
Transformations in High-Level Synthesis:Formal Spei�ation and EÆient MehanialVeri�ationP. Sreeranga RajanComputer Siene LaboratorySRI InternationalMenlo Park CA 94025 USAsree�sl.sri.omPhone: +1 (415) 859-2873 Fax: +1 (415) 859-2844Otober 1994

AbstratDependeny graphs are used to model data and ontrol ow in hardware and softwaredesign. In high-level synthesis of hardware, optimization and re�nement transforma-tions are used to transform dependeny-graph-based spei�ations at the behavior levelto dependeny-graph-based implementations at the register-transfer level. Register-transfer-level implementations are mapped to gate-level hardware designs by low-levellogi synthesis. In this work, we investigated the spei�ation and mehanial veri�a-tion of the orretness of transformations used in high-level synthesis of hardware.We have provided a formal spei�ation of dependeny graphs, and veri�ed the or-retness of a variety of transformations used in an industrial synthesis framework. Errorshave been disovered in the transformations, and modi�ations have been proposed andinorporated. Further, the formal spei�ation has permitted us to examine the gener-alization and omposition of transformations. In the proess, we have disovered newtransformations that ould be used for further optimization and re�nement than werepossible before. The spei�ation and veri�ation shemes are general enough for ap-pliations in other synthesis frameworks and software design, where a transformationaldesign approah is used.In order to present our work in a onrete ontext, we fous on the high-level synthe-sis part of the SPRITE projet at Philips Researh Laboratories. The transformations inthe high-level synthesis system are used for re�nement and optimization of desriptionsspei�ed in a dependeny graph language alled the SPRITE Input Language (SIL).SIL is an intermediate language used during the synthesis of hardware desribed usinglanguages suh as VHDL, SILAGE and ELLA. Besides being an intermediate language,it forms the bakbone of the TRADES synthesis system of the University of Twente.SIL has been used in the design of hardware for audio and video appliations.We used the Prototype Veri�ation System (PVS) from SRI International to speifyand mehanially verify the orretness of the transformations. The PVS spei�ationlanguage allows us to investigate the orretness problem using a onvenient level of rep-resentation. The PVS veri�er features automati proedures and interative veri�ationrules to hek properties of spei�ations.

Contents
Aknowledgments vi1 Introdution 11.1 Related Work : 61.1.1 LAMBDA : 71.1.2 Formal Ruby : 71.1.3 Digital Design Derivation : 81.1.4 Transformations in SAW : 81.1.5 Veri�ation of Transformations in SILAGE : : : : : : : : : : : : 81.1.6 Synhronized Transitions in LP : : : : : : : : : : : : : : : : : : : 81.1.7 Transformations in Software Design : : : : : : : : : : : : : : : : 92 Overview of SIL 112.1 Strutural Aspets of SIL : 112.2 Behavioral Aspets of SIL : 122.3 Transformations in SIL : 183 Spei�ation and Veri�ation in PVS 213.1 PVS Spei�ation Language : 213.2 PVS Veri�ation Features : 223.3 Notes on Spei�ation Notation : 223.4 Spei�ation and Veri�ation Examples in PVS : : : : : : : : : : : : : : 244 Spei�ation of SIL Graph Struture in PVS 334.1 Port and Port Array : 334.2 Edges : 344.3 Node, Conditional Node and Graph : 354.4 Well-formedness of a SIL Graph : 39i

5 Spei�ation of SIL Graph Behavior and Re�nement 415.1 Behavior : 415.2 Re�nement and Equivalene : 426 Spei�ation and Veri�ation of Transformations 556.1 Overview : 556.2 Common Subexpression Elimination : 566.3 Cross-Jumping Tail-Merging : 576.4 Other Transformations and Proofs : 606.5 Generalization and Composition of Transformations : : : : : : : : : : : 616.6 Investigations into \What-if?" Senarios : : : : : : : : : : : : : : : : : : 616.7 Devising New Transformations : 627 Disussion and Conlusions 697.1 Intent versus Implementation : 697.2 From Informal to Formal Spei�ation : : : : : : : : : : : : : : : : : : : 707.3 Axiomati Approah versus Other Formal Approahes : : : : : : : : : : 717.4 Conlusions and Future Work : 72A De�nitions, Axioms and Theorems 79A.1 De�nitions : 79A.2 Axioms : 83A.3 Theorems : 87B Proof Transripts 95B.1 Common Subexpression Elimination : 95B.2 Cross Jumping Tail Merging : 97

ii

List of Figures1.1 Cross jumping tail merging: inorretly spei�ed in informal doument. 21.2 Example of a dependeny graph with ontrol spei�ation. : : : : : : : : 31.3 SIL transformations and veri�ation in PVS in the ontext of high levelsynthesis. : 52.1 Di�erent kinds of SIL ports. : 112.2 An example of a SIL graph desription. : : : : : : : : : : : : : : : : : : 122.3 SIL node: informal desription. : 132.4 SIL edges: informal desription. : 152.5 SIL Join and Distribute: informal desription. : : : : : : : : : : : : : : : 152.6 Combinational adder: SIL graph repeated over lok yles. : : : : : : : 152.7 Cumulative adder: SIL graph with DELAY node. : : : : : : : : : : : : : 162.8 Cumulative adder: unfolded SIL graph. : : : : : : : : : : : : : : : : : : 162.9 Partial spei�ation of a multiplexor. : 172.10 Implementation spei�ation of a multiplexor. : : : : : : : : : : : : : : : 182.11 Example SIL transformation: retiming. : : : : : : : : : : : : : : : : : : : 194.1 SIL data-ow and sequene edges. : 354.2 SIL onditional node. : 374.3 Node as a subtype of a onditional node. : : : : : : : : : : : : : : : : : : 385.1 Example: re�nement of ports due to non-deterministi hoie. : : : : : : 435.2 Example: array re�nement does not imply every individual port re�nement. 445.3 Using weights for ordering data-ow edges : : : : : : : : : : : : : : : : : 465.4 Using weights to determine join behavior. : : : : : : : : : : : : : : : : : 475.5 Weight when the ondition on a onditional node is false. : : : : : : : : 485.6 Absene of join: exlusive data-ow edge. : : : : : : : : : : : : : : : : : 48iii

5.7 Order preserved by re�nement and optimization. : : : : : : : : : : : : : 515.8 Order preserved by re�nement and exlusive data-ow edge. : : : : : : : 525.9 Graph re�nement: property expressing relation between outputs and in-puts of graphs independent of underlying behavior. : : : : : : : : : : : : 546.1 Common subexpression elimination. : 566.2 Cross-jumping tail-merging: orreted. : : : : : : : : : : : : : : : : : : : 586.3 Cross-jumping tail-merging: inorretly spei�ed in informal doument. 596.4 Cross-jumping tail-merging: generalized and veri�ed. : : : : : : : : : : : 606.5 Cross-jumping tail-merging: inappliable when two nodes are mergedinto one. : 626.6 Further optimization impossible using existing transformations. : : : : : 636.7 Inappliability of ross-jumping tail-merging after ommon subexpressionelimination: due to preondition restritions. : : : : : : : : : : : : : : : 636.8 Inappliability of ommon subexpression elimination after ross-jumpingtail-merging: due to preondition restritions. : : : : : : : : : : : : : : : 646.9 A simple new transformation: obvious, post-fato. : : : : : : : : : : : : 65

iv

List of Tables4.1 PVS types for data-ow edge and sequene edge : : : : : : : : : : : : : 344.2 PVS spei�ation of onditional node as a reord type : : : : : : : : : : 364.3 Node as a subtype of a onditional node : : : : : : : : : : : : : : : : : : 385.1 Using weights for ordering data-ow edges: PVS spei�ation : : : : : : 465.2 Using weights to determine join behavior. : : : : : : : : : : : : : : : : : 475.3 Weight when the ondition on a onditional node is false : : : : : : : : : 485.4 Absene of join: exlusive data-ow edge : : : : : : : : : : : : : : : : : : 495.5 Array version of exlusive data-ow edge : : : : : : : : : : : : : : : : : : 495.6 A theorem on join of exatly two data-ow edges : : : : : : : : : : : : : 505.7 Order preserved by re�nement and optimization : : : : : : : : : : : : : 515.8 Order preserved by re�nement and exlusive data-ow edge : : : : : : : 515.9 Graph re�nement: property expressing relation between outputs and in-puts of graphs independent of underlying behavior : : : : : : : : : : : : 535.10 Prediates for expressing the sameness of nodes : : : : : : : : : : : : : : 546.1 Corretness of ommon subexpression elimination : : : : : : : : : : : : : 586.2 PVS spei�ation of preonditions for ross-jumping tail-merging : : : : 666.3 Corretness of ross- jumping tail-merging : : : : : : : : : : : : : : : : : 676.4 Number of high level inferene rule appliations for various transformations 67
v

AknowledgmentsA major part of the work presented in this report was done at Philips Researh Labora-tories, Eindhoven, The Netherlands, from September 1993 through April 1994. I thankTon Kostelijk for the invitation to work on the projet, and for providing illuminatingsuggestions, support and a homelike environment. I am grateful to Corrie Huijs, WimKloosterhuis, Thijs Krol, Jaap Hofstede, Peter Middelhoek, and Wim Smits for theirooperation, review, and orretions. Thanks to group leader Gerard Beenker for ar-ranging a pleasant stay in Eindhoven and providing onstant support for the projet, andappreiation to the group members for a lively and stimulating atmosphere. Thanks toIskender Agi, Mark Morioni, Peter Neumann, Sam Owre, John Rushby, and N. Shankarfor omments and suggestions, and M.K. Srivas for providing in-depth orretions andremarks. Thanks to Jens Ulrik Skakkebaek of TU Denmark, Jozef Hooman and GeertJanssen of TU Eindhoven, and Paul Miner of NASA for remarks and interesting disus-sions related to this work. I am grateful to Je� Joye of UBC for the enouragement,and for suggesting appliations of the work in software engineering. Thanks to PaulGilmore for detailed observations, and to Alan Makworth and Mabo Ito of UBC forinsightful remarks.

vi

Chapter 1IntrodutionDependeny graphs1 are graph-based spei�ations of data and ontrol ow in a system.They are used to model systems at a high level of abstration in both hardware and soft-ware design. In high-level synthesis of hardware, a sequene of transformations is usedfor re�nement of dependeny-graph-based spei�ations at an abstrat behavior levelinto dependeny-graph-based implementations at the register-transfer level. Further,register-transfer-level implementations ould be onverted to onrete hardware designsby low-level logi synthesis. Typially, dependeny graphs are represented pitorially asgraph strutures with an assoiated behavior. A transformation transforms one graphstruture into another by removing or adding nodes and edges. An informal represen-tation would lead to subtle errors, making it diÆult to verify the orretness of thetransformations. The problem we have addressed in this work is, how the orretnessof transformations on dependeny graphs an be formally spei�ed and veri�ed.The behavior2 of a dependeny graph is the set of all tuples, where eah tuple hasinput data values and orresponding output data values of the dependeny graph. Atransformation is orret if the sequene of behaviors allowed by the implementation isa subsequene of the behaviors permitted by the spei�ation. Trivial implementationsthat allow an empty sequene of behaviors an be ruled out by showing either, thatat least one behavior is allowed by the implementation, or that the implementation isequivalent to its spei�ation with respet to behavior. The solution to the problem ofverifying the orretness of transformations we have sought in this work, is independentof the model of behavior underlying dependeny graphs.A typial transformation employed in high-level synthesis is ross-jumping tail-merging [EMH 93℄, shown in Figure 1.1. In this transformation, two idential nodeson dependeny paths that are never ative at the same time are merged into one node.However, as we found out using the formal approah explained in this paper, the trans-formation does not preserve behavior. Informally, the reason is as follows. In graph G1,1In literature, they are also known as ontrol-ow/data-ow graphs and signal-ow graphs.2Usually known as input/output behavior. 1

Figure 1.1: Cross jumping tail merging: inorretly spei�ed in informal doument.when is false, the value of q0 is arbitrary, and so is the value of p0. If we hoose thevalue of pp0 to be that of p0, the value of pp0 is also arbitrary. In graph G2, when is false, we ould hoose the value of p01 to be that of q11. In this ase, the value ofpp00 is (y1 * y2). Beause the orresponding outputs ould be unequal with identialinputs, the behaviors of the graphs are not equivalent. A orreted and generalizedross-jumping tail-merging transformation is presented in Chapter 6.The main ontributions of this work are the following:� A formal spei�ation of dependeny graphs has been ahieved.� A set of optimization and re�nement transformations on dependeny graphs usedin high level synthesis have been veri�ed. Generalization of transformations havealso been proposed.� Errors have been disovered in the transformations used in industrial strengthhardware design. Modi�ations for the erroneous transformations have been pro-posed and inorporated.� New transformations have been devised that ould be used for further optimizationand re�nement than were possible before.2

Figure 1.2: Example of a dependeny graph with ontrol spei�ation.Formal methods ould be divided into two main ategories: property-oriented meth-ods and model-oriented methods [JMW 90℄. In a property oriented method, the systemunder onsideration is spei�ed by asserting properties of the system, minimizing thedetails of how the system is onstruted. While, in a model-oriented method, the spe-i�ation desribes the onstrution of the system from its omponents. An axiomatiapproah is a property-oriented method. Typially, a small set of properties, alledaxioms, are asserted to be true, while other properties, alled theorems, are derived.In this work, we have hosen a property oriented method. We propose an axiomatispei�ation oupled with an eÆient veri�ation method to study the orretness oftransformations on dependeny graphs. As we disuss later in Chapter 7, an axiomatiapproah does not require us to develop a onrete behavioral model for dependenygraphs, thus enabling it to be simpler and more general than other formal approahes.Dependeny graph3 is a graph-based representation of the behavior of a system. Itonsists of nodes representing operations or proesses, and direted edges representingdata dependenies and data ow through the system. In addition, ontrol ow ouldalso be represented in a dependeny graph in several ways. We show an example of suha graph in Figure 1.2.In order to present our work in a onrete ontext, we onsider a transformationaldesign approah used in the high-level behavioral synthesis system as part of the SPRITEprojet at Philips Researh Labs (PRL). In this approah, transformations are used foroptimization and re�nement of desriptions spei�ed using the SPRITE Input Language(SIL). Desriptions in SIL at a register-transfer level ould eventually be onverted togate-level hardware designs by a logi synthesis appliation suh as PHIDEO at PRL.SIL is an intermediate language used during the synthesis of hardware desribedusing hardware desription languages suh as VHDL [VHD 88℄, SILAGE [Hil 85℄, andELLA [ELL 90℄. It also forms the bakbone of the TRADES synthesis system at theUniversity of Twente. Important features of SIL inlude hierarhy and design free-dom. Design freedom is provided by permitting several implementation hoies for a3In this report, the term dependeny graph inludes ontrol-ow/data-ow graphs and signal-owgraphs. 3

SIL desription. Implementation hoies are onstrained by allowing an implementa-tion suggestion in a SIL desription. The implementation suggestion may be tailoredby using re�nement and optimization transformations. SIL has been used in the designof hardware for audio and video signal proessing appliations suh as a diretion de-tetor for the progressive san onversion algorithm [WMM 94,Mid 94-2℄. In one of theappliations [Mid 94℄, a redution of power onsumption by 50% has been ahieved.Many of the optimization transformations used in SIL are inspired by those usedin ompiler optimization, suh as dead-ode elimination and ommon subexpressionelimination. An optimized SIL graph has to satisfy the original graph with respetto behavior. This satisfation an be guaranteed by showing the orretness of theoptimization transformations. Corretness means that every behavior allowed by anoptimized SIL graph implementation is required to be one of the behaviors allowed byits SIL graph spei�ation. An informal spei�ation of SIL has been presented anddoumented as part of the SPRITE projet [Klo 92,Kro 92℄. A detailed denotationalsemantis of SIL for showing the orretness of transformations has been worked outearlier [HHK 92,HuK 94℄. The optimization and re�nement transformations have beenspei�ed informally as part of the SPRITE projet [EMH 93,Mid 93,Mid 94℄.We use the Prototype Veri�ation System (PVS) [OSR 93℄, an environment for for-mal spei�ation and veri�ation. The PVS spei�ation language, based on typedhigher-order logi, permits an axiomati method to develop spei�ations. This methodentails expressing properties of a system at a onvenient level of abstration. The hoieof a high level of abstration obviates the need to provide a detailed de�nition of the be-havior of dependeny graphs. For example, a behavior model ould be based on behaviorexpressions [MP 83℄, an imperative semantis [Cam 89℄, a denotational model [GGJ93,HuK 94℄, or an operational model [GGJ 93℄. In the axiomati framework we disussin this report, we an ompare desriptions with respet to their behavior, and thusestablish orretness of transformations, without speifying a behavioral model of a SILdesription. However, we stress that this work addresses the transformations as intendedin their informal spei�ation, and not veri�ation of the software implementations oftransformations. We show SIL and our work in the ontext of the synthesis system inFigure 1.3.The rest of this report is organized as follows: Chapter 2 gives an overview of SIL. InChapter 3, we give a brief desription of the PVS system. In Chapter 4, we desribe thespei�ation of struture of SIL graphs, while in Chapter 5 we desribe the spei�ationof behavior, re�nement, and equivalene of SIL graphs. We present the spei�ationand veri�ation of transformations in Chapter 6. In that hapter, we also illustrate howour generalization and omposition of transformations leads to new transformations forfurther optimization and re�nement than would have been possible before. Finally,following a general disussion, onlusions are summarized in Chapter 7. A listing ofthe spei�ation of SIL and its veri�ed properties as it appears in PVS is given inAppendix A. Transripts of the veri�ation in PVS for two transformations disussed4

Figure 1.3: SIL transformations and veri�ation in PVS in the ontext of high levelsynthesis.

