
Transformations in High-Level Synthesis:Formal Spe
i�
ation and EÆ
ient Me
hani
alVeri�
ationP. Sreeranga RajanComputer S
ien
e LaboratorySRI InternationalMenlo Park CA 94025 USAsree�
sl.sri.
omPhone: +1 (415) 859-2873 Fax: +1 (415) 859-2844O
tober 1994

Abstra
tDependen
y graphs are used to model data and
ontrol
ow in hardware and softwaredesign. In high-level synthesis of hardware, optimization and re�nement transforma-tions are used to transform dependen
y-graph-based spe
i�
ations at the behavior levelto dependen
y-graph-based implementations at the register-transfer level. Register-transfer-level implementations are mapped to gate-level hardware designs by low-levellogi
 synthesis. In this work, we investigated the spe
i�
ation and me
hani
al veri�
a-tion of the
orre
tness of transformations used in high-level synthesis of hardware.We have provided a formal spe
i�
ation of dependen
y graphs, and veri�ed the
or-re
tness of a variety of transformations used in an industrial synthesis framework. Errorshave been dis
overed in the transformations, and modi�
ations have been proposed andin
orporated. Further, the formal spe
i�
ation has permitted us to examine the gener-alization and
omposition of transformations. In the pro
ess, we have dis
overed newtransformations that
ould be used for further optimization and re�nement than werepossible before. The spe
i�
ation and veri�
ation s
hemes are general enough for ap-pli
ations in other synthesis frameworks and software design, where a transformationaldesign approa
h is used.In order to present our work in a
on
rete
ontext, we fo
us on the high-level synthe-sis part of the SPRITE proje
t at Philips Resear
h Laboratories. The transformations inthe high-level synthesis system are used for re�nement and optimization of des
riptionsspe
i�ed in a dependen
y graph language
alled the SPRITE Input Language (SIL).SIL is an intermediate language used during the synthesis of hardware des
ribed usinglanguages su
h as VHDL, SILAGE and ELLA. Besides being an intermediate language,it forms the ba
kbone of the TRADES synthesis system of the University of Twente.SIL has been used in the design of hardware for audio and video appli
ations.We used the Prototype Veri�
ation System (PVS) from SRI International to spe
ifyand me
hani
ally verify the
orre
tness of the transformations. The PVS spe
i�
ationlanguage allows us to investigate the
orre
tness problem using a
onvenient level of rep-resentation. The PVS veri�er features automati
 pro
edures and intera
tive veri�
ationrules to
he
k properties of spe
i�
ations.

Contents
A
knowledgments vi1 Introdu
tion 11.1 Related Work : 61.1.1 LAMBDA : 71.1.2 Formal Ruby : 71.1.3 Digital Design Derivation : 81.1.4 Transformations in SAW : 81.1.5 Veri�
ation of Transformations in SILAGE : : : : : : : : : : : : 81.1.6 Syn
hronized Transitions in LP : : : : : : : : : : : : : : : : : : : 81.1.7 Transformations in Software Design : : : : : : : : : : : : : : : : 92 Overview of SIL 112.1 Stru
tural Aspe
ts of SIL : 112.2 Behavioral Aspe
ts of SIL : 122.3 Transformations in SIL : 183 Spe
i�
ation and Veri�
ation in PVS 213.1 PVS Spe
i�
ation Language : 213.2 PVS Veri�
ation Features : 223.3 Notes on Spe
i�
ation Notation : 223.4 Spe
i�
ation and Veri�
ation Examples in PVS : : : : : : : : : : : : : : 244 Spe
i�
ation of SIL Graph Stru
ture in PVS 334.1 Port and Port Array : 334.2 Edges : 344.3 Node, Conditional Node and Graph : 354.4 Well-formedness of a SIL Graph : 39i

5 Spe
i�
ation of SIL Graph Behavior and Re�nement 415.1 Behavior : 415.2 Re�nement and Equivalen
e : 426 Spe
i�
ation and Veri�
ation of Transformations 556.1 Overview : 556.2 Common Subexpression Elimination : 566.3 Cross-Jumping Tail-Merging : 576.4 Other Transformations and Proofs : 606.5 Generalization and Composition of Transformations : : : : : : : : : : : 616.6 Investigations into \What-if?" S
enarios : : : : : : : : : : : : : : : : : : 616.7 Devising New Transformations : 627 Dis
ussion and Con
lusions 697.1 Intent versus Implementation : 697.2 From Informal to Formal Spe
i�
ation : : : : : : : : : : : : : : : : : : : 707.3 Axiomati
 Approa
h versus Other Formal Approa
hes : : : : : : : : : : 717.4 Con
lusions and Future Work : 72A De�nitions, Axioms and Theorems 79A.1 De�nitions : 79A.2 Axioms : 83A.3 Theorems : 87B Proof Trans
ripts 95B.1 Common Subexpression Elimination : 95B.2 Cross Jumping Tail Merging : 97

ii

List of Figures1.1 Cross jumping tail merging: in
orre
tly spe
i�ed in informal do
ument. 21.2 Example of a dependen
y graph with
ontrol spe
i�
ation. : : : : : : : : 31.3 SIL transformations and veri�
ation in PVS in the
ontext of high levelsynthesis. : 52.1 Di�erent kinds of SIL ports. : 112.2 An example of a SIL graph des
ription. : : : : : : : : : : : : : : : : : : 122.3 SIL node: informal des
ription. : 132.4 SIL edges: informal des
ription. : 152.5 SIL Join and Distribute: informal des
ription. : : : : : : : : : : : : : : : 152.6 Combinational adder: SIL graph repeated over
lo
k
y
les. : : : : : : : 152.7 Cumulative adder: SIL graph with DELAY node. : : : : : : : : : : : : : 162.8 Cumulative adder: unfolded SIL graph. : : : : : : : : : : : : : : : : : : 162.9 Partial spe
i�
ation of a multiplexor. : 172.10 Implementation spe
i�
ation of a multiplexor. : : : : : : : : : : : : : : : 182.11 Example SIL transformation: retiming. : : : : : : : : : : : : : : : : : : : 194.1 SIL data-
ow and sequen
e edges. : 354.2 SIL
onditional node. : 374.3 Node as a subtype of a
onditional node. : : : : : : : : : : : : : : : : : : 385.1 Example: re�nement of ports due to non-deterministi

hoi
e. : : : : : : 435.2 Example: array re�nement does not imply every individual port re�nement. 445.3 Using weights for ordering data-
ow edges : : : : : : : : : : : : : : : : : 465.4 Using weights to determine join behavior. : : : : : : : : : : : : : : : : : 475.5 Weight when the
ondition on a
onditional node is false. : : : : : : : : 485.6 Absen
e of join: ex
lusive data-
ow edge. : : : : : : : : : : : : : : : : : 48iii

