemization, if-lifting, simplification and instantiation")Notice that the inner calls to grind use the $ (verbose) form|this is so the commandlazy-grind$ will cause those inner commands to run in their expanded form. The normal(non-$) form of the lazy-grind command will automatically run its inner commands inthe terse form. Once this de�nition of lazy-grind has been placed in our pvs-strategies�le, PVS will automatically load it the next time the prover is called, and our theorem canbe proved with just the single command (lazy-grind).Our de�nition of lazy-grind is really rather crude. If we wish to create a strategythat will be generally useful, we should pay attention to its e�ciency and generality. Thecurrent de�nition is rather ine�cient because the second invocation of grind will repeat theinstallation of automatic rewrite rules performed by the �rst. If we examine the de�nitionof grind (by clicking right on the M-x x-prover-commands display, or by the commandM-x help-pvs-prover-command grind), we will see that its inner loop is performed by thecommand reduce, so we should use this in place of the second invocation of grind.Also, our current de�nition of lazy-grind is lacking in generality|because it does notprovide a way to pass arguments to grind. We can rectify these de�ciencies in the followingimproved de�nition.

30 Chapter 2. Seat Reservation Problem(""(AUTO-REWRITE-DEFS :ALWAYS? T)(ASSERT)(SKOLEM-TYPEPRED)(FLATTEN)(ASSERT)(BDDSIMP)(("1"(SKOLEM-TYPEPRED)(FLATTEN)(LIFT-IF)(ASSERT)(BDDSIMP)(("1"(REPLACE*)(ASSERT)(BDDSIMP)(INST? :IF-MATCH T)(REPLACE*)(ASSERT)(INST? :IF-MATCH T)(REPLACE*)(ASSERT)(INST? :IF-MATCH T)(REPLACE*)(ASSERT))("2"(ASSERT)(INST? :IF-MATCH T)(REPLACE*)(ASSERT)(INST? :IF-MATCH T)(REPLACE*)(ASSERT)(INST? :IF-MATCH T)(REPLACE*)(ASSERT))))("2"(SKOLEM-TYPEPRED)(FLATTEN)(LIFT-IF)(ASSERT)(BDDSIMP)(("1" (REPLACE*) (ASSERT) (INST? :IF-MATCH T) (REPLACE*) (ASSERT))("2" (ASSERT) (INST? :IF-MATCH T) (REPLACE*) (ASSERT))))))Figure 2.1: Expanded Proof for Cancel assn inv

The Proofs: Cancel assn inv 31
(auto-rewrite-defs :always? t)

(assert)

(skolem-typepred)

(flatten)

(assert)

(bddsimp)

(skolem-typepred)

(flatten)

(lift-if)

(assert)

(bddsimp)

(replace*)

(assert)

(bddsimp)

(inst? :if-match t)

(replace*)

(assert)

(inst? :if-match t)

(replace*)

(assert)

(inst? :if-match t)

(replace*)

(assert)

(assert)

(inst? :if-match t)

(replace*)

(assert)

(inst? :if-match t)

(replace*)

(assert)

(inst? :if-match t)

(replace*)

(assert)

(skolem-typepred)

(flatten)

(lift-if)

(assert)

(bddsimp)

(replace*)

(assert)

(inst? :if-match t)

(replace*)

(assert)

(assert)

(inst? :if-match t)

(replace*)

(assert)

Figure 2.2: Proof Tree for Theorem Cancel assn inv

32 Chapter 2. Seat Reservation Problem(defstep lazy-grind (&optional (if-match t) (defs !)rewrites theories exclude (updates? t))(then(grind$:if-match nil :defs defs :rewrites rewrites :theories theories:exclude exclude :updates? updates?)(reduce$:if-match if-match :updates? updates?))"Equiv. to (grind) with instantiations postponed until after simplification.""By skolemization, if-lifting, simplification and instantiation")The identi�ers following the &optional in the formal argument list indicate the keywordarguments to this command (with optional default values in parentheses|for example,defs defaults to !, but rewrites has no default (or, rather, defaults to nil)). When thelazy-grind proof command is invoked, the actual arguments supplied become the valuesof these identi�ers. The two strings appearing at the end of the de�nition are, respectively,the help string and the commentary printed whenever the command is invoked.2.5.3 MAeWhereas the previous proof showed grind being too eager in seeking instantiations, theproof of the next theorem (MAe) shows the other aspect of its occasional overeagerness|this time in rewriting. The theorem states that making a new seat assignment will retainthe property that all seat assignments on that
ight are for seats that really do exist onthat type of aircraft.MAe: THEOREMexistence(db) IMPLIES existence(Make assn(flt,pas,pref,db))The proof begins by attacking the theorem with (grind). This gives us �ve muchreduced goals.Rule? (grind): : : reporting of rewrites omittedTrying repeated skolemization, instantiation, and if-lifting,this yields 5 subgoals:MAe.1 :f-1g meets_pref(aircraft(flt!2), seat!1, pref!1)f-2g flt!1 = flt!2f-3g (# seat := Next_seat(db!1, flt!2, pref!1), pass := pas!1 #) = a!1|-------f1g db!1(flt!2)(a!1)f2g seat_exists(aircraft(flt!2), seat(a!1))Rule?

The Proofs: MAe 33We have several Next seat axioms relating to the seat exists function, but grindhas rewritten the sequent too far for us to see which axiom is needed. So, we go back tothe beginning (with (undo)), and try again, but only rewriting the two terms that occurin the MAe theorem. The :defs nil argument tells grind not to install any de�nitionsas automatic rewrites, while the :rewrites keyword introduces a list of functions (or, ingeneral, conditional equations) that we do want to be rewritten automatically.Rule? (grind :defs nil :rewrites ("existence" "Make assn")): : : reporting of rewrites omittedTrying repeated skolemization, instantiation, and if-lifting,this simplifies to:MAe :f-1g member(a!1, Make assn(flt!1, pas!1, pref!1, db!1)(flt!2))|-------f1g member(a!1, db!1(flt!2))f2g seat exists(aircraft(flt!2), seat(a!1))Note that although Make assn was in the rewrites list, it still appears in the resultantsequent. This is because the de�nition of Make assn is a conditional rewrite (it has a top-level if-then-else), whose condition cannot be immediately reduced to true or false.Rewrites can be made unconditional by placing them in a nested list. For example, thefollowing makes Make assn an unconditional rewrite.Rule? (grind :defs nil :rewrites ("existence" ("Make assn")))In the present case, however, we can press on by expanding this function with (expand"Make assn") (TAB e with the cursor on \Make assn"), then simplifying the resultingif-then-else with (lift-if) and (prop) (the e�ect of the latter two can be obtained bythe more powerful command (smash)).Rule? (then (expand "Make assn")(smash)): : : reporting of rewrites omittedRepeatedly simplifying with BDDs, decision procedures, rewriting,and if-lifting,this simplifies toMAe :f-1g flt!1 = flt!2f-2g member(a!1,add((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1)))|-------[1] member(a!1, db!1(flt!2))f2g pref_filled(db!1, flt!1, pref!1)f3g pass_on_flight(pas!1, flt!1, db!1)[4] seat_exists(aircraft(flt!2), seat(a!1))Rule?

34 Chapter 2. Seat Reservation ProblemAt this point, it looks as though the axiom Next seat ax will supply the informa-tion necessary to complete the proof. We introduce this axiom by the command (use"Next seat ax") which extends the lemma command by attempting heuristic instantiationof the formula concerned.Rule? (use "Next seat ax")Using lemma Next_seat_ax,,this simplifies to:MAe :f-1g NOT pref_filled(db!1, flt!1, pref!1)IMPLIES seat_exists(aircraft(flt!1), Next_seat(db!1, flt!1, pref!1))[-2] flt!1 = flt!2[-3] member(a!1,add((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1)))|-------[1] member(a!1, db!1(flt!2))[2] pref_filled(db!1, flt!1, pref!1)[3] pass_on_flight(pas!1, flt!1, db!1)[4] seat_exists(aircraft(flt!2), seat(a!1))It looks like this should follow by trivial reasoning and expansion of de�nitions, so we hitit with (grind) and, indeed, the proof completes.Now that we have proved this theorem, it will be worth going back to see if we can �nd ashorter, more automatic and potentially more robust proof. The proof basically came downto straightforward grind-like steps, plus use of the axiom Next seat ax. Such examplescan often be proved by �rst adding the necessary axioms or lemmas to the sequent, andthen letting grind go to work. This is the case here: the following command proves thetheorem.(then (lemma "Next seat ax")(grind))As with our previous proof, it may be worth saving this strategy for future use. In fact,it turns out that this strategy can usefully subsume the functionality of lazy-grind to yielda strategy called stew (because it adds a set of lemmas to the pot and lets them simmerwith grind).

The Proofs: MAu 35(defstep stew (&optional lazy-match (if-match t) (defs !) rewrites theoriesexclude (updates? t) &rest lemmas)(then(if lemmas(let ((lemmata (if (listp lemmas) lemmas (list lemmas)))(x `(then ,@(loop for lemma in lemmata append`((skosimp*)(use ,lemma))))))x)(skip))(if lazy-match(then (grind$:if-match nil :defs defs :rewrites rewrites:theories theories :exclude exclude :updates? updates?)(reduce$:if-match if-match :updates? updates?))(grind$:if-match if-match :defs defs :rewrites rewrites:theories theories :exclude exclude :updates? updates?)))"Does a combination of (lemma) and (grind).""~%Grinding away with the supplied lemmas,")The tricky part of this strategy is the let construct that builds a list x of skosimp* anduse commands from the supplied list of lemmas, and then executes it. Explanation ofthis construct can be found in the PVS strategy manual (forthcoming). The lazy-grindcapability is achieved by the lazy-match argument to stew (i.e., (stew :lazy-match t)is equivalent to (lazy-grind)). Thus, the previous proof can now be achieved by (stew:lazy-match t) and the present one by (stew :lemmas "Next seat ax").2.5.4 MAuMAu: THEOREMuniqueness(db) IMPLIES uniqueness(Make_assn(flt,pas,pref,db))The theorem MAu asserts Make assn preserves the property that the same passenger isnot booked twice onto the same
ight. Since the theorem looks pretty obvious, we start o�with (grind).Rule? (grind): : : reporting of rewrites omittedTrying repeated skolemization, instantiation, and if-lifting,this yields 2 subgoals:MAu.1 :f-1g meets_pref(aircraft(flt!1), seat!1, pref!1)f-2g db!1(flt!2)(a!1)f-3g db!1(flt!2)(b!1)f-4g pass(a!1) = pass(b!1)|-------f1g db!1(flt!1)(b!1)f2g flt!1 = flt!2f3g a!1 = b!1

36 Chapter 2. Seat Reservation ProblemComparison of formulas -2 and -3 with 1 suggests that the strategy found the wrong instan-tiations. We speculate that it will do better if we postpone these using (stew :lazy-matcht). And, indeed, this proves the theorem.2.5.5 Make assn invMake_assn_inv: THEOREMdb_invariant(db) IMPLIES db_invariant(Make_assn(flt,pas,pref,db))Trying (grind) immediately yields 6 subgoals, which doesn't seem very promising. Weundo this step and restrict rewriting to just the db invariant that appears in the statementof the theorem.Rule? (grind :defs nil :rewrites ("db_invariant")): : : reporting of rewrites omittedTrying repeated skolemization, instantiation, and if-lifting,this yields 2 subgoals:Make_assn_inv.1 :f-1g existence(db!1)f-2g uniqueness(db!1)|-------f1g uniqueness(Make assn(flt!1, pas!1, pref!1, db!1))This is clearly MAu, so we rewrite with that as a lemma.Rule? (rewrite "MAu")Rewriting using MAu,This completes the proof of Make assn inv.1.The other subgoal su�ers a similar fate when rewritten with MAe.The proof can be reduced to a single step by including MAu and MAe among therewrites.(GRIND :DEFS NIL :REWRITES ("db invariant" "MAu" "MAe"))2.5.6 initial state invinitial_state_inv: THEOREMdb_invariant(initial_state)The proof of initial state inv is trivial and is disposed of by (grind).

The Proofs: Cancel inv one per seat 372.5.7 Cancel inv one per seatCancel inv one per seat asserts Cancel assn maintains the property that each seat onan aircraft has no more than one occupant.Cancel inv one per seat: THEOREMone per seat(db) IMPLIES one per seat(Cancel assn(flt,pas,db))The proof is very similar to the previous one and is dispatched by (grind).2.5.8 Make inv one per seatMake inv one per seat: THEOREMone per seat(db) IMPLIES one per seat(Make assn(flt,pas,pref,db))This theorem is very similar to MAe: whereas MAe ensures that only seats that exist areassigned on a
ight, this theorem ensures that a seat is not assigned twice on the same
ight.We speculate that the proof of this theorem will be similar to that of MAe, except that theaxiom Next seat ax 2 (which says that Next seat does not assign already assigned seats)will be needed instead of Next seat ax (which says that Next seat does not assign nonex-istent seats). Accordingly, we try the proof command (stew :lemmas "Next seat ax 2")and obtain the following result.Rule? (stew :lemmas "Next_seat_ax_2"): : : reporting of rewrites omittedGrinding away with the supplied lemmas,,this simplifies to:Make_inv_one_per_seat :f-1g meets_pref(aircraft(flt!1), seat!1, pref!1)f-2g db!1(flt!2)(a!1)f-3g db!1(flt!2)(b!1)f-4g seat(a!1) = seat(b!1)|-------f1g db!1(flt!1)(a!1)f2g flt!1 = flt!2f3g a!1 = b!1As in the proof of MAu, comparison of formulas -2 and -3 with 1 suggests that the strategyhas found the wrong instantiations. As before, we speculate that it will do better if wepostpone these using (stew :lemmas "Next seat ax 2" :lazy-match t). And, indeed,this proves the theorem.

38 Chapter 2. Seat Reservation Problem2.5.9 Initial one per seatinitial_one_per_seat: THEOREMone_per_seat(initial_state)This is trivial and is discharged with (grind).2.5.10 Make CancelThis theorem asserts that Cancel assn undoes the operation of Make assn|i.e., making anew reservation and then canceling it leaves the state unchanged.Make Cancel: THEOREMNOT pass on flight(pas,flt,db) IMPLIESCancel assn(flt,pas,Make assn(flt,pas,pref,db)) = dbHaving noticed that the formulas in this speci�cation tend to allow over-rewriting, westart the proof with grind restricted to the functions appearing in the statement of thetheorem.Rule? (grind :defs nil :rewrites ("pass on flight" "Cancel assn" "Make assn")): : : reporting of rewrites omittedTrying repeated skolemization, instantiation, and if-lifting,this simplifies to:Make_Cancel :|-------f1g EXISTS (a: [# pass: passenger, seat: [row, position] #]):pass(a) = pas!1 AND member(a, db!1(flt!1))f2g Make_assn(flt!1, pas!1, pref!1, db!1)WITH [(flt!1) :=a:[# pass: passenger,seat: [row, position] #]|member(a,Make_assn(flt!1, pas!1,pref!1, db!1)(flt!1))AND pass(a) /= pas!1]= db!1Notice that Make assn has not been rewritten, as it would not simplify the sequent.Now formula 2 requires demonstration that two flt dbs are equal. These databases arefunctions, so to prove them equal we must appeal to the principle of extensionality|so thatit will then be enough to show that the values of the functions are equal for all arguments.