5

in detail in this paper are listed in Appendix B. In the remainder of this hapter, wedisuss related work done in the past.1.1 Related WorkThere have been some e�orts in analysis and veri�ation of re�nement transformationsin the past. However, few have dealt with transformations on dependeny graphs ingeneral. Most of the e�orts have onentrated on speialized hardware desriptionlanguages and programming languages.A formal model was proposed for verifying orretness of high-level transformationsby MFarland and Parker [MP 83℄. Transformations used in YIF (Yorktown InternalForm) [YIF 88℄ have been proved to be behavior preserving [Cam 89℄. In this work,a strong notion of behavior equivalene based on an imperative semantis tied to apartiular model of representation is used. A formal system using transformations forhardware synthesis has been disussed by Fourman [Fou 90℄. We briey disuss this workin Setion 1.1.1. A synthesis system for a language based on an algebrai formalism hasbeen presented by Jones and Sheeran [Jon 90℄, and its formalization has been presentedby Rossen [Ros 90℄. This e�ort is explained briey in Setion 1.1.2. Another algebraiapproah to transformational design of hardware has been worked out by Johnson [Joh94℄. A short disussion on this approah is presented in Setion 1.1.3. In the work ontying formal veri�ation to silion ompilation [JRS 91℄, a preliminary study with anemphasis on the use of formal veri�ation at higher levels of VLSI design was presented.Corretness of register-transfer-level transformations for sheduling and alloation hasbeen dealt with in [Vem 90℄.An automati method for funtional veri�ation of retiming, pipelining and bu�er-ing optimization has been presented by Kostelijk [KoW 93℄. It has been implemented ina CAD tool alled RetLab as part of PHIDEO at PRL. A formal analysis of transforma-tions used in Systems Arhitet Workbenh (SAW) high-level synthesis was studied byMFarland [MF 93℄. This work is disussed briey in Setion 1.1.4. A post-fato veri-�ation method for omparing logi level designs against a restrited lass of data-owgraphs in SILAGE was presented by Aelten and others [AAD 93,Ael 94℄. Denotationaland operational models of generalized data-ow graphs have been developed, but theyhave not been used to study the orretness of transformations [GGJ 93℄. A formaliza-tion of SILAGE transformations in HOL was studied by Angelo [Ang 94℄. A onisedesription of this work appears in Setion 1.1.5. An approah based on the exeutionmodel for representation languages in BEDROC high-level synthesis system [CBL 92℄has been used to verify the orretness of optimization transformations. A formal veri�-ation of an implementation of a logi synthesis system has been reported by Aagard andLeeser [AaL 94℄, but it does not provide a mehanial veri�ation for transformationsin high-level synthesis. A brief disussion of the work on veri�ation of transformationsin synhronized transitions [Sta 90℄ is given in Setion 1.1.6. In Setion 1.1.7, we briey6

disuss the work on formal spei�ation and veri�ation of re�nement transformationin software design.1.1.1 LAMBDALAMBDA [Fou 90℄ is formal system based on higher order logi for designing hardwarefrom high level spei�ations. In this formalism, a design state is represented as aninferene rule derived within the framework of higher order logi. A re�nement is arule derived within this logi that an be applied to an abstrat design state to arriveat a onrete design state. The di�erent kinds of re�nements that are applied aretemporal, data and behavioral. However, a de�nite set of re�nement and optimizationtransformations have not been presented. ELLA, a hardware desription language hasbeen formalized in LAMBDA.1.1.2 Formal RubyIn this work, an algorithmi spei�ation of sequential and ombinational iruits isspei�ed in a language alled Ruby [Jon 90℄, based on an algebrai formalism. Thealgebrai formalism onsists of relations and operations on relations suh as omposition,inverse and onjugation. Types are de�ned as equivalene relations. Data struturessuh as lists and tuples are used to represent larger hardware strutures. A parallelomposition operator allows to speify hardware omposed of independent modules.Other operators suh as row and olumn are introdued for suint spei�ation ofregular strutures suh as systoli arrays.Ruby has been formalized [Ros 90℄ in a proof heking system alled ISABELLE.ISABELLE, based on type theory, allows syntati embedding other logis. A fragmentof Ruby orresponding to ombinational iruits, delay element, serial omposition andparallel omposition alled Pure Ruby is spei�ed as a type. Properties and proof rulessuh as indution on Ruby terms is then derived on the type de�nition. The rest of thelanguage is then spei�ed using this type.The axiomatization spei�es signals as funtions of time and properties of relationson signals. General properties of Ruby relations have been formalized. However, inorder to derive properties, the semanti embedding involves signals orresponding to airuit implementation. A Ruby spei�ation itself, and hene its formalization even ata high level is geared to be diretly translatable to a iruit realization having a regularstruture. Thus, this formalism is at a lower level of abstration than our formalizationof SIL. A general onept of re�nement is not formalized. The formalism does notpresent a well-de�ned set of transformations, to be used to re�ne and optimize Rubyprograms, other than retiming. 7

1.1.3 Digital Design DerivationThis is an algebrai approah to transformational design of hardware [Joh 94℄. In thisformalism, a funtional spei�ation is translated into a representation of a Determin-isti Finite State Mahine spei�ation alled behavior tables [RTJ 93℄. The behaviortables are transformed into a digital design. In a behavior table, rows represent statetransitions and olumns represent both ontrol and data ow. Some examples of trans-formations are olumn merging, deletion and renaming. The transformations are notformally veri�ed.1.1.4 Transformations in SAWIn this work, a formal analysis of transformations [MF 93℄ used in System Arhitet'sWorkbenh (SAW) [Tho 98℄ is arried out. In this system, hardware desribed at theregister-transfer level or higher using ISPB [Bar 81℄ is translated into behavior expres-sions. Behavior expressions use sequenes and relations on sequenes to represent theinput/output behavior of the spei�ed hardware. Optimization transformations are ar-ried out on the behavior expressions representations. A number of transformations suhas onstant folding and loop unwinding have been analyzed revealing a few oneptualerrors.1.1.5 Veri�ation of Transformations in SILAGESILAGE [Hil 85℄ is an appliative hardware desription language. This language isused to desribe hardware represented as data-ow graphs. Transformations suh asommutativity and retiming are used to optimize and re�ne SILAGE desriptions. Inthis work [Ang 94℄, the syntax and semantis of SILAGE programs have been formalizedas prediates in HOL [GoM 93℄. The denotational semantis of SILAGE have beenformalized in HOL. The equivalene of SILAGE programs is spei�ed with respet tothis denotational semantis. The transformations are then spei�ed as funtions fromone formal SILAGE program to another. The orretness of transformations are thusveri�ed with respet to the denotational semanti notion of equivalene.1.1.6 Synhronized Transitions in LPSynhronization Transitions (ST) [Sta 90℄ is a formalism to speify states and transitionsbetween states. It is based on UNITY [UNI 88℄ model of omputation as a olletionof atomi onditional assignments to state variables without expliit ow of ontrol.The transitions are spei�ed by guarded ommands. State variables model storage andsharing of state variables model ommuniation. This is unlike message passing inCSP [Hoa 85℄ formalism and token passing in SIL. There is no onept of loks andsequening. The temporal behavior is determined by guards. The formalism is geared8

towards diret realizations in synhronous and asynhronous iruits. The optimizationand re�nement transformations are not de�ned in the language. The onditions to besatis�ed by an abstration funtion, mapping a onrete state set to an abstrat stateset have been presented.The spei�ation that an ST program has to satisfy an be desribed as an invariant.An ST program ould then be diretly translated into Larh Prover (LP) [GaG 89℄,and invariants translated as proof obligations to be disharged. LP is a rewrite ruleprover based on �rst order equational logi. Thus, an ST program an be both diretlytranslated to LP and veri�ed, and realized in hardware through synthesis.1.1.7 Transformations in Software DesignThere have been several e�orts in spei�ation and veri�ation of re�nements usedin program development from high level spei�ations Most of the e�orts hoose aspei�ation formalism and develop a notion of orretness, and an assoiated set oftransformations based on the semantis of the formalism.The re�nement alulus [Ba 88℄ for spei�ations based on Dijkstra's guarded om-mand language and weakest preondition semantis has been formalized in HOL [WrS91℄. Transformations suh as data re�nement and superposition have been veri�ed to beorret. A formalization of inremental development of programs from spei�ations fordistributed real-time systems has been worked out in PVS [Hoo 94℄. In this formalism,an assertional method based on a ompositional framework of lassial Hoare triples isdeveloped for step-wise re�nement of spei�ations into programs.The KIDS [Kid 90℄ system is a program derivation system. High level spei�ationswritten in a language alled Re�ne are transformed by data type re�nements and op-timization transformations suh as partial evaluation, �nite di�erening, into a Re�neprogram.

9

10

Chapter 2Overview of SILThe desriptions in SIL are haraterized as graphs. They are used to desribe syn-hronous systems. A denotational semantis of SIL has been worked out by Huijs [HuK94℄. The behavior of a SIL graph is derived from the behaviors of strutural build-ing bloks of the graph. We briey explain the strutural aspets in setion 2.1, thebehavioral aspets in Setion 2.2, and the transformational approah in Setion 2.32.1 Strutural Aspets of SILThe basi building bloks of a SIL graph are the nodes for operations suh as addition,multipliation, and multiplexing. The nodes have ports (also known as aess points)for input, output, and an optional ondition input. Every port is assoiated with a type,whih spei�es the set of data values that the port an hold. We show the di�erent kindsof port in Figure 2.1.While input and output ports an be of any type, a ondition input port is alwaysBoolean. A node with ondition input port is known as a onditional node to stress thepresene of the ondition inputs.The ports of the nodes are onneted by edges. SIL has di�erent kinds of edges, ofwhih, we address sequene edge and data-ow edge:
Figure 2.1: Di�erent kinds of SIL ports.11

Figure 2.2: An example of a SIL graph desription.� A data-ow edge is used to speify the diretion of ommuniation of data valuesfrom a soure port to a sink port. Eah data-ow edge has exatly one port at itshead and exatly one port at its tail. A soure port an be the tail of more thanone data-ow edge, in whih ase it is alled a distribute, and a sink port the headof more than edge, in whih ase it is alled a join.� A sequene edge spei�es an ordering between two ports. The ordering is used toindiate that one of the ports has the overriding inuene on the value of the sinkport, to whih the two ports are onneted by data-ow edges. Eah sequeneedge has exatly one port as its tail and one port as its head. Sequene edgesare primarily used to resolve potential onits at joins. All soure ports that aretails of data-ow edges with a join as a head must be linearly ordered by sequeneedges.� The nodes and edges form a SIL graph. A SIL graph itself an be viewed as onesingle node, and used to onstrut another SIL graph in a hierarhial manner.Figure 2.2 is an example of a SIL graph.2.2 Behavioral Aspets of SILThe behavior of a SIL graph is determined by the behavior of individual nodes andtheir onnetivity, whih determines the data ow. By behavior, we mean the set of12

Figure 2.3: SIL node: informal desription.tuples, where eah tuple has input data values and orresponding data values of internaland output ports. The values of internal and output ports are onstrained by the datarelations of the nodes and the onnetivity of the ports in the graph. When the portsof interest are the outermost input / output (I/O) ports of the SIL graph, then it isalled external or I/O behavior.Eah node is assoiated with a data relation and an order relation. The data relationof a node onstrains the outputs of the node aording to the inputs of the node.That this is a relation, and not a funtion, implies nondeterminism allowing severalimplementation hoies for the nodes. This ontributes to design freedom. Any stateinformation impliit in the node is inorporated into its data relation. In the ase of aonditional node, the output is onstrained by the data relation only when the onditioninput of the node is true. When the ondition input is false, the output is not de�ned.The order relation spei�es onstraints suh as, the output port of a node assumes avalue after the value of its input ports have been asserted. This is partiularly importantin a hierarhially built node. We illustrate these onepts in Figure 2.3.The ommuniation of data values in a SIL graph is modeled by a single tokenow onept, similar to the onept in Signal FLow Graphs (SFG) [Hil 85℄. A tokenis an atomi symbol denoting data. A token generated at an output port (soure) istransmitted through a data-ow edge, emanating from the soure, exatly one. Thetoken is onsumed at an input port (sink) to whih the edge is onneted. The ation ofommuniating a token through a data-ow edge makes the sequene of values that thesink an assume equal to the sequene of values that the soure an assume. However,there is one exeption to this when a token ommuniated to the onditional port ofa onditional node denotes a data value that is false. In this ase, the output port,unonstrained by the data relation of the onditional node, is not de�ned. When suhan output is a soure of a data-ow edge, we fore the sink of suh a data-ow edge toassume some well-de�ned arbitrary value. If we do not make this exeption, the sinkdata values would also not be well-de�ned. Sine a sink is an input port, it is undesirableto have unde�ned inputs in pratie. In terms of the token ow onept, a sequene13

edge from port A to port B desribes that the token �red from B determines the valueof a sink port C onneted to A and B by data-ow edges, overriding the e�et on thevalue of C due to the token �red from A. In suh a ase, we say that the sequene edgeorders port A less than port B. A data-ow edge has an impliit sequene edge from itssoure to its sink. We depit these ideas in Figure 2.4. It should be noted that the tokenow onept is an abstrat model of the behavior of a SIL graph. The sequene edge isan artifat used to resolve onits at joins. A sequene edge does not indiate temporalordering of the data values that ports would assume when a SIL graph is exeuted.The ordering of token ommuniation plays an important part in resolving onitsat ports. One suh onit ours when multiple data-ow edges from di�erent souresonnet into a single sink. Suh a sink port is alled a join, as shown in Figure 2.5.To resolve the onit at a join, �rst all the data-ow edges that have soures thatan assume well-de�ned data values are seleted. Then, among those seleted data-owedges, the edge that is responsible for ommuniating the last token determines thebehavior of the join. With the de�nition of SIL, there will be exatly one suh data-owedge. Thus, the soure ports are linearly ordered, so that the last of the well-de�neddata values arriving at the sink is always spei�ed. If all the data-ow edges to the joinoriginate from soures whose data values are unde�ned, then the data value that anappear at the join is arbitrary.The ounterpart of a join is a soure from whih multiple data-ow edges originate.Suh an port, known as a distribute, is shown in Figure 2.5. If a distribute is a sourethat assumes well-de�ned data values, then the sink to whih it is onneted by a data-ow edge, will assume a sequene of data values idential to the distribute. Otherwise,if the data values that may appear at the distribute are not de�ned, the sequene ofdata values that may appear at the orresponding sink ports are arbitrary.A SIL graph models the behavior of a system during a single lok yle. Thereis no expliit notion of state in a SIL graph. The repetition of a SIL graph, alledunfold ing over multiple lok yles gives the behavior of the system aross lok yles.We depit an example of a ombinational adder in Figure 2.6 unfolded over three lokyles. The DELAY node, one of the primitive nodes in SIL is used to model data owbetween lok yles, and thus enapsulates state information. We an unfold the SILgraph shown in Figure 2.7 over multiple lok yles to result in a SIL graph withoutthe DELAY node. The umulative adder example in Figure 2.8 illustrates the unfoldingof a SIL graph with a DELAY node. It should be noted that omparing two graphs withrespet to behavior would not involve the state information enapsulated in a DELAYnode - sine the behavior of a SIL graph would be a snapshot of the exeution of theSIL graph in a single lok yle. In ontrast, the exeution histories would have to betaken into aount for omparing two state mahine models.The ordering imposed by sequene edges redue non-determinism This leads to arestrition on implementation hoies allowed by its orresponding spei�ation. Weillustrate the implementation of a simple multiplexor in Figure 2.10 by reduing non-determinism in a spei�ation shown in Figure 2.9 using a sequene edge. When is14

Figure 2.4: SIL edges: informal desription.
Figure 2.5: SIL Join and Distribute: informal desription.