5.7 Order preserved by re�nement and optimization. : : : : : : : : : : : : : 515.8 Order preserved by re�nement and ex
lusive data-
ow edge. : : : : : : : 525.9 Graph re�nement: property expressing relation between outputs and in-puts of graphs independent of underlying behavior. : : : : : : : : : : : : 546.1 Common subexpression elimination. : 566.2 Cross-jumping tail-merging:
orre
ted. : : : : : : : : : : : : : : : : : : : 586.3 Cross-jumping tail-merging: in
orre
tly spe
i�ed in informal do
ument. 596.4 Cross-jumping tail-merging: generalized and veri�ed. : : : : : : : : : : : 606.5 Cross-jumping tail-merging: inappli
able when two nodes are mergedinto one. : 626.6 Further optimization impossible using existing transformations. : : : : : 636.7 Inappli
ability of
ross-jumping tail-merging after
ommon subexpressionelimination: due to pre
ondition restri
tions. : : : : : : : : : : : : : : : 636.8 Inappli
ability of
ommon subexpression elimination after
ross-jumpingtail-merging: due to pre
ondition restri
tions. : : : : : : : : : : : : : : : 646.9 A simple new transformation: obvious, post-fa
to. : : : : : : : : : : : : 65

iv

List of Tables4.1 PVS types for data-
ow edge and sequen
e edge : : : : : : : : : : : : : 344.2 PVS spe
i�
ation of
onditional node as a re
ord type : : : : : : : : : : 364.3 Node as a subtype of a
onditional node : : : : : : : : : : : : : : : : : : 385.1 Using weights for ordering data-
ow edges: PVS spe
i�
ation : : : : : : 465.2 Using weights to determine join behavior. : : : : : : : : : : : : : : : : : 475.3 Weight when the
ondition on a
onditional node is false : : : : : : : : : 485.4 Absen
e of join: ex
lusive data-
ow edge : : : : : : : : : : : : : : : : : : 495.5 Array version of ex
lusive data-
ow edge : : : : : : : : : : : : : : : : : : 495.6 A theorem on join of exa
tly two data-
ow edges : : : : : : : : : : : : : 505.7 Order preserved by re�nement and optimization : : : : : : : : : : : : : 515.8 Order preserved by re�nement and ex
lusive data-
ow edge : : : : : : : 515.9 Graph re�nement: property expressing relation between outputs and in-puts of graphs independent of underlying behavior : : : : : : : : : : : : 535.10 Predi
ates for expressing the sameness of nodes : : : : : : : : : : : : : : 546.1 Corre
tness of
ommon subexpression elimination : : : : : : : : : : : : : 586.2 PVS spe
i�
ation of pre
onditions for
ross-jumping tail-merging : : : : 666.3 Corre
tness of
ross- jumping tail-merging : : : : : : : : : : : : : : : : : 676.4 Number of high level inferen
e rule appli
ations for various transformations 67
v

A
knowledgmentsA major part of the work presented in this report was done at Philips Resear
h Labora-tories, Eindhoven, The Netherlands, from September 1993 through April 1994. I thankTon Kostelijk for the invitation to work on the proje
t, and for providing illuminatingsuggestions, support and a homelike environment. I am grateful to Corrie Huijs, WimKloosterhuis, Thijs Krol, Jaap Hofstede, Peter Middelhoek, and Wim Smits for their
ooperation, review, and
orre
tions. Thanks to group leader Gerard Beenker for ar-ranging a pleasant stay in Eindhoven and providing
onstant support for the proje
t, andappre
iation to the group members for a lively and stimulating atmosphere. Thanks toIskender Agi, Mark Mori
oni, Peter Neumann, Sam Owre, John Rushby, and N. Shankarfor
omments and suggestions, and M.K. Srivas for providing in-depth
orre
tions andremarks. Thanks to Jens Ulrik Skakkebaek of TU Denmark, Jozef Hooman and GeertJanssen of TU Eindhoven, and Paul Miner of NASA for remarks and interesting dis
us-sions related to this work. I am grateful to Je� Joy
e of UBC for the en
ouragement,and for suggesting appli
ations of the work in software engineering. Thanks to PaulGilmore for detailed observations, and to Alan Ma
kworth and Mabo Ito of UBC forinsightful remarks.

vi

Chapter 1Introdu
tionDependen
y graphs1 are graph-based spe
i�
ations of data and
ontrol
ow in a system.They are used to model systems at a high level of abstra
tion in both hardware and soft-ware design. In high-level synthesis of hardware, a sequen
e of transformations is usedfor re�nement of dependen
y-graph-based spe
i�
ations at an abstra
t behavior levelinto dependen
y-graph-based implementations at the register-transfer level. Further,register-transfer-level implementations
ould be
onverted to
on
rete hardware designsby low-level logi
 synthesis. Typi
ally, dependen
y graphs are represented pi
torially asgraph stru
tures with an asso
iated behavior. A transformation transforms one graphstru
ture into another by removing or adding nodes and edges. An informal represen-tation would lead to subtle errors, making it diÆ
ult to verify the
orre
tness of thetransformations. The problem we have addressed in this work is, how the
orre
tnessof transformations on dependen
y graphs
an be formally spe
i�ed and veri�ed.The behavior2 of a dependen
y graph is the set of all tuples, where ea
h tuple hasinput data values and
orresponding output data values of the dependen
y graph. Atransformation is
orre
t if the sequen
e of behaviors allowed by the implementation isa subsequen
e of the behaviors permitted by the spe
i�
ation. Trivial implementationsthat allow an empty sequen
e of behaviors
an be ruled out by showing either, thatat least one behavior is allowed by the implementation, or that the implementation isequivalent to its spe
i�
ation with respe
t to behavior. The solution to the problem ofverifying the
orre
tness of transformations we have sought in this work, is independentof the model of behavior underlying dependen
y graphs.A typi
al transformation employed in high-level synthesis is
ross-jumping tail-merging [EMH 93℄, shown in Figure 1.1. In this transformation, two identi
al nodeson dependen
y paths that are never a
tive at the same time are merged into one node.However, as we found out using the formal approa
h explained in this paper, the trans-formation does not preserve behavior. Informally, the reason is as follows. In graph G1,1In literature, they are also known as
ontrol-
ow/data-
ow graphs and signal-
ow graphs.2Usually known as input/output behavior. 1

Figure 1.1: Cross jumping tail merging: in
orre
tly spe
i�ed in informal do
ument.when
 is false, the value of q0 is arbitrary, and so is the value of p0. If we
hoose thevalue of pp0 to be that of p0, the value of pp0 is also arbitrary. In graph G2, when
is false, we
ould
hoose the value of p01 to be that of q11. In this
ase, the value ofpp00 is (y1 * y2). Be
ause the
orresponding outputs
ould be unequal with identi
alinputs, the behaviors of the graphs are not equivalent. A
orre
ted and generalized
ross-jumping tail-merging transformation is presented in Chapter 6.The main
ontributions of this work are the following:� A formal spe
i�
ation of dependen
y graphs has been a
hieved.� A set of optimization and re�nement transformations on dependen
y graphs usedin high level synthesis have been veri�ed. Generalization of transformations havealso been proposed.� Errors have been dis
overed in the transformations used in industrial strengthhardware design. Modi�
ations for the erroneous transformations have been pro-posed and in
orporated.� New transformations have been devised that
ould be used for further optimizationand re�nement than were possible before.2