The Proofs: Make Cancel 39Rule? (apply-extensionality :hide? t)Applying extensionality,this simplifies to:Make_Cancel :|-------f1g Make_assn(flt!1, pas!1, pref!1, db!1)WITH [(flt!1) :=a:[# pass: passenger,seat: [row, position] #]|member(a,Make_assn(flt!1, pas!1,pref!1, db!1)(flt!1))AND pass(a) /= pas!1](x!1)= db!1(x!1)[2] EXISTS (a: [# pass: passenger, seat: [row, position] #]):pass(a) = pas!1 AND member(a, db!1(flt!1))The hide? t argument simply hides the original form of formula 1, resulting in a lesscluttered sequent.Now the values of a flt db are flight assignments, which are sets ofseat assignments. To show two sets are equal, we must again appeal to extensionality, sothat it will be enough to show that they have the same members.rule? (apply-extensionality :hide? t)Applying extensionality,this simplifies to:Make_Cancel :|-------f1g Make_assn(flt!1, pas!1, pref!1, db!1)WITH [(flt!1) :=a:[# pass: passenger,seat: [row, position] #]|member(a,Make_assn(flt!1, pas!1,pref!1, db!1)(flt!1))AND pass(a) /= pas!1](x!1)(x!2)= db!1(x!1)(x!2)[2] EXISTS (a: [# pass: passenger, seat: [row, position] #]):pass(a) = pas!1 AND member(a, db!1(flt!1))(We could have done both these steps with (repeat (apply-extensionality:hide? t)).) Optimistically, we try (grind) at this point.

40 Chapter 2. Seat Reservation ProblemRule? (grind): : : reporting of rewrites omittedMake_Cancel :f-1g flt!1 = x!1f-2g (pass(x!2) = pas!1)f-3g db!1(x!1)(x!2)|-------f1g db!1(x!1)((# seat := Next_seat(db!1, x!1, pref!1), pass := pas!1 #))Comparison of formulas -3 and 1 suggest that an incorrect substitution has been found.We undo this step and try postponing the substitutions with (stew :lazy-match t), andthis time the proof succeeds.We use this proof as an example of the LaTEX facilities of PVS. The command M-xlatex-proof generates a LaTEX �le which produces the following output.8Verbose proof for Make Cancel.Make Cancel:f1g (8 (db :
t db;
t :
ight; pas : passenger; pref : preference) :: pass on
ight(pas;
t; db)� Cancel assn(
t; pas; Make assn(
t; pas; pref; db)) = db)Trying repeated skolemization, instantiation, and if-lifting,Make Cancel:f1g 9 (a : [# pass : passenger; seat : [row; position] #]) :pass(a) = pas!1 ^ a 2 db!1(
t!1)f2g Make assn(
t!1; pas!1; pref!1; db!1)with [(
t!1) :=fa : [# pass : passenger; seat : [row; position] #]ja 2Make assn(
t!1; pas!1;pref!1; db!1)(
t!1)^ pass(a) 6= pas!1g]= db!1Applying extensionality,8Giving an argument to the command (i.e., pre�xing it with C-u) creates a terse proof, but as this proofis so short, there is no di�erence in this case.

The Proofs: Cancel putative 41Make Cancel:f1g Make assn(
t!1; pas!1; pref!1; db!1)with [(
t!1) :=fa : [# pass : passenger; seat : [row; position] #]ja 2Make assn(
t!1; pas!1;pref!1; db!1)(
t!1)^ pass(a) 6= pas!1g](x0)= db!1(x0)f2g 9 (a : [# pass : passenger; seat : [row; position] #]) :pass(a) = pas!1 ^ a 2 db!1(
t!1)Applying extensionality,Make Cancel:f1g Make assn(
t!1; pas!1; pref!1; db!1)with [(
t!1) :=fa : [# pass : passenger; seat : [row; position] #]ja 2Make assn(
t!1; pas!1;pref!1; db!1)(
t!1)^ pass(a) 6= pas!1g](x0)(x00)= db!1(x0)(x00)f2g 9 (a : [# pass : passenger; seat : [row; position] #]) :pass(a) = pas!1 ^ a 2 db!1(
t!1)Grinding away with the supplied lemmas,,This completes the proof of Make Cancel.Q.E.D.2.5.11 Cancel putativeCancel_putative: THEOREMNOT (EXISTS (a: seat_assignment):member(a,Cancel_assn(flt,pas,db)(flt)) AND pass(a) = pas)This is trivial and is discharged with (grind).2.5.12 Make putativeMake_putative: THEOREMNOT pref_filled(db, flt, pref) IMPLIES(EXISTS (x: seat_assignment):member(x, Make_assn(flt, pas, pref, db)(flt)) AND pass(x) = pas)This is also trivial and is discharged with (grind).

42 Chapter 2. Seat Reservation Problem2.5.13 Lookup putativeLookup putative: THEOREMNOT (pref filled(db, flt, pref) OR pass on flight(pas,flt,db)) IMPLIESmeets pref(aircraft(flt),Lookup(flt, pas, Make assn(flt,pas,pref,db)),pref)We begin this proof as usual with (grind), and are left with two subgoals to prove.The �rst subgoal is the following.Rule? (grind)Trying repeated skolemization, instantiation, and if-lifting,this yields 2 subgoals:Lookup putative.1 :f-1g meets pref(aircraft(flt!1), seat!1, pref!1)f-2g meets pref(aircraft(flt!1), seat!2, pref!1)|-------f1g Next seat(db!1, flt!1, pref!1) = seat!1f2g db!1(flt!1)((# seat := Next seat(db!1, flt!1, pref!1), pass := pas!1 #))f3g meets pref(aircraft(flt!1),seat(epsilon(fa: seat assignment |((# seat :=Next seat(db!1,flt!1, pref!1),pass := pas!1 #)= aOR db!1(flt!1)(a))AND pass(a) = pas!1g)),pref!1)Notice that this subgoal contains two Skolemized seat variables: seat!1 and seat!2. Thissuggests that (grind) has been over-eager in instantiation, as we saw before in the proofof Cancel asn inv, so we start again and tell grind not to perform heuristic instantiation.

The Proofs: Lookup putative 43Rule? (grind :if-match nil): : : reporting of rewrites omittedTrying repeated skolemization, instantiation, and if-lifting,this yields 2 subgoals:Lookup putative.1 :f-1g meets pref(aircraft(flt!1), seat!1, pref!1)f-2g FORALL (seat: [row, position]):meets pref(aircraft(flt!1), seat, pref!1) IMPLIES(EXISTS (a: seat assignment): db!1(flt!1)(a) AND seat(a) = seat)|-------f1g (EXISTS (a: seat assignment): db!1(flt!1)(a) AND seat(a) = seat!1)f2g EXISTS (a: seat assignment): pass(a) = pas!1 AND db!1(flt!1)(a)f3g meets pref(aircraft(flt!1),seat(epsilon(fa: seat assignment |db!1(flt!1)(a) AND pass(a) = pas!1g)),pref!1)Here, formula -2, with substitution seat!1 would relate -1 and 1. To perform the instan-tiation, and simpli�cation we just issue another (grind) command which dispatches thissubgoal. We are now left with our second subgoal.Rule? (grind)Trying repeated skolemization, instantiation, and if-lifting,This completes the proof of Lookup_putative.1.Lookup_putative.2 :f-1g meets_pref(aircraft(flt!1), seat!1, pref!1)f-2g meets_pref(aircraft(flt!1), seat!2, pref!1)|-------f1g (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)f2g EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)f3g (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)f4g meets_pref(aircraft(flt!1),seat(epsilon(fa: seat_assignment |((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #)= aOR db!1(flt!1)(a))AND pass(a) = pas!1g)),pref!1)Clearly here we need to relate either formula -1 or -2 with formula 4. As 4 involvesepsilon, we introduce the axiom epsilon ax from the prelude. As the epsilons preludetheory is parameterized, we must supply the appropriate parameter here.

44 Chapter 2. Seat Reservation ProblemRule? (use "epsilon_ax[seat_assignment]")Using lemma epsilon_ax[seat_assignment],this simplifies to:Lookup_putative.2 :f-1g (EXISTS (x: seat_assignment):(fa: seat_assignment |((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = aOR db!1(flt!1)(a))AND pass(a) = pas!1g)(x))=>(fa: seat_assignment |((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = aOR db!1(flt!1)(a))AND pass(a)= pas!1g)(epsilon(fa: seat_assignment |((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #)= aOR db!1(flt!1)(a))AND pass(a) = pas!1g))[-2] meets_pref(aircraft(flt!1), seat!1, pref!1)[-3] meets_pref(aircraft(flt!1), seat!2, pref!1)|-------[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)[4] meets_pref(aircraft(flt!1),seat(epsilon(fa: seat_assignment |((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #)= aOR db!1(flt!1)(a))AND pass(a) = pas!1g)),pref!1)We use (ground) to simplify the expression in -1.

The Proofs: Lookup putative 45Rule? (ground)Applying propositional simplification and decision procedures,this yields 2 subgoals:Lookup_putative.2.1 :f-1g ((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #)=epsilon(fa: seat_assignment |((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #)= aOR db!1(flt!1)(a))AND pass(a) = pas!1g)ORdb!1(flt!1)(epsilon(fa: seat_assignment |((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #)= aOR db!1(flt!1)(a))AND pass(a) = pas!1g)))ANDpass(epsilon(fa: seat_assignment |((# seat := Next_seat(db!1, flt!1, pref!1),pass := pas!1 #)= aOR db!1(flt!1)(a))AND pass(a) = pas!1g))= pas!1[-2] meets_pref(aircraft(flt!1), seat!1, pref!1)[-3] meets_pref(aircraft(flt!1), seat!2, pref!1)|-------[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)[4] meets_pref(aircraft(flt!1),seat(epsilon(fa: seat_assignment |((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #)= aOR db!1(flt!1)(a))AND pass(a) = pas!1g)),pref!1)We are still left with a complex propositional expression in -1, as (ground) does notre-apply propositional simpli�cation after the decision procedures. We thus apply (ground)again (we could have done (repeat (ground)) to the same e�ect).

46 Chapter 2. Seat Reservation ProblemRule? (ground)Applying propositional simplification and decision procedures,this yields 2 subgoals:Lookup_putative.2.1.1 :f-1g (# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #)=epsilon(fa: seat_assignment |((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #)= aOR db!1(flt!1)(a))AND pass(a) = pas!1g)f-2g pass(epsilon(fa: seat_assignment |((# seat := Next_seat(db!1, flt!1, pref!1),pass := pas!1 #)= aOR db!1(flt!1)(a))AND pass(a) = pas!1g))= pas!1[-3] meets_pref(aircraft(flt!1), seat!1, pref!1)[-4] meets_pref(aircraft(flt!1), seat!2, pref!1)|-------[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)[4] meets_pref(aircraft(flt!1),seat(epsilon(fa: seat_assignment |((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #)= aOR db!1(flt!1)(a))AND pass(a) = pas!1g)),pref!1)Now we can see that formula -1, if used as a right-to-left replace will remove the occurrenceof epsilon in formulas -2 and 4.

The Proofs: Lookup putative 47Rule? (replace -1 :dir rl :hide? t)Replacing using formula -1,this simplifies to:Lookup_putative.2.1.1 :f-1g pass((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #)) = pas!1[-2] meets_pref(aircraft(flt!1), seat!1, pref!1)[-3] meets_pref(aircraft(flt!1), seat!2, pref!1)|-------[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)f4g meets_pref(aircraft(flt!1),seat((# seat := Next_seat(db!1, flt!1, pref!1),pass := pas!1 #)),pref!1)Notice, in formula 4, the application of the �eld selector seat, to a record whose �elds aregiven explicitly. This can be simpli�ed via beta reduction.Rule? (beta)Applying beta-reduction,this simplifies to:Lookup_putative.2.1.1 :f-1g pas!1 = pas!1[-2] meets_pref(aircraft(flt!1), seat!1, pref!1)[-3] meets_pref(aircraft(flt!1), seat!2, pref!1)|-------[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)f4g meets_pref(aircraft(flt!1), Next_seat(db!1, flt!1, pref!1), pref!1)Now we must appeal to the speci�cation again, to show equivalence between either formulas-2 or -3 and formula 4. The appropriate axiom is Next seat ax 3, which we introduce witha (use) command.

48 Chapter 2. Seat Reservation ProblemRule? (use "Next_seat_ax_3")Using lemma Next_seat_ax_3,this simplifies to:Lookup_putative.2.1.1 :f-1g NOT pref_filled(db!1, flt!1, pref!1)IMPLIESmeets_pref(aircraft(flt!1), Next_seat(db!1, flt!1, pref!1), pref!1)[-2] pas!1 = pas!1[-3] meets_pref(aircraft(flt!1), seat!1, pref!1)[-4] meets_pref(aircraft(flt!1), seat!2, pref!1)|-------[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)[4] meets_pref(aircraft(flt!1), Next_seat(db!1, flt!1, pref!1), pref!1)Applying (ground) again to simplify the sequent, we get the following.Rule? (ground)member rewrites member(a, db!1(flt!1))to db!1(flt!1)(a)pref_filled rewrites pref_filled(db!1, flt!1, pref!1)to FORALL (seat: [row, position]):meets_pref(aircraft(flt!1), seat, pref!1)IMPLIES(EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat)Applying propositional simplification and decision procedures,this simplifies to:Lookup_putative.2.1.1 :f-1g FORALL (seat: [row, position]):meets_pref(aircraft(flt!1), seat, pref!1)IMPLIES(EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat)[-2] pas!1 = pas!1[-3] meets_pref(aircraft(flt!1), seat!1, pref!1)[-4] meets_pref(aircraft(flt!1), seat!2, pref!1)|-------[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)[4] meets_pref(aircraft(flt!1), Next_seat(db!1, flt!1, pref!1), pref!1)Now we can see that formula -1, instantiated with seat!1, taken together with -3 willgive us formula 1. Thus, (inst?) followed by (prop) completes this subgoal. The furtherremaining two subgoals are trivial, and discharged easily with (grind). We thus have thefollowing proof for Lookup putative.

2.6. Summary 49(""(GRIND :IF-MATCH NIL)(("1" (GRIND))("2"(USE "epsilon_ax[seat assignment]")(GROUND)(("1"(GROUND)(("1"(REPLACE -1 :DIR RL :HIDE? T)(ASSERT)(USE "Next seat ax 3")(GROUND)(INST?)(PROP))("2" (GRIND))))("2" (GRIND))))))Notice that this combines (grind), some of the common component steps of (grind),and the (use) command. Earlier in this report we generated a strategy called (stew) thatperforms these functions, and indeed the following command will discharge the proof in onestep.9(stew :lemmas ("Next seat ax 3" "epsilon ax[seat assignment]"))2.6 SummaryIn this chapter we have presented one of the major proof tools in PVS 2|the powerfulstrategy (grind)|and have demonstrated how its behavior may be controlled where re-quired. We have also seen how to build a yet more powerful strategy stew on top of grind,and have encountered the strategies use and apply-extensionality. We have also seenexamples of the LaTEX and PostScript generating facilities provided by PVS.Here is the output of the PVS command M-x status-proof-theory for theory ops.Proof summary for theory opsCancel_assn_inv..proved - completeMAe..proved - completeMAu..proved - completeMake_assn_inv..proved - completeinitial_state_inv......................................proved - completeCancel_inv_one_per_seat................................proved - completeMake_inv_one_per_seat..................................proved - completeinitial_one_per_seat...................................proved - complete9The version of this formula that uses the dependently-typed variant of Lookup (recall box 3 on page14) is proved by the following command: (stew :lemmas ("Next seat ax 3" "choose member")).