Figure 2.6: Combinational adder: SIL graph repeated over lok yles.15

Figure 2.7: Cumulative adder: SIL graph with DELAY node.

Figure 2.8: Cumulative adder: unfolded SIL graph.16

Figure 2.9: Partial spei�ation of a multiplexor.

17

Figure 2.10: Implementation spei�ation of a multiplexor.true, the value of d is a if the order is suh that value of port p1 is ommuniated ratherthan that of port p2. If the order is suh that p2 has the overriding inuene, then thevalue of d is b. While, when is false the value of b is determined by the port p2, dueto the behavior of the onditional port and join disussed earlier in setion 2.2. Thesequene edge in the multiplexor implementation as given in Figure 2.10, imposes thatthe value ommuniated to b is that of port p1 when is true. Again, when is false,port p2 determines the value of b.2.3 Transformations in SILA transformation is viewed as modifying the struture of a graph into another graph.The modi�ation is done by removing and/or adding nodes and edges. Suh modi�a-tions should not violate the behavior of the original graph.In SIL, there are a number of optimization and re�nement transformations [EMH93℄. Many of the optimization transformations are inspired by ompiler optimizationtehniques suh as Common Subexpression Elimination, Cross-Jumping Tail-Mergingand algebrai transformations involving ommutativity, assoiativity, and distributiv-ity. Other optimization transformations inlude retiming. Re�nement transformationsinlude type transformations suh as real to integer, integer to Boolean, and implement-ing data relations of the nodes by onrete operators [Mid 94℄. We show a retimingtransformation example in Figure 2.11
18

Figure 2.11: Example SIL transformation: retiming.

19

20

Chapter 3Spei�ation and Veri�ation inPVSThe Prototype Veri�ation System (PVS) [OSR 93, SOR 93-2℄ is an environment forspeifying entities suh as hardware/software models and algorithms, and verifyingproperties assoiated with the entities. An entity is usually spei�ed by asserting asmall number of general properties that are known to be true. These known propertiesare then used to derive other desired properties. The proess of veri�ation involvesheking relationships that are supposed to hold among entities. The heking is doneby omparing the spei�ed properties of the entities. For example, one an ompare if aregister-transfer-level implementation of hardware satis�es the properties expressed byits high-level spei�ation.PVS has been used for reasoning in many domains, suh as in hardware veri�a-tion [Cyr 93,CRS 94℄, protool veri�ation, and algorithm veri�ation [LOR 93℄. Webriey give the features of the PVS spei�ation language in Setion 3.1, the PVS ver-i�ation features in Setion 3.2 and some notes on the syntax of the PVS spei�ationlanguage in Setion 3.3. Finally, in Setion 3.4 we give some example spei�ations andveri�ation sessions in PVS.3.1 PVS Spei�ation LanguageThe spei�ation language [OSR 93℄ features ommon programming language onstrutssuh as arrays, funtions, and reords. It has built-in types for reals, integers, naturals,and lists. A type is interpreted as a set of values. One an introdue new types by ex-pliitly de�ning the set of values, or indiating the set of values, by providing propertiesthat have to be satis�ed by the values. The language also allows hierarhial struturingof spei�ations. Besides other features, it permits overloading of operators, as in someprogramming languages and hardware desription languages suh as VHDL.21

3.2 PVS Veri�ation FeaturesThe PVS veri�er [SOR 93-2℄ is used to determine if the desired properties hold in thespei�ation of the model. The user interats with the veri�er by a small set of om-mands. The veri�er ontains proedures for boolean reasoning, arithmeti and (on-ditional) rewriting. In partiular, Binary Deision Diagram (BDD) [BRB 90, Jan 93℄based simpli�ation may be invoked for Boolean reasoning. It also features a varietyof general indution shemes to takle large-sale veri�ation. Moreover, di�erent ver-i�ation shemes an be ombined into general-purpose strategies for similar lasses ofproblems, suh as veri�ation of miroproessors [Cyr 93,CRS 94℄.A PVS spei�ation is �rst parsed and type-heked. At this stage, the type ofevery term in the spei�ation is unambiguously known. The veri�ation is done inthe following style: we start with the property to be heked and repeatedly applyrules on the property. Every suh rule appliation is meant to obtain another propertythat is simpler to hek. The property holds if suh a series of appliations of ruleseventually leads to a property that is already known to hold. Examples illustrating thespei�ation and veri�ation in PVS are desribed in Setion 3.4.3.3 Notes on Spei�ation NotationIn PVS spei�ations1, an objet followed by a olon and a type indiates that theobjet is a onstant belonging to that type. If the olon is followed by the key wordVAR and a type, then the objet is a variable belonging to that type.For example,x: integery: VAR integerdesribes x as a onstant of type integer, and y as a variable of type integer2.Sets are denoted by f:::g: they an be introdued by expliitly de�ning the elementsof the set, or impliitly by a harateristi funtion.For example,{0,1,2}{x: integer | even(x) AND x /= 2}1PVS spei�ations in this report are enlosed in framed boxes.2In C, they would be delared as onst int x; int y.22

The symbol j has to be read as suh that, and the symbol /= stands for not equal to ingeneral. Thus, the latter example above should be read as \set of all integers x, suhthat x is an even number and x is not equal to 2".New types are introdued by a key word TYPE followed by its desription as a setof values. If the key word TYPE is not followed by any desription, then it is taken asan unspei�ed type.Some illustrations are:even_time: TYPE = {x: natural| even(x)}unspeified_type: TYPEOne kind of type that is used widely in this work is the reord type. A reord typeis like the strut type in the C programming language. It is used to pakage objets ofdi�erent types in one type. We an then treat an objet of suh a type as one singleobjet externally, but with an internal struture orresponding to the various �elds inthe reord.The following operators have their orresponding meanings:FORALL x: p(x)means for every x, prediate3 p(x) is trueEXISTS x: p(x)means for at least a single x, prediate p(x) is trueWe an impose onstraints on the set of values for variables inside FORALL andEXISTS as in the following example:FORALL x, (y| y = 3*x): p(x,y)whih should be read asfor every x and y suh that y is 3 times x, p(x,y) is true.A property that is already known to hold without heking is labeled by a namefollowed by a olon and the keyword AXIOM. A property that is heked using the rulesavailable in the veri�er is labeled by a name followed by a olon and the keywordTHEOREM. The text followed by a % in any line is a omment in PVS.We illustrate the syntax as follows:3A prediate is a funtion returning a Boolean type: ftrue, falseg.23

ax1: AXIOM % This is a simple axiomFORALL (x:nat): even(x) = x divisible_by 2th1: THEOREM % This is a simple theoremFORALL (x:nat): prime(x) AND x /= 2 IMPLIES NOT even(x)We also use the terms axiom and theorem in our own explanation with the same mean-ings. A proof is a sequene of steps that leads to a theorem.3.4 Spei�ation and Veri�ation Examples in PVSWe illustrate here three examples from arithmeti. The �rst two examples are takenfrom the tutorial [SOR 93-1℄. The last example illustrates the use of a general purposestrategy to automatially prove a theorem of arithmeti. The �rst example is the sumof natural numbers up to some arbitrary �nite number n is equal to n*(n+1)/2 . Thespei�ation is enapsulated in the sum THEORY. Following introdution of n as a naturalnumber nat, sum(n) is de�ned as a reursive funtion with a termination MEASURE asan identity funtion on n. Finally, the THEOREM labeled losed form is stated to beproved.sum: THEORYBEGINn: VAR natsum(n): RECURSIVE nat =(IF n = 0 THEN 0 ELSE n + sum(n - 1) ENDIF)MEASURE (LAMBDA n: n)losed_form: THEOREM sum(n) = (n * (n + 1))/2END sumThe THEORY is �rst parsed and type heked, and then the prover is invoked on thelosed form THEOREM. The proof is automati by applying indution and rewriting.The proof session is as follows:losed_form :|-------{1} (FORALL (n: nat): (sum(n) = (n * (n + 1)) / 2))24

Running step: (INDUCT "n")Induting on n,this yields 2 subgoals:losed_form.1 :|-------{1} sum(0) = (0 * (0 + 1)) / 2Running step: (EXPAND "sum")Expanding the definition of sum,this simplifies to:losed_form.1 :|-------{1} 0 = 0 / 2Rerunning step: (ASSERT)Invoking deision proedures,This ompletes the proof of losed_form.1.losed_form.2 :|-------{1} (FORALL (j: nat):(sum(j) = (j * (j + 1)) / 2IMPLIES sum(j + 1) = ((j + 1) * (j + 1 + 1)) / 2))Running step: (SKOLEM 1 ("j!1"))For the top quantifier in 1, we introdue Skolem onstants: (j!1),this simplifies to:losed_form.2 :|-------{1} sum(j!1) = (j!1 * (j!1 + 1)) / 2IMPLIES sum((j!1 + 1)) = ((j!1 + 1) * ((j!1 + 1) + 1)) / 2Running step: (FLATTEN)Applying disjuntive simplifiation to flatten sequent,this simplifies to:losed_form.2 : 25

{-1} sum(j!1) = (j!1 * (j!1 + 1)) / 2|-------{1} sum((j!1 + 1)) = ((j!1 + 1) * ((j!1 + 1) + 1)) / 2Running step: (EXPAND "sum" +)Expanding the definition of sum,this simplifies to:losed_form.2 :[-1℄ sum(j!1) = (j!1 * (j!1 + 1)) / 2|-------{1} (j!1 + 1) + sum(j!1) = (j!1 * j!1 + 2 * j!1 + (j!1 + 2)) / 2Running step: (ASSERT)Invoking deision proedures,This ompletes the proof of losed_form.2.Q.E.D.Run time = 8.09 ses.Real time = 9.89 ses.NIL> The next example illustrates that deision proedures solve the steps involving arith-meti and equality reasoning automatially. While, in the reative step of supplying theproper instantiation for an existential quanti�ation, the user has to interat with theprover. We �rst present the following PVS THEORY speifying that a 3 ent stamp anda 5 ent stamp an be used in ombination in plae of any stamp whose value is at least8 ents.stamps : THEORYBEGINi, j, k: VAR natstamps: LEMMA (FORALL i: (EXISTS j, k: i+8 = 3*j + 5*k))END stampsstamps : 26

The proof follows by indution:|-------{1} (FORALL i: (EXISTS j, k: i + 8 = 3 * j + 5 * k))Running step: (INDUCT "i")Induting on i,this yields 2 subgoals:stamps.1 :|-------{1} (EXISTS (j: nat), (k: nat): (0 + 8 = 3 * j + 5 * k))Here we have to supply an instantiation interatively.Running step: (QUANT 1 ("1" "1"))Instantiating the top quantifier in 1 with the terms:(1 1),this simplifies to:stamps.1 :|-------{1} 0 + 8 = 3 * 1 + 5 * 1Running step: (ASSERT)Invoking deision proedures,This ompletes the proof of stamps.1.stamps.2 :|-------{1} (FORALL (j: nat):((EXISTS (j_0: nat), (k: nat): (j + 8 = 3 * j_0 + 5 * k))IMPLIES (EXISTS (j_1: nat), (k: nat):(j + 1 + 8 = 3 * j_1 + 5 * k))))Running step: (SKOLEM 1 ("j!1"))For the top quantifier in 1, we introdue Skolem onstants: (j!1),this simplifies to:stamps.2 :|------- 27

{1} (EXISTS (j_0: nat), (k: nat): (j!1 + 8 = 3 * j_0 + 5 * k))IMPLIES (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))Running step: (FLATTEN)Applying disjuntive simplifiation to flatten sequent,this simplifies to:stamps.2 :{-1} (EXISTS (j_0: nat), (k: nat): (j!1 + 8 = 3 * j_0 + 5 * k))|-------{1} (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))Running step: (SKOLEM -1 ("j!2" "k!1"))For the top quantifier in -1, we introdue Skolem onstants: (j!2 k!1),this simplifies to:stamps.2 :{-1} j!1 + 8 = 3 * j!2 + 5 * k!1|-------[1℄ (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))The following steps require user interation:Running step: (CASE "k!1=0")Case splitting onk!1=0,this yields 2 subgoals:stamps.2.1 :{-1} k!1 = 0[-2℄ j!1 + 8 = 3 * j!2 + 5 * k!1|-------[1℄ (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))Running step: (QUANT 1 ("j!2-3" "2"))Instantiating the top quantifier in 1 with the terms:(j!2-3 2),this yields 2 subgoals:stamps.2.1.1 :[-1℄ k!1 = 0[-2℄ j!1 + 8 = 3 * j!2 + 5 * k!1|------- 28

{1} j!1 + 1 + 8 = 3 * (j!2 - 3) + 5 * 2Running step: (ASSERT)Invoking deision proedures,This ompletes the proof of stamps.2.1.1.stamps.2.1.2 (TCC):[-1℄ k!1 = 0[-2℄ j!1 + 8 = 3 * j!2 + 5 * k!1|-------{1} j!2 - 3 >= 0Running step: (QUANT 2 ("j!2+2" "k!1-1"))No suitable (+ve EXISTS/-ve FORALL) quantified formula found.No hange on: (QUANT 2 (j!2+2 k!1-1))stamps.2.1.2 (TCC):[-1℄ k!1 = 0[-2℄ j!1 + 8 = 3 * j!2 + 5 * k!1|-------{1} j!2 - 3 >= 0Running step: (ASSERT)Invoking deision proedures,This ompletes the proof of stamps.2.1.2.This ompletes the proof of stamps.2.1.stamps.2.2 :[-1℄ j!1 + 8 = 3 * j!2 + 5 * k!1|-------{1} k!1 = 0[2℄ (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))Running step: (ASSERT)Invoking deision proedures,this simplifies to: 29

stamps.2.2 :[-1℄ j!1 + 8 = 3 * j!2 + 5 * k!1|-------[1℄ k!1 = 0{2} (EXISTS (j_1: nat), (k: nat): (j!1 + 9 = 3 * j_1 + 5 * k))Running step: (QUANT 2 ("j!2+2" "k!1-1"))Instantiating the top quantifier in 2 with the terms:(j!2+2 k!1-1),this simplifies to:stamps.2.2 :[-1℄ j!1 + 8 = 3 * j!2 + 5 * k!1|-------[1℄ k!1 = 0{2} j!1 + 9 = 3 * (j!2 + 2) + 5 * (k!1 - 1)Running step: (ASSERT)Invoking deision proedures,This ompletes the proof of stamps.2.2.This ompletes the proof of stamps.2.Q.E.D.Run time = 10.67 ses.Real time = 11.65 ses.NIL> Finally, the following example illustrates the use of a general purpose strategyindut-rewrite-bddsimp, that involves indution, rewriting and propositional sim-pli�ation. The theorem is based on the property of a Fibonai sequene: 1, 1, 2,3, 5, : : :. Here, an element, exept the �rst two, is the sum of the its two immediatepredeessors. If we denote the sum of n (n > 0) elements in the sequene by fibsum(n),then we are required to prove the property that the sum is equal to fib(n+2) + 1. ThePVS spei�ation an be given as follows: 30

fib: THEORYBEGINn: VAR natfib(n): RECURSIVE nat =IF n = 0 THEN 1ELSIF n = 1 THEN 1ELSE fib(n - 2) + fib(n - 1)ENDIFMEASURE LAMBDA n: nfibsum(n): RECURSIVE nat =IF n = 0 THEN 3ELSE fib(n) + fibsum(n - 1)ENDIFMEASURE LAMBDA n: nFibSumThm: THEOREMfibsum(n) = fib(n + 2) + 1END fibThe veri�ation proeeds automatially by using a strategy based on indution, rewrit-ing and propositional simpli�ation as follows:FibSumThm :|-------{1} (FORALL (n: nat): fibsum(n) = fib(n + 2) + 1)Rule? (auto-rewrite-theory "fib")Adding rewrites from theory fibAdding rewrite rule fibAdding rewrite rule fibsumAuto-rewritten theory fibRewriting relative to the theory: fib,this simplifies to:FibSumThm :|-------[1℄ (FORALL (n: nat): fibsum(n) = fib(n + 2) + 1)Rule? (indut-rewrite-bddsimp "n")fibsum rewrites fibsum(0) 31

to 3fib rewrites fib(0)to 1fib rewrites fib(1)to 1fib rewrites fib(2)to 2fib rewrites fib(j!1 + 1)to IF j!1 + 1 = 1 THEN 1 ELSE fib(j!1 + 1 - 2) + fib(j!1 + 1 - 1) ENDIFfib rewrites fib(j!1 + 2)to fib(j!1)+ IF j!1 + 1 = 1 THEN 1ELSE fib(j!1 + 1 - 2) + fib(j!1 + 1 - 1)ENDIFfibsum rewrites fibsum(j!1 + 1)to IF j!1 + 1 = 1 THEN 1 ELSE fib(j!1 + 1 - 2) + fib(j!1 + 1 - 1) ENDIF+ fibsum(j!1)fib rewrites fib(j!1)to IF j!1 = 1 THEN 1 ELSE fib(j!1 - 2) + fib(j!1 - 1) ENDIFfib rewrites fib(j!1 + 3)to IF j!1 + 1 = 1 THEN 1 ELSE fib(j!1 + 1 - 2) + fib(j!1 + 1 - 1) ENDIF+ fib(j!1)+ IF j!1 = 0 THEN 1ELSE fib(j!1 - 1)+ IF j!1 = 1 THEN 1ELSE fib(j!1 - 2) + fib(j!1 - 1)ENDIFENDIFfib rewrites fib(j!1)to IF j!1 = 1 THEN 1 ELSE fib(j!1 - 2) + fib(j!1 - 1) ENDIFBy indution on n and rewriting,Q.E.D.Run time = 10.43 ses.Real time = 30.62 ses.
32