Figure 1.2: Example of a dependen
y graph with
ontrol spe
i�
ation.Formal methods
ould be divided into two main
ategories: property-oriented meth-ods and model-oriented methods [JMW 90℄. In a property oriented method, the systemunder
onsideration is spe
i�ed by asserting properties of the system, minimizing thedetails of how the system is
onstru
ted. While, in a model-oriented method, the spe
-i�
ation des
ribes the
onstru
tion of the system from its
omponents. An axiomati
approa
h is a property-oriented method. Typi
ally, a small set of properties,
alledaxioms, are asserted to be true, while other properties,
alled theorems, are derived.In this work, we have
hosen a property oriented method. We propose an axiomati
spe
i�
ation
oupled with an eÆ
ient veri�
ation method to study the
orre
tness oftransformations on dependen
y graphs. As we dis
uss later in Chapter 7, an axiomati
approa
h does not require us to develop a
on
rete behavioral model for dependen
ygraphs, thus enabling it to be simpler and more general than other formal approa
hes.Dependen
y graph3 is a graph-based representation of the behavior of a system. It
onsists of nodes representing operations or pro
esses, and dire
ted edges representingdata dependen
ies and data
ow through the system. In addition,
ontrol
ow
ouldalso be represented in a dependen
y graph in several ways. We show an example of su
ha graph in Figure 1.2.In order to present our work in a
on
rete
ontext, we
onsider a transformationaldesign approa
h used in the high-level behavioral synthesis system as part of the SPRITEproje
t at Philips Resear
h Labs (PRL). In this approa
h, transformations are used foroptimization and re�nement of des
riptions spe
i�ed using the SPRITE Input Language(SIL). Des
riptions in SIL at a register-transfer level
ould eventually be
onverted togate-level hardware designs by a logi
 synthesis appli
ation su
h as PHIDEO at PRL.SIL is an intermediate language used during the synthesis of hardware des
ribedusing hardware des
ription languages su
h as VHDL [VHD 88℄, SILAGE [Hil 85℄, andELLA [ELL 90℄. It also forms the ba
kbone of the TRADES synthesis system at theUniversity of Twente. Important features of SIL in
lude hierar
hy and design free-dom. Design freedom is provided by permitting several implementation
hoi
es for a3In this report, the term dependen
y graph in
ludes
ontrol-
ow/data-
ow graphs and signal-
owgraphs. 3

SIL des
ription. Implementation
hoi
es are
onstrained by allowing an implementa-tion suggestion in a SIL des
ription. The implementation suggestion may be tailoredby using re�nement and optimization transformations. SIL has been used in the designof hardware for audio and video signal pro
essing appli
ations su
h as a dire
tion de-te
tor for the progressive s
an
onversion algorithm [WMM 94,Mid 94-2℄. In one of theappli
ations [Mid 94℄, a redu
tion of power
onsumption by 50% has been a
hieved.Many of the optimization transformations used in SIL are inspired by those usedin
ompiler optimization, su
h as dead-
ode elimination and
ommon subexpressionelimination. An optimized SIL graph has to satisfy the original graph with respe
tto behavior. This satisfa
tion
an be guaranteed by showing the
orre
tness of theoptimization transformations. Corre
tness means that every behavior allowed by anoptimized SIL graph implementation is required to be one of the behaviors allowed byits SIL graph spe
i�
ation. An informal spe
i�
ation of SIL has been presented anddo
umented as part of the SPRITE proje
t [Klo 92,Kro 92℄. A detailed denotationalsemanti
s of SIL for showing the
orre
tness of transformations has been worked outearlier [HHK 92,HuK 94℄. The optimization and re�nement transformations have beenspe
i�ed informally as part of the SPRITE proje
t [EMH 93,Mid 93,Mid 94℄.We use the Prototype Veri�
ation System (PVS) [OSR 93℄, an environment for for-mal spe
i�
ation and veri�
ation. The PVS spe
i�
ation language, based on typedhigher-order logi
, permits an axiomati
 method to develop spe
i�
ations. This methodentails expressing properties of a system at a
onvenient level of abstra
tion. The
hoi
eof a high level of abstra
tion obviates the need to provide a detailed de�nition of the be-havior of dependen
y graphs. For example, a behavior model
ould be based on behaviorexpressions [M
P 83℄, an imperative semanti
s [Cam 89℄, a denotational model [GGJ93,HuK 94℄, or an operational model [GGJ 93℄. In the axiomati
 framework we dis
ussin this report, we
an
ompare des
riptions with respe
t to their behavior, and thusestablish
orre
tness of transformations, without spe
ifying a behavioral model of a SILdes
ription. However, we stress that this work addresses the transformations as intendedin their informal spe
i�
ation, and not veri�
ation of the software implementations oftransformations. We show SIL and our work in the
ontext of the synthesis system inFigure 1.3.The rest of this report is organized as follows: Chapter 2 gives an overview of SIL. InChapter 3, we give a brief des
ription of the PVS system. In Chapter 4, we des
ribe thespe
i�
ation of stru
ture of SIL graphs, while in Chapter 5 we des
ribe the spe
i�
ationof behavior, re�nement, and equivalen
e of SIL graphs. We present the spe
i�
ationand veri�
ation of transformations in Chapter 6. In that
hapter, we also illustrate howour generalization and
omposition of transformations leads to new transformations forfurther optimization and re�nement than would have been possible before. Finally,following a general dis
ussion,
on
lusions are summarized in Chapter 7. A listing ofthe spe
i�
ation of SIL and its veri�ed properties as it appears in PVS is given inAppendix A. Trans
ripts of the veri�
ation in PVS for two transformations dis
ussed4

Figure 1.3: SIL transformations and veri�
ation in PVS in the
ontext of high levelsynthesis.

5

in detail in this paper are listed in Appendix B. In the remainder of this
hapter, wedis
uss related work done in the past.1.1 Related WorkThere have been some e�orts in analysis and veri�
ation of re�nement transformationsin the past. However, few have dealt with transformations on dependen
y graphs ingeneral. Most of the e�orts have
on
entrated on spe
ialized hardware des
riptionlanguages and programming languages.A formal model was proposed for verifying
orre
tness of high-level transformationsby M
Farland and Parker [M
P 83℄. Transformations used in YIF (Yorktown InternalForm) [YIF 88℄ have been proved to be behavior preserving [Cam 89℄. In this work,a strong notion of behavior equivalen
e based on an imperative semanti
s tied to aparti
ular model of representation is used. A formal system using transformations forhardware synthesis has been dis
ussed by Fourman [Fou 90℄. We brie
y dis
uss this workin Se
tion 1.1.1. A synthesis system for a language based on an algebrai
 formalism hasbeen presented by Jones and Sheeran [Jon 90℄, and its formalization has been presentedby Rossen [Ros 90℄. This e�ort is explained brie
y in Se
tion 1.1.2. Another algebrai
approa
h to transformational design of hardware has been worked out by Johnson [Joh94℄. A short dis
ussion on this approa
h is presented in Se
tion 1.1.3. In the work ontying formal veri�
ation to sili
on
ompilation [JRS 91℄, a preliminary study with anemphasis on the use of formal veri�
ation at higher levels of VLSI design was presented.Corre
tness of register-transfer-level transformations for s
heduling and allo
ation hasbeen dealt with in [Vem 90℄.An automati
 method for fun
tional veri�
ation of retiming, pipelining and bu�er-ing optimization has been presented by Kostelijk [KoW 93℄. It has been implemented ina CAD tool
alled RetLab as part of PHIDEO at PRL. A formal analysis of transforma-tions used in Systems Ar
hite
t Workben
h (SAW) high-level synthesis was studied byM
Farland [M
F 93℄. This work is dis
ussed brie
y in Se
tion 1.1.4. A post-fa
to veri-�
ation method for
omparing logi
 level designs against a restri
ted
lass of data-
owgraphs in SILAGE was presented by Aelten and others [AAD 93,Ael 94℄. Denotationaland operational models of generalized data-
ow graphs have been developed, but theyhave not been used to study the
orre
tness of transformations [GGJ 93℄. A formaliza-tion of SILAGE transformations in HOL was studied by Angelo [Ang 94℄. A
on
isedes
ription of this work appears in Se
tion 1.1.5. An approa
h based on the exe
utionmodel for representation languages in BEDROC high-level synthesis system [CBL 92℄has been used to verify the
orre
tness of optimization transformations. A formal veri�-
ation of an implementation of a logi
 synthesis system has been reported by Aagard andLeeser [AaL 94℄, but it does not provide a me
hani
al veri�
ation for transformationsin high-level synthesis. A brief dis
ussion of the work on veri�
ation of transformationsin syn
hronized transitions [Sta 90℄ is given in Se
tion 1.1.6. In Se
tion 1.1.7, we brie
y6