50 Chapter 2. Seat Reservation ProblemMake_Cancel..proved - completeCancel_putative..proved - completeMake_putative..proved - completeLookup_putative..proved - completeTheory totals: 12 formulas, 12 attempted, 12 succeeded.And here is the output of the PVS command M-x show-proofs-theory for theory ops.Proof scripts for theory ops:ops.Cancel_assn_inv: proved - complete("" (STEW :LAZY-MATCH T))ops.MAe: proved - complete("" (STEW :LEMMAS "Next_seat_ax"))ops.MAu: proved - complete("" (STEW :LAZY-MATCH T))ops.Make_assn_inv: proved - complete("" (GRIND :DEFS NIL :REWRITES ("db_invariant" "MAu" "MAe")))ops.initial_state_inv: proved - complete("" (GRIND))ops.Cancel_inv_one_per_seat: proved - complete("" (GRIND))ops.Make_inv_one_per_seat: proved - complete("" (STEW :LEMMAS "Next_seat_ax_2" :LAZY-MATCH T))ops.initial_one_per_seat: proved - complete("" (GRIND))

2.6. Summary 51ops.Make_Cancel: proved - complete(""(GRIND :DEFS NIL :REWRITES("Cancel_assn" "pass_on_flight" "Make_assn"))(APPLY-EXTENSIONALITY :HIDE? T)(APPLY-EXTENSIONALITY :HIDE? T)(STEW :LAZY-MATCH T))ops.Cancel_putative: proved - complete("" (GRIND))ops.Make_putative: proved - complete("" (GRIND))ops.Lookup_putative: proved - complete("" (STEW :LEMMAS ("Next_seat_ax_3" "epsilon_ax[seat_assignment]")))

52

Chapter 3Noninterference and theUnwinding TheoremThe example undertaken in this chapter is a veri�cation of the unwinding theorem fornoninterference security policies [GM84]. One purpose of this example is to demonstrateuse of PVS for a speci�cation involving recursive functions and a proof by induction, neitherof which were required for the previous example. A second purpose is to illustrate how thefacilities of the PVS language and prover can be used to follow an existing mathematicaldevelopment quite closely. A third purpose is to show how simple this example is: developersand users of veri�cation systems are prone to describing how di�cult are the applicationsthey have performed|as if di�culty indicated the strength of their tool|whereas we believethat a good tool is one that makes the task easy. Using automation to reduce labor, we areable to verify this example with just seven user-supplied proof commands.Noninterference was introduced by Goguen and Meseguer [GM82] to provide a formalfoundation for the speci�cation and analysis of security policies that are concerned with \in-formation
ow," rather than mere access control. The idea of noninterference is attractivelysimple: a security domain u is noninterfering with domain v if no action performed by ucan in
uence subsequent outputs seen by v. The unwinding theorem reduces this propertyof sequences of actions to conditions on individual actions.The following sections develop noninterference and give a proof of the unwinding theo-rem in the style of a conventional mathematical development. Each de�nition or proof isfollowed by its corresponding treatment in PVS. Our derivation is not based on the originalpresentation of Goguen and Meseguer, but rather follows that of Haigh and Young [HY87].3.1 MachinesWe model a computer system by a conventional �nite-state automaton.De�nition 1 A system (or machine) M is composed of53

54 Chapter 3. Noninterference and the Unwinding Theorem� a set S of states, with an initial state s0 2 S,� a set A of actions, and� a set O of outputs,together with the functions step and output :� step:S � A! S,� output :S � A! O.We generally use the letters : : : s; t; : : : to denote states, letters a; b; : : : from the front of thealphabet to denote actions, and Greek letters �; �; : : : to denote sequences of actions.Actions can be thought of as \inputs," or \commands," or \instructions" to be per-formed by the machine; step(s; a) denotes the next state of the system when action a isapplied in state s, while output (s; a) denotes the result returned by the action.We derive a function run� run:S �A� ! S,the natural extension of step to sequences of actions, by the equationsrun(s;�) = s; andrun(s; a � �) = step(run(s; �); a);where � denotes the empty sequence and � denotes concatenation.Observe that this de�nition implies that the actions of a sequence are processed in orderfrom right to left.Because we will frequently use expressions of the form output (run(s0; �); a), it is con-venient to introduce the functions do and test to abbreviate these forms. We de�ne thesefunctions� do:A� ! S� test :A� �A! Oby the equations do(�) = run(s0; �); andtest(�; a) = output(do(�); a): 2

3.1. Machines 55PVS TreatmentWe model states , actions , and outputs by nonempty, uninterpreted types, and declare theinitial state as a constant s0 of type state and the variables s; t, and a; b as variables ofthe appropriate types. The functions step and output and are modeled as uninterpretedfunctions.state, action, output: TYPE+s0: states, t: VAR statea, b: VAR actionstep(s, a): state % equivalent to step: [state, action -> state]output(s, a): output % equivalent to output: [state, action -> output]Notice there is no confusion caused by overloading the identi�er output to be both a typeand a function.The function run was de�ned to extend step to sequences of actions, so we need to �nd asuitable PVS representation for the notion of sequence. This notion is not precisely de�nedin semiformal mathematics, and in deciding how to represent it in PVS we need to lookat how it is actually used in the example concerned. Here, we see that we need an emptysequence, and the operation of constructing a sequence by concatenating an individualaction to another sequence (as in a � �). These properties are provided by the PVS datatype list .1Lists are de�ned in the PVS prelude as the following abstract data type.list [T: TYPE]: DATATYPEBEGINnull: null?cons (car: T, cdr:list):cons?END listThis PVS datatype de�nition says that the constructors for the list datatype are null andcons, with null? and cons? as the predicate recognizers for the corresponding subtypes ofthe list type, and that the accessors for a cons-type list are car and cdr. PVS datatypessuch as this are a convenient way to specify certain data structures that are \freely gener-ated" by a collection of constructor operations [Sha93a]. Here, lists are freely generated bythe constructors null and cons. Similarly, the abstract datatype stacks is freely generatedby the constructors empty and push (in fact, stacks and lists are isomorphic). Set providesan example of a data structure that is not freely generated (e.g., by emptyset and add),because di�erent sequences of additions of elements can yield equivalent sets. The datatypequeues is freely generated by emptyqueue and enqueue, but it cannot be directly de�ned1A di�erent representation, suitable for other interpretations of sequence, is a function whose domain is(an initial segment of) the natural numbers. See the PVS prelude theories sequences and finite sequencesfor these representations.

56 Chapter 3. Noninterference and the Unwinding Theoremby the PVS abstract datatype mechanism because it is not recursive: that is, the accessorsfront and dequeue are not inverses of the constructors.PVS datatype declarations expand into several theories containing axioms and def-initions that specify the properties of the datatype concerned and also de�ne sev-eral standard functions and predicates on it. See the prelude theories list adt,list adt reduce and list adt map for those generated from list (use the PVS commandM-X view-prelude-theory, or M-X vpt for short). Datatypes also communicate informa-tion to the PVS theorem prover, and their constructors may appear in the CASES constructof the PVS speci�cation language.Given the list datatype, we can specify a list of actions as the type list[action],and can then de�ne the function run as a recursive function whose body uses the CASESconstruct to provide pattern-matching selection over the constructors of the list datatype.action_list: TYPE = list[action]alpha, beta: VAR action_listrun(s, beta): RECURSIVE state =CASES beta OFnull: s,cons(a, alpha): step(run(s, alpha), a)ENDCASESMEASURE length(beta)All recursive functions de�ned in PVS must be shown to terminate by exhibiting a mea-sure of their arguments that decreases across recursive calls. The built-in length function(from the prelude theory list props) provides a suitable measure here. PVS generatesthe following TCC to ensure that the proposed measure does decrease in the manner re-quired (if a measure function returns a natural number then, by default, the < relationprovides the notion of \decreases"). This TCC is proved automatically by the standard(termination-tcc) strategy.% Termination TCC generated (line 20) for runrun_TCC1: OBLIGATION(FORALL (b: action, beta: list[action], s, alpha):alpha = cons[action](b, beta)IMPLIES length[action](beta) < length[action](alpha));More complex termination arguments may require measures on to the ordinals (see theprelude theory ordinals) or more elaborate notions of \decreases," such as those providedby the subterm ordering predicates << generated from datatype de�nitions. Using thisapproach, an alternative way to show that the run function terminates is with MEASUREbeta BY <<. This generates the following TCC, which is proved automatically by thedefault strategy.

3.1. Machines 57% Termination TCC generated (line 27) for runrun_TCC2: OBLIGATION(FORALL (hd: action, tl: list[action], beta, s):beta = cons[action](a, alpha) IMPLIES alpha << beta);However, it also generates the obligation to show that the << relation is well-founded. ThisTCC requires the axiom list well founded to be cited from the list adt theory and isnot proved automatically.% Well-founded TCC generated (line 29) for <<run_TCC1: OBLIGATIONwell_founded?[list[action]](LAMBDA (x: action_list, y: action_list): x << y)One way to discover the existence of the list well founded axiom is to place the cursorat that start of well founded? in the TCC bu�er and to type M-;. This will bring up abu�er of all declarations that mention this identi�er; the v key can then be used to vieweach declaration (use the q key to leave this mode). After introducing this axiom with thelemma command, we arrive at the following sequent.Rule? (LEMMA "list_well_founded[action]")Applying list_well_founded[action] wherethis simplifies to:run_TCC1 :f-1g well_founded?[list[action]](<<)|-------[1] well_founded?(LAMBDA (x: action_list, y: action_list): x << y)To complete the proof, we need to establish that << and LAMBDA (x: action list, y:action list): x << y are equivalent. This is the �-rule of lambda calculus: f = �x:f(x).PVS actually has several eta-rules (for functions, records, tuples, and abstract datatypes);all are invoked by the proof commands (apply-eta) and replace-eta. In this example,the following command �nishes the proof.Rule? (REPLACE-ETA "list_adt[action].<<")Applying eta axiom scheme to list_adt[action].<< and then replacingQ.E.D.For each datatype, it is usual to de�ne a recursive function that returns a natural number(or an ordinal) representing its \length" or \size." The subterm ordering predicate is used toprove termination of this function, but subsequent recursive de�nitions can then be shownto terminate more simply using the length or size function, as in our original treatment ofthe termination argument for run. See the prelude theory list props for the de�nition ofthe length function used here.

58 Chapter 3. Noninterference and the Unwinding TheoremAlthough the list datatype gives us an adequate semantic treatment for the sequencesof actions used in the informal development, it does not reproduce its notation: insteadof the a � � of the ordinary mathematical presentation, we must write cons(a, alpha).To help reproduce traditional notation, PVS provides a number of pre�x, in�x, and out�xoperators such as <> and [] (pre�x), |-, ^, and o (in�x), and [| |] and |[]| (out�x).You can see the whole list with M-x pvs-help-language. In�x operators can also be usedin a pre�x function-application form, and must be used in this form when de�ning newmeanings for them. The in�x o operator is convenient for our purposes, so we overload anyexisting meaning it may have with the following de�nition.; o(a, alpha): action_list = cons(a, alpha)(The semicolon at the beginning of this line serves to terminate the previous declaration;because o is an in�x operator, the one-symbol lookahead of the PVS parser may otherwiseconfuse the start of this declaration with a continuation of the previous one.) Given thisde�nition, we can write expressions such as a o alpha; during proof, we will expand orrewrite with o to recover the underlying cons(a, alpha) form. Note, however, that wecannot use a o alpha as a label in a datatype CASES expression, since PVS allows onlydatatype constructors in this context.The functions do and test are speci�ed in the obvious way. 5do(alpha): state = run(s0, alpha)test(alpha, a): output = output(do(alpha), a) 23.2 SecurityDe�nition 2 In order to discuss security, we require some set of security \domains" anda policy that restricts the allowable
ow of information among those domains. Thus, weassume� a set D of security domainsand use letters : : : u; v; w; : : : to denote domains.A security policy is then speci�ed by a re
exive relation ; on D. We use 6; to denotethe complement relation, that is 6;= (D �D)n;where n denotes set di�erence. 2

3.2. Security 59PVS TreatmentWe introduce domain as another uninterpreted, nonempty type, then specifysecurity policy as an uninterpreted relation on domains and constrain it to be re
ex-ive.domain: TYPE+u, v: VAR domainsecurity policy(u, v): boolpolicy_refl: AXIOM reflexive?(security_policy) 2The higher-order predicate reflexive? comes from the prelude theory relations (itis higher-order because it is a predicate that takes another predicate|actually a relation,which in PVS is just a predicate on a two-tuple|as its argument). Notice that by asserting,in the axiom policy refl, that the uninterpreted relation security policy is re
exive,we are implicitly assuming that the predicate reflexive? is satis�able on this class ofrelations. This is obviously so, but what if we had required that the security policyrelation be both re
exive and asymmetric? No relation (on a nonempty type) can satisfyboth these properties, so by asserting them of the security policy relation, we would havecreated an inconsistent speci�cation.It is always possible to make mistakes when writing speci�cations, but some mistakes areworse than others. Mistakes that create inconsistent speci�cations are particularly egregiousbecause we can prove absolutely anything from such speci�cations|they are, essentially,meaningless. PVS is carefully designed so that the only way to introduce an inconsistencyinto a PVS speci�cation (provided all its TCCs have been proved) is with an AXIOM. Hence,we should always be very careful when using AXIOMs, and should generally avoid introducingthem gratuitously.In this speci�cation, the AXIOM can be avoided as follows. Instead of �rst introducingsecurity policy as a relation on domain and then asserting, via an AXIOM, that it isre
exive, we can introduce security policy as a constant of the re
exive subtype of thetype of relations on domain. In PVS, if p is a predicate on a type T, then (p) denotesthe predicate subtype of T satisfying p. Thus, (reflexive?[domain]) denotes the type ofre
exive relations on domain, and we can then introduce security policy as follows.security_policy: (reflexive?[domain])We saw in Chapter 2 that PVS allows constants to be declared only for those types thatare known to be nonempty. Here, declaration of the constant security policy requiresthat its type (reflexive?[domain]) is nonempty, and PVS generates the following TCCto ensure this fact.

60 Chapter 3. Noninterference and the Unwinding Theorem% Existence TCC generated (line 30) for security_policy: (reflexive?[domain])security_policy_TCC1: OBLIGATION (EXISTS (x: (reflexive?[domain])): TRUE);This can be proved by exhibiting the equality relation on domain as such a predicate usingthe proof command (inst 1 "eq[domain]") and then �nishing o� the proof with (grind).Alternatively, we could separate declaration of the constant security policy from thatof its type and provide a CONTAINING clause in the type declaration as a hint to the prover.refl_rel: TYPE = (reflexive?[domain]) CONTAINING eq[domain]security_policy: refl_relWhen the declarations are given in this form, PVS is able to discharge the TCC automati-cally.It turns out that the speci�cation we will construct for security only makes sense if thesecurity policy ; is transitive, in addition to re
exive. (This point is discussed at lengthin [Rus92].) Thus, we really need to amend the declaration of security policy to readsomething like the following.2 6refl_trans_rel: TYPE = (reflexive?[domain] AND transitive?[domain])CONTAINING eq[domain]security_policy: refl_trans_relUnfortunately, the speci�cation of refl trans rel is not type-correct: the AND con-nective properly applies to booleans whereas here we have applied it to predicates of typepred[pred[[domain,domain]]] (i.e., to predicates on relations on domain). We can correctthis using the following LAMBDA form 7refl_trans_rel: TYPE = (LAMBDA (r: pred[[domain,domain]]):reflexive?(r) AND transitive?(r)) CONTAINING eq[domain]but the result is ugly and not easy to read.In fact, our original intuition was reasonable|we simply need to overload AND so thatit applies to predicates as well as to simple booleans. All in�x operators like AND are reallyfunctions and also have a pre�x form (e.g., a AND b can also be written as AND(a, b))and can be overloaded by de�ning additional types and interpretations for the pre�x form.Thus, we could de�ne; AND(x,y: pred[pred[[domain,domain]]])(r: pred[[domain, domain]]): bool =x(r) AND y(r)2A relation that is both re
exive and transitive is called a preorder . This is de�ned in the PVS prelude,so that we could simply say security policy: (preorder?[domain]). However, the construction used hereallows us to demonstrate some additional aspects of PVS

3.2. Security 61and then the treatment in box 6 becomes type-correct. However, this rede�nition of AND isalso rather ugly, and very speci�c to this single application. A better solution is to de�ne ageneric theory that overloads several of the propositional connectives by \lifting" them toapply to predicates as follows.lifted_predicates[T:type]: THEORYBEGINt: VAR Tp,q: VAR pred[T]; AND(p,q)(t): bool = p(t) AND q(t);; OR(p,q)(t): bool = p(t) OR q(t);; IMPLIES(p,q)(t): bool = p(t) IMPLIES q(t);END lifted_predicatesThen our speci�cation can take the following form.IMPORTING lifted_predicatesrefl_trans_rel: TYPE = (reflexive?[domain] AND transitive?[domain])CONTAINING eq[domain]security_policy: refl_trans_relPVS's type-inference is capable of determining the correct instance of lifted predicates(it is lifted predicates[pred[[domain,domain]]]) needed to provide a correct type forthe AND in refl trans rel.Even this treatment is a little crude, because it only applies to the propositional connec-tives explicitly mentioned in the lifted predicates theory. It is possible to give a totallygeneral treatment using PVS conversions . The simple kind of conversion is a function thatis applied automatically to convert a type-incorrect expression to a type correct one. If, forexample, we wished to omit explicit mention of the function do, so that an action sequenceand the state that it leads to are punned together, we could change the declarations of 5to the following form.do(alpha): state = run(s0, alpha)CONVERSION dotest(alpha, a): output = output(alpha, a)The function output requires a state as its �rst argument, not an action sequence; becausedo is declared as a CONVERSION, the PVS typechecker is able to insert an application of do,so that the action sequence alpha is replaced by the state do(alpha), thereby replacingthe expression output(alpha, a) by the type-correct form output(do(alpha), a). Thistransformation is revealed by the Emacs command M-x ppe (prettyprint-expanded).