Chapter 4Spei�ation of SIL GraphStruture in PVSA spei�ation of the struture of SIL graphs is developed step by step in this Chapter.We introdue an entity in a SIL graph, and give its spei�ation in PVS. We repeatsome of the de�nitional onepts reviewed in Chapter 2 to put them in the ontextof our spei�ation. We explain the spei�ation of ports in Setion 4.1, followedby the spei�ation of edges in Setion 4.2 and nodes and SIL graphs in Setion 4.3.Finally, in Setion 4.4 we establish the properties that need to hold for a SIL graph tobe well-formed, and thus have a proper behavior.4.1 Port and Port ArrayA port is a plaeholder for data values. The set of data values that it an hold an berestrited, and suh a set is denoted by a type. For example, a port that is allowed tohold only true and false is of Boolean type. We would like to model a SIL graph andassoiated transformations for any desired set of data values. We de�ne a port as aplaeholder for an arbitrary set of data values, by de�ning it as an unspei�ed type:port: TYPEWe an reate various ports by introduing names suh as p0, p1, p2, and delaringthem as variables VAR of type port :p0, p1, p2: VAR port 33

dfe: pred[[port,port℄℄sqe: pred[[port,port℄℄ Table 4.1: .PVS types for data-ow edge and sequene edge; see Figure 4.1.An array of ports is de�ned as a reord type ontaining two type �elds. The �rst�eld size of type nat { the set of natural numbers f0; 1; 2; : : :g { spei�es the size of thearray. The seond �eld is the array of ports, whose size is equal to that spei�ed bythe �rst �eld. Suh a typing, in whih the type of one �eld depends on another �eld isknown as dependent typing. The ARRAY is spei�ed as a funtion that takes a memberfrom the set of natural numbers less than size and gives a member of type port:parray: TYPE = [# size:nat,port_array: ARRAY[{i:nat|i<size} -> port℄#℄4.2 EdgesAn edge is a direted line onneting two ports. Mathematially, it is a relation on twoports. For onveniene, we will all the port from whih the edge is direted the soure,and the port to whih the edge is direted to the sink. There are two kinds of edges inSIL: data-ow edge and sequene edge. A data-ow edge between two ports indiatesthe ow of a token from the soure to the sink. A sequene edge between two portsspei�es the ordering between them: we will say that a port A is less than a port B ifand only if, the token �red at B determines the value of a sink port C onneted to Aand B, rather than the token �red at A. A data-ow edge between two ports enforesan impliit ordering between the soure and sink. The soure is stritly less than thesink. There is no token ow through a sequene edge.We speify both kinds of edges as relations on ports. They modify the behavior ofa SIL graph in di�erent ways. We postpone the disussion of the properties of theserelations to the next hapter, and just speify the types of the relations as prediates {pred { on pairs ports. A true value of the prediate indiates the presene of an edgebetween the ports, while a false value indiates the absene of an edge between theports. The prediate dfe is the data-ow edge relation, and sqe is the sequene edgerelation as shown in Table 4.1.We an expliitly de�ne orresponding relations between arrays of ports. For exam-ple, we de�ne the data-ow edges between arrays of ports as:34

Figure 4.1: SIL data-ow and sequene edges; see Table 4.1.par, par0: parraysame_size(par,par0) =size(par) = size(par0)dfear(par0,(par1:{par|same_size(par,par0)})) =FORALL (i|i<size(par0)):dfe(port_array(par0)(i),port_array(par1)(i))The diretion of the edges is from the �rst port to the seond port. We illustratethis in Figure 4.1.4.3 Node, Conditional Node and GraphA node is a struture that takes inputs and gives outputs, satisfying a data relationassoiated with the node. Some of the typial nodes are adders and multplexers assoi-ated with orresponding addition and multiplexing data relations. We also assoiate anorder relation, whih imposes an order on the inputs and outputs. Externally, a nodereeives inputs at input ports, and delivers outputs at output ports. Sine a port is aplaeholder for a de�nite set of data values { of a de�nite type { the input and outputvalues should belong to the type of the input and output ports.A onditional node is a node having speial Boolean inputs, whih ontrol whetherthe data relation between the inputs and outputs holds. Suh inputs are known asonditions. The onditions ould appear either inverted or noninverted. If all thenoninverted onditions on a node are true, and all the inverted onditions are false,then the outputs and inputs of the node satisfy its data relation. But, if any one ofthe noninverted onditions is false or any one of the inverted onditions is true, thenthe output has an arbitrary value. In suh a ase, the output value is restrited onlyby the type of the output port. E�etively, we an replae all the ondition ports of aonditional node by just one ondition port, whih takes the onjuntion of the onditioninputs with appropriate inversions [EMH 93℄.A graph is a struture onstruted by using ports, edges, nodes, and onditionalnodes. However, we an hide the struture of a graph, and externally view it as a nodewith input and output ports, data and order relations. We an then speify graphsas nodes with internal struture and internal relations. This allows for hierarhialonstrution of smaller graphs into larger graphs.35

node: TYPE =[#inports: parray,outport: port,intports: parray,ondport: port,ond:pred[port℄,datarel: pred[[{p:parray|size(p)=size(inports)},port℄℄,orderrel:pred[[{p:parray|size(p)=size(inports)},port℄℄,intrel: pred[[parray,parray℄℄#℄Table 4.2: PVS spei�ation of onditional node as a reord type; see Figure 4.2.In our spei�ation, we �rst introdue a onditional node in PVS as a reord type asshown in Table 4.2, where� inports are the input ports delared as parray type { that is, they are taken togetheras one array of an unspei�ed size.� outport is an output port delared just as a port. In this work we onsider a singleoutput port for onveniene in spei�ation. However, in general, output shouldalso be delared as an array of ports, as is the ase for hierarhially built graphsand for primitive nodes suh as SPLIT.� intports are the internal ports delared as a parray type to speify the internalports the onditional node might have internally. Suh a onditional node wouldbe a hierarhially built graph.� ondport is a single port providing aess for the ondition input.� ond is a ondition funtion giving the value of the ondition on the onditionport: this an be either true or false. This is delared as a type pred[port℄ { thatis, a prediate on port.� datarel is the data relation governing the output value based on the inputs. Thisis delared as a prediate or relation pred on a tuple. The �rst type in the tupleis a subset of port arrays, whose size is the same as the inports, and the seondtype is a port orresponding to the outport.� orderrel is delared as exatly the same type as datarel. The di�erene lies onlyin that, it governs the order of output and input values. This is not seen in thestrutural type de�nition here. 36

Figure 4.2: SIL onditional node; see Table 4.2.� intrel is the internal relation orresponding to the internal struture and onne-tivity of the onditional node. This is derived from the internal ports and theedges onneting the internal ports.The onditional node is shown in Figure 4.2.We introdue prediates to ompare the strutures of onditional nodes based ontheir number of input ports:n0, n1: nodesame_size(n0,n1) =size(inports(n0)) = size(inports(n1))A node without a onditional port is modeled as a onditional node with the on-dition on its onditional port being always true. The advantage of suh a modeling isthat it aptures both an unonditional node and a onditional node whose onditionalport is always set to true. Sine they have idential behavior, it minimizes our modelby having just one struture for both. In PVS, a feature known as subtyping allowsone to de�ne a type, whih denotes a subset of values of an already de�ned type. Wespeify the node type in Table 4.3 by using this PVS subtyping feature. The Figure 4.3illustrates this spei�ation.We model a graph exatly the same as a onditional node, sine we have onstruteda onditional node to have internal struture and internal relation. This allows forviewing a graph as another node, and thus allows for a hierarhial onstrution oflarger graphs. We speify a graph as a type equal to a onditional node type:37

node: TYPE = {n:node| ond(n) = LAMBDA (p:port):TRUE}Table 4.3: Node as a subtype of a onditional node; see Figure 4.3.

Figure 4.3: Node as a subtype of a onditional node; see Table 4.3.
38

graph: TYPE = node4.4 Well-formedness of a SIL GraphA SIL graph has to satisfy ertain strutural rules governing the onnetivity of ports.Only then an the behavior of a SIL graph be well-de�ned. For example, we annotonnet two input ports by a data-ow edge: a soure has to be an output port, whilea sink has to be either an input port or a onditional port. The strutural rules arestated as axioms in PVS.Every port has to be exatly one of an input port, output port, and onditional port:no port an be left dangling. Even the terminal I/O ports at the SIL graph boundaryare assoiated with speial I/O nodes. We express this as two axioms { inlusivity andexlusivity { as follows:port_inlusive_ax: AXIOMFORALL (p:port): is_inport(p) OR is_outport(p) OR is_ondport(p)port_exlusive_ax: AXIOMFORALL (p:port): is_inport(p) IMPLIESNOT (is_outport(p) OR is_ondport(p)) ANDis_outport(p) IMPLIESNOT (is_inport(p) OR is_ondport(p)) ANDis_ondport(p) IMPLIESNOT (is_inport(p) OR is_ondport(p))where is inport, is outport, and is ondport are appropriately de�ned, asserting theexistene of a (onditional) node whose input/output/ondition is the port being on-sidered, as indiated in the following PVS spei�ation:is_inport(p) = (EXISTS n, (i:{j:nat|j<size(inports(n))}):p=inport(n,i))is_outport(p) = (EXISTS n: p=outport(n))is_ondport(p)= (EXISTS n: p=ondport(n))That a port an be one of the internal ports of a onditional node is onsistent with theproperties de�ned here, beause even internal ports should be one of the three types ofports.A data-ow edge is legal only if it onnets an input port to an output or a onditionalport: 39

dfe_port_ax: AXIOMFORALL p1,p2:dfe(p1,p2) IMPLIES (is_outport(p1) AND(is_inport(p2) OR is_ondport(p2)))We an derive that self data-ow edges are forbidden by the properties of ports andthe data-ow edge from the above property. If we make p1 = p2 in the above axiom,and use the port exlusivity axiom (given earlier) that any port an be exatly oneof input, output and ondition, we get the orresponding theorem for preventing selfdata-ow edges:self_edge_not_th: THEOREMFORALL (p:port): NOT dfe(p,p)It should be noted that data-ow edges between output ports of a node and the inputports of the same node are not prohibited.Self sequene edges are also prohibited, sine sequene edges impose strit orderingon ports. This has to be asserted as an axiom, as we have not imposed any restritiveproperty on the sequene edge:self_seq_edge_not_ax: AXIOMFORALL (p:port) NOT sqe(p,p)Sine sequene edge introdues ordering on ports, we expet sqe to be transitive. But, inorder to have a lear separation of struture and behavior, we do not impose the propertyon sqe here. However, as we will see in Chapter 5, we formalize the ordering due to thesequene edges, and due to the behavior of a ondition node when the ondition porthas a false value, by introduing weights on pairs of ports. The transitivity property isthen imposed on the ordering of weights.

40

Chapter 5Spei�ation of SIL GraphBehavior and Re�nementWe informally disussed in Chapter 2, the behavior of a SIL graph. We reall thatthe behavior is the set of ordered tuples of data values that the ports of the graph anassume, and an external or I/O behavior is the set of ordered tuples of values at the I/Oports of the SIL graph. The behavior of a SIL graph is determined by the data relationsand order relations of the nodes, onnetivity due to the data-ow edges, and orderingimposed by sequene edges. Any impliit state information in a SIL graph is ontainedin the data relations of the nodes. Thus, a omparison of behaviors in any given lokyle would not require omparing exeution histories due to possible impliit states in aSIL graph. We disuss behavior in Setion 5.1, followed by a presentation of re�nementand equivalene in Setion 5.2.5.1 BehaviorA detailed de�nition of behavior would require establishing a onrete formal semantisof SIL, sine the data values and ordering an be arbitrary. A denotational semantisof SIL has been disussed by Huijs [HuK 94℄. However, at the level of abstrationwe have hosen to speify, we bring about high-level properties of dependeny graphs,re�nement and equivalene that should hold independent of a detailed behavior model.We an thus obviate the need to speify a onrete behavioral model of dependenygraphs. Suh mehanisms for spei�ation by de�ning the properties that have to holdonstitute our axiomati approah. As we will see in the next hapter, we omparetwo SIL graphs by asserting the properties that need to be satis�ed by the graphs withrespet to their behavior. We an thus establish the orretness of transformations. Amodi�ation in the onrete behavioral model faithful to the properties on whih wehave based our approah would not hange our spei�ation and veri�ation results.Further disussion of the advantages of our approah is postponed to Chapter 7.41

The behavior assoiated with an aess point or a port is desribed by the sameuninterpreted type, as we used in the introdution of the strutural spei�ation of aport:port: TYPEThis is the stage where the spei�ation of struture and behavior oinide. The typedenoting the set of values being unspei�ed gives us the freedom to model the behavior(as with the struture) irrespetive of the value type.5.2 Re�nement and EquivaleneWe have developed spei�ation tehniques to desribe onepts omparing SIL graphswith respet to behavior. A SIL graph SG2 is a re�nement of another SIL graph SG1, ifthe behavior exhibited by SG2 is allowed by SG1. SG2 an then be an implementationof its spei�ation SG1. In order to de�ne graph re�nement, we �rst desribe portre�nement, and derive graph re�nement from the strutural onnetivity of a SIL graph.We introdue an abstrat re�nement relation on ports:silimp: pred[[port,port℄℄The re�nement relation on ports ould be interpreted as follows. A port p1 is a re�ne-ment of a port p2, if the set of data values allowed by p1 is a subset of values allowed byp2. An instane of suh a relation omes about due to the non-deterministi hoie asillustrated in Figure 5.1. Another kind of re�nement ould be a data type re�nement:when one port is a subtype of another. The re�nement relation has to be reexive andtransitive. We do not impose antisymmetry to allow the de�nition of equivalene as aspeial ase of re�nement:silimp(p1,p1)silimp_trans_ax: AXIOMsilimp(p1,p2) AND silimp(p2,p3) IMPLIESsilimp(p1,p3)The re�nement relation between arrays of ports is introdued by a property statingthat a re�nement relation between all orresponding ports of the port arrays implies are�nement relation between the port arrays.42

Figure 5.1: Example: re�nement of ports due to non-deterministi hoie.