dis
uss the work on formal spe
i�
ation and veri�
ation of re�nement transformationin software design.1.1.1 LAMBDALAMBDA [Fou 90℄ is formal system based on higher order logi
 for designing hardwarefrom high level spe
i�
ations. In this formalism, a design state is represented as aninferen
e rule derived within the framework of higher order logi
. A re�nement is arule derived within this logi
 that
an be applied to an abstra
t design state to arriveat a
on
rete design state. The di�erent kinds of re�nements that are applied aretemporal, data and behavioral. However, a de�nite set of re�nement and optimizationtransformations have not been presented. ELLA, a hardware des
ription language hasbeen formalized in LAMBDA.1.1.2 Formal RubyIn this work, an algorithmi
 spe
i�
ation of sequential and
ombinational
ir
uits isspe
i�ed in a language
alled Ruby [Jon 90℄, based on an algebrai
 formalism. Thealgebrai
 formalism
onsists of relations and operations on relations su
h as
omposition,inverse and
onjugation. Types are de�ned as equivalen
e relations. Data stru
turessu
h as lists and tuples are used to represent larger hardware stru
tures. A parallel
omposition operator allows to spe
ify hardware
omposed of independent modules.Other operators su
h as row and
olumn are introdu
ed for su

in
t spe
i�
ation ofregular stru
tures su
h as systoli
 arrays.Ruby has been formalized [Ros 90℄ in a proof
he
king system
alled ISABELLE.ISABELLE, based on type theory, allows synta
ti
 embedding other logi
s. A fragmentof Ruby
orresponding to
ombinational
ir
uits, delay element, serial
omposition andparallel
omposition
alled Pure Ruby is spe
i�ed as a type. Properties and proof rulessu
h as indu
tion on Ruby terms is then derived on the type de�nition. The rest of thelanguage is then spe
i�ed using this type.The axiomatization spe
i�es signals as fun
tions of time and properties of relationson signals. General properties of Ruby relations have been formalized. However, inorder to derive properties, the semanti
 embedding involves signals
orresponding to a
ir
uit implementation. A Ruby spe
i�
ation itself, and hen
e its formalization even ata high level is geared to be dire
tly translatable to a
ir
uit realization having a regularstru
ture. Thus, this formalism is at a lower level of abstra
tion than our formalizationof SIL. A general
on
ept of re�nement is not formalized. The formalism does notpresent a well-de�ned set of transformations, to be used to re�ne and optimize Rubyprograms, other than retiming. 7

1.1.3 Digital Design DerivationThis is an algebrai
 approa
h to transformational design of hardware [Joh 94℄. In thisformalism, a fun
tional spe
i�
ation is translated into a representation of a Determin-isti
 Finite State Ma
hine spe
i�
ation
alled behavior tables [RTJ 93℄. The behaviortables are transformed into a digital design. In a behavior table, rows represent statetransitions and
olumns represent both
ontrol and data
ow. Some examples of trans-formations are
olumn merging, deletion and renaming. The transformations are notformally veri�ed.1.1.4 Transformations in SAWIn this work, a formal analysis of transformations [M
F 93℄ used in System Ar
hite
t'sWorkben
h (SAW) [Tho 98℄ is
arried out. In this system, hardware des
ribed at theregister-transfer level or higher using ISPB [Bar 81℄ is translated into behavior expres-sions. Behavior expressions use sequen
es and relations on sequen
es to represent theinput/output behavior of the spe
i�ed hardware. Optimization transformations are
ar-ried out on the behavior expressions representations. A number of transformations su
has
onstant folding and loop unwinding have been analyzed revealing a few
on
eptualerrors.1.1.5 Veri�
ation of Transformations in SILAGESILAGE [Hil 85℄ is an appli
ative hardware des
ription language. This language isused to des
ribe hardware represented as data-
ow graphs. Transformations su
h as
ommutativity and retiming are used to optimize and re�ne SILAGE des
riptions. Inthis work [Ang 94℄, the syntax and semanti
s of SILAGE programs have been formalizedas predi
ates in HOL [GoM 93℄. The denotational semanti
s of SILAGE have beenformalized in HOL. The equivalen
e of SILAGE programs is spe
i�ed with respe
t tothis denotational semanti
s. The transformations are then spe
i�ed as fun
tions fromone formal SILAGE program to another. The
orre
tness of transformations are thusveri�ed with respe
t to the denotational semanti
 notion of equivalen
e.1.1.6 Syn
hronized Transitions in LPSyn
hronization Transitions (ST) [Sta 90℄ is a formalism to spe
ify states and transitionsbetween states. It is based on UNITY [UNI 88℄ model of
omputation as a
olle
tionof atomi

onditional assignments to state variables without expli
it
ow of
ontrol.The transitions are spe
i�ed by guarded
ommands. State variables model storage andsharing of state variables model
ommuni
ation. This is unlike message passing inCSP [Hoa 85℄ formalism and token passing in SIL. There is no
on
ept of
lo
ks andsequen
ing. The temporal behavior is determined by guards. The formalism is geared8

towards dire
t realizations in syn
hronous and asyn
hronous
ir
uits. The optimizationand re�nement transformations are not de�ned in the language. The
onditions to besatis�ed by an abstra
tion fun
tion, mapping a
on
rete state set to an abstra
t stateset have been presented.The spe
i�
ation that an ST program has to satisfy
an be des
ribed as an invariant.An ST program
ould then be dire
tly translated into Lar
h Prover (LP) [GaG 89℄,and invariants translated as proof obligations to be dis
harged. LP is a rewrite ruleprover based on �rst order equational logi
. Thus, an ST program
an be both dire
tlytranslated to LP and veri�ed, and realized in hardware through synthesis.1.1.7 Transformations in Software DesignThere have been several e�orts in spe
i�
ation and veri�
ation of re�nements usedin program development from high level spe
i�
ations Most of the e�orts
hoose aspe
i�
ation formalism and develop a notion of
orre
tness, and an asso
iated set oftransformations based on the semanti
s of the formalism.The re�nement
al
ulus [Ba
 88℄ for spe
i�
ations based on Dijkstra's guarded
om-mand language and weakest pre
ondition semanti
s has been formalized in HOL [WrS91℄. Transformations su
h as data re�nement and superposition have been veri�ed to be
orre
t. A formalization of in
remental development of programs from spe
i�
ations fordistributed real-time systems has been worked out in PVS [Hoo 94℄. In this formalism,an assertional method based on a
ompositional framework of
lassi
al Hoare triples isdeveloped for step-wise re�nement of spe
i�
ations into programs.The KIDS [Kid 90℄ system is a program derivation system. High level spe
i�
ationswritten in a language
alled Re�ne are transformed by data type re�nements and op-timization transformations su
h as partial evaluation, �nite di�eren
ing, into a Re�neprogram.