62 Chapter 3. Noninterference and the Unwinding TheoremWhereas this simple kind of conversion turns a type-incorrect term a into a type-correctone by inserting a function f to produce f(a), a dual kind of conversion turns a type-incorrect function f into a type-correct application by supplying an argument a to producef(a). This conversion is more complex because the a will be a variable and therefore needs tooccur in some binding construct (e.g., FORALL or LAMBDA). The circumstances in which PVSwill perform such a conversion are restricted to the case where a type incorrect applicationf(x, y) can be made type-correct by transforming it to (LAMBDA (a): f(x(a), y(a))).Now it may be that not all the parameters to such a function f need to be applied to anargument a (e.g., (LAMBDA (a): f(x(a),y))may be type-correct), and we can provide forthis by causing the K combinator ,3 which has the de�nition K(p)(q) = p, to be available asa conversion. The original f(x, y) can then be converted �rst to (LAMBDA (a): f(x(a),y(a))), then to (LAMBDA (a): f(x(a), K(y)(a))), and �nally reduced (by applicationof the de�nition of K) to the type-correct (LAMBDA (a): f(x(a), y)). To avoid invokingit accidentally, the step that starts this sequence of conversions is performed only in contextswhere a function having the form of the K combinator has been declared as a conversion(even if K is not needed in the sequence concerned).In the present case, the desired (and type-correct) interpretation of refl trans rel in6 is that shown in 7, which has exactly the form produced by the second kind of conversion.We can cause this to be applied by importing the following theory.K_conversion[T1, T2: TYPE]: THEORYBEGINt1: VAR T1t2: VAR T2K(t1)(t2): T1 = t1CONVERSION KEND K_conversionThe following text is then acceptable to PVS.IMPORTING K_conversionrefl_trans_rel: TYPE = (reflexive?[domain] AND transitive?[domain])CONTAINING eq[domain]security_policy: refl_relM-x ppe reveals that the refl trans type declaration is converted to the following form(which is identical to 7).refl_rel: TYPE =(LAMBDA (x: PRED[[domain, domain]]):reflexive?[domain](x) AND transitive?[domain](x))CONTAINING eq[domain]3This terminology comes from Combinatory Logic.

3.3. Information Flow 63The following TCC (which is proved automatically) is generated to ensure that the type isinhabited. (The same TCC is generated for both the lifted predicates and K conversiontreatments.)% Subtype TCC generated (line 57) for eq[domain]refl_rel_TCC1: OBLIGATIONreflexive?[domain](eq[domain]) AND transitive?[domain](eq[domain]);Given the de�nition of ; as security policy, we can de�ne 6; as its negation. Inorder to approximate the notation of the traditional mathematical development, we willuse an in�x operator for 6;; |> seems to be the nearest approximation available in PVS.|>(u, v): bool = NOT security_policy(u, v) 23.3 Information FlowWe wish to de�ne security in terms of \interference" or information
ow, so the next stepis to capture these ideas formally. The key observation is that information can be said to
ow from a domain u to a domain v exactly when actions submitted by domain u causethe behavior of the system perceived by domain v to be di�erent from that perceived whenthose actions are not present. We therefore de�ne a function that removes, or \purges,"from an action sequence all those actions submitted by a given domain. We can then saythat information
ows from domain u to domain v, or that u interferes with domain v ifthe latter can distinguish between the state of the machine after it has processed a givenaction sequence, and the state after processing the same action sequence purged of actionsfrom domain u. We formalize this idea as follows.De�nition 3 We �rst assume that each action is associated with an agent (or \subject")of a speci�c security domain and introduce the function dom(a) to identify the securitydomain of action a.Then, for u 2 D and � an action sequence in A�, we de�ne �=u (� \purged" by u) tobe the subsequence of � formed by deleting all actions associated with domain u. That is:�=u = �(a � �)=u = (�=u if dom(a) = ua � (�=u) otherwise:Domain u is said to interfere with domain v if there exists an action sequence � and anaction a with dom(a) = v such thatoutput (run(s0; �); a) 6= output(run(s0; �=u); a);

64 Chapter 3. Noninterference and the Unwinding Theoremthat is, test(�; a) 6= test(�=u; a):We identify security with the requirement that u should be noninterfering with v when-ever the policy speci�es u 6; v. That is, we say that a system is secure for the policy ;if u 6; dom(a) � test(�; a) = test(�=u; a):4The intuition here is that the machine starts o� in the initial state s0 and is presentedwith a sequence � 2 A� of actions. This causes the machine to produce a series of outputsand to progress through a series of states, eventually reaching the state do(�). At thatpoint the action a is performed, and the corresponding output test(�; a) is observed. Wecan think of presentation of the action a and observation of its output as an experimentperformed by dom(a) in order to learn something about the action sequence �. If dom(a)can distinguish between the action sequences � and �=u by such experiments, then u has\interfered" with dom(a) and the system is not secure with respect to policies that specifyu 6; dom(a).As mentioned earlier, this de�nition of security (and in particular, the de�nition of thepurge function) only makes sense if the relation; is transitive. See [Rus92] for an extendeddiscussion of this topic and a formally veri�ed treatment of intransitive interference policies.2PVS TreatmentWe introduce dom as an uninterpreted function, then de�ne a recursive function that per-forms the \purge" operation; in order to reproduce the traditional notation, we overloadthe in�x operator / to be the name of this function.dom(a): domain % equivalent to dom: [action -> domain]/(beta, u): RECURSIVE action_list =CASES beta OFnull: null,cons(a, alpha): IF dom(a) = u THEN alpha / uELSE a o (alpha / u) ENDIFENDCASESMEASURE length(beta)Security is speci�ed by the Boolean constant secure.security: bool = FORALL a, u, alpha:u |> dom(a) IMPLIES test(alpha, a) = test(alpha / u, a)4Formulas such as these are to be read as universally quanti�ed over their free variables (here u, a, and�); we use � to denote implication.

3.4. Unwinding 65There are several alternative ways to state the security requirement. Instead of a Booleanconstant, we could have used a formula, as follows.security: FORMULA FORALL a, u, alpha:u |> dom(a) IMPLIES test(alpha, a) = test(alpha / u, a)The main di�erence between these two formulations is that a formula cannot be used as acomponent in any other linguistic construction: it can only be proved, or cited in proofs.We will eventually wish to state and prove an \unwinding" theorem that will have the formsome simpler conditions � security (3:1)and this cannot be stated directly if security is given as a FORMULA.5 The Boolean constantseems the better approach here, but we should examine this choice in a little more detail.It is likely that proving a theorem of the form (3.1) will require induction on the lengthof the action sequence appearing in the de�nition of security. As currently speci�ed,security is a de�ned Boolean constant whose body is a closed formula. We will need toexpand the de�nition, therefore, to expose the induction variable alpha. This need for�ne-grained manipulation will limit the likely e�ectiveness of automated proof strategies.A possibly better treatment, therefore, is one that leaves the variables to which we arelikely to need access exposed as arguments. This can be done by changing from a Booleanconstant, security, to a Boolean function, secure, that takes the action sequence, �, asan argument.secure(alpha): bool = FORALL a, u:u |> dom(a) IMPLIES test(alpha, a) = test(alpha / u, a)We will use this form for the time being. 23.4 UnwindingThe noninterference de�nition of security is expressed in terms of sequences of actions andstate transitions; in order to obtain straightforward techniques for verifying the security ofsystems, we would like to derive conditions on individual state transitions. The �rst step inthis development is to partition the states of the system into equivalence classes which all\appear identical" to a given domain. The veri�cation technique will then be to prove thateach domain's view of the system is una�ected by the actions of domains that are requiredto be noninterfering with it.5We could prove the FORMULA security using \some simpler conditions" as lemmas; by the deductiontheorem, this is logically equivalent to the other form, but it is linguistically less direct and would not beexplicit in the speci�cation.

66 Chapter 3. Noninterference and the Unwinding TheoremDe�nition 4 A system M is view-partitioned if, for each domain u 2 D, there is an equiv-alence relation u� on S. These equivalence relations are said to be output-consistent ifs dom(a)� t � output (s; a) = output (t; a):2 Output consistency is required in order to ensure that two states s and t that appearidentical to a given domain really are indistinguishable in terms of the outputs they producein response to actions from that domain.The de�nition of security requires that the outputs seen by one domain are una�ectedby the actions of other domains that are speci�ed to be noninterfering with the �rst. Thenext result shows that, for an output consistent system, security is achieved if \views" aresimilarly una�ected.Lemma 1 Let ; be a policy and M a view-partitioned, output-consistent system such thatu 6; v � do(�) v� do(�=u):Then M is secure for ;.Proof: Let u 6; dom(a). The hypothesis to the lemma then providesdo(�) dom(a)� do(�=u):Output consistency then ensuresoutput(do(�); a) = output(do(�=u); a):But this is simply test(�; a) = test(�=u; a);which is the de�nition of security for ; given by De�nition 3. 2PVS TreatmentOne way to specify in PVS that each domain induces an equivalence relation on states isas follows.view_equiv(u): (equivalence?[state])

3.4. Unwinding 67The trouble with this approach is that PVS does not provide highly automated reasoningsupport for equivalence relations.6 Another way to specify this property is to hypothesizea function view(s; u) that gives the abstract \view" of state s, as seen by domain u. Thenwe can state that two states s and t are view equiv as far as u is concerned if view(s; u) =view(t; u). Using this approach, the properties of view equiv will follow by equality reasoning(which PVS automates very e�ectively). We specify this treatment in PVS as follows.V : TYPE+view(s, u): Vview_equiv(u)(s, t): bool = view(s, u) = view(t, u)Next, we can specify output consistent and give a PVS rendition of Lemma 1. The maincondition of Lemma 1, namely u 6; v � do(�) v� do(�=u);is likely to be needed again, so we name it view consistent and refer to it in the speci�cationof Lemma 1. Output consistent is speci�ed as a Boolean constant, and view consistent asa Boolean function. Recall the speci�cation of secure for discussion of these choices. 8output_consistent: bool = FORALL a, s, t:view_equiv(dom(a))(s, t) IMPLIES output(s, a) = output(t, a)view_consistent(alpha) : bool = FORALL u, v:u |> v IMPLIES view_equiv(v)(do(alpha), do(alpha / u))lemma1: LEMMAoutput_consistent AND view_consistent(alpha) IMPLIES secure(alpha)The lemma is proved by (grind).7 2Continuing the ordinary mathematical development, we next de�ne constraints on in-dividual state transitions.De�nition 5 Let M be a view-partitioned system and ; a policy. We say that M locallyrespects ; if dom(a) 6; v � s v� step(s; a)and that M is step-consistent ifs v� t � step(s; a) v� step(t; a):2 6It should, and a future version of PVS will do so.7Experts may notice a potential problem in the way alpha is quanti�ed in this form of lemma1; we discussthis point later.

68 Chapter 3. Noninterference and the Unwinding TheoremWe now have the local conditions on individual state transitions that are su�cientto guarantee security. This result is a version of the unwinding theorem of Goguen andMeseguer[GM84].Theorem 1 (Unwinding Theorem) Let ; be a policy and M a view-partitioned systemthat is1. output-consistent,2. step-consistent, and3. locally respects ;.Then M is secure for ;.Proof: We use proof by induction on the length of � to establishu 6; v � do(�) v� do(�=u): (3:2)The result then follows by the previous lemma. The basis is the case � = � and is ele-mentary. For the inductive step, we assume the inductive hypothesis for � of length n andconsider a � �. We now need to proveu 6; v � do(a � �) v� do((a � �)=u): (3:3)We assume u 6; v and consider two cases.Case 1: dom(a) = u. In this case, the de�nition of = providesdo((a � �)=u) = do(�=u)and the inductive hypothesis givesdo(�=u) v� do(�):The facts that dom(a) 6; v and that M locally respects ; ensuredo(�) v� step(do(�); a)and we also have, by de�nition,step(do(�); a) = do(a � �): (3:4)Since v� is an equivalence relation, (3.3) follows and we conclude the inductive step inthis case.

3.4. Unwinding 69Case 2: dom(a) 6= u. In this case, the de�nition of = providesdo((a � �)=u) = do(a � (�=u)):The inductive hypothesis gives do(�=u) v� do(�);from which step consistency allows us to deducedo(a � (�=u)) v� do(a � �)and thereby (3.3), to conclude the inductive step in this case.2PVS TreatmentWe de�ne local respect and step consistent as Boolean constants similar to the wayoutput consistent was de�ned.local_respect: bool = FORALL v, s, a:dom(a) |> v IMPLIES view_equiv(v)(s, step(s,a))step_consistent : bool = FORALL u, s, t, a:view_equiv(u)(s,t) IMPLIES view_equiv(u)(step(s,a), step(t,a))The informal proof of the unwinding theorem used an implicit lemma to establish its equa-tion 3.4, and the heart of the proof was an inductive argument that was used to establishformula 3.2. For the PVS treatment, it is convenient to break these out as explicit LEMMAswhich we call lemma2 and lemma3, respectively. The Unwinding Theorem is then stated asthe THEOREM unwinding.lemma2: LEMMA step(do(alpha),a) = do(a o alpha)lemma3: LEMMAlocal_respect AND step_consistent IMPLIES view_consistent(alpha)unwinding: THEOREMlocal_respect AND step_consistent AND output_consistentIMPLIES secure(alpha)Lemma2 is proved by (grind), but the proof of lemma3 is more involved.As with the informal proof, we begin the proof of lemma3 by inducting on alpha.

70 Chapter 3. Noninterference and the Unwinding Theoremlemma3 :|-------f1g (FORALL (alpha: action_list):local_respect AND step_consistent => view_consistent(alpha))Rule? (INDUCT "alpha")Inducting on alpha,this yields 2 subgoals:lemma3.1 :|-------f1g local_respect AND step_consistent => view_consistent(null)The PVS induct strategy tries to infer the correct induction scheme to use from the typeof the given induction variable. Here the variable is alpha, whose type (action list) isan instance of list; this causes PVS to invoke the structural induction scheme for lists.Such structural induction schemes are generated automatically from the speci�cations forabstract data types. The structural induction scheme for the list abstract data type isthe following.list_induction: AXIOM(FORALL (p: [list -> boolean]):p(null)AND(FORALL (cons1_var: T, cons2_var: list):p(cons2_var) IMPLIES p(cons(cons1_var, cons2_var)))IMPLIES (FORALL (list_var: list): p(list_var)));This says that to prove a property p true for all lists, it is su�cient to show that it is true ofthe empty list null (the base case) and, assuming it is true of an arbitrary list cons2 var,that it will also be true of this formed by consing an arbitrary element cons1 var on thefront (the inductive step). PVS has automatically instantiated this general scheme for thepredicate of lemma3 (using higher-order matching) and is inviting us to consider the basecase.lemma3.1 :|-------f1g local_respect AND step_consistent => view_consistent(null)This is easily discharged with (grind), and PVS then presents us with the inductive step.