43

Figure 5.2: Example: array re�nement does not imply every individual port re�nement.par1, par2: parraysilimpar(par1,par2)silimpar_def_ax: AXIOMFORALL par1,(par2|same_size(par1,par2):(FORALL (i| i< size(par1)):EXISTS j: silimp(port_array(par1)(i),port_array(par2)(j))) IFFsilimpar(par1,par2)It should be noted that the re�nement between port arrays does not neessarily implythe re�nement relation between orresponding individual ports of the port arrays. Weillustrate this notion with an example in Figure 5.2. The reason for underonstrainingthe de�nition of port array re�nement is to allow re�nements for graphs whih mighthave di�erent numbers of input and output ports. We an thus allow behavioral re�ne-ment without overonstraining the strutures of the graphs.The properties of reexivity and transitivity that have to be satis�ed by the re�ne-ment relation on port arrays are similar to those satis�ed by the re�nement relation onports:silimpar_refl_th: THEOREMsilimpar(par,par)silimpar_trans_ax: AXIOMsilimpar(par1,par2) AND silimpar(par2,par3) IMPLIESsilimpar(par1,par3) 44

The equivalene of SIL graphs sileq is de�ned by introduing the symmetry propertyin the re�nement relations de�ned above:sileq(p1,p2) = silimp(p1,p2) ANDsilimp(p2,p1)sileqar(par1,par2) = silimp(par1,par2) ANDsilimp(par2,par1)A data-ow edge onneting two ports modi�es the behavior of the sink in aordanewith other data-ow edges onneting the same edge output. If a port is the sink ofmultiple data-ow edges, then the behavior of the sink port is determined by an orderingof the soure ports. Suh a port is alled a join. In terms of the token ow onept,we reall from Chapter 2, that the ordering depends on the whih of the tokens �redfrom the soure ports determines the value of the join. The sequene edges in a SILgraph indiate suh an ordering. However, sine the ordering ould be a�eted by thebehavior of a onditional node, we need a general mehanism to speify the ordering. Wemodel this ordering by assoiating weights with the data-ow edges, rather than soureports. Introduing weights to represent sequene edges also, permits a lear separationof struture from and behavior: whereas a sequene edge is a strutural entity, weightis a behavioral entity that ould be derived not only from sequene edges, but also duethe behavior of a onditional node. We �rst introdue weight as an uninterpreted type.A funtion w on ports would return a weight, while a funtion war on arrays of portswould return a weight:weight: TYPEw: [port,port -> weight℄war: [parray,parray -> weight℄The ordering is used to determine the behavior of a join. This means that we need toompare the weights on the data-ow edges that form a join. The weights on data-owedges that do not form a join need not be ompared. However, the de�nition of SILspei�es that no two data-ow edges ommuniate tokens simultaneously into a join,and no two weights on the edges forming a join an be equal. This suggests that we needa reexive, transitive, and antisymmetri ordering relation on weights: suh a relationis alled partial order. We de�ne a partial ordering relation1 < on weights, and assertthe fat that the weights are ordered if and only if the assoiated data-ow edges forma join. We give the PVS spei�ation of this property in Table 5.1 and illustrate it inFigure 5.3.1We do not use the usual notation � to stress that no two weights on di�erent edges forming a joinan be equal. 45

<: pred[[weight,weight℄℄partial_order(<)dfe_w_ax: AXIOMp0 /= p1 IMPLIESdfe(p0,p2) AND dfe(p1,p2)IFF(w(p0,p2) < w(p1,p2) ORw(p1,p2) < w(p0,p2))Table 5.1: Using weights for ordering data-ow edges: PVS spei�ation; see Figure5.3.

Figure 5.3: Using weights for ordering data-ow edges; see Table 5.1.
46

join_ax: AXIOMFORALL p1,p2:(FORALL p:w(p,p2) < w(p1,p2)) IMPLIESsilimp(p1,p2)Table 5.2: Using weights to determine join behavior; see Figure 5.4.

Figure 5.4: Using weights to determine join behavior; see Table 5.2.We desribe the property that the behavior of a join depends on the ordering ofthe data-ow edges, by omparing weights on the edges owing into the join port. Thegreater the weight on a data-ow edge, the later the token is ommuniated throughit. We state the property that the join port is a re�nement (an implementation) of thesoure whose assoiated data-ow edge has the maximum weight in the axiom shownin Table 5.2. It should be noted that we do not impose equivalene sileq, a relationstronger than re�nement silimp. This would give the freedom to onnet a port p1 top2, when the set of data values allowed by p1 is always a subset of the set of data valuesallowed by p2. The property is shown in Figure 5.4.We still have to apture the notion of behavior of ports onneted to the outputport of a onditional node. The behavior of the output port of a onditional node, whenthe ondition port holds a false value, is not de�ned. In the ase where a join port isonneted to a onditional node, the behavior of the join is solely determined by edgesthat propagate well-de�ned values. This situation is spei�ed by making the assoiatedweight of the data-ow edge emanating out of a onditional node the least of all theweights assoiated with other data-ow edges. The other data-ow edges, with whihthe omparison is performed should be onneting the join port to output ports of nodesor onditional nodes whose ondition is never false. However, this does not prelude ajoin port to have an arbitrary value - beause, it does not prohibit a graph onstrution47

ond_bottom_ax: AXIOMNOT ond(n)(ondport(n)) IMPLIESFORALL p:dfe(outport(n),p) IMPLIESFORALL (n:node): dfe(outport(n),p) IMPLIESw(outport(n),p) < w(outport(n),p)Table 5.3: Weight when the ondition on a onditional node is false; see Figure 5.5.

Figure 5.5: Weight when the ondition on a onditional node is false; see Table 5.3.
Figure 5.6: Absene of join: exlusive data-ow edge; see Table 5.4.where the join port is onneted exlusively to a single onditional node or multipleonditional nodes whose onditions are false, and whose output ports are onneted tothe join port. The property is spei�ed as an axiom in Table 5.3, and illustrated inFigure 5.5.We an derive the behavior due to a data-ow edge whose sink is not the output ofany other data-ow edge. We will all suh an edge an exlusive data-ow edge { xdfede�ned in Table 5.4 and shown in Figure 5.6.We an expliitly de�ne an exlusive data-ow edge relation for arrays of ports asin Table 5.5. We an prove the property that an exlusive data-ow edge provides are�nement relation between the soure and the sink. However, for this property to hold,we have to impose a restrition on the soure port { that it has to be an output port of48

xdfe(p1,p2) = dfe(p1,p2) ANDFORALL p:(p /= p1) IMPLIES NOT dfe(p,p2)Table 5.4: Absene of join: exlusive data-ow edge; see Figure 5.6.

par, par0: parrayxdfear(par0,(par1:{par|same_size(par,par0)})) =FORALL (i|i<size(par0)):xdfe(port_array(par0)(i),port_array(par1)(i))Table 5.5: Array version of exlusive data-ow edge
49

dfe2_join_th: THEOREM(dfe(p1,p3) AND dfe(p2,p3) AND(FORALL p0:dfe(p0,p3) IMPLIES ((p0 = p1) OR (p0 = p2))))IMPLIESIF w(p1,p3) < w(p2,p3) THENsileq(p2,p3)ELSE sileq(p1,p3)ENDIF Table 5.6: A theorem on join of exatly two data-ow edgesa nononditional node. If the soure is an output port of a onditional node, then thevalue false on the ondition port will produe an unde�ned value on its output port.However, a data-ow edge transforms the unde�ned value into an arbitrary value of anappropriate type of sink. The unde�ned value is not ommuniated by a data-ow edgebeause the sink ould be an input to another node. In pratie, as we have pointed outin Chapter 2, an input is required to be a well-de�ned value, while an output generatedould be an unde�ned value:xdfe_silimp_th: THEOREMFORALL (n1:node),(p2:port):xdfe(outport(n1),p2) IMPLIES silimp(outport(n1),p2)We again point out that the relation between the soure and the sink is a re�nementrather than equivalene. This weaker relation would lead more optimization than if itwere equivalene. This issue is disussed further in Chapter 6 as part of generalizationsof transformations.A useful theorem involving a join of exatly two data-ow edges, shown in Table 5.6,states that the behavior of a join assoiated with exatly two data-ow edges is equalto the behavior of the port from whih the edge with a greater weight emanates.We postulate that the ordering on edges is preserved by behavioral re�nement (andtherefore also equivalene). We express the property in PVS as an axiom in Table 5.7 andshow it in Figure 5.7. We an then derive useful extensions of this property of preservingorder by behavioral re�nement. One useful extension for omparing SIL graphs expressesthat the order is preserved with an introdution of an exlusive data-ow edge betweenan output port of a node and another port. This is shown in Figure 5.8. The statementof the property is the theorem in Table 5.8.50

po_preserve_ax: AXIOMw(p0,p2) < w(p1,p2) ANDsilimp(p0,p00) ANDsilimp(p2,p22) ANDdfe(p00,p22) ANDdfe(p11,p22)IMPLIESw(p00,p22) < w(p11,p22)Table 5.7: Order preserved by re�nement and optimization; see Figure 5.7.

Figure 5.7: Order preserved by re�nement and optimization; see Table 5.7.po_preserve_xdfe_th: THEOREMw(p0,p2) < w(p1,p2) ANDsilimp(p2,outport(n3)) ANDxdfe(outport(n3),p4) ANDdfe(p00,p44) ANDdfe(p11,p44) ANDsilimp(p0,p00) ANDsilimp(p1,p11) ANDsilimp(p4,p44)IMPLIESw(p00,p44) < w(p11,p44)Table 5.8: Order preserved by re�nement and exlusive data-ow edge; see Figure 5.8.51

Figure 5.8: Order preserved by re�nement and exlusive data-ow edge; see Table 5.8.

52

sub_kind_implement_ax: AXIOMFORALL (n0:node),(n1:node|same_size(n0,n1)):sub_kind(n0,n1) AND silimpar(inports(n0),inports(n1)) IMPLIESsilimp(outport(n0),outport(n1))Table 5.9: Graph re�nement: property expressing relation between outputs and inputsof graphs independent of underlying behavior; see Figure 5.9.Similarly, we have orresponding postulates and theorems for arrays of ports insteadof individual ports. However, we have to make a slight modi�ation on omparing portarrays for inequality { that is, we will interpret the inequality operator /= to meanthat the port arrays do not have any port in ommon. We have suh a faility ofoverloading operators and funtions in PVS. In omparing behaviors of SIL graphs, we�nd that the properties expressed using arrays of ports instead of individual ports, makespei�ations more suint and eonomial.Finally, we need a re�nement relation for graphs. A graph re�nes or implementsanother graph, when the data relation of the implementing node is ontained in the datarelation of the spei�ation node. We all the implementing graph the sub kind of thespei�ation node. Instead of desribing the graph re�nement by desribing ontainmentof their data relations, we speify the relationship by using a higher level property. Itis the property that, when the inputs of the implementation graph are a re�nementof the inputs of the spei�ation graph, then the outputs of the implementation graphhave to be re�nements of the spei�ation graph. It should be noted that any stateinformation impliit in a SIL graph is enapsulated in the data relations, thus obviatingthe need to onsider behavior histories, rather than a single lok yle behavior. ThePVS spei�ation in Table 5.9 illustrates the property in Figure 5.9.This allows us to ompare output ports, given a relationship among the input portsand the relationship between the nodes. It should be noted that this represents atypial example of how we express a property for omparing ports, without a detailedrepresentation of the input/output ports and data relations of the nodes. We alsointrodue onvenient prediates in Table 5.10 to express that two nodes, having thesame number of input ports (i.e., they are of the same size), are of the same kind if theyhave the same data relations.
53

Figure 5.9: Graph re�nement: property expressing relation between outputs and inputsof graphs independent of underlying behavior; see Table 5.9.

same_kind(n0,(n1|same_size(n1,n0))) =datarel(n0) = datarel(n1)sks(n0,n1) =same_size(n0,n1) AND same_kind(n0,n1)Table 5.10: Prediates for expressing the sameness of nodes
54

Chapter 6Spei�ation and Veri�ation ofTransformations
The formal model of the SIL graph struture and behavior an be used to speify andverify the orretness of transformations. Here, we present optimization transforma-tions, suh as Common Subexpression Elimination and Cross-Jumping Tail-Merging.We have veri�ed the orretness of other optimization transformations, and a similartehnique an be adopted for verifying the orretness of re�nement transformations.We present an overview of spei�ation and veri�ation of transformations in setion 6.1.We explain in detail ommon subexpression elimination in Setion 6.2 and ross-jumpingtail-merging in setion 6.3. We briey mention spei�ation and veri�ation of othertransformations and proofs in Setion 6.4, and generalization and omposition of trans-formations in Setion 6.5. In Setion 6.6, we illustrate with an example the usefulness ofthe axiomati spei�ation in investigating \what-if" senarios. Finally, in Setion 6.7,we illustrate a new transformation devised in the proess of generalization and \what-if" analysis. This transformation an be used for further optimization and re�nement.This ould not have been ahieved by the existing transformations de�ned in the urrentsynthesis framework.6.1 OverviewThe general method we employ to speify and verify transformations onsists of thefollowing steps:1. Speify the struture of SIL graph on whih the transformation is to be applied.The struture spei�ation ould be of graph templates or lasses of SIL graphsrather than a partiular onrete graph.55

Figure 6.1: Common subexpression elimination; see Table 6.1.2. Assert that the struture of the SIL graph satis�es the preonditions imposed onits struture for applying the transformation. The preonditions would onsistof onstraints imposed on strutural onnetivity and ordering through sequeneedges.3. Speify the struture of the SIL graph expeted after the transformation is applied.4. In the ase of verifying re�nement, we impose the onstraint that the orrespond-ing inputs of the SIL graphs before and after transformation are silimpar { thatis, the set of input values to the SIL graph after transformation is a subset ofthe set of input values to the SIL graph before the transformation. For behavioralequivalene, the onstraint is imposed as sileqar: the sets of input values to bothgraphs are idential.5. Verify the property that the outputs of the SIL graph before transformation aresilimpar { that is, the outputs of SIL graph after transformation are re�nementsof orresponding outputs of the SIL graph before transformation. In the ase ofbehavior preserving transformation, the orresponding outputs are veri�ed to besileqar.6.2 Common Subexpression EliminationIn this transformation, two nodes of the same kind, whih take idential inputs, aremerged into one node as shown in the Figure 6.1.We �rst speify the preonditions imposed on the nodes and the input ports on-neted to the nodes:� The nodes must be of the same kind56

� The ports onneted to the input ports of one node must be idential to thoseonneted to the input ports of the other node.� The input ports should not be left dangling: they are required to have an inomingdata-ow edge.For onveniene, we will assume that the joins at the input ports of the nodes havebeen resolved. Suh a resolution of the joins would leave exatly one data-ow edgeonneting eah input port of the nodes. Relaxing that assumption would not hangeour veri�ation of orretness of the transformation, exept for an additional step ofresolving the joins before the transformation is applied:preonds(dot0,(dot1:{dot1|same_kind(dot0,dot1)})):boolean =% input ports of dot0 and dot1 are onneted to idential ports,% and there exists at least one suh set of ports(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)) IFF xdfear(par,inports(dot1))) AND(EXISTS (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)))We then speify the struture of the graphs before and after applying the transfor-mation. The statement of orretness is asserted as a theorem that, if the inputs forthe graph are sileq then the outputs of the graph are sileq. The theorem is stated inTable 6.1.6.3 Cross-Jumping Tail-MergingIn the ross-jumping tail-merging transformation, two onditional nodes whose outputports onnet to the same sink are heked for being mutually exlusive { that is, ifthe onditions on both of the onditional ports are not true (or false) at the same time(when exatly one of them is true at any time). In suh a ase, the two nodes an bemerged into one unonditional node of the same kind, and the onditions moved to thenodes of the subgraph onneting it. We show this transformation in Figure 6.2.In the ourse of our spei�ation in PVS, we found a mistake in the informal spe-i�ation of the transformation. We show the erroneous transformation that was givenin the original informal spei�ation in Figure 6.3.However, the same mistake was disovered later by inspetion of the informal spe-i�ation [Klo 94℄ independently, without the aid of our formalization. The error thatourred in the original informal spei�ation was the inorret plaing of the onditionson the nodes. With suh a plaing, the orretness of the transformation depends onthe ordering of the output ports of dot0 and dot1. When ondition is true, the values57

CSubE: THEOREMFORALL dot0,(dot1|same_kind(dot1,dot0)),(dot01|same_kind(dot01,dot0)):((preonds(dot0,dot1) AND% struture before transformation(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)) IFF(EXISTS (parr|is_outportar(parr) ANDsame_size(parr,inports(dot0))):% ports onneting to dot0 and dot01 are equivalent(sileqar(par,parr) AND xdfear(parr,inports(dot01))))))IMPLIES% orresponding output ports of graphs before and after transformation are% equivalent(FORALL p1,p2:((xdfe(outport(dot0),p1) ORxdfe(outport(dot1),p1)) ANDxdfe(outport(dot01),p2)) IMPLIESsileq(p1,p2))) Table 6.1: Corretness of ommon subexpression elimination; see Figure 6.1.

Figure 6.2: Cross-jumping tail-merging: orreted.58

Figure 6.3: Cross-jumping tail-merging: inorretly spei�ed in informal doument.