9

10

Chapter 2Overview of SILThe des
riptions in SIL are
hara
terized as graphs. They are used to des
ribe syn-
hronous systems. A denotational semanti
s of SIL has been worked out by Huijs [HuK94℄. The behavior of a SIL graph is derived from the behaviors of stru
tural build-ing blo
ks of the graph. We brie
y explain the stru
tural aspe
ts in se
tion 2.1, thebehavioral aspe
ts in Se
tion 2.2, and the transformational approa
h in Se
tion 2.32.1 Stru
tural Aspe
ts of SILThe basi
 building blo
ks of a SIL graph are the nodes for operations su
h as addition,multipli
ation, and multiplexing. The nodes have ports (also known as a

ess points)for input, output, and an optional
ondition input. Every port is asso
iated with a type,whi
h spe
i�es the set of data values that the port
an hold. We show the di�erent kindsof port in Figure 2.1.While input and output ports
an be of any type, a
ondition input port is alwaysBoolean. A node with
ondition input port is known as a
onditional node to stress thepresen
e of the
ondition inputs.The ports of the nodes are
onne
ted by edges. SIL has di�erent kinds of edges, ofwhi
h, we address sequen
e edge and data-
ow edge:
Figure 2.1: Di�erent kinds of SIL ports.11

Figure 2.2: An example of a SIL graph des
ription.� A data-
ow edge is used to spe
ify the dire
tion of
ommuni
ation of data valuesfrom a sour
e port to a sink port. Ea
h data-
ow edge has exa
tly one port at itshead and exa
tly one port at its tail. A sour
e port
an be the tail of more thanone data-
ow edge, in whi
h
ase it is
alled a distribute, and a sink port the headof more than edge, in whi
h
ase it is
alled a join.� A sequen
e edge spe
i�es an ordering between two ports. The ordering is used toindi
ate that one of the ports has the overriding in
uen
e on the value of the sinkport, to whi
h the two ports are
onne
ted by data-
ow edges. Ea
h sequen
eedge has exa
tly one port as its tail and one port as its head. Sequen
e edgesare primarily used to resolve potential
on
i
ts at joins. All sour
e ports that aretails of data-
ow edges with a join as a head must be linearly ordered by sequen
eedges.� The nodes and edges form a SIL graph. A SIL graph itself
an be viewed as onesingle node, and used to
onstru
t another SIL graph in a hierar
hi
al manner.Figure 2.2 is an example of a SIL graph.2.2 Behavioral Aspe
ts of SILThe behavior of a SIL graph is determined by the behavior of individual nodes andtheir
onne
tivity, whi
h determines the data
ow. By behavior, we mean the set of12

Figure 2.3: SIL node: informal des
ription.tuples, where ea
h tuple has input data values and
orresponding data values of internaland output ports. The values of internal and output ports are
onstrained by the datarelations of the nodes and the
onne
tivity of the ports in the graph. When the portsof interest are the outermost input / output (I/O) ports of the SIL graph, then it is
alled external or I/O behavior.Ea
h node is asso
iated with a data relation and an order relation. The data relationof a node
onstrains the outputs of the node a

ording to the inputs of the node.That this is a relation, and not a fun
tion, implies nondeterminism allowing severalimplementation
hoi
es for the nodes. This
ontributes to design freedom. Any stateinformation impli
it in the node is in
orporated into its data relation. In the
ase of a
onditional node, the output is
onstrained by the data relation only when the
onditioninput of the node is true. When the
ondition input is false, the output is not de�ned.The order relation spe
i�es
onstraints su
h as, the output port of a node assumes avalue after the value of its input ports have been asserted. This is parti
ularly importantin a hierar
hi
ally built node. We illustrate these
on
epts in Figure 2.3.The
ommuni
ation of data values in a SIL graph is modeled by a single token
ow
on
ept, similar to the
on
ept in Signal FLow Graphs (SFG) [Hil 85℄. A tokenis an atomi
 symbol denoting data. A token generated at an output port (sour
e) istransmitted through a data-
ow edge, emanating from the sour
e, exa
tly on
e. Thetoken is
onsumed at an input port (sink) to whi
h the edge is
onne
ted. The a
tion of
ommuni
ating a token through a data-
ow edge makes the sequen
e of values that thesink
an assume equal to the sequen
e of values that the sour
e
an assume. However,there is one ex
eption to this when a token
ommuni
ated to the
onditional port ofa
onditional node denotes a data value that is false. In this
ase, the output port,un
onstrained by the data relation of the
onditional node, is not de�ned. When su
han output is a sour
e of a data-
ow edge, we for
e the sink of su
h a data-
ow edge toassume some well-de�ned arbitrary value. If we do not make this ex
eption, the sinkdata values would also not be well-de�ned. Sin
e a sink is an input port, it is undesirableto have unde�ned inputs in pra
ti
e. In terms of the token
ow
on
ept, a sequen
e13

edge from port A to port B des
ribes that the token �red from B determines the valueof a sink port C
onne
ted to A and B by data-
ow edges, overriding the e�e
t on thevalue of C due to the token �red from A. In su
h a
ase, we say that the sequen
e edgeorders port A less than port B. A data-
ow edge has an impli
it sequen
e edge from itssour
e to its sink. We depi
t these ideas in Figure 2.4. It should be noted that the token
ow
on
ept is an abstra
t model of the behavior of a SIL graph. The sequen
e edge isan artifa
t used to resolve
on
i
ts at joins. A sequen
e edge does not indi
ate temporalordering of the data values that ports would assume when a SIL graph is exe
uted.The ordering of token
ommuni
ation plays an important part in resolving
on
i
tsat ports. One su
h
on
i
t o

urs when multiple data-
ow edges from di�erent sour
es
onne
t into a single sink. Su
h a sink port is
alled a join, as shown in Figure 2.5.To resolve the
on
i
t at a join, �rst all the data-
ow edges that have sour
es that
an assume well-de�ned data values are sele
ted. Then, among those sele
ted data-
owedges, the edge that is responsible for
ommuni
ating the last token determines thebehavior of the join. With the de�nition of SIL, there will be exa
tly one su
h data-
owedge. Thus, the sour
e ports are linearly ordered, so that the last of the well-de�neddata values arriving at the sink is always spe
i�ed. If all the data-
ow edges to the joinoriginate from sour
es whose data values are unde�ned, then the data value that
anappear at the join is arbitrary.The
ounterpart of a join is a sour
e from whi
h multiple data-
ow edges originate.Su
h an port, known as a distribute, is shown in Figure 2.5. If a distribute is a sour
ethat assumes well-de�ned data values, then the sink to whi
h it is
onne
ted by a data-
ow edge, will assume a sequen
e of data values identi
al to the distribute. Otherwise,if the data values that may appear at the distribute are not de�ned, the sequen
e ofdata values that may appear at the
orresponding sink ports are arbitrary.A SIL graph models the behavior of a system during a single
lo
k
y
le. Thereis no expli
it notion of state in a SIL graph. The repetition of a SIL graph,
alledunfold ing over multiple
lo
k
y
les gives the behavior of the system a
ross
lo
k
y
les.We depi
t an example of a
ombinational adder in Figure 2.6 unfolded over three
lo
k
y
les. The DELAY node, one of the primitive nodes in SIL is used to model data
owbetween
lo
k
y
les, and thus en
apsulates state information. We
an unfold the SILgraph shown in Figure 2.7 over multiple
lo
k
y
les to result in a SIL graph withoutthe DELAY node. The
umulative adder example in Figure 2.8 illustrates the unfoldingof a SIL graph with a DELAY node. It should be noted that
omparing two graphs withrespe
t to behavior would not involve the state information en
apsulated in a DELAYnode - sin
e the behavior of a SIL graph would be a snapshot of the exe
ution of theSIL graph in a single
lo
k
y
le. In
ontrast, the exe
ution histories would have to betaken into a

ount for
omparing two state ma
hine models.The ordering imposed by sequen
e edges redu
e non-determinism This leads to arestri
tion on implementation
hoi
es allowed by its
orresponding spe
i�
ation. Weillustrate the implementation of a simple multiplexor in Figure 2.10 by redu
ing non-determinism in a spe
i�
ation shown in Figure 2.9 using a sequen
e edge. When
 is14

Figure 2.4: SIL edges: informal des
ription.
Figure 2.5: SIL Join and Distribute: informal des
ription.