3.4. Unwinding 71Rule? (GRIND)� � � many rewrites omittedThis completes the proof of lemma3.1.lemma3.2 :|-------f1g (FORALL (cons1_var: action, cons2_var: list[action]):(local_respect AND step_consistent => view_consistent(cons2_var))IMPLIES local_respect AND step_consistent=> view_consistent(cons(cons1_var, cons2_var)))The de�nitions view consistent and view equiv are artefacts of our speci�cationand should always be expanded. We instruct the prover to do this by the com-mand (AUTO-REWRITE "view consistent" "view equiv") and then give the command(REDUCE). The latter invokes the core of the grind strategy, but without establishing ad-ditional rewrites.8Rule? (AUTO-REWRITE "view_consistent" "view_equiv")� � �Rule? (REDUCE)� � � many rewrites omittedRepeatedly simplifying with decision procedures, rewriting,propositional reasoning, quantifier instantiation, skolemization,if-lifting and equality replacement,this simplifies to:lemma3.2 :f-1g view(v!1, do(cons2_var!1)) = view(v!1, do(cons2_var!1 / u!1))f-2g local_respectf-3g step_consistentf-4g u!1 |> v!1|-------f1g view(v!1, do(cons(cons1_var!1, cons2_var!1)))= view(v!1, do(cons(cons1_var!1, cons2_var!1) / u!1))In the proof of an inductive step, the general approach is to expand some of the recursivelyde�ned functions appearing below the line so that their components will match some of thoseappearing above the line. Here the appropriate function to expand is the purge function /.We specify that only the instance below the line should be expanded using the + quali�eron the expand command.8The single command (grind :defs nil :rewrites ("view consistent" "view equiv")) could re-place both these commands.

72 Chapter 3. Noninterference and the Unwinding TheoremRule? (EXPAND "/" +)Expanding the definition of /,this simplifies to:lemma3.2 :[-1] view(v!1, do(cons2_var!1)) = view(v!1, do(cons2_var!1 / u!1))[-2] local_respect[-3] step_consistent[-4] u!1 |> v!1|-------f1g (view(v!1, do(cons(cons1_var!1, cons2_var!1)))=view(v!1,IF dom(cons1_var!1) = u!1 THEN do(cons2_var!1 / u!1)ELSE do(cons1_var!1 o (cons2_var!1 / u!1))ENDIF))This sequent contains both the functions cons and o, the former from the induction scheme,and the latter from our own speci�cation. For things to match up, we need to ensure thatonly one for is used. We could expand the in�x o to a cons with either the expand orrewrite commands, but prefer to \contract" the cons to o by rewriting the de�nition ofo in the reverse (right to left) direction. We specify this with the command (REWRITE "o":DIR RL).Rule? (REWRITE "o" :DIR RL)Found matching substitution:alpha gets cons2_var!1,a gets cons1_var!1,Rewriting using o,this simplifies to:lemma3.2 :[-1] view(v!1, do(cons2_var!1)) = view(v!1, do(cons2_var!1 / u!1))[-2] local_respect[-3] step_consistent[-4] u!1 |> v!1|-------f1g (view(v!1, do(cons1_var!1 o cons2_var!1))=view(v!1,IF dom(cons1_var!1) = u!1 THEN do(cons2_var!1 / u!1)ELSE do(cons1_var!1 o (cons2_var!1 / u!1))ENDIF))The condition to the IF expression below the line suggests the case split that needs tobe performed next. We could cause this to be done explicitly using lift-if and split,but smash will do it automatically, and also apply the decision procedures to simplify theresulting formulas.

3.4. Unwinding 73Rule? (SMASH)Repeatedly simplifying with BDDs, decision procedures, rewriting,and if-lifting,this yields 2 subgoals:lemma3.2.1 :[-1] view(v!1, do(cons2_var!1)) = view(v!1, do(cons2_var!1 / u!1))[-2] local_respect[-3] step_consistent[-4] u!1 |> v!1f-5g dom(cons1_var!1) = u!1|-------f1g (view(v!1, do(cons1_var!1 o cons2_var!1))= view(v!1, do(cons2_var!1 / u!1)))The PVS proof is now at a point corresponding to the start of \Case 1" in the informalproof, except that we have already performed the expansion of the purge function /. ThePVS proof proceeds in the same way as the informal proof by invoking the de�nition oflocal respect. Since this de�nition expands to a quanti�ed formula, we immediately usereduce to instantiate its variables and to simplify the result.Rule? (EXPAND "local_respect")Expanding the definition of local_respect,� � �Rule? (REDUCE)� � � rewrites omittedRepeatedly simplifying with decision procedures, rewriting,propositional reasoning, quantifier instantiation, skolemization,if-lifting and equality replacement,this simplifies to:lemma3.2.1 :f-1g view(v!1, do(cons2_var!1))= view(v!1, step(do(cons2_var!1), cons1_var!1))f-2g view(v!1, do(cons2_var!1 / u!1))= view(v!1, step(do(cons2_var!1), cons1_var!1))[-3] step_consistent[-4] u!1 |> v!1[-5] dom(cons1_var!1) = u!1|-------f1g (view(v!1, do(cons1_var!1 o cons2_var!1))= view(v!1, step(do(cons2_var!1), cons1_var!1)))The instances of step(do(cons2 var!1), cons1 var!1) appearing in this sequent areequal, by lemma2, to do(cons1 var!1 o cons2 var!1). Performing this rewrite causesthe two sides of the formula below the line to become identical, and �nishes this branch ofthe proof.

74 Chapter 3. Noninterference and the Unwinding TheoremRule? (REWRITE "lemma2")Found matching substitution:a gets cons1_var!1,alpha gets cons2_var!1,Rewriting using lemma2,This completes the proof of lemma3.2.1.We are now at a point corresponding to \Case 2" in the informal proof, following theexpansion of the purge function /.lemma3.2.2 :[-1] view(v!1, do(cons2_var!1)) = view(v!1, do(cons2_var!1 / u!1))[-2] local_respect[-3] step_consistent[-4] u!1 |> v!1|-------f1g dom(cons1_var!1) = u!1f2g (view(v!1, do(cons1_var!1 o cons2_var!1))= view(v!1, do(cons1_var!1 o (cons2_var!1 / u!1))))As in the informal proof, we apply the de�nition of step consistent and reduce the result.Rule? (EXPAND "step_consistent")Expanding the definition of step_consistent,� � �Rule? (REDUCE)� � � rewrites omittedRepeatedly simplifying with decision procedures, rewriting,propositional reasoning, quantifier instantiation, skolemization,if-lifting and equality replacement,this simplifies to:lemma3.2.2 :[-1] view(v!1, do(cons2_var!1)) = view(v!1, do(cons2_var!1 / u!1))[-2] local_respectf-3g view(v!1, step(do(cons2_var!1), cons1_var!1))= view(v!1, step(do(cons2_var!1 / u!1), cons1_var!1))[-4] u!1 |> v!1|-------[1] dom(cons1_var!1) = u!1[2] (view(v!1, do(cons1_var!1 o cons2_var!1))= view(v!1, do(cons1_var!1 o (cons2_var!1 / u!1))))Here, two applications of lemma2 will cause formula -3 to become identical to formula 2and thereby �nish the proof.

3.4. Unwinding 75Rule? (REWRITE "lemma2")Found matching substitution:a gets cons1_var!1,alpha gets cons2_var!1,Rewriting using lemma2,� � �Rule? (REWRITE "lemma2")Found matching substitution:a gets cons1_var!1,alpha gets cons2_var!1 / u!1,Rewriting using lemma2,This completes the proof of lemma3.2.2.This completes the proof of lemma3.2.Q.E.D.We performed this proof in PVS in a manner that followed the informal proof quiteclosely. Notice, however, that apart from the identi�cation of lemmas there was little \in-telligence" required|the case split, in particular, arose naturally from the two cases in thede�nition of the purge function /. Inductive proofs of this routine kind can be performedautomatically by the induct-and-simplify strategy. This takes arguments, similar tothose of grind, to control the formulas available for rewriting and the way instantiation isperformed. The control tactic that PVS uses for automated rewriting in this strategy isusually able to expand the correct de�nitions in the inductive conclusion. The default selec-tions are adequate for lemma3, and the simple command (induct-and-simplify "alpha")proves the result. Notice that this does not refer to lemma2 (it is essentially proved in-line),so that lemma can be deleted from the speci�cation.The theorem unwinding is proved simply by using lemma1 and lemma3 as rewrites, withthe following command.(grind :defs nil :rewrites ("lemma1" "lemma3"))3.4.1 Implicit Quanti�cationIt might seem that we are done at this point, but we should revisit the choice that secureand view consistent are speci�ed as functions on alpha, rather than as closed booleanconstants. Our motivation for specifying secure in this way was that it would leave thelikely induction variable exposed. We have now seen that induction is performed in theproof of lemma3, whose conclusion is view consistent(alpha), rather than in the proofof unwinding (where secure(alpha) is the conclusion), so our motivation was mistaken.Accordingly, we change the speci�cation of secure to the following formsecure: bool = FORALL a, u, alpha:u |> dom(a) => test(alpha, a) = test(alpha / u, a)

76 Chapter 3. Noninterference and the Unwinding Theoremand modify lemma1 and unwinding to correspond. 9lemma1: LEMMAoutput_consistent AND view_consistent(alpha) => secureunwinding: THEOREMlocal_respect AND step_consistent AND output_consistent => secureWhen we rerun the proofs of these formulas, we �nd that unwinding succeeds, but the prooffor lemma1 fails, leaving us to contemplate the following sequent.lemma1 :f-1g view(dom(a!1), run(s0, alpha!1)) = view(dom(a!1), run(s0, alpha!1 / u!1))|-------f1g view(dom(a!1), run(s0, alpha!2)) = view(dom(a!1), run(s0, alpha!2 / u!1))f2g security_policy(u!1, dom(a!1))f3g output(run(s0, alpha!2), a!1) = output(run(s0, alpha!2 / u!1), a!1)Rule?We notice there are two di�erent Skolem constants present for alpha: alpha!1 and alpha!2.This usually indicates an incorrect instantiation, but here it is directing our attention to alarger problem: the quanti�cation is incorrect in lemma1.Free variables in PVS formulas|such as the alpha of lemma1 in 9|are interpreted asuniversally quanti�ed at the outermost level. When such a variable appears|as here|onlyin the antecedent to an implication, then it is within the scope of an implicit negation andso an outermost universal quanti�er is equivalent to a local existential. This is seldom whatis intended. Thus, for example, the lemma1 of 9 is equivalent to the following, plainlyerroneous, speci�cation.lemma1: LEMMAoutput_consistent AND (EXISTS alpha: view_consistent(alpha)) => secureIn the original speci�cation of lemma1 in 8 (page 67), alpha appeared in the consequentto the implication as well as the antecedent, so this problem did not arise. However, thatspeci�cation binds the same alpha in both view consistent and secure and, on re
ection,we recognize that this is probably not what we intended either; the following (stronger)result more accurately re
ects the informal treatment. 10lemma1: LEMMAoutput_consistent AND (FORALL alpha: view_consistent(alpha))=> (FORALL alpha: secure(alpha))In fact, this treatment is the same as would be obtained by quantifying alpha locally in thede�nitions of both �view consistent and secure.

3.4. Unwinding 7711view_consistent : bool = FORALL u, v, alpha:u |> v IMPLIES view_equiv(v)(do(alpha), do(alpha / u))lemma1: LEMMAoutput_consistent AND view_consistent => securelemma3: LEMMAlocal_respect AND step_consistent IMPLIES view_consistentThese corrected forms of lemma1 are proved by (grind), and do not a�ect the proof ofunwinding. The version of lemma3 in 11 requires (expand "view consistent") and(flatten) to expose alpha before induction can be applied. The speci�cations and proofspresented below and in the appendix use the treatment of 11.Since lemma1 has no external signi�cance and the weak form of 8 is adequate to provethe theorem unwinding, the preference for 10 and 11 is simply that they better re
ectour intent. In cases where the formula concerned forms part of the external speci�cation,however, these issues concerning free variables and the scope and parity of quanti�cationwill vitally a�ect the signi�cance and utility of any results established. There is no foolproofway to be sure these issues are handled correctly: careful introspection and the scrutiny ofknowledgeable reviewers are the best safeguards|as they are for other aspects of formalspeci�cation. As a general rule, the appearance of a free variable only in the antecedent toan implication is almost certainly incorrect; and the appearance of the same free variableon both sides of an implication should be viewed with suspicion. When in doubt, make thequanti�cation explicit.3.4.2 LATEX-printed Speci�cationThe appearance of LaTEX-printed PVS speci�cations can be adjusted by user-suppliedtables that describe how various identi�ers should be rendered in LaTEX. The followingnoninterference.sub �le reproduces the notation used in the traditional mathematicaldevelopment.|> 2 1 {#1 \not\leadsto #2}security_policy 2 1 {#1 \leadsto #2}view_equiv (1 2) 1 {#2 \stackrel{#1}{\sim} #3}o 2 1 {#1 \circ #2}null id 1 {\Lambda}=> 2 1 {#1 \supset #2}state id 1 {\cal S}action id 1 {\cal A}output id 1 {\cal O}output 2 1 {\pvsid{output}(#1,#2)}domain id 1 {\cal D}V id 1 {\cal V}action_list id 1 {{\cal A}^{*}}

78 Chapter 3. Noninterference and the Unwinding TheoremIn this �le, the �rst column gives the PVS identi�er concerned, and the fourth its LaTEXtranslation; the third column speci�es the number of character positions the translation willoccupy (the LaTEX-printer uses this information to calculate where to make line breaks).Since PVS identi�ers may be overloaded, the second column helps identify the instancesconcerned: id refers to a simple identi�er, a number to a function application with thatmany arguments, and a list to a curried application (so view equiv is a function that takesa single argument to yield a function that takes a further two arguments).The results are shown below. Note that, owing to a bug in the current version of thePVS LaTEX-printer, it is the post-conversion form of refl trans rel that is printed; owingto another bug, constructors with arguments are not translated in CASES expressions (e.g.,cons(a, alpha) does not become a � �).noninterference : theorybeginS;A;O : type+s0 : Ss; t : var Sa; b : var Astep(s; a) : Soutput(s; a) : OA� : type = list[A]�; � : var A�a � � : A� = cons(a; �)run(s; �) :recursive S = cases � of � : s; cons(a; �) : step(run(s; �); a) endcasesmeasure � by �D : type+u; v : var Dimporting K conversionre
 trans rel :type =(� (x : PRED[[D;D]]) : re
exive?[D](x) ^ transitive?[D](x))containing eq[D]; : re
 trans relu 6; v : bool = :u; v

3.5. Summary 79dom(a) : D=(�; u) :recursive A� = cases � of� : �;cons(a; �) :if dom(a) = u then � = uelse a � (� = u)endifendcasesmeasure length(�)do(�) : S = run(s0; �)test(�; a) : O = output(do(�); a)secure : bool =8 a; u; � : u 6; dom(a) � test(�; a) = test(� = u; a)V : type+view(u; s) : Vs u� t : bool = view(u; s) = view(u; t)output consistent : bool =8 a; s; t : s dom(a)� t � output(s; a) = output(t; a)view consistent : bool =8 u; v; � : u 6; v � do(�) v� do(� = u)lemma1 : lemma output consistent ^ view consistent � securelocal respect : bool = 8 v; s; a : dom(a) 6; v � s v� step(s; a)step consistent : bool =8 u; s; t; a : s u� t � step(s; a) u� step(t; a)lemma3 : lemma local respect ^ step consistent � view consistentunwinding : theorem local respect ^ step consistent ^ output consistent � secureend noninterference3.5 SummaryIn this chapter we have presented a formal speci�cation and veri�cation of the unwindingtheorem for noninterference security policies. We have shown a translation of the mathe-matical speci�cation into the PVS speci�cation language, and demonstrated the power ofthe induction strategies in PVS in discharging the required lemmas and theorems.