59

Figure 6.4: Cross-jumping tail-merging: generalized and veri�ed; see Table 6.3.at q1 and so r1 are arbitrary, while the values at q0 and r0 are well-de�ned. Thus if anordering is imposed suh that the port pp0 gets the value at r2, then that value wouldbe arbitrary. However, in the transformed �gure, the ondition being true results inan ordering suh that r01 gets the value of q00, and vie-versa when is false. Thus,the transformation would not be orretness preserving.The plaing of the onditions as given in Figure 6.3 is leads to violation of preondi-tions - beause it prohibits omparing two ports joined exlusively to onditional nodes {that is, xdfe(p1,p2) AND is outport of onditionalnode(p1) does not ensure sileq(p1,p2).We found this violation at the very early stage of stating the theorem orresponding tothe transformation. Further, we ould relax the mutual exlusiveness onstraint. Weintrodue a weak assumption that the ordering of the data-ow edges oming out of thenodes dot0 and dot1 in the original graph is the same as the ordering of the data-owedges oming into the node dot01 in the optimized graph. We have suitably modi�ed,generalized, and veri�ed the transformation. The generalized transformation is shownin Figure 6.4. The PVS spei�ation of the preonditions is shown in Table 6.2, andthe theorem statement is shown in Table 6.3.6.4 Other Transformations and ProofsWe have spei�ed and veri�ed other transformations, suh as opy propagation, onstantpropagation, ommon subexpression insertion, ommutativity, assoiativity, distributiv-ity and strength redution desribed by Engelen and others [EMH 93℄.In general, the proofs of transformations, proeed by rewriting, using axioms andproved theorems, and �nally simplifying to a set of Boolean expressions ontaining onlyrelations between ports and port arrays. At this �nal stage the BDD simpli�er in PVS isused to determine that the onjuntion of Boolean expressions is indeed true. We showthe number of high level inferene rule appliations required for verifying the varioustransformations in Table 6.4. The high level inferene rules are the rules that the user60

would use to guide the PVS theorem prover to derive a proof of a theorem. Examplesof high level inferene rules [SOR 93-2℄ are skolem! for removing universal quanti�ers,assert to apply arithmeti deision proedures and rewriting, bddsimp for Booleanreasoning using BDD, and inst? for heuristi instantiation of existential quanti�ers.The PVS deision proedures for rewriting, and arithmeti and Boolean reasoning oulduse a number of lower level inferene rules that are hidden from the user. Examples ofproof transripts for ommon subexpression elimination and ross-jumping tail-mergingare given in Appendix B.6.5 Generalization and Composition of TransformationsWe have seen earlier, in Chapter 6.3, that the spei�ation has assisted in generalizingthe transformation. In addition, we an make other observations on using our workto generalize many transformations. For example, by replaing the equivalene rela-tion sileq by silimp, we �nd that the optimization transformations an be generalizedas re�nement transformations, and the preonditions imposed by the transformationsould be relaxed. Having a mehanized formal approah suh as ours, as opposed toapproahes that are informal or formal approahes not mehanized has an advantage inthe aspet of modifying spei�ations - the experiments of modifying spei�ations ouldbe performed in a framework, that allows one to rapidly verify that the modi�ationsdo not violate the orretness properties.The general tehnique to investigate omposition of transformations is to determinethat the preonditions imposed by one transformation are satis�ed by another transfor-mation. This also applies in the ase where a transformation ould be applied on onesubgraph, while another ould be applied on a disjoint subgraph, without having to takeinto aount the e�et of one transformation on the preonditions imposed by another.For example, ommon subexpression elimination (CsubE) produes a subgraph with anoutput port that is a distribute. Whereas, opy propagation (Copy Prop) [EMH 93℄an be applied only to a subgraph that does not have a distribute output port. Wean determine in our spei�ation that if we perform CsubE, the onjuntion of thesubgraph relation thus obtained and the preonditions for performing Copy Prop onthe same subgraph are false.6.6 Investigations into \What-if?" SenariosOne of the bene�ts of our formalism is that it allows us to provide answers to questionson the appliability of transformations, and provide formal justi�ations that supportthe answer. A question that omes up quite often in a transformational design proessis whether a transformation that has been applied on a graph ould still be appliedwith small hanges in the graph. We illustrate this point in the ontext of a situation61

Figure 6.5: Cross-jumping tail-merging: inappliable when two nodes are merged intoone.that resulted during the transformational design of a diretion detetor [Mid 94-2℄. Itinvolved a variation of the ross-jumping tail-merging transformation. In Figure 6.4, ifwe merge the nodes nodes dot0 and dot1 in the graph before applying the transforma-tion, the preondition for the transformation would no longer be true. This is shown inFigure 6.5.Sine the nodes are merged, w0 = w1. While, due the ordering imposed by join,either war0 < war1 or war1 < war0. Thus the equivalene relation w0 < w1 IFF war0 <war1 no longer holds, and so the preondition for the appliation of the transformationis violated. This preludes the appliation of the transformation on the modi�ed graph.6.7 Devising New TransformationsIn Setion 6.6, we argued that ross-jumping tail-merging ould not be applied in asesas shown in Figure 6.5. However, we would like to have suh a transformation for fur-ther optimization in ases as shown in Figure 6.6. We an view this as a transformationderived from the proess of generalizing ross-jumping tail-merging and ommon subex-pression elimination. In this transformation, two idential nodes with mutually exlusiveonditions (i.e exatly one node will be ative at any time) have inputs from identialnodes, whih in turn have idential inputs. At �rst, it appears that we ould apply aombination of ommon subexpression elimination and ross-jumping tail-merging. Ifwe apply ommon subexpression elimination �rst, to obtain a single node whose out-put is onneted to the mutually exlusive nodes, then we annot apply ross-jumpingtail-merging as shown in Figure 6.7. On the other hand, if we apply ross-jumpingtail-merging �rst, the outputs of the other pair of idential nodes form a join at theinput of the single node obtained. In this ase, we annot apply ommon subexpressionelimination as shown in Figure 6.8.The problem an be solved by devising a new and simple transformation as follows.In the desription of ommon subexpression elimination shown in Figure 6.1, the outputsof nodes dot01 and dot1 were required to be not onneted to join ports. However,62

Figure 6.6: Further optimization impossible using existing transformations.

Figure 6.7: Inappliability of ross-jumping tail-merging after ommon subexpressionelimination: due to preondition restritions.
63

Figure 6.8: Inappliability of ommon subexpression elimination after ross-jumpingtail-merging: due to preondition restritions.

64

Figure 6.9: A simple new transformation: obvious, post-fato.we an relax this onstraint, and provide a new and simple transformation that an beused to optimize a dependeny graph. We show the new transformation in Figure 6.9.We ould have arrived at the transformation in an ad ho manner simply by examiningthe semantis of a onditional expression. However, we devised the transformationafter examining by doing a \what-if" analysis formally in the problem of omposingtwo transformations. This suggests that our formal model an be used to devise newtransformations in a methodial manner.

65

sks(n1:node,n2:node) = same_kind(n1,n2) AND same_size(n1,n2)preonds(dot0,(dot1:{dot|sks(dot,dot0)}),(dot01:{dot|sks(dot,dot0)}),(par0:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par1:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par00:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par11:{par|is_outportar(par)&same_size(par,inports(dot0))}),pp0,pp00)=% onnetivity at the input ports of SIL graph before transformationxdfear(par0,inports(dot0)) AND xdfear(par1,inports(dot1)) AND(w(outport(dot0),pp0) < w(outport(dot1),pp0) IFFwar(par00,inports(dot01)) < war(par11,inports(dot01))) AND% onnetivity at the output ports of SIL graph before transformationdfe(outport(dot0),pp0) AND dfe(outport(dot1),pp0) AND(FORALL pp: ((pp /= outport(dot0)) OR (pp /= outport(dot1)))IMPLIES NOT dfe(pp,pp0)) AND% onnetivity at the input ports of SIL graph after transformationdfear(par00,inports(dot01)) AND dfear(par11,inports(dot01)) AND(FORALL (par|size(par)=size(par00)):(par /= par00 AND par /= par11)IMPLIES NOT dfear(par,inports(dot01))) AND% onnetivity at the output ports of SIL graph after transformationxdfe(outport(dot01),pp00) AND% orresponding input ports of graph before and after transformation% are equivalentsileqar(par0,par00) AND sileqar(par1,par11)Table 6.2: PVS spei�ation of preonditions for ross-jumping tail-merging
66

CjtM: THEOREMFORALL (dot0:node):LETsks = LAMBDA (n0:node),(n1:node):same_size(n0,n1) AND same_kind(n0,n1),sk = LAMBDA (n:node):sks(n,dot0),ios = LAMBDA par:is_outportar(par) & same_size(par,inports(dot0))INFORALL (dot1|sk(dot1)),(dot01|sk(dot01)),(par0|ios(par0)),(par1|ios(par1)),(par00|ios(par00)),(par11|ios(par11)):% struture and preonditions on graphs before and after transformationpreonds(dot0,dot1,dot01,par0,par1,par00,par11,pp0,pp00)IMPLIES% orresponding output ports are equivalentsileq(pp0,pp00)Table 6.3: Corretness of ross-jumping tail-merging; see Figure 6.4.Transformation Number of high level inferene rule appliationsCommon subexpression elimination 30Common subexpression insertion 25Cross-jumping tail-merging 56Copy propagation 10Constant propagation 2Strength redution 2Commutativity 3Assoiativity 3Distributivity 3Retiming 3Self-inverse 1Table 6.4: Number of high level inferene rule appliations for various transformations67

68

Chapter 7Disussion and ConlusionsOne of the goals of high-level synthesis is to ahieve designs that are orret by onstru-tion. We reall from Chapter 1 that a transformation is orret if the set of behaviorsallowed by the implementation derived from the transformation is a subset of the be-haviors permitted by the original spei�ation. In this work, we have attempted tohelp aomplish the goal of orretness by onstrution in verifying the orretness oftransformations used in dependeny graph formalisms. However, we have to note thedistintion between the transformations as doumented and intended by the informalspei�ation and the transformations atually implemented in software. We explain thisdistintion in Setion 7.1. In Setion 7.2, we briey present our experiene in developinga formal spei�ation from an informal doument. We highlight the advantages of anaxiomati approah in Setion 7.3. Finally, Setion 7.4 summarizes the onlusions.7.1 Intent versus ImplementationOur veri�ation has addressed the transformations as doumented and intended by theinformal spei�ation, and not the transformations atually implemented in software.One has to determine manually if the implemented transformations do, in fat, arryout the intended transformations that have been veri�ed. In general, there is no pra-tial mehanized method to hek if software programs (suh as those implementedin C) satisfy their spei�ations. But, in order to hek the orretness of the imple-mented transformations, one has to �rst ensure that the intended transformations asdoumented are orret.The orretness problem of the implemented transformations ould be partly takledin another manner. We an ompare the dependeny graph that is taken as the inputby the software for transformation with the dependeny graph that is the output ofthe software after applying the transformation. However, this would entail developingonrete behavioral models of the dependeny graphs. But, a onrete behavior modelbasis would make the appliability of the formalization more restrited.69

7.2 From Informal to Formal Spei�ationThe most diÆult part in this investigation has been developing a proper formal spei-�ation from informal spei�ations. Even though the informal spei�ations were well-doumented, reating a formal spei�ation required expressing informal ideas suh asbehavior and mutual exlusiveness in mathematially preise terms. One partiulardetail in this respet is the following: the informal doument desribes a value of aonditional node as unde�ned when the ondition on its ondition port is false. In-troduing a notion of unde�ned value would need a speial entity to be introdued forevery data type. Further, we would also have to assoiate a meaning with suh speialentities. To avoid spei�ation diÆulties in stating what unde�ned means, we hose tospeify how an unde�ned value a�ets the overall behavior of a subgraph in whih suha node is embedded. Suh hoies have to be made with are towards spei�ation andveri�ation ease.One of the �rst tasks that aids the spei�ation proess is the hoie of abstrationlevel: how muh of the detail present in the informal doument should the spei�a-tion represent? The hoie ould be based on how the formal spei�ation has to beveri�ed. For example, we hose not to represent behavior at all: we ould express be-havioral equivalene (re�nement) by an equivalene (re�nement) relation, and expressthe properties that needed to be satis�ed by the SIL graphs.Another important issue in developing a formal spei�ation from an informal do-ument is deiding on data strutures to represent entities spei�ed informally. It isdesirable to have a formal spei�ation that very losely resembles the informal dou-ment. This is essential to map a formal spei�ation bak to its informal doument. Itis essential also for understanding a formal spei�ation, and for traing errors that havebeen found in the spei�ation bak to its informal representation. We an highlightone suh data struture that PVS allows us to use: the reord type. As we have seen inTable 4.2, it permits us to pakage all the �elds of a onditional node n, and then a-ess the individual �elds suh as inports of the n by inports(n). This syntax loselyresembles the informal spei�ation. Besides providing a simple syntax, the reord typealso allows making the type of one �eld depend on the type of another �eld. We haveseen suh dependent typing in our de�nition of arrays of ports parray in Chapter 4.Alternatively, we ould have used Abstrat Data Types (ADT) in our formal spei�a-tion. This would have an advantage of enapsulating well-formedness of the strutureof dependeny graphs within the behavior spei�ation. However, this would mean im-posing an abstrat syntax struture for the behavior. Sine our investigation primarilyinvolves transformations whih transform struture, it would be diÆult to work witha spei�ation that has an integrated struture and behavior.The properties we have tabled in our formalism ould form the basis of studying howwe ould formulate a omposite behavior from smaller behavioral relations. In an earlierwork at the register-transfer level [KoW 93℄, an automati proedure for funtionalveri�ation of retiming, pipelining and bu�ering optimization has been implemented in70

RetLab as part of the PHIDEO tool at PRL. We have arrived at proofs of propertiesthat ould form the basis of a semiautomati proedure for heking re�nement andequivalene at higher levels.7.3 Axiomati Approah versus Other Formal Ap-proahesThe advantage in an axiomati framework is that we ould assert properties of SILgraphs that have to hold, without having to speify in detail the behavioral relationsor their omposition and equivalene. We ould therefore embed o�-the-shelf data-owdiagrams used in the Strutured Analysis/Design approah [TDM 94,HMW 94℄ in ourformalism. One partiular example of the advantage of our approah is establishingre�nement and equivalene, without expressing the onrete relation between outputsand inputs of nodes. This property, expressed in Table 5.9 and Figure 5.9, does notuse any information on the onrete data and order relations of the nodes. Moreover,the automati veri�ation proedures, simple interative ommands, and many featuressuh as editing and rerunning proofs in PVS made the task of heking properties andorretness muh easier than antiipated.In ontrast to an axiomati approah, a model-oriented approah would ompare twodependeny graph models with respet to behavior. Suh a model-omparison methodwould involve verifying that the behavior of the transformed model satis�es the behav-ior of the original model. However, this entails developing onrete behavioral modelsof the dependeny graphs, and formulating the meaning of behavioral re�nement, andequivalene. Suh onrete modeling of behavior, re�nement and equivalene would im-pose restritions on the domains where the formalization ould be applied. Furthermore,suh a modeling would make it inonvenient to study the orretness of transformationson graphs with arbitrary struture. For example, in our approah, we ould handlenodes with an unspei�ed number of ports in studying the orretness problem. Thisdistintion is similar to the ontrast between axiomati semantis and denotational oroperational semantis in the ontext of programming languages. Denotational and op-erational models worked out by de Jong and Huijs [GGJ 93,HuK 94℄ ould be used asa onrete model that satis�es the axiomati spei�ation disussed in this report.As a typial example, we are given the behavioral relations of the nodes in a SILgraph and the strutural onnetivity of the graph. There is no general way to omposethese relations into a single behavioral relation for omparison with that obtained fromanother SIL graph. Moreover, from the behavioral desription in SIL, it is not possible ingeneral to extrat a state mahine or a �nite automaton model, and use state mahine orautomata omparison tehniques. This is due to the generality of the dependeny graphbehavior. In addition, sine many synthesis transformations are applied to desriptionsof behavior within a single lok yle, there is no expliit notion of state in suh a71

desription. This reinfores the judgment that state mahine or automata omparisontehniques are not suitable.7.4 Conlusions and Future WorkIn this work, we have provided an axiomati spei�ation for a general dependeny graphspei�ation language. We have given a small set of axioms that apture a general no-tion of re�nement and equivalene of dependeny graphs. We have spei�ed and veri�edabout a dozen of the optimization and re�nement transformations. We found errors inthis proess, and suggested orretions. We have also generalized the transformationsby weakening the preonditions for applying the transformations, and veri�ed their or-retness. In this proess, we have devised new transformations for further optimizationand re�nement than would have been possible before. We have explored generatingpreonditions for transformations semiautomatially from the spei�ations. Our workhas also aided investigating interations between the transformations, and thus the im-portane of the order of applying the transformations. The transformations we haveveri�ed are being used in industry to design hardware from high level spei�ations.We also plan to use our framework to investigate the orretness of transformationsinvolving sheduling and resoure alloation.The approah we have used, based on expressing properties at a high level, does notdepend on the underlying model of behavior. This enabled us to use our formalism fordependeny graph spei�ations in other areas suh as strutured analysis in softwaredesign. Thus, the ability to apture an o� the shelf formalism underpins our thesis thatan axiomati spei�ation oupled with an eÆient mehanial veri�ation is the mostsuitable approah to study the orretness of transformations on generi dependenygraphs. Finally, we have shown that our approah, and formal methods in general anreatively help disover new tehniques in system design. As part of the future work,we are onsidering a seemless integration of our veri�ation sheme with VLSI CADtools for hardware design and CASE tools for software design.