Figure 2.6: Combinational adder: SIL graph repeated over
lo
k
y
les.15

Figure 2.7: Cumulative adder: SIL graph with DELAY node.

Figure 2.8: Cumulative adder: unfolded SIL graph.16

Figure 2.9: Partial spe
i�
ation of a multiplexor.

17

Figure 2.10: Implementation spe
i�
ation of a multiplexor.true, the value of d is a if the order is su
h that value of port p1 is
ommuni
ated ratherthan that of port p2. If the order is su
h that p2 has the overriding in
uen
e, then thevalue of d is b. While, when
 is false the value of b is determined by the port p2, dueto the behavior of the
onditional port and join dis
ussed earlier in se
tion 2.2. Thesequen
e edge in the multiplexor implementation as given in Figure 2.10, imposes thatthe value
ommuni
ated to b is that of port p1 when
 is true. Again, when
 is false,port p2 determines the value of b.2.3 Transformations in SILA transformation is viewed as modifying the stru
ture of a graph into another graph.The modi�
ation is done by removing and/or adding nodes and edges. Su
h modi�
a-tions should not violate the behavior of the original graph.In SIL, there are a number of optimization and re�nement transformations [EMH93℄. Many of the optimization transformations are inspired by
ompiler optimizationte
hniques su
h as Common Subexpression Elimination, Cross-Jumping Tail-Mergingand algebrai
 transformations involving
ommutativity, asso
iativity, and distributiv-ity. Other optimization transformations in
lude retiming. Re�nement transformationsin
lude type transformations su
h as real to integer, integer to Boolean, and implement-ing data relations of the nodes by
on
rete operators [Mid 94℄. We show a retimingtransformation example in Figure 2.11
18

Figure 2.11: Example SIL transformation: retiming.

19

20

Chapter 3Spe
i�
ation and Veri�
ation inPVSThe Prototype Veri�
ation System (PVS) [OSR 93, SOR 93-2℄ is an environment forspe
ifying entities su
h as hardware/software models and algorithms, and verifyingproperties asso
iated with the entities. An entity is usually spe
i�ed by asserting asmall number of general properties that are known to be true. These known propertiesare then used to derive other desired properties. The pro
ess of veri�
ation involves
he
king relationships that are supposed to hold among entities. The
he
king is doneby
omparing the spe
i�ed properties of the entities. For example, one
an
ompare if aregister-transfer-level implementation of hardware satis�es the properties expressed byits high-level spe
i�
ation.PVS has been used for reasoning in many domains, su
h as in hardware veri�
a-tion [Cyr 93,CRS 94℄, proto
ol veri�
ation, and algorithm veri�
ation [LOR 93℄. Webrie
y give the features of the PVS spe
i�
ation language in Se
tion 3.1, the PVS ver-i�
ation features in Se
tion 3.2 and some notes on the syntax of the PVS spe
i�
ationlanguage in Se
tion 3.3. Finally, in Se
tion 3.4 we give some example spe
i�
ations andveri�
ation sessions in PVS.3.1 PVS Spe
i�
ation LanguageThe spe
i�
ation language [OSR 93℄ features
ommon programming language
onstru
tssu
h as arrays, fun
tions, and re
ords. It has built-in types for reals, integers, naturals,and lists. A type is interpreted as a set of values. One
an introdu
e new types by ex-pli
itly de�ning the set of values, or indi
ating the set of values, by providing propertiesthat have to be satis�ed by the values. The language also allows hierar
hi
al stru
turingof spe
i�
ations. Besides other features, it permits overloading of operators, as in someprogramming languages and hardware des
ription languages su
h as VHDL.21

3.2 PVS Veri�
ation FeaturesThe PVS veri�er [SOR 93-2℄ is used to determine if the desired properties hold in thespe
i�
ation of the model. The user intera
ts with the veri�er by a small set of
om-mands. The veri�er
ontains pro
edures for boolean reasoning, arithmeti
 and (
on-ditional) rewriting. In parti
ular, Binary De
ision Diagram (BDD) [BRB 90, Jan 93℄based simpli�
ation may be invoked for Boolean reasoning. It also features a varietyof general indu
tion s
hemes to ta
kle large-s
ale veri�
ation. Moreover, di�erent ver-i�
ation s
hemes
an be
ombined into general-purpose strategies for similar
lasses ofproblems, su
h as veri�
ation of mi
ropro
essors [Cyr 93,CRS 94℄.A PVS spe
i�
ation is �rst parsed and type-
he
ked. At this stage, the type ofevery term in the spe
i�
ation is unambiguously known. The veri�
ation is done inthe following style: we start with the property to be
he
ked and repeatedly applyrules on the property. Every su
h rule appli
ation is meant to obtain another propertythat is simpler to
he
k. The property holds if su
h a series of appli
ations of ruleseventually leads to a property that is already known to hold. Examples illustrating thespe
i�
ation and veri�
ation in PVS are des
ribed in Se
tion 3.4.3.3 Notes on Spe
i�
ation NotationIn PVS spe
i�
ations1, an obje
t followed by a
olon and a type indi
ates that theobje
t is a
onstant belonging to that type. If the
olon is followed by the key wordVAR and a type, then the obje
t is a variable belonging to that type.For example,x: integery: VAR integerdes
ribes x as a
onstant of type integer, and y as a variable of type integer2.Sets are denoted by f:::g: they
an be introdu
ed by expli
itly de�ning the elementsof the set, or impli
itly by a
hara
teristi
 fun
tion.For example,{0,1,2}{x: integer | even(x) AND x /= 2}1PVS spe
i�
ations in this report are en
losed in framed boxes.2In C, they would be de
lared as
onst int x; int y.22