80 Chapter 3. Noninterference and the Unwinding TheoremHere is the output of the PVS command M-x status-proof-theory for theorynoninterference.Proof summary for theory noninterferencerun_TCC1...proved - completerun_TCC2...proved - completerefl_trans_rel_TCC1....................................proved - completedivide_TCC1..proved - completedivide_TCC2..proved - completelemma1...proved - completelemma3...proved - completeunwinding..proved - completeTheory totals: 8 formulas, 8 attempted, 8 succeeded.And here is the output of the PVS command M-x show-proofs-theory for theorynoninterference. Notice that it requires just seven user-supplied proof commands tocomplete this example. The �rst two commands are needed only because we used betaby << as the measure for the recursive function run. We did this for illustration; had weused length(beta) as the measure, the well-founded TCC would not have been generatedand the termination TCC would have continued to be proved automatically by the defaultstrategy, thereby reducing the number of proof commands to �ve.Proof scripts for theory noninterference:noninterference.run_TCC1: proved - complete("" (LEMMA "list_well_founded[action]") (REPLACE-ETA "list_adt[action].<<"))noninterference.run_TCC2: proved - complete("" (TERMINATION-TCC))noninterference.refl_trans_rel_TCC1: proved - complete("" (SUBTYPE-TCC))noninterference.divide_TCC1: proved - complete("" (TERMINATION-TCC))noninterference.divide_TCC2: proved - complete("" (TERMINATION-TCC))

3.5. Summary 81noninterference.lemma1: proved - complete("" (GRIND))noninterference.lemma3: proved - complete("" (EXPAND "view_consistent") (FLATTEN) (INDUCT-AND-SIMPLIFY "alpha"))noninterference.unwinding: proved - complete("" (GRIND :DEFS NIL :REWRITES ("lemma1" "lemma3")))

82

Bibliography[AH96] M. Archer and C. Heitmeyer. Mechanical veri�cation of timed automata: A case study.In IEEE Real-Time Technology and Applications Symp. (RTAS'96), Boston MA, June1996. IEEE Computer Society Press.[ALW93] M. Aagaard, M. E. Leeser, and P. J. Windley. Toward a super duper hardware tactic. InJe�rey J. Joyce and Carl-Johan H. Seger, editors, Higher Order Logic Theorem Provingand its Applications (6th International Workshop, HUG '93), pages 399{412, Vancouver,Canada, August 1993. Number 780 in Lecture Notes in Computer Science, Springer-Verlag.[But93] Ricky W. Butler. An elementary tutorial on formal speci�cation and veri�cation us-ing PVS 2. NASA Technical Memorandum 108991, NASA Langley Research Center,Hampton, VA, June 1993. Revised June 1995. Available, with PVS speci�cation �les,from http://atb-www.larc.nasa.gov/ftp/larc/PVS-tutorial; use only �les marked\revised.".[CD96] Judith Crow and Ben L. Di Vito. Formalizing Space Shuttle software requirements. InFirst Workshop on Formal Methods in Software Practice (FMSP '96), pages 40{48, SanDiego, CA, January 1996. Association for Computing Machinery.[CM95] Victor A. Carre~no and Paul S. Miner. Speci�cation of the IEEE-854
oating-pointstandard in HOL and PVS. In HOL95: Eighth International Workshop on Higher-Order Logic Theorem Proving and Its Applications, Aspen Grove, UT, September 1995.Category B proceedings, available from http://lal.cs.byu.edu/lal/hol95/Bprocs/indexB.html.[COR+95] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Mandayam Srivas. Atutorial introduction to PVS. Presented at WIFT '95: Workshop on Industrial-StrengthFormal Speci�cation Techniques, Boca Raton, Florida, April 1995. Available, with spec-i�cation �les, from http://www.csl.sri.com/wift-tutorial.html.[Cou93] Costas Courcoubetis, editor. Computer-Aided Veri�cation, CAV '93, volume 697 ofLecture Notes in Computer Science, Elounda, Greece, June/July 1993. Springer-Verlag.[CRSS94] D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. E�ective theorem proving forhardware veri�cation. In Kumar and Kropf [KK94], pages 203{222.[Di 96] Ben L. Di Vito. Formalizing new navigation requirements for NASA's space shuttle. InFormal Methods Europe FME '96, pages 160{178, Oxford, UK, March 1996. Number1051 in Lecture Notes in Computer Science, Springer-Verlag.[EGMS79] B. Elspas, M. Green, M. Moriconi, and R. Shostak. A JOVIAL veri�er. Technical report,Computer Science Laboratory, SRI International, January 1979.83

84 Bibliography[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In Proceedings ofthe Symposium on Security and Privacy, pages 11{20, Oakland, CA, April 1982. IEEEComputer Society.[GM84] J. A. Goguen and J. Meseguer. Inference control and unwinding. In Proceedings ofthe Symposium on Security and Privacy, pages 75{86, Oakland, CA, April 1984. IEEEComputer Society.[Har96] John Harrison. A Mizar mode for HOL. In Joakim von Wright, Jim Grundy, and JohnHarrison, editors, Theorem Proving in Higher Order Logics: 9th International Confer-ence, TPHOLs '96, pages 203{220, Turku, Finland, August 1996. Number 1125 in Lec-ture Notes in Computer Science, Springer-Verlag. To appear.[Hoo94] Jozef Hooman. Correctness of real time systems by construction. In Langmaack et al.[LdV94], pages 19{40.[HY87] J. Thomas Haigh and William D. Young. Extending the noninterference version of MLSfor SAT. IEEE Transactions on Software Engineering, SE-13(2):141{150, February 1987.[KK94] RamayyaKumar and Thomas Kropf, editors. Theorem Provers in Circuit Design (TPCD'94), volume 910 of Lecture Notes in Computer Science, Bad Herrenalb, Germany,September 1994. Springer-Verlag.[LdV94] H. Langmaack, W.-P. de Roever, and J. Vytopil, editors. Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes in Computer Science,L�ubeck, Germany, September 1994. Springer-Verlag.[Lei69] A. C. Leisenring. Mathematical Logic and Hilbert's "-Symbol. Gordon and Breach SciencePublishers, New York, NY, 1969.[LR93] Patrick Lincoln and John Rushby. Formal veri�cation of an algorithm for interactiveconsistency under a hybrid fault model. In Courcoubetis [Cou93], pages 292{304.[LR94] Patrick Lincoln and John Rushby. Formal veri�cation of an interactive consistency al-gorithm for the Draper FTP architecture under a hybrid fault model. In COMPASS '94(Proceedings of the Ninth Annual Conference on Computer Assurance), pages 107{120,Gaithersburg, MD, June 1994. IEEE Washington Section.[MSR85] P. Michael Melliar-Smith and John Rushby. The Enhanced HDM system for speci�cationand veri�cation. In Proc. VerkShop III, pages 41{43, Watsonville, CA, February 1985.Published as ACM Software Engineering Notes, Vol. 10, No. 4, Aug. 85.[ORS95] SamOwre, John Rushby, and Natarajan Shankar. Analyzing tabular and state-transitionspeci�cations in PVS. Technical Report SRI-CSL-95-12, Computer Science Laboratory,SRI International, Menlo Park, CA, July 1995. Available, with speci�cation �les, fromhttp://www.csl.sri.com/csl-95-12.html.[ORSS94] S. Owre, J. M. Rushby, N. Shankar, and M. K. Srivas. A tutorial on using PVS forhardware veri�cation. In Kumar and Kropf [KK94], pages 258{279.[OSR93a] S. Owre, N. Shankar, and J. M. Rushby. The PVS Speci�cation Language. ComputerScience Laboratory, SRI International, Menlo Park, CA, February 1993. A new editionfor PVS Version 2 is expected in early 1996.[OSR93b] S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS Speci�cation andVeri�cation System. Computer Science Laboratory, SRI International, Menlo Park, CA,February 1993. A new edition for PVS Version 2 is expected in early 1996.

Bibliography 85[PD96] Seungjoon Park and David L. Dill. Veri�cation of the FLASH cache coherence protocol byaggregation of distributed transactions. In 8th ACM Symposium on Parallel Algorithmsand Architectures, pages 288{296, Padua, Italy, June 1996.[RLS79] L. Robinson, K. N. Levitt, and B. A. Silverberg. The HDM Handbook. Computer ScienceLaboratory, SRI International, Menlo Park, CA, June 1979. Three Volumes.[RRV95] Sreeranga Rajan, P. Venkat Rangan, and Harrick M. Vin. A formal basis for structuredmultimedia collaborations. In Proceedings of the 2nd IEEE International Conference onMultimedia Computing and Systems, pages 194{201, Washington, DC, May 1995. IEEEComputer Society.[RSS95] S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-checking with automatedproof checking. In Pierre Wolper, editor, Computer-Aided Veri�cation, CAV '95, pages84{97, Liege, Belgium, June 1995. Volume 939 of Lecture Notes in Computer Science,Springer-Verlag.[RSS96] H. Rue�, N. Shankar, and M. K. Srivas. Modular veri�cation of SRT division. In RajeevAlur and Thomas A. Henzinger, editors, Computer-Aided Veri�cation, CAV '96, pages123{134, New Brunswick, NJ, July/August 1996. Number 1102 in Lecture Notes inComputer Science, Springer-Verlag.[Rud92] Piotr Rudnicki. An overview of the MIZAR project. In Proceedings of the 1992Workshop on Types for Proofs and Programs, pages 311{330, B�astad, Sweden, June1992. The complete proccedings are available from http://www.cs.chalmers.se/pub/cs-reports/baastad.92/, this particular paper is also available separately athttp://web.cs.ualberta.ca/~piotr/Mizar/MizarOverview.ps.[Rus] John Rushby. PVS Bibliography. Menlo Park, CA. Constantly updated; available athttp://www.csl.sri.com/pvs-bib.html.[Rus92] John Rushby. Noninterference, transitivity, and channel-control security policies. Techni-cal Report SRI-CSL-92-2, Computer Science Laboratory, SRI International, Menlo Park,CA, December 1992.[RvHO91] John Rushby, Friedrich von Henke, and Sam Owre. An introduction to formal speci�-cation and veri�cation using Ehdm. Technical Report SRI-CSL-91-2, Computer ScienceLaboratory, SRI International, Menlo Park, CA, February 1991.[Sha93a] N. Shankar. Abstract datatypes in PVS. Technical Report SRI-CSL-93-9, ComputerScience Laboratory, SRI International, Menlo Park, CA, December 1993. Revised July1996.[Sha93b] Natarajan Shankar. Veri�cation of real-time systems using PVS. In Courcoubetis[Cou93], pages 280{291.[SLR78] Jay M. Spitzen, Karl N. Levitt, and Lawrence Robinson. An example of hierarchicaldesign and proof. Communications of the ACM, 21(12):1064{1075, December 1978.[SM95] Mandayam K. Srivas and Steven P. Miller. Formal veri�cation of the AAMP5 micropro-cessor. In Michael G. Hinchey and Jonathan P. Bowen, editors, Applications of FormalMethods, Prentice Hall International Series in Computer Science, chapter 7, pages 125{180. Prentice Hall, Hemel Hempstead, UK, 1995.[SM96] Mandayam K. Srivas and Steven P. Miller. Applying formal veri�cation to the AAMP5microprocessor: A case study in the industrial use of formal methods. Formal Methodsin Systems Design, 8(2):153{188, March 1996.

86 Bibliography[SO96] N. Shankar and Sam Owre. PVS Semantics. Computer Science Laboratory, SRI Inter-national, Menlo Park, CA, 1996. In preparation.[SOR93] N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A Reference Manual.Computer Science Laboratory, SRI International, Menlo Park, CA, February 1993. Anew edition for PVS Version 2 is expected in early 1996.[SS94] Jens U. Skakkeb�k and N. Shankar. Towards a Duration Calculus proof assistant inPVS. In Langmaack et al. [LdV94], pages 660{679.[SSMS82] R. E. Shostak, R. Schwartz, and P. M. Melliar-Smith. STP: A mechanized logic forspeci�cation and veri�cation. In D. Loveland, editor, 6th International Conference onAutomated Deduction (CADE), New York, NY, 1982. Volume 138 of Lecture Notes inComputer Science, Springer-Verlag.

Appendix AAscii Listings of the Speci�cationsA.1 Ascii Listing of the Airline Reservation Speci�cationsThese listings were produced by the PVS M-x alltt-importchain command.A.1.1 Theory basic defsbasic_defs: THEORYBEGINnrows: posnat % Max number of rowsnposits: posnat % Max number of positions per rowrow: TYPE = fn: posnat | 1 <= n AND n <= nrowsg CONTAINING 1position: TYPE = fn: posnat | 1 <= n AND n <= npositsg CONTAINING 1flight: TYPE % Flight identifierplane: NONEMPTY_TYPE % Aircraft typepreference: TYPE % Position preferencepassenger: NONEMPTY_TYPE % Passenger identifierseat_assignment: TYPE = [# seat: [row, position],pass: passenger #]flight_assignments: TYPE = set[seat_assignment]flt_db: TYPE = [flight -> flight_assignments]initial_state(flt : flight): flight_assignments =emptyset[seat_assignment]87

88 Appendix A. Ascii Listings of the Speci�cations% ==% Definitions that define attributes of a particular airplane% ==seat_exists: pred[[plane, [row, position]]]meets_pref: pred[[plane, [row, position], preference]]aircraft: [flight -> plane]END basic_defsA.1.2 Theory opsops: THEORYBEGINIMPORTING basic_defsflt: VAR flightpas: VAR passengerdb: VAR flt_dba,b: VAR seat_assignmentpref: VAR preferenceseat: VAR [row,position]Cancel_assn(flt,pas,db): flt_db =db WITH [(flt) := fa | member(a,db(flt)) AND pass(a) /= pasg]pref_filled(db,flt,pref) : bool =FORALL seat: meets_pref(aircraft(flt), seat, pref)IMPLIES (EXISTS a: member(a, db(flt))AND seat(a) = seat)Next_seat: [flt_db, flight, preference -> [row,position]]Next_seat_ax: AXIOMNOT pref_filled(db, flt, pref) IMPLIESseat_exists(aircraft(flt),Next_seat(db,flt,pref))Next_seat_ax_2: AXIOM(FORALL a: member(a,db(flt)) IMPLIESseat(a) /= Next_seat(db,flt,pref))

A.1. Ascii Listing of the Airline Reservation Speci�cations 89Next_seat_ax_3: AXIOMNOT pref_filled(db, flt, pref) IMPLIESmeets_pref(aircraft(flt),Next_seat(db,flt,pref),pref)pass_on_flight(pas,flt,db): bool =EXISTS a: pass(a) = pas AND member(a,db(flt))Make_assn(flt,pas,pref,db): flt_db =IF pref_filled(db, flt, pref) OR pass_on_flight(pas,flt,db) THENdbELSE LET a = (# seat := Next_seat(db,flt,pref), pass := pas #) INdb WITH [(flt) := add(a, db(flt))]ENDIFLookup(flt,pas,db): [row,position] =seat(epsilon(fa | member(a,db(flt)) AND pass(a) = pasg))% ===% Invariants% ===existence(db): bool =FORALL a,flt: member(a, db(flt)) IMPLIESseat_exists(aircraft(flt), seat(a))uniqueness(db): bool =FORALL a,b,flt: member(a, db(flt)) AND member(b, db(flt))AND pass(a) = pass(b) IMPLIES a = bone_per_seat(db): bool =FORALL a,b,flt: member(a, db(flt)) AND member(b, db(flt))AND seat(a) = seat(b) IMPLIES a = bdb_invariant(db): bool =existence(db) AND uniqueness(db)Cancel_assn_inv: THEOREMdb_invariant(db) IMPLIES db_invariant(Cancel_assn(flt,pas,db))MAe: THEOREMexistence(db) IMPLIES existence(Make_assn(flt,pas,pref,db))

90 Appendix A. Ascii Listings of the Speci�cationsMAu: THEOREMuniqueness(db) IMPLIES uniqueness(Make_assn(flt,pas,pref,db))Make_assn_inv: THEOREMdb_invariant(db) IMPLIES db_invariant(Make_assn(flt,pas,pref,db))initial_state_inv: THEOREMdb_invariant(initial_state)% ===% Invariants Left To Reader% ===Cancel_inv_one_per_seat: THEOREMone_per_seat(db) IMPLIES one_per_seat(Cancel_assn(flt,pas,db))Make_inv_one_per_seat: THEOREMone_per_seat(db) IMPLIES one_per_seat(Make_assn(flt,pas,pref,db))initial_one_per_seat: THEOREMone_per_seat(initial_state)% ===% Putative Theorems% ===Make_Cancel: THEOREMNOT pass_on_flight(pas,flt,db) IMPLIESCancel_assn(flt,pas,Make_assn(flt,pas,pref,db)) = db% <<<<<< Following left to the reader >>>>>>Cancel_putative: THEOREMNOT (EXISTS (a: seat_assignment):member(a,Cancel_assn(flt,pas,db)(flt)) AND pass(a) = pas)Make_putative: THEOREMNOT pref_filled(db, flt, pref) IMPLIES(EXISTS (x: seat_assignment):member(x, Make_assn(flt, pas, pref, db)(flt)) AND pass(x) = pas)Lp2_lem: LEMMA