72

Referenes[AaL 94℄ M. Aagaard and M. LeeserPBS: Proven Boolean Algorithm, IEEE Trans. on CAD of ICs. Vol 13, No. 4, April1994.[AAD 93℄ F.V. Aelten, J. Allen, and S. DevadasVeri�ation of Relations between Synhronous Mahines, IEEE Trans. on CAD ofICs. Vol. 12, No. 12, Deember 1993.[Ael 94℄ F.V. Aelten, J. Allen, and S. DevadasEven-Based Veri�ation of Synhronous Globally Controlled, Logi Designs AgainstSignal Flow Graphs, IEEE Trans. on CAD of ICs., Vol. 13, No. 1 January 1994.[Ang 94℄ C. AngeloFormal Hardware Veri�ation in a Silion Compilation Environment by means oftheorem proving, PhD Thesis, IMEC, Leuven, Belgium, February 1994.[Ba 88℄ R.J.R. BakA Calulus of Re�nements for Program Derivations, Ata Informatia, Vol. 25,pp.593-624, 1988.[Bar 81℄ M. R. BarbaiInstrution Set Proessor Spei�ations (ISPS): The notation and appliations,IEEE Trans. on Computers, C-30(1): pp 24-40, 1981.[BRB 90℄ K.S. Brae, R.L. Rudell, and R.E. BryantEÆient Implementation of a BDD Pakage, Proeedings of the 27th ACM/IEEEDesign Automation Conferene, Orlando, Florida, June 24-28, 1990, pp. 40-45.[YIF 88℄ R.K. Brayton, R. Camposano, G. DeMiheli, R.H.J.M. Otten, and J.T.J. vanEijndhovenThe Yorktown Silion Compiler System, Silion Compilation, D. Gajski (Ed.),Addison-Wesley, 1988.[BCM 90℄ J.R. Burh, E.M. Clarke, K.L. MMillan, D.L. Dill, and J. HwangSymboli Model Cheking: 1020 states and beyond, Proeedings of the Fifth AnnualSymposium on Logi in Computer Siene, June 1990.73

[Cam 89℄ R. CamposanoBehavior Preserving Transformations in High Level Synthesis, Hardware Spei�-ation, Veri�ation and Synthesis: Mathematial Aspets, Cornell MSI Workshop,Leture Notes in Computer Siene 408, pp 106-128, Springer-Verlag, July 1989.[UNI 88℄ M. Chandy and J. MisraParallel Program Design: a foundation, Reading, Mass. : Addison-Wesley Pub.Co., 1988.[CBL 92℄ R. Chapman, G. Brown, and M. LeeserVeri�ed High-Level Synthesis in BEDROC, Proeedings of the 1992 EuropeanDesign Automation Conferene, Marh 1992, IEEE Press.[ELL 90℄ Computer General Eletroni DesignThe ELLA Language Referene Manual, The New Churh,Henry St. Bath BA1 1JR, U.K., issue 4.0, 1990.[Cyr 93℄ D. CyrlukMiroproessor Veri�ation in PVS: A methodology and simple example,SRI-CSL-93-12, Tehnial Report, Computer Siene Laboratory, SRI Interna-tional, Menlo Park, CA, Deember 1993.[CRS 94℄ D. Cyrluk, S. Rajan, N. Shankar, and M. SrivasE�etive Theorem Proving for Hardware Veri�ation, Proeedings of the 2nd Inter-national Conferene on Theorem Provers in Ciruit Design, Bad Heerenalb (Blak-forest), Germany, 26-29 September, 1994.[TDM 94℄ Tom DeMaroStrutured Analysis and System Spei�ation, Yourdon Press, New Jersey, USA,1979.[EMH 93℄ W.J.A Engelen, P.F.A. Middelhoek, C. Huijs, J. Hofstede, and Th. KrolApplying Software Transformations to SIL,SPRITE deliverable Ls.a.5.2/UT/Y5/M6/1A, June 1993.[Fou 90℄ M. P. FourmanFormal System Design, Formal Methods for VLSI Design, J. Staunstrup (ed.),North-Holland, IFIP 1990.[GaG 89℄ S. J. Garland and J. V. GuttagAn Overview of LP: the Larh Prover, Proeedings of the Third InternationalConferene on Rewriting Tehniques and Appliations, Springer-Verlag, 1989.[GoM 93℄ M. J. C. Gordon and T. F. Melham (Ed.)Introdution to HOL: a theorem proving environment for higher order logi, Cam-bridge University Press, 1993. 74

[Hoa 85℄ C. A. R. HoareCommuniating Sequential Proesses, Prentie Hall, Hemel Hempstead, UK, 1985.[Hil 85℄ P. N. Hil�ngerSilage: a High-level Language and Silion Compiler for Digital Signal Proessing,Proeedings of IEEE Custom Integrated Ciruits Conferene pp 213-216, Portland,OR, May 1985.[Hoo 94℄ Jozef HoomanCorretness of Real Time Systems by Constrution, Proeedings, Symposium onFormal Tehniques in Real Time and Fault Tolerant Systems, LNCS, Springer-Verlag, September 20-24, 1994 (to appear).[HHK 92℄ C. Huijs, J. Hofstede, and Th. KrolTransformations and semantial heks for SIL-1,SPRITE deliverable LS.a.5.1/UT/Y4/M6/1, November 1992.[HuK 94℄ C. Huijs and Th. KrolA Formal Semanti Model to �t SIL for Transformational Design, to appear in:Miroproessing and Miroprogramming 39 (1994) Proeedings of Euromiro '94,September 5-8-1994 Liverpool.[VHD 88℄ The Institute of Eletrial and Eletronis EngineersIEEE Standard VHDL Language Referene Manual, IEEE std. 1076-88, IEEEPress, New York, 1988.[Jan 93℄ G. JanssenROBDD software, Department of Eletrial Engineering, Tehnial University ofEindhoven, Eindhoven, Netherlands, Otober 1993.[Joh 94℄ S. D. JohnsonSynthesis of Digital Designs from Reursion Equations, MIT Press, Cambridge,1984.[Jon 90℄ G. Jones and M. SheeranCiruit Design in Ruby, Formal Methods for VLSI Design, J. Staunstrup (ed.),North-Holland, IFIP 1990.[GGJ 93℄ G.G de JongGeneralized data ow graphs: theory and appliations, PhD Thesis, EindhovenUniversity of Tehnology, Otober 1993.[JRS 91℄ J. Joye, E. Liu, J. Rushby, N. Shankar, R. Suaya, and F. von HenkeFrom Formal Veri�ation to Silion Compilation, Proeedings of the IEEE Com-pon, San Franiso, CA, February 1991, pp. 450-45575

[Klo 92℄ W.E.H. Kloosterhuis, M.R.R. eykmans, J. Hofstede, C. Huijs, Th. Krol, O.P.MArdle, W.J.M. Smits, and L.G.L. SvenssonThe SPRITE Input Language SIL-1, Language Report, SPRITE, deliverable Ls.a.a/ Philips / Y3 / M12 / 2, Otober 1992.[Klo 94℄ W.E.H. KloosterhuisPersonal Communiation, January 1994.[KoW 93℄ A. P. Kostelijk and A. van der WerfFuntional Veri�ation for Retiming and Rebu�ering Optimization, Proeedingsof The European Conferene on Design Automation with the European Event inASIC Design, Paris, Frane, Feb 22-25, 1993, IEEE Computer Soiety Press.[Kro 92℄ Th. Krol, J.v. Meerbergen, C. Niessen, W. Smits, and J. HuiskenThe SPRITE Input Language, An intermediate format for High Level Synthesis,Proeedings of EDAC 92, Brussels, 16-19 Marh 1992, pp 186-192.[LOR 93℄ Patrik Linoln, Sam Owre, John Rushby, N. Shankar, F. von HenkeEight Papers on Formal Veri�ation, Tehnial Report SRI-CSL-93-4, ComputerSiene Laboratory, SRI International, Menlo Park, CA, May 1993.[MF 93℄ M.C. MFarlandFormal Analysis of Corretness of Behavioral Transformations, Formal Methodsin Systems Design Vol.2, No.3 pp. 231-257, Kluwer, June 1993.[MP 83℄ M.C. MFarland and A.C. ParkerAn Abstrat Model of Behavior for Hardware Desriptions, IEEE Trans. on Com-puters C-32(7), pp.621-36, July 1983.[KLM 92℄ Kenneth L. MMillanSymboli Model Cheking, PhD Thesis, Tehnial Report, CMU-CS-92-131 pp 97-99, May 1992.[Mid 93℄ P.F.A. MiddelhoekTransformational Design of Digital Ciruits, Proeedings of the Seventh WorkshopComputersystems, 26 November 1993, Eindhoven, The Netherlands, pp. 57-68.[Mid 94℄ P.F.A. MiddelhoekTransformational Design of Digital Signal Proessing Appliations, Proeedings ofthe ProRISC/IEEE workshop on CSSP, 24 Marh 1994, pp. 175-180.[Mid 94-2℄ P.F.A. MiddelhoekTransformational Design of a Diretion Detetor for the Progressive San Con-version Algorithm, Preliminary, Department of Computer Siene, University ofTwente, May 25, 1994. 76

[OSR 93℄ S. Owre, N. Shankar, and J.M. RushbyUser Guide for the PVS Spei�ation and Veri�ation System, Language, and ProofCheker (Beta Release), Computer Siene Laboratory, SRI International, MenloPark, CA, USA, February, 1993.[RTJ 93℄ Kamlesh Rath, M. Esen Tuna, and Steven D. JohnsonAn Introdution to Behavior Tables, Tehnial Report No. 392, Computer SieneDepartment, Indiana University, Deember 1993.[Ros 90℄ Lars RossenFormal Ruby, Formal Methods for VLSI Design, J. Staunstrup (ed.), North-Holland, IFIP 1990.[Sax 93℄ J. B. Saxe, J.J. Horning, J.V. Guttag, and S.J. GarlandUsing Transformations and Veri�ation in Ciruit Design, Formal Methods inSystems Design Vol.3, No.3, pp. 181-209, Kluwer, Deember 1993.[SOR 93-1℄ N. Shankar, S. Owre, and J.M. RushbyA Tutorial on Spei�ation and Veri�ation using PVS (Beta Release), ComputerSiene Laboratory, SRI International, Menlo Park, CA, USA, Marh 31, 1993.[SOR 93-2℄ N. Shankar, S. Owre, and J.M. RushbyThe PVS Proof Cheker, A Referene Manual (Beta Release), Computer SieneLaboratory, SRI International, Menlo Park, CA, USA, Marh 31, 1993.[Kid 90℄ Douglas R. SmithKIDS: A Semi-Automati Program Development System, Transations on SoftwareEngineering: Speial Issue on Formal Methods, Vol. 16, No. 9, September, 1990.[Sta 90℄ J. Staunstrup and M. GreenstreetSynhronized Transitions, Formal Methods for VLSI Design, J. Staunstrup (ed.),North-Holland, IFIP 1990.[Tho 98℄ D. Thomas, E.M. Dirkes, R.A. Walker, J.V. Rajan, J.A. Nestor, and R.L.BlakburnThe System Arhitet's Workbenh, Proeedings of the 25th Design AutomationConferene, ACM/IEEE, pp 337-343, 1988.[Vem 90℄ R. VemuriHow to Prove the Completeness of a Set of Register Level Design Transformations,Proeedings of the 27th Design Automation Conferene, pp. 207-212, ACM/IEEE,June 1990[WMM 94℄ A. van der Werf, J.L. van Meerbergen, O. MArdle, P.E.R. Lippens, W.F.J.Verhaegh, and D. GrantProessing Unit Design, Proeedings of the SPRITE workshop on \VLSI Synthesisfor DSP", Setion 12, Philips Researh Labs, Eindhoven, Marh 1994.77

[JMW 90℄ Jeannette M. WingA Spei�er's Introdution to Formal Methods, IEEE Computer, Vol. 23, Number9, pp 8-22, IEEE Computer Soiety Press, September 1990[HMW 94℄ M. WongInformal, Semi-formal, and Formal Approahes to the spei�ation of software Re-quirements, Masters Thesis, Department of Computer Siene, UBC, September1994.[WrS 91℄ J. von Wright and K. SereProgram Transformations and Re�nements in HOL, Higher Order Logi TheoremProving and its Appliations, International Workshop, Proeedings, M. Arher,J.J. Joye, K.N. Levitt and P.J. Windley (Eds.), IEEE Computer Soiety Press,August 28-30, 1991.

78

Appendix A
De�nitions, Axioms andTheorems
A.1 De�nitionsport: TYPEparray: TYPE = [# size:nat,port_array: ARRAY[{i:nat|i<size}->port℄ #℄node: TYPE =[#inports: parray,outport: port, % stritly, this should also be% parray (as in SPLIT) for% hierarhial nodes.intports: parray,ondport: port,ond:pred[port℄,datarel: pred[[{p:parray|size(p)=size(inports)},port℄℄,orderrel:pred[[{p:parray|size(p)=size(inports)},port℄℄,intrel: pred[[parray,parray℄℄#℄% derive a node as a subtype of nodenode: TYPE = {n:node|ond(n)=LAMBDA (p:port):TRUE}79

n0,n1: VAR nodepar0,par1: VAR parray% Useful funtions in omparing nodes and parrayssame_size(n0,n1):boolean =size(inports(n0)) = size(inports(n1))same_size(par0,par1):boolean =size(par0) = size(par1)% same_size appears as a type onstraintsame_kind(n0,(n1|same_size(n1,n0))) =datarel(n0) = datarel(n1)sks(n0,n1) =same_size(n0,n1) AND same_kind(n0,n1)% refinement/implementation relationship between nodessub_kind(n0,(n1|same_size(n1,n0))):booleansbks(n0,n1) = same_size(n0,n1) AND sub_kind(n0,n1)% defines behavioral impliation of sil graphs/portssilimp: pred[[port,port℄℄p0,p1,p2: VAR portpar,par1,par2,par3: VAR parrayi: VAR nat% defines array version of silimp: note the weak axiom defsilimpar(par1,par2):boolean% defines a behavioral equivalene of sil graphssileq(p1,p2):boolean =silimp(p1,p2) AND silimp(p2,p1)

80

% array versionsileqar(par1,par2):boolean =FORALL (i| i < size(par1)):sileq(port_array(par1)(i),port_array(par2)(i))% Arbitrary funtions orresponding to data_rel of nodessilf: VAR [port->port℄silfar: VAR [parray->port℄<: pred[[weight,weight℄℄% data flow edge is a relation on portsdfe: [port,port -> boolean℄% an arbitrary fixed funtion orresponding to portsw: [port,port->weight℄p,p0,p1,p2,p3,p4: VAR portn,n0,n1,n2,n3: VAR noden,n0,n1,n2,n3: VAR nodeinport(n,(i:{j:nat|j<size(inports(n))})):port =(port_array(inports(n)))(i)intport(n,(i:{j:nat|j<size(intports(n))})):port =(port_array(intports(n)))(i)% define useful marosis_outport(p) = (EXISTS n: p=outport(n))is_inport(p) = (EXISTS n,(i:{j:nat|j<size(inports(n))}):p=inport(n,i))is_ondport(p) = (EXISTS n: p=ondport(n))

81

% array version of dfear and xdfear and orderingwar: [parray,parray->weight℄ % or weightarray??par,parr,par0,par1,par00,par11,par2,par3: VAR parraydfear(par0,(par1:{par|same_size(par,par0)})):boolean =(FORALL (i|i<size(par0)):dfe(port_array(par0)(i),port_array(par1)(i)))xdfear(par0,(par1:{par|same_size(par,par0)})):boolean =(FORALL (i|i<size(par0)):xdfe(port_array(par0)(i),port_array(par1)(i)))% array version of the above orresponding theorems -% illustrates larity of speifiationis_node_outport(p):boolean =EXISTS n: p = outport(n)is_outportar(par):boolean =FORALL (i|i<size(par)): is_node_outport(port_array(par)(i))is_node_outport(p):boolean =EXISTS (n:node): p = outport(n)is_noutportar(par):boolean =FORALL (i|i<size(par)): is_node_outport(port_array(par)(i))% definition of an assignment nodeasignment(n:node):node =n WITH [inports := inports(n) WITH [size := 1℄℄WITH [dataf := LAMBDA (p:parray): outport(n) =port_array(inports(n))(0)℄% definition of floor funtion for real-integer% refinement transformationfloor(x): int =epsilon (LAMBDA y: y <= x AND y > (x-1))