The symbol j has to be read as su
h that, and the symbol /= stands for not equal to ingeneral. Thus, the latter example above should be read as \set of all integers x, su
hthat x is an even number and x is not equal to 2".New types are introdu
ed by a key word TYPE followed by its des
ription as a setof values. If the key word TYPE is not followed by any des
ription, then it is taken asan unspe
i�ed type.Some illustrations are:even_time: TYPE = {x: natural| even(x)}unspe
ified_type: TYPEOne kind of type that is used widely in this work is the re
ord type. A re
ord typeis like the stru
t type in the C programming language. It is used to pa
kage obje
ts ofdi�erent types in one type. We
an then treat an obje
t of su
h a type as one singleobje
t externally, but with an internal stru
ture
orresponding to the various �elds inthe re
ord.The following operators have their
orresponding meanings:FORALL x: p(x)means for every x, predi
ate3 p(x) is trueEXISTS x: p(x)means for at least a single x, predi
ate p(x) is trueWe
an impose
onstraints on the set of values for variables inside FORALL andEXISTS as in the following example:FORALL x, (y| y = 3*x): p(x,y)whi
h should be read asfor every x and y su
h that y is 3 times x, p(x,y) is true.A property that is already known to hold without
he
king is labeled by a namefollowed by a
olon and the keyword AXIOM. A property that is
he
ked using the rulesavailable in the veri�er is labeled by a name followed by a
olon and the keywordTHEOREM. The text followed by a % in any line is a
omment in PVS.We illustrate the syntax as follows:3A predi
ate is a fun
tion returning a Boolean type: ftrue, falseg.23

ax1: AXIOM % This is a simple axiomFORALL (x:nat): even(x) = x divisible_by 2th1: THEOREM % This is a simple theoremFORALL (x:nat): prime(x) AND x /= 2 IMPLIES NOT even(x)We also use the terms axiom and theorem in our own explanation with the same mean-ings. A proof is a sequen
e of steps that leads to a theorem.3.4 Spe
i�
ation and Veri�
ation Examples in PVSWe illustrate here three examples from arithmeti
. The �rst two examples are takenfrom the tutorial [SOR 93-1℄. The last example illustrates the use of a general purposestrategy to automati
ally prove a theorem of arithmeti
. The �rst example is the sumof natural numbers up to some arbitrary �nite number n is equal to n*(n+1)/2 . Thespe
i�
ation is en
apsulated in the sum THEORY. Following introdu
tion of n as a naturalnumber nat, sum(n) is de�ned as a re
ursive fun
tion with a termination MEASURE asan identity fun
tion on n. Finally, the THEOREM labeled
losed form is stated to beproved.sum: THEORYBEGINn: VAR natsum(n): RECURSIVE nat =(IF n = 0 THEN 0 ELSE n + sum(n - 1) ENDIF)MEASURE (LAMBDA n: n)
losed_form: THEOREM sum(n) = (n * (n + 1))/2END sumThe THEORY is �rst parsed and type
he
ked, and then the prover is invoked on the
losed form THEOREM. The proof is automati
 by applying indu
tion and rewriting.The proof session is as follows:
losed_form :|-------{1} (FORALL (n: nat): (sum(n) = (n * (n + 1)) / 2))24

Running step: (INDUCT "n")Indu
ting on n,this yields 2 subgoals:
losed_form.1 :|-------{1} sum(0) = (0 * (0 + 1)) / 2Running step: (EXPAND "sum")Expanding the definition of sum,this simplifies to:
losed_form.1 :|-------{1} 0 = 0 / 2Rerunning step: (ASSERT)Invoking de
ision pro
edures,This
ompletes the proof of
losed_form.1.
losed_form.2 :|-------{1} (FORALL (j: nat):(sum(j) = (j * (j + 1)) / 2IMPLIES sum(j + 1) = ((j + 1) * (j + 1 + 1)) / 2))Running step: (SKOLEM 1 ("j!1"))For the top quantifier in 1, we introdu
e Skolem
onstants: (j!1),this simplifies to:
losed_form.2 :|-------{1} sum(j!1) = (j!1 * (j!1 + 1)) / 2IMPLIES sum((j!1 + 1)) = ((j!1 + 1) * ((j!1 + 1) + 1)) / 2Running step: (FLATTEN)Applying disjun
tive simplifi
ation to flatten sequent,this simplifies to:
losed_form.2 : 25

{-1} sum(j!1) = (j!1 * (j!1 + 1)) / 2|-------{1} sum((j!1 + 1)) = ((j!1 + 1) * ((j!1 + 1) + 1)) / 2Running step: (EXPAND "sum" +)Expanding the definition of sum,this simplifies to:
losed_form.2 :[-1℄ sum(j!1) = (j!1 * (j!1 + 1)) / 2|-------{1} (j!1 + 1) + sum(j!1) = (j!1 * j!1 + 2 * j!1 + (j!1 + 2)) / 2Running step: (ASSERT)Invoking de
ision pro
edures,This
ompletes the proof of
losed_form.2.Q.E.D.Run time = 8.09 se
s.Real time = 9.89 se
s.NIL> The next example illustrates that de
ision pro
edures solve the steps involving arith-meti
 and equality reasoning automati
ally. While, in the
reative step of supplying theproper instantiation for an existential quanti�
ation, the user has to intera
t with theprover. We �rst present the following PVS THEORY spe
ifying that a 3
ent stamp anda 5
ent stamp
an be used in
ombination in pla
e of any stamp whose value is at least8
ents.stamps : THEORYBEGINi, j, k: VAR natstamps: LEMMA (FORALL i: (EXISTS j, k: i+8 = 3*j + 5*k))END stampsstamps : 26

The proof follows by indu
tion:|-------{1} (FORALL i: (EXISTS j, k: i + 8 = 3 * j + 5 * k))Running step: (INDUCT "i")Indu
ting on i,this yields 2 subgoals:stamps.1 :|-------{1} (EXISTS (j: nat), (k: nat): (0 + 8 = 3 * j + 5 * k))Here we have to supply an instantiation intera
tively.Running step: (QUANT 1 ("1" "1"))Instantiating the top quantifier in 1 with the terms:(1 1),this simplifies to:stamps.1 :|-------{1} 0 + 8 = 3 * 1 + 5 * 1Running step: (ASSERT)Invoking de
ision pro
edures,This
ompletes the proof of stamps.1.stamps.2 :|-------{1} (FORALL (j: nat):((EXISTS (j_0: nat), (k: nat): (j + 8 = 3 * j_0 + 5 * k))IMPLIES (EXISTS (j_1: nat), (k: nat):(j + 1 + 8 = 3 * j_1 + 5 * k))))Running step: (SKOLEM 1 ("j!1"))For the top quantifier in 1, we introdu
e Skolem
onstants: (j!1),this simplifies to:stamps.2 :|------- 27

{1} (EXISTS (j_0: nat), (k: nat): (j!1 + 8 = 3 * j_0 + 5 * k))IMPLIES (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))Running step: (FLATTEN)Applying disjun
tive simplifi
ation to flatten sequent,this simplifies to:stamps.2 :{-1} (EXISTS (j_0: nat), (k: nat): (j!1 + 8 = 3 * j_0 + 5 * k))|-------{1} (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))Running step: (SKOLEM -1 ("j!2" "k!1"))For the top quantifier in -1, we introdu
e Skolem
onstants: (j!2 k!1),this simplifies to:stamps.2 :{-1} j!1 + 8 = 3 * j!2 + 5 * k!1|-------[1℄ (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))The following steps require user intera
tion:Running step: (CASE "k!1=0")Case splitting onk!1=0,this yields 2 subgoals:stamps.2.1 :{-1} k!1 = 0[-2℄ j!1 + 8 = 3 * j!2 + 5 * k!1|-------[1℄ (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))Running step: (QUANT 1 ("j!2-3" "2"))Instantiating the top quantifier in 1 with the terms:(j!2-3 2),this yields 2 subgoals:stamps.2.1.1 :[-1℄ k!1 = 0[-2℄ j!1 + 8 = 3 * j!2 + 5 * k!1|------- 28