A.2. Ascii Listing of the Noninterference Speci�cations 91NOT (pref_filled(db, flt, pref) OR pass_on_flight(pas,flt,db))IMPLIES Next_seat(db, flt, pref) =seat(epsilon(fa: seat_assignment |Make_assn(flt, pas, pref, db)(flt)(a)AND pass(a) = pasg))Lookup_putative: THEOREMNOT (pref_filled(db, flt, pref) ORpass_on_flight(pas,flt,db)) IMPLIESmeets_pref(aircraft(flt),Lookup(flt, pas, Make_assn(flt,pas,pref,db)),pref)END opsA.2 Ascii Listing of the Noninterference Speci�cationsThese listings were produced by the PVS M-x alltt-pvs-file command.A.2.1 Theory K ConversionK_conversion[T1, T2: TYPE]: THEORYBEGINt1: VAR T1t2: VAR T2K(t1)(t2): T1 = t1CONVERSION KEND K_conversionA.2.2 Theory noninterferencenoninterference: THEORYBEGINstate, action, output: TYPE+s0: states, t: VAR statea, b: VAR action

92 Appendix A. Ascii Listings of the Speci�cationsstep(s, a): stateoutput(s, a): outputaction_list: type = list[action]alpha, beta: VAR action_list;o(a, alpha): action_list = cons(a, alpha)run(s, beta): RECURSIVE state =CASES beta OFnull: s,cons(a, alpha): step(run(s, alpha), a)ENDCASESMEASURE beta by <<domain: TYPE+u, v: VAR domainIMPORTING K_conversion% IMPORTING more_predsrefl_trans_rel: TYPE = (reflexive?[domain] AND transitive?[domain]) CONTAINING eq[domain]security_policy: refl_trans_rel|>(u, v): bool = NOT security_policy(u, v)dom(a): domain/(beta, u): RECURSIVE action_list =CASES beta OFnull: null,cons(a, alpha): IF dom(a) = u THEN alpha / uELSE a o (alpha / u) ENDIFENDCASESMEASURE length(beta)do(alpha): state = run(s0, alpha)test(alpha, a): output = output(do(alpha), a)secure: bool = FORALL a, u, alpha:u |> dom(a) => test(alpha, a) = test(alpha / u, a)

A.2. Ascii Listing of the Noninterference Speci�cations 93V: TYPE+view(u, s): Vview_equiv(u)(s, t): bool = view(u, s) = view(u, t)output_consistent: bool = FORALL a, s, t:view_equiv(dom(a))(s, t) => output(s, a) = output(t, a)view_consistent: bool = FORALL u, v, alpha:u |> v => view_equiv(v)(do(alpha), do(alpha / u))lemma1: LEMMAoutput_consistent AND view_consistent => securelocal_respect: bool = FORALL v, s, a:dom(a) |> v => view_equiv(v)(s, step(s, a))step_consistent: bool = FORALL u, s, t, a:view_equiv(u)(s, t) => view_equiv(u)(step(s, a), step(t, a))% lemma2: LEMMA step(do(alpha),a) = do(a o alpha)lemma3: LEMMAlocal_respect AND step_consistent => view_consistentunwinding: THEOREMlocal_respect AND step_consistent AND output_consistent => secureEND noninterference

Appendix BA More Advanced Speci�cationfor the Seat Reservation ProblemRicky Butler's Seat Reservation Problem is introduced in a report deliberately described asan \elementary tutorial" for PVS [But93]. Chapter 2 of the present report shows how moreadvanced theorem proving methods can be applied to that example; this appendix further\upgrades" the example by reformulating its speci�cation using more advanced features ofthe PVS language. The particular speci�cation presented here was stimulated by a versiondeveloped by Piotr Rudnicki of the University of Alberta using the \Mizar" system.Mizar is a very interesting system for mechanized mathematics developed in Polandover a period of 20 years under the leadership of Andrzej Trybulec. The system provides alanguage for formalized mathematics based on Tarski-Grothendieck set theory, and a proofchecker driven by very detailed, but quite readable, proof scripts. A remarkable amountof mathematics has been formalized in Mizar and recorded in the Journal of FormalizedMathematics. Information about this journal and about Mizar are available from aWeb pagemaintained by Piotr Rudnicki at http://web.cs.ualberta.ca/~piotr/Mizar/. Rudnickinotes that Mizar is \notorious for its lack of documentation"; we have found the most usefuland accessible sources to be [Har96] and [Rud92].Piotr Rudnicki has developed three treatments of the Seat Reservation Problem in Mizar;they are available from URL http://web.cs.ualberta.ca/~piotr/Mizar/FLT_DB/. The�rst follows our rendition of Ricky Butler's original speci�cation (as presented in Chapter2) quite closely; the second and third use some of the more elaborate types available inMizar to present a much more sophisticated treatment. Rudnicki asked whether PVS couldsupport a similar approach, and this appendix is our response. It uses the predicate subtypesand dependent types of PVS to develop a speci�cation in which the invariants proposedby Ricky Butler are enforced automatically by the PVS type system (this technique isexplained, using a simpler example, in another PVS tutorial [COR+95, pp. 20{24 (examplephone4)]).To begin, we introduce seats, flights, planes, preferences, and passengers asuninterpreted, nonempty types, and also introduce some variables of those types.94

95seats, flights, planes, preferences, passengers: TYPE+s: VAR seatsflt: VAR flightsp: VAR planespref: VAR preferencespass: VAR passengersUnlike Ricky Butler's treatment, where seat positions are characterized by pairs of theform [row, position] and row and position are positive integers, our new treatment ismore abstract and uses the uninterpreted type seats for this purpose. The seat positionsthat exist on a given plane will then be some set of seats that is particular to that kind ofplane. We could specify this by an uninterpreted function seats on plane as follows.seats_on_plane: [plane -> setof[seats]]An equivalent way to write this is the following. 12seats_on_plane(p): setof[seats]You are probably familiar with interpreted functions being speci�ed in this \applicative"form, with an = sign and a de�nition following the type speci�cation, but it can also beused without these to introduce uninterpreted functions.The speci�cation as given in 12 allows the seat positions on a given plane to be theempty set. This causes di�culty later when we need to show that some of the functiontypes we construct are nonempty. (For example, Next seat will return a seat position; ifthe plane concerned has none, then we have a contradiction; PVS excludes this possibilityby generating TCCs that can only be discharged if seats on plane(p) is nonempty.) Wetherefore change the speci�cation to require that all planes have a nonempty set of seatpositions. (As well as being necessary, this is also reasonable|if a plane has no seats, whyis it present in a database for allocating seats?) 13seats_on_plane(p): (nonempty?[seats])The predicate nonempty? is de�ned in the prelude theory sets. The full name of theinstance of this predicate that we need here is sets[seats].nonempty?, but PVS allowspredicate (or other) names from the theory to replace the theory name when no ambiguityresults. Now nonempty?[seats] is a predicate on seats; by enclosing it in parentheses, wechange it to a type: namely the subtype of seats satisfying the nonempty? predicate. Thus,the declaration of 13 is equivalent to the following.seats_on_plane(p): fss: setof[seats] | nonempty?(ss)g

96 Appendix B. A More Advanced Speci�cation for the Seat Reservation ProblemWe will use this construction frequently in the rest of this speci�cation.The requirement that seats on plane(p) be nonempty generates the following TCC toshow that such a function exists.% Existence TCC generated (line 52) for seats_on_plane(p): (nonempty?[seats])seats_on_plane_TCC1: OBLIGATION(EXISTS (x: [planes -> (nonempty?[seats])]): TRUE)It is discharged by the following proof, which in turn requires that seats be a nonemptytype.(INST 1 "lambda (x:planes): fullset[seats]")(GRIND)(INST -1 "epsilon! (x:seats): true")In this proof, the �rst (INST: : :) supplies the function that associates the set of all seats(fullset[seats], de�ned in the prelude theory sets) with each plane. Then (GRIND)expands de�nitions and simpli�es, leaving us to establish that fullset[seats] is not empty.This requires that we exhibit a value of type seats, which is accomplished by the second(INST: : :).Next, we introduce an uninterpreted function called aircraft that gives the plane usedfor a given
ight, and then construct the nonempty set seats on flight(flt) that returnsthe seat positions that exist on the plane used for
ight flt.aircraft(flt): planesseats_on_flight(flt): (nonempty?[seats]) = seats_on_plane(aircraft(flt))This de�nition does not generate a TCC because seats on plane is already known to havethe correct type.We now declare the function meets pref that takes a plane p and a preference pref andreturns the (possibly empty) set of seat positions on the plane that meet the preference.meets_pref(p, pref): setof[(seats_on_plane(p))]This is an example of a dependent type: the return type of the function depends on the valueof its �rst argument. Notice how, unlike that of Chapter 2, this speci�cation guaranteesthat only seat positions that exist on the plane concerned are valid members of the setreturned by meets pref. Notice, too, that this set may be empty|indicating that no seatpositions are acceptable on a given plane.The database flight db is de�ned as a function that takes a
ight and returns a partialinjection from seat positions on that
ight to passengers.flight_db:TYPE = [flt: flights -> (part_inj[(seats_on_flight(flt)), passengers])]

97We will look at how the partial injections are de�ned in terms of the predicate part injshortly, but the crucial point is that a partial injection associates some of the seat positionson the
ight with some of the passengers in such a way that at most one passenger is bookedinto any given seat (i.e., it is a partial function from seats on the plane to passengers), andat most one seat is booked for any given passenger (i.e., it is an injection). This pushes theinvariants (existence, uniqueness, and one per seat) of Ricky Butler's speci�cation intothe type associated with the database. PVS will then enforce those invariants automaticallyby generating appropriate TCCs for the functions that construct values of type flight db.We now turn to the speci�cation of partial injections. PVS is a type theory in which totalfunctions are primitive. It is easy to de�ne the total injections as a predicate subtype of thefunctions (this is done in the PVS prelude), but partial functions are slightly more di�cult.One way to de�ne a partial function from A to B, say, is as the following dependently typedrecord.part_fun: TYPE = [# dom: setof[A], fun: [(dom) -> B] #]Application of a part fun pf to an argument x is then written fun(pf)(x).1 This can bemade more attractive by using a conversion.pf: VAR part_funpfun_appl(pf): [(dom(pf)) -> B] = LAMBDA (x:(dom(pf))): fun(pf)(x)CONVERSION pfun_applyWith this construction, we can write simply pf(x).It is perfectly feasible to extend this construction to specify the partial injections, butfor variety, and to be closer to the Mizar set-theoretic treatment, we will use an alterna-tive approach here. This is speci�ed in the theory rel as fun shown in Figure B.1. Inset theory, (partial) functions are just special kinds of relations, so this theory begins byidentifying relations from A to B with predicates on the pair [A, B]. The domain and rangeof a relation are de�ned in the obvious manner, and then the predicates functional andinjective are de�ned. These identify those relations that have the special property of be-ing a function, or an injection, respectively. Those relations that have both these propertiesare the partial injections, speci�ed by the predicate part inj, and its associated predicatesubtype (part inj).We de�ne the empty partial injection null inj and then the functions reldel 1 andreldel 2. The former takes a partial injection from A to B, and a value a of type A, andreturns a new partial injection from which all pairs of the form (a, x) (there can have beenat most one) have been removed; the latter is de�ned dually for values x of type B. Thesethree functions generate the following TCCs, which ensure that the values they constructreally are partial injections.1PVS will generate a TCC to ensure member(x, dom(pf)).

98 Appendix B. A More Advanced Speci�cation for the Seat Reservation Problemrel_as_fun[A: TYPE, B: TYPE]: THEORYBEGINa, b: VAR Ax, y: VAR Brel: TYPE = pred[[A, B]]R: VAR reldomain(R): setof[A] = fa | EXISTS x: R(a, x)grange(R): setof[B] = fx | EXISTS a: R(a, x)gfunctional(R): bool = FORALL a, x, y: R(a, x) & R(a, y) => x = yinjective(R): bool = FORALL a, b, x: R(a, x) & R(b, x) => a = bpart_inj(R): bool = functional(R) AND injective(R)null_inj: (part_inj) = emptyset[[A, B]]reldel_1((R: (part_inj)), a): (part_inj) = f(b, y) | R(b, y) AND a /= bgreldel_2((R: (part_inj)), x): (part_inj) = f(b, y) | R(b, y) AND x /= ygapply((R: (part_inj)), (a: (domain(R)))):(range(R)) = choose! (x: (range(R))): R(a, x)invapply((R: (part_inj)), (x: (range(R)))):(domain(R)) = choose! (a: (domain(R))): R(a, x)update_ok: LEMMALET newR = add((a, x), R) INpart_inj(R) AND NOT member(a, domain(R)) AND NOT member(x, range(R))IMPLIES part_inj(newR)AND apply(newR, a) = x AND invapply(newR, x) = aEND rel_as_funFigure B.1: Partial Injections De�ned as a Subtype of Relations

99% Subtype TCC generated (line 17) for emptyset[[A, B]]null_inj_TCC1: OBLIGATION part_inj(emptyset[[A, B]])% Subtype TCC generated (line 19) for f(b, y) | R(b, y) AND a /= bgreldel_1_TCC1: OBLIGATION(FORALL (R: (part_inj), a): part_inj(f(b, y) | R(b, y) AND a /= bg))% Subtype TCC generated (line 20) for f(b, y) | R(b, y) AND x /= ygreldel_2_TCC1: OBLIGATION(FORALL (R: (part_inj), x): part_inj(f(b, y) | R(b, y) AND x /= yg))The �rst of these is proved automatically by the default (subtype-tcc) strategy. Theother two need a little guidance; a suitable proof for the second is the following.(GRIND :IF-MATCH NIL)(("1" (HIDE -1 1 2) (REDUCE))("2" (HIDE -2 1) (REDUCE)))The third is proved similarly. The (HIDE: : :) commands remove formulas that would oth-erwise cause PVS's heuristic instantiation to pick the wrong match.The function apply takes a partial injection and an element of its domain and returnsthe corresponding element of its range; invapply works dually|given an element of therange, it returns the corresponding element of the domain. These de�nitions generate thefollowing TCCs (which are proved automatically by the default (subtype-tcc) strategy)to ensure that the values they return really are in the range and domain, respectively, ofthe partial injection concerned.% Subtype TCC generated for LAMBDA (x: (range(R))): R(a, x)apply_TCC1: OBLIGATION(FORALL (R: (part_inj), a: (domain(R))):nonempty?[(range(R))](LAMBDA (x: (range(R))): R(a, x)))% Subtype TCC generated for LAMBDA (a: (domain(R))): R(a, x)invapply_TCC1: OBLIGATION(FORALL (R: (part_inj), x: (range(R))):nonempty?[(domain(R))](LAMBDA (a: (domain(R))): R(a, x)))The lemma update ok says that if we take a partial injection R and values a of type A,not in the domain of R, and x of type B, not in the range of R, and add the association (a,x) to R, then we obtain a new relation newR that is a partial injection and, furthermore,apply(newR,a) = x and invapply(newR, x) = a. (The function add is from the preludetheory sets.) This lemma generates the following TCCs.