82

A.2 Axioms

n: VAR nodenode_ax: AXIOMFORALL n: ond(n)(ondport(n)) IMPLIESdatarel(n)(inports(n),outport(n))silimpar_ax: AXIOMFORALL par1,(par2|same_size(par1,par2):(FORALL (i| i< size(par1)):EXISTS j: silimp(port_array(par1)(i),port_array(par2)(j))) IFFsilimpar(par1,par2)% Reflexivitysilimp_refl_ax: AXIOM silimp(p1,p1)% Transitivitysilimp_trans_ax: AXIOMFORALL p0,p1,p2:silimp(p0,p1) AND silimp(p1,p2) IMPLIES silimp(p0,p2)silimpar_trans_ax: AXIOMsilimpar(par1,par2) AND silimpar(par2,par3)IMPLIESsilimpar(par1,par3) 83

% sub kind nodes implement eah othersub_kind_implement_ax: AXIOMFORALL (n0:node),(n1:node|same_size(n0,n1)):sub_kind(n0,n1) AND silimpar(inports(n0),inports(n1))IMPLIESsilimp(outport(n0),outport(n1))self_seq_edge_not_ax: AXIOM FORALL (p:port) NOT sqe(p,p)% partial order relation on weightspartial_order(<:pred[[weight,weight℄℄)dfe_port_ax1: AXIOMdfe(p1,p2) IMPLIES is_outport(p1)dfe_port_ax2: AXIOMdfe(p1,p2) IMPLIES (is_inport(p2) OR is_ondport(p2))% We need these general axioms on dfes and partial order on w'sdfe_w_ax: AXIOM(dfe(p0,p2) AND dfe(p1,p2))IFF(w(p0,p2) < w(p1,p2) ORw(p1,p2) < w(p0,p2))% if the onditional port val is false, then the w involving its% output port is the least!: this is the property of the bottom% we want!!ond_bottom_ax: AXIOMNOT ond(n)(ondport(n)) IMPLIESFORALL p:dfe(outport(n),p)IMPLIESFORALL (n:node): dfe(outport(n),p) IMPLIESw(outport(n),p) < w(outport(n),p)% Generalized join axiomjoin_ax: AXIOM(dfe(p1,p2) AND(FORALL p: dfe(p,p2) IMPLIES w(p,p2) < w(p1,p2)))IMPLIESsilimp(p1,p2)
84

% Partial order preservation: Advaned axiom (we an't prove it% unless we introdue extra delay axioms for nodes/silimp)p00,p11,p22,p33,p44: VAR portpo_preserve_ax: AXIOM(w(p0,p2) < w(p1,p2) ANDsilimp(p0,p00) ANDsilimp(p2,p22) ANDdfe(p00,p22) AND dfe(p11,p22))IMPLIESw(p00,p22) < w(p11,p22)% Generalized join axiom for arraysjoinar_ax: AXIOMFORALL par1,(par2|same_size(par2,par1)):(dfear(par1,par2) AND(FORALL (par|same_size(par,par1)):dfear(par,par2) IMPLIES war(par,par2) < war(par1,par2)))IMPLIESsilimpar(par1,par2)

85

86

A.3 Theorems

% property of an non-onditional nodenode_data_rel_th: THEOREMFORALL (n:node): datarel(n)(inports(n),outport(n))silimpar_refl_th: THEOREMsilimpar(par,par)% sileq_ar_reflsileqar_refl_th: THEOREMsileqar(par1,par1)% sileq_ar_symsileqar_sym_th: THEOREMFORALL par1,(par2:{par|same_size(par,par1)}):sileqar(par1,par2)= sileqar(par2,par1)% sileq_ar_transsileqar_trans_th: THEOREMFORALL par1,(par2:{par|same_size(par,par1)}),(par3:{par|same_size(par,par1)}):(sileqar(par1,par2) AND sileqar(par2,par3))IMPLIESsileqar(par1,par3)% same kind non-onditional nodes propagate similar outputsin_eqar_imp_outeq: THEOREMFORALL (n0:node),(n1:node|sks(n0,n1)):sileqar(inports(n0),inports(n1))IMPLIESsileq(outport(n0),outport(n1)) 87

% Make sure of no joins in this theorem:% Holds only if the dfe onnets an outport of a% non-onditional node: partly taken are of by typing% (n1 is an ordinary node type)xdfe_sileq_th: THEOREMxdfe(outport(n1),p2) IMPLIES sileq(outport(n1),p2)% partial order preservation extension theorempo_preserve_xdfe_th: THEOREM(w(p0,p2) < w(p1,p2) ANDsileq(p2,outport(n3)) ANDxdfe(outport(n3),p4) ANDdfe(p00,p44) AND dfe(p11,p44) AND silimp(p0,p00) ANDsilimp(p1,p11) AND silimp(p4,p44))IMPLIESw(p00,p44) < w(p11,p44)% Join of 2 dfesdfe2_join_th: THEOREM(dfe(p1,p3) AND dfe(p2,p3) AND(FORALL p0:((p0 /= p1) OR (p0 /= p2))IMPLIES NOT dfe(p0,p3)))IMPLIESIF w(p1,p3) < w(p2,p3) THENsileq(p2,p3)ELSE sileq(p1,p3)ENDIF

88

% array version theoremsinports_sileqar_th: THEOREMFORALL (nd:node):FORALL (n0:node|same_size(n0,nd)),(n1:node|same_size(n1,nd)):((FORALL (i|i<size(inports(nd))),n:xdfe(outport(n),inport(n0,i)) IFF(EXISTS (nn:node): sileq(outport(n),outport(nn)) ANDxdfe(outport(nn),inport(n1,i)))) AND(FORALL (i|i<size(inports(nd))):EXISTS n: xdfe(outport(n),inport(n0,i)))IMPLIESsileqar(inports(n0),inports(n1)))inports_eqar_th: THEOREMFORALL (n0:node),(n1:node|same_size(n0,n1)):((FORALL (i|i<size(inports(n0))),n:xdfe(outport(n),inport(n0,i)) IFFxdfe(outport(n), inport(n1,i))) AND(FORALL (i|i<size(inports(n0))):EXISTS n: xdfe(outport(n),inport(n0,i)))IMPLIESsileqar(inports(n0),inports(n1)))xdfear_sileqar_th: THEOREMFORALL (par0|is_outportar(par0)),(par1|same_size(par1,par0)):xdfear(par0,par1) IMPLIES sileqar(par0,par1)

89

% Inports onneted by exlusive data flow edge arrays% to idential ports are sileqarinportsar_eqar_th: THEOREMFORALL (n0:node),(n1:node|same_size(n0,n1)):(((FORALL (par|is_outportar(par) AND same_size(par,inports(n0))):xdfear(par, inports(n0)) IFF xdfear(par,inports(n1))) AND(EXISTS (par|is_outportar(par) AND same_size(par,inports(n0))):xdfear(par, inports(n0)))) IMPLIESsileqar(inports(n0),inports(n1)))% Inports onneted by exlusive data flow edge arrays% to sileq port arrays sileqarinportsar_sileqar_th: THEOREMFORALL (n0:node),(n1:node|same_size(n0,n1)):(((FORALL (par|is_outportar(par) AND same_size(par,inports(n0))):xdfear(par,inports(n0)) IFF(EXISTS (parr|is_outportar(par) ANDsame_size(parr,inports(n0))):(sileqar(par,parr) ANDxdfear(parr,inports(n1))))) ANDEXISTS (par|is_outportar(par) AND same_size(par,inports(n0))):xdfear(par,inports(n0)))IMPLIES sileqar(inports(n0),inports(n1)))

90

dfear2_join_th: THEOREMFORALL par1,(par2|same_size(par2,par1)),(par3|same_size(par3,par1)):(dfear(par1,par3) AND dfear(par2,par3)) AND(FORALL (par|same_size(par,par1)):(par /= par1 OR par /= par2)IMPLIESNOT dfear(par,par3))IMPLIESIF war(par1,par3) <= war(par2,par3)THEN sileqar(par2,par3)ELSE sileqar(par1,par3)ENDIF% Common Subexpression Elimination Transformationp0,p1,p2,p3: VAR portpar,parr: VAR parraydot0,dot1,dot01: VAR node% The preonditions an be weakend at par, suh as -% to exists par1: silimp(par1,par)preonds(dot0,(dot1:{dot1|same_kind(dot0,dot1)})):boolean =(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)) IFF xdfear(par,inports(dot1))) AND(EXISTS (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)))CsubE: THEOREMFORALL dot0,(dot1|same_kind(dot1,dot0)),(dot01|same_kind(dot01,dot0)):((preonds(dot0,dot1) AND(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)) IFF(EXISTS (parr|is_outportar(parr) ANDsame_size(parr,inports(dot0))):(sileqar(par,parr) AND xdfear(parr,inports(dot01)))))) IMPLIES(FORALL p1,p2:((xdfe(outport(dot0),p1) OR xdfe(outport(dot1),p1)) ANDxdfe(outport(dot01),p2)) IMPLIES sileq(p1,p2)))
91

% Cross Jumping Tail Merging Theoremp0,p00,p1,p11,p2,p22,p3,p33,pp,pp0,pp00: VAR portn,dot,dot0,dot1,dot01: VAR noden2,n3,n22,n33: VAR nodepar,par0,par1,par00,par11,par2,par3: VAR parray% preonditionspreonds(dot0,(dot1:{dot|sks(dot,dot0)}),(dot01:{dot|sks(dot,dot0)}),(par0:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par1:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par00:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par11:{par|is_outportar(par)&same_size(par,inports(dot0))}),pp0,pp00) =xdfear(par0,inports(dot0)) AND xdfear(par1,inports(dot1))AND(w(outport(dot0),pp0) < w(outport(dot1),pp0)IFFwar(par00,inports(dot01)) < war(par11,inports(dot01)))ANDdfe(outport(dot0),pp0) AND dfe(outport(dot1),pp0)AND(FORALL pp: ((pp /= outport(dot0)) OR (pp /= outport(dot1)))IMPLIESNOT dfe(pp,pp0))ANDdfear(par00,inports(dot01)) AND dfear(par11,inports(dot01))AND(FORALL (par|size(par)=size(par00)):(par /= par00 OR par /= par11)IMPLIESNOT dfear(par,inports(dot01)))ANDxdfe(outport(dot01),pp00) ANDsileqar(par0,par00) ANDsileqar(par1,par11)

92

% Cross jumping tail merging transformations is orret when% the preonditions are satisfiedCjtM: THEOREMFORALL dot0:LET sk = LAMBDA n:sks(n,dot0),ios = LAMBDA par:is_outportar(par) &same_size(par,inports(dot0))INFORALL (dot1|sk(dot1)),(dot01|sk(dot01)),(par0|ios(par0)),(par1|ios(par1)),(par00|ios(par00)),(par11|ios(par11)):preonds(dot0,dot1,dot01,par0,par1,par00,par11,pp0,pp00)IMPLIESsileq(pp0,pp00)

93

94

Appendix BProof Transripts
B.1 Common Subexpression EliminationTerse proof for CSubE.CSubE:f1g 8 dot0; (dot1 j same kind(dot1; dot0));(dot01 j same kind(dot01; dot0)) :((preonds(dot0; dot1)^(8 (par j is outportar(par) ^ size(par) = size(inports(dot0))) :xdfear(par; inports(dot0)),(9 (parrj is outportar(parr) ^ size(parr) = size(inports(dot0))) :(sileqar(par; parr) ^ xdfear(parr; inports(dot01))))))�(8 p1;p2 :((xdfe(outport(dot0); p1) _ xdfe(outport(dot1); p1))^ xdfe(outport(dot01); p2))� sileq(p1; p2)))Expanding the de�nition of preonds,For the top quanti�er in 1, we introdue Skolem onstants: (dot0!1 dot1!1 dot01!1),Applying disjuntive simpli�ation to atten sequent,Applying inportsar eqar th where n0 gets dot0!1, n1 gets dot1!1,Replaing using formula -2,Replaing using formula -3, 95

Invoking deision proedures,Applying inportsar sileqar th where n0 gets dot0!1, n1 gets dot01!1,Replaing using formula -5,Replaing using formula -4,Invoking deision proedures,Deleting some formulas,For the top quanti�er in 1, we introdue Skolem onstants: (p01 p02),Applying sileqar trans inv th where par1 gets inports(dot0!1), par2 gets inports(dot1!1),par3 gets inports(dot01!1),Invoking deision proedures,Applying in eqar imp outeq where n0 gets dot0!1, n1 gets dot01!1,Applying in eqar imp outeq where n0 gets dot1!1, n1 gets dot01!1,Applying xdfe sileq th whereInstantiating quanti�ed variables,Instantiating quanti�ed variables,Instantiating quanti�ed variables,Invoking deision proedures,Deleting some formulas,Applying sileq trans inv th whereInstantiating the top quanti�er in -1 with the terms: outport(dot0!1), p01,outport(dot01!1),Instantiating the top quanti�er in -1 with the terms: outport(dot1!1), p01,outport(dot01!1),Applying sileq trans ax whereInstantiating the top quanti�er in -1 with the terms: p01, outport(dot01!1), p02,Applying bddsimp, whih is trivially true. This ompletes the proof of CSubE.Q.E.D. 96

B.2 Cross Jumping Tail MergingTerse proof for CjtM.CjtM:f1g (8 (pp0; pp00 : port) :8 (dot0 : node) :let sk : [node ! bool℄ =� (n : node) : same size(n; dot0) ^ same kind(n; dot0);ios : [parray ! bool℄ =� (par : parray) : is outportar(par)^ size(par) = size(inports(dot0))in 8 (dot1 : node j sk(dot1)); (dot01 : node j sk(dot01));(par0 : parray j ios(par0)); (par1 : parray j ios(par1));(par00 : parray j ios(par00));(par11 : parray j ios(par11)) :preonds(dot0; dot1; dot01; par0; par1; par00; par11; pp0; pp00)� sileq(pp0; pp00))Expanding the de�nition of preonds,For the top quanti�er in 1, we introdue Skolem onstants: (pp0!1 pp00!1),For the top quanti�er in 1, we introdue Skolem onstants: (dot0!1),For the top quanti�er in 1, we introdue Skolem onstants: (dot1!1 dot01!1 par0!1par1!1 par00!1 par11!1),Applying disjuntive simpli�ation to atten sequent,Applying xdfear sileqar th whereInstantiating quanti�ed variables,Instantiating quanti�ed variables,Applying dfe2 join th whereInstantiating the top quanti�er in -1 with the terms: outport(dot0!1), outport(dot1!1),pp0!1,Replaing using formula -8,Replaing using formula -9,Replaing using formula -10,Applying dfear2 join th whereInstantiating the top quanti�er in -1 with the terms: par00!1, par11!1, inports(dot01!1),Replaing using formula -12,Replaing using formula -13, 97

Replaing using formula -14,Letting war01 name war(par0!1; inports(dot0!1)) � war(par1!1; inports(dot1!1)),Letting war001 name war(par00!1; inports(dot01!1)) � war(par11!1; inports(dot01!1)),Letting w01 name w(outport(dot0!1); pp0!1) � w(outport(dot1!1); pp0!1),Replaing using formula -1,Hiding formulas: -1,Replaing using formula -1,Hiding formulas: -1,Replaing using formula -1,Hiding formulas: -1,Invoking deision proedures,Deleting some formulas,Deleting some formulas,Replaing using formula -6,Replaing using formula -5,Hiding formulas: -5, -6,Applying sileqar trans inv th whereInstantiating the top quanti�er in -1 with the terms: par0!1, inports(dot0!1), par00!1,Instantiating the top quanti�er in -1 with the terms: par1!1, inports(dot1!1), par11!1,Applying in eqar imp outeq whereInstantiating the top quanti�er in -1 with the terms: dot0!1, dot01!1,Instantiating the top quanti�er in -1 with the terms: dot1!1, dot01!1,Applying xdfe sileq th whereInstantiating quanti�ed variables,Invoking deision proedures,Deleting some formulas,Applying sileqar trans th whereInstantiating the top quanti�er in -1 with the terms: inports(dot1!1), par11!1,inports(dot01!1),Instantiating the top quanti�er in -1 with the terms: inports(dot0!1), par00!1,inports(dot01!1),Invoking deision proedures,Deleting some formulas,Applying sileq trans inv th where 98

Instantiating the top quanti�er in -1 with the terms: outport(dot0!1), pp0!1,outport(dot01!1),Instantiating the top quanti�er in -1 with the terms: outport(dot1!1), pp0!1,outport(dot01!1),Applying sileq trans ax whereInstantiating the top quanti�er in -1 with the terms: pp0!1, outport(dot01!1), pp00!1,Applying bddsimp,whih is trivially true.This ompletes the proof of CjtM.Q.E.D.

99