100 Appendix B. A More Advanced Speci�cation for the Seat Reservation Problem% Subtype TCC generated (line 31) for aupdate_ok_TCC1: OBLIGATION(FORALL (R: rel, a: A, newR, x: B):newR = add[[A, B]]((a, x), R)AND(part_inj(R)AND NOT member[A](a, domain(R)) AND NOT member[B](x, range(R)))AND part_inj(newR)IMPLIES domain(newR)(a))% Subtype TCC generated (line 31) for xupdate_ok_TCC2: OBLIGATION(FORALL (R: rel, a: A, newR, x: B):newR = add[[A, B]]((a, x), R)AND(part_inj(R)AND NOT member[A](a, domain(R)) AND NOT member[B](x, range(R)))AND part_inj(newR) AND apply(newR, a) = xIMPLIES range(newR)(x))The �rst of these is discharged by(SKOSIMP) (HIDE -2 -3 1 2) (GRIND)and the second by a similar proof.The lemma itself requires the following proof. The stew strategy disposes of the �rstconjunct in the conclusion and generates a subgoal for each of the other two conjuncts;these are proved by appeal to the epsilon ax axiom from the prelude.(STEW :LAZY-MATCH T :IF-MATCH ALL)(("1"(USE "epsilon_ax[(domain(add((a!1, x!1), R!1)))]")(("1" (REDUCE)) ("2" (INST 1 "a!1") (REDUCE))))("2"(HIDE -1 -2)(USE "epsilon_ax[(range(add((a!1, x!1), R!1)))]")(("1" (REDUCE :IF-MATCH ALL)) ("2" (INST 1 "x!1") (REDUCE)))))Having de�ned the partial injections, we import the theory rel as fun and proceedwith the main speci�cation. We de�ne an initial database in which every
ight has noseats assigned and then de�ne the function pass on flight which tells us whether a givenpassenger has a seat booked on a given
ight in the database.

101IMPORTING rel_as_funinitial_db(flt): (part_inj[(seats_on_flight(flt)), passengers]) = null_injdb: VAR flight_dbpass_on_flight(pass, flt, db): bool = member(pass, range(db(flt)))seat_filled_on_flight(flt, db, (s: (seats_on_flight(flt)))): bool =member(s, domain(db(flt)))pref_filled(db, flt, pref): bool =FORALL (s: (seats_on_flight(flt))):meets_pref(aircraft(flt), pref)(s) => seat_filled_on_flight(flt, db, s)We also de�ne a dual function seat filled on flight that tells us whether a given seat hasbeen booked on a given
ight in the database. Notice that because of the dependent typing,the arguments to this function are given in a di�erent order than those for pass on flight.(PVS typechecks from left to right, and therefore needs to encounter the argument flt be-fore the dependently typed (s: (seats on flight(flt))).) We then de�ne the predicatepref filled, which is true when all seats meeting a given preference have been �lled on agiven
ight. This de�nition generates the following TCC, which is discharged automaticallyby the default (subtype-tcc) strategy.% Subtype TCC generated (line 85) for spref_filled_TCC1: OBLIGATION(FORALL (db, flt, s: (seats_on_flight(flt))):(seats_on_plane(aircraft(flt)))(s));Now we can de�ne the �rst of the functions that update the database. Cancel assndeletes any booking for a given passenger on a given
ight from the database.Cancel_assn(flt, pass, db): flight_db =db WITH [(flt) := reldel_2(db(flt), pass)]Since reldel 2 is known to return a partial injection, no TCC needs to be generated toensure that Cancel assn maintains the properties of the database.To develop the function Make assn that creates a new booking in the database, we beginwith the function Next seat, which returns a vacant seat on a given
ight matching a givenpreference (if possible). In Chapter 2, we speci�ed this as an uninterpreted function and thenconstrained its properties by means of axioms. The danger with axioms is that they may beinconsistent|or, at least, not demonstrably consistent|as was the case in Chapter 2 beforewe added the new ax axiom. If we were to give a de�nition to the Next seat function, thenwe will be assured of its consistency (provided all its TCCs are proved), but may suggestan implementation when we really only want to indicate constraints. De�nitions involving

102 Appendix B. A More Advanced Speci�cation for the Seat Reservation Problemchoose or epsilon su�er less than others from this disadvantage, but they complicatetheorem proving (it is generally necessary either to cite epsilon ax, or to prevent expansionof the de�nition and to cite a lemma). Also, the fact that epsilon returns an arbitrarymember of its type when the predicate is unsatis�able is an obstacle to many readers.Fortunately, the type system of PVS is su�ciently rich that it provides a way to escapethe horns of this dilemma: we indicate properties the function should possess in its type.(In essence the return type will be a dependent predicate subtype equivalent to the conjunc-tion of the axioms intended to constrain the function.) Like an axiomatic treatment, thisapproach indicates constraints without suggesting an implementation; unlike an axiomatictreatment, however, we are assured of soundness because PVS will generate a TCC thatforces us to exhibit a function of the required type (which is equivalent to demonstratingconsistency of the axioms). The TCC can be discharged by constructions involving chooseor epsilon|but unlike a de�nitional speci�cation, it is clear that these are removed fromthe main line of the speci�cation and are not suggestive of an implementation. In additionto these bene�ts, this approach assists automated theorem proving because the propertiesof the function are recorded in its type, where the theorem prover can make productive useof them.In the case of Next seat, we write its speci�cation as follows. 14Next_seat(db, flt, (pref: fp:preferences | NOT pref_filled(db,flt,p)g)):f (s: (seats_on_flight(flt))) |meets_pref(aircraft(flt), pref)(s)AND NOT seat_filled_on_flight(flt, db, s)gThis says that if not all the seats satisfying the given preference have been booked, thenNext seat returns a seat position that does exist on the plane concerned, that meets thepreference, and that is not already booked. Notice the dependent typing for the thirdargument to Next seat; this is similar to that which we saw in Chapter 2 for the functionLookup, and is needed for a similar reason: to ensure that the return type is not empty.PVS generates the following two TCCs from this declaration.

103% Subtype TCC generated (line 89) for sNext_seat_TCC1: OBLIGATION(FORALL (flt, (s: (seats_on_flight(flt)))):(seats_on_plane(aircraft(flt)))(s));% Existence TCC generated (line 87) for% Next_seat(db, flt,% (pref: fp: preferences | NOT pref_filled(db, flt, p)g)):% f((s: (seats_on_flight(flt)))) | meets_pref(aircraft(flt), pref)(s)% AND NOT seat_filled_on_flight(flt, db, s)g%Next_seat_TCC2: OBLIGATION(EXISTS (x: [d:[db: flight_db, flt: flights, fp: preferences | NOT pref_filled(db, flt, p)g]-> f((s: (seats_on_flight(PROJ_2(d)))))| meets_pref(aircraft(PROJ_2(d)), PROJ_3(d))(s)AND NOT seat_filled_on_flight(PROJ_2(d), PROJ_1(d), s)g]):TRUE);The �rst of these is discharged automatically by the default (subtype-tcc) strategy. Thesecond, which requires us to demonstrate that the function type speci�ed for Next seat isinhabited, is discharged by the following proof.(INST 1 "LAMBDA(db, flt, (pref: p:preferences| not pref_filled(db,flt,p))):choose! (s: (seats_on_flight(flt))):meets_pref(aircraft(flt), pref)(s)AND NOT seat_filled_on_flight(flt, db, s)")(("1" (GRIND)) ("2" (GRIND)))The (INST: : :) command constructs a suitable function using choose; notice that the sub-stitution can be developed by a simple transformation on the type given for Next seat.The two (GRIND) commands discharge TCC subgoals generated by the instantiation.Our speci�cation departs from Piotr Rudnicki's with this treatment of Next seat. Hisspeci�cation can be approximately rendered as follows,Next_seat_variant(db, flt, pref): (seats_on_flight(flt)) =epsilon! (s: (seats_on_flight(flt))):meets_pref(aircraft(flt), pref)(s)AND NOT seat_filled_on_flight(flt, db, s)although he uses an auxiliary predicate flight pref that returns the seat positions on theaircraft satisfying the given preference; his version of Next seat then removes the seatsalready booked and chooses one of the remainder. Next seat variant does it slightlydi�erent order by restricting the initial choice to those seats that are not already �lled.The type given for Next seat in 14 ensures that the axioms required in the treatmentof Chapter 2 are provable as lemmas here. They can be stated as follows.

104 Appendix B. A More Advanced Speci�cation for the Seat Reservation ProblemNext_seat_ax: LEMMANOT pref_filled(db, flt, pref)IMPLIES member(Next_seat(db, flt, pref), seats_on_flight(flt))Next_seat_ax_2: LEMMANOT pref_filled(db, flt, pref)IMPLIES NOT seat_filled_on_flight(flt, db, Next_seat(db, flt, pref))Next_seat_ax_3: LEMMANOT pref_filled(db, flt, pref)IMPLIES meets_pref(aircraft(flt), pref)(Next_seat(db, flt, pref))All of these are proved by (grind), though this is something of a sledgehammer given therichness of the type information that PVS has available. More surgical proofs are (expand"member") for the �rst and (skosimp)(assert) for the other two.Next seat ax 3 generates the following TCC.% Subtype TCC generated (line 90) for Next_seat(db, flt, pref)Next_seat_ax_3_TCC1: OBLIGATION(FORALL (db: flight_db, flt: flights, pref: preferences):NOT pref_filled(db, flt, pref)IMPLIES(seats_on_plane(aircraft(flt)))(Next_seat(db, flt, pref)))This is very similar to Next seat ax and can be discharged by the following proof.(USE "Next_seat_ax") (EXPAND "seats_on_flight") (EXPAND "member")Finally, we can de�ne the function that adds a seat booking to the database.Make_assn(flt, pass, pref, db): flight_db =IF pref_filled(db, flt, pref) OR pass_on_flight(pass, flt, db)THEN dbELSE db WITH [(flt) := add((Next_seat(db, flt, pref), pass), db(flt))]ENDIFIf the preference is �lled or the passenger is already on the
ight, the database is leftunchanged, otherwise the seat returned by Next seat is booked for the passenger on the
ight concerned. A TCC is generated to ensure that the type constraints on the applicationof Next seat are satis�ed.% Subtype TCC generated (line 107) for prefMake_assn_TCC1: OBLIGATION(FORALL (db, flt, pass, pref):NOT (pref_filled(db, flt, pref) OR pass_on_flight(pass, flt, db))IMPLIES NOT pref_filled(db, flt, pref));

105This is discharged automatically by the default (subtype-tcc) strategy.Because the database for each
ight is speci�ed to be a partial injection, a second TCCis generated to ensure that this construction preserves the required properties (namely, thateach passenger has at most one seat and each seat at most one passenger).% Subtype TCC generated (line 107) foradd((Next_seat(db, flt, pref), pass), db(flt))Make_assn_TCC2: OBLIGATION(FORALL (db, flt, pass, pref):NOT (pref_filled(db, flt, pref) OR pass_on_flight(pass, flt, db))IMPLIESpart_inj[(seats_on_flight(flt)),passengers](add[[((seats_on_flight(flt))), passengers]]((Next_seat(db, flt, pref), pass),db(flt))));This TCC is equivalent to Make assn inv in the treatment of Chapter 2. Unlike thattreatment, however, where we had to realize for ourselves that we ought to check that ourspeci�cation preserves such an invariant, the present treatment generates it automaticallyas a proof obligation needed to ensure type-correctness. The proof is a straightforwardexpansion of de�nitions followed by appeal to the lemmas update ok and Next seat ax 2.(SKOSIMP)(TYPEPRED "db!1(flt!1)")(STEW :EXCLUDE ("domain" "range" "apply" "invapply" "part_inj"):LEMMAS ("update_ok[(seats_on_flight(flt!1)), passengers]" "Next_seat_ax_2"))The :EXCLUDE: : : simply speeds up the proof by preventing rewriting of de�nitions fromthe theory rel as fun.The \challenge" theorems are essentially identical to those of Chapter 2, except thatCancel putative is stated more neatly.

106 Appendix B. A More Advanced Speci�cation for the Seat Reservation ProblemMake_Cancel: THEOREMNOT pass_on_flight(pass, flt, db)IMPLIES Cancel_assn(flt, pass, Make_assn(flt, pass, pref, db)) = dbCancel_putative: THEOREMNOT pass_on_flight(pass, flt, Cancel_assn(flt, pass, db))Make_putative: THEOREMNOT pref_filled(db, flt, pref)IMPLIES pass_on_flight(pass, flt, Make_assn(flt, pass, pref, db))Lookup(flt, pass, (db: d: flight_db | pass_on_flight(pass, flt, d))):(seats_on_flight(flt)) = invapply(db(flt), pass)Lookup_putative: THEOREMNOT((pref_filled(db, flt, pref) OR pass_on_flight(pass, flt, db)))IMPLIESmeets_pref(aircraft(flt),pref)(Lookup(flt, pass, Make_assn(flt, pass, pref, db)))The function Lookup and the challenge theorem Lookup putative generate the followingTCCs. The �rst ensures that the passenger really is on the
ight concerned (which followsby the dependent typing in the de�nition of Lookup); the second ensures that the databaseupdate performed by Make assn in Lookup putative satis�es the dependent type restrictionin Lookup; the third ensures that the seat returned by Lookup really does exist on the planeconcerned.

107% Subtype TCC generated (line 122) for passLookup_TCC1: OBLIGATION(FORALL (flt, pass, db: d: flight_db | pass_on_flight(pass, flt, d)):range[((seats_on_flight(flt))), passengers](db(flt))(pass));% Subtype TCC generated (line 128) for Make_assn(flt, pass, pref, db)Lookup_putative_TCC1: OBLIGATION(FORALL (db: flight_db, flt: flights,pass: passengers, pref: preferences):NOT(((pref_filled(db, flt, pref) OR pass_on_flight(pass, flt, db))))IMPLIESpass_on_flight(pass, flt, Make_assn(flt, pass, pref, db)));% Subtype TCC generated (line 128) forLookup(flt, pass, Make_assn(flt, pass, pref, db))Lookup_putative_TCC2: OBLIGATION(FORALL (db: flight_db, flt: flights,pass: passengers, pref: preferences):NOT(((pref_filled(db, flt, pref) OR pass_on_flight(pass, flt, db))))IMPLIES(seats_on_plane(aircraft(flt)))(Lookup(flt,pass,Make_assn(flt,pass, pref, db))));The �rst of these is proved by the default (subtype-tcc) strategy; the second appeals tothe theorem Make putative.(SKOSIMP) (USE "Make_putative") (ASSERT)The third follows by the type predicate associated with the return type of Lookup.(SKOSIMP)(TYPEPRED "Lookup(flt!1, pass!1, Make_assn(flt!1, pass!1,pref!1, db!1))")(("1" (EXPAND "seats_on_flight"))("2" (USE "Make_putative") (ASSERT)))The challenge theorems themselves are proved in the following manner.

108 Appendix B. A More Advanced Speci�cation for the Seat Reservation Problemnew_flight_db.Make_Cancel:(SKOSIMP)(APPLY-EXTENSIONALITY :HIDE? T)(APPLY-EXTENSIONALITY :HIDE? T)(TYPEPRED "x!2")(GRIND)new_flight_db.Cancel_putative:(GRIND)new_flight_db.Make_putative:(GRIND) (INST? 3 :WHERE 3) (ASSERT) (REDUCE)new_flight_db.Lookup_putative:(SKOSIMP)(TYPEPRED "db!1(flt!1)")(TYPEPRED "Next_seat(db!1, flt!1, pref!1)")(("1"(STEW :EXCLUDE ("domain" "range" "apply" "invapply" "part_inj"):LEMMAS ("update_ok[(seats_on_flight(flt!1)),passengers]")))("2" (SKOSIMP) (TYPEPRED "s!1") (EXPAND "seats_on_flight")))Some of these proofs are slightly more complicated than the corresponding ones inChapter 2; the additional complexity is generally due to the need to expand a few de�nitionsin order to expose a term whose type predicate is required, or to discharge a TCC side-condition. In other examples, however, the presence of rich type information often simpli�esproofs, and increases their automation. This approach has been exploited to very good e�ectin PVS libraries developed at NASA Langley by Ricky Butler and Paul Miner.In general, the style of speci�cation illustrated here is worth mastering. De�nitions andlemmas can often be stated more simply when a lot of information is provided implicitly inthe types, and the whole process of speci�cation is made less error-prone because the PVStypechecker can provide powerful assistance in the form of TCCs.