{1} j!1 + 1 + 8 = 3 * (j!2 - 3) + 5 * 2Running step: (ASSERT)Invoking de
ision pro
edures,This
ompletes the proof of stamps.2.1.1.stamps.2.1.2 (TCC):[-1℄ k!1 = 0[-2℄ j!1 + 8 = 3 * j!2 + 5 * k!1|-------{1} j!2 - 3 >= 0Running step: (QUANT 2 ("j!2+2" "k!1-1"))No suitable (+ve EXISTS/-ve FORALL) quantified formula found.No
hange on: (QUANT 2 (j!2+2 k!1-1))stamps.2.1.2 (TCC):[-1℄ k!1 = 0[-2℄ j!1 + 8 = 3 * j!2 + 5 * k!1|-------{1} j!2 - 3 >= 0Running step: (ASSERT)Invoking de
ision pro
edures,This
ompletes the proof of stamps.2.1.2.This
ompletes the proof of stamps.2.1.stamps.2.2 :[-1℄ j!1 + 8 = 3 * j!2 + 5 * k!1|-------{1} k!1 = 0[2℄ (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))Running step: (ASSERT)Invoking de
ision pro
edures,this simplifies to: 29

stamps.2.2 :[-1℄ j!1 + 8 = 3 * j!2 + 5 * k!1|-------[1℄ k!1 = 0{2} (EXISTS (j_1: nat), (k: nat): (j!1 + 9 = 3 * j_1 + 5 * k))Running step: (QUANT 2 ("j!2+2" "k!1-1"))Instantiating the top quantifier in 2 with the terms:(j!2+2 k!1-1),this simplifies to:stamps.2.2 :[-1℄ j!1 + 8 = 3 * j!2 + 5 * k!1|-------[1℄ k!1 = 0{2} j!1 + 9 = 3 * (j!2 + 2) + 5 * (k!1 - 1)Running step: (ASSERT)Invoking de
ision pro
edures,This
ompletes the proof of stamps.2.2.This
ompletes the proof of stamps.2.Q.E.D.Run time = 10.67 se
s.Real time = 11.65 se
s.NIL> Finally, the following example illustrates the use of a general purpose strategyindu
t-rewrite-bddsimp, that involves indu
tion, rewriting and propositional sim-pli�
ation. The theorem is based on the property of a Fibona

i sequen
e: 1, 1, 2,3, 5, : : :. Here, an element, ex
ept the �rst two, is the sum of the its two immediateprede
essors. If we denote the sum of n (n > 0) elements in the sequen
e by fibsum(n),then we are required to prove the property that the sum is equal to fib(n+2) + 1. ThePVS spe
i�
ation
an be given as follows: 30

fib: THEORYBEGINn: VAR natfib(n): RECURSIVE nat =IF n = 0 THEN 1ELSIF n = 1 THEN 1ELSE fib(n - 2) + fib(n - 1)ENDIFMEASURE LAMBDA n: nfibsum(n): RECURSIVE nat =IF n = 0 THEN 3ELSE fib(n) + fibsum(n - 1)ENDIFMEASURE LAMBDA n: nFibSumThm: THEOREMfibsum(n) = fib(n + 2) + 1END fibThe veri�
ation pro
eeds automati
ally by using a strategy based on indu
tion, rewrit-ing and propositional simpli�
ation as follows:FibSumThm :|-------{1} (FORALL (n: nat): fibsum(n) = fib(n + 2) + 1)Rule? (auto-rewrite-theory "fib")Adding rewrites from theory fibAdding rewrite rule fibAdding rewrite rule fibsumAuto-rewritten theory fibRewriting relative to the theory: fib,this simplifies to:FibSumThm :|-------[1℄ (FORALL (n: nat): fibsum(n) = fib(n + 2) + 1)Rule? (indu
t-rewrite-bddsimp "n")fibsum rewrites fibsum(0) 31

to 3fib rewrites fib(0)to 1fib rewrites fib(1)to 1fib rewrites fib(2)to 2fib rewrites fib(j!1 + 1)to IF j!1 + 1 = 1 THEN 1 ELSE fib(j!1 + 1 - 2) + fib(j!1 + 1 - 1) ENDIFfib rewrites fib(j!1 + 2)to fib(j!1)+ IF j!1 + 1 = 1 THEN 1ELSE fib(j!1 + 1 - 2) + fib(j!1 + 1 - 1)ENDIFfibsum rewrites fibsum(j!1 + 1)to IF j!1 + 1 = 1 THEN 1 ELSE fib(j!1 + 1 - 2) + fib(j!1 + 1 - 1) ENDIF+ fibsum(j!1)fib rewrites fib(j!1)to IF j!1 = 1 THEN 1 ELSE fib(j!1 - 2) + fib(j!1 - 1) ENDIFfib rewrites fib(j!1 + 3)to IF j!1 + 1 = 1 THEN 1 ELSE fib(j!1 + 1 - 2) + fib(j!1 + 1 - 1) ENDIF+ fib(j!1)+ IF j!1 = 0 THEN 1ELSE fib(j!1 - 1)+ IF j!1 = 1 THEN 1ELSE fib(j!1 - 2) + fib(j!1 - 1)ENDIFENDIFfib rewrites fib(j!1)to IF j!1 = 1 THEN 1 ELSE fib(j!1 - 2) + fib(j!1 - 1) ENDIFBy indu
tion on n and rewriting,Q.E.D.Run time = 10.43 se
s.Real time = 30.62 se
s.
32

Chapter 4Spe
i�
ation of SIL GraphStru
ture in PVSA spe
i�
ation of the stru
ture of SIL graphs is developed step by step in this Chapter.We introdu
e an entity in a SIL graph, and give its spe
i�
ation in PVS. We repeatsome of the de�nitional
on
epts reviewed in Chapter 2 to put them in the
ontextof our spe
i�
ation. We explain the spe
i�
ation of ports in Se
tion 4.1, followedby the spe
i�
ation of edges in Se
tion 4.2 and nodes and SIL graphs in Se
tion 4.3.Finally, in Se
tion 4.4 we establish the properties that need to hold for a SIL graph tobe well-formed, and thus have a proper behavior.4.1 Port and Port ArrayA port is a pla
eholder for data values. The set of data values that it
an hold
an berestri
ted, and su
h a set is denoted by a type. For example, a port that is allowed tohold only true and false is of Boolean type. We would like to model a SIL graph andasso
iated transformations for any desired set of data values. We de�ne a port as apla
eholder for an arbitrary set of data values, by de�ning it as an unspe
i�ed type:port: TYPEWe
an
reate various ports by introdu
ing names su
h as p0, p1, p2, and de
laringthem as variables VAR of type port :p0, p1, p2: VAR port 33

dfe: pred[[port,port℄℄sqe: pred[[port,port℄℄ Table 4.1: .PVS types for data-
ow edge and sequen
e edge; see Figure 4.1.An array of ports is de�ned as a re
ord type
ontaining two type �elds. The �rst�eld size of type nat { the set of natural numbers f0; 1; 2; : : :g { spe
i�es the size of thearray. The se
ond �eld is the array of ports, whose size is equal to that spe
i�ed bythe �rst �eld. Su
h a typing, in whi
h the type of one �eld depends on another �eld isknown as dependent typing. The ARRAY is spe
i�ed as a fun
tion that takes a memberfrom the set of natural numbers less than size and gives a member of type port:parray: TYPE = [# size:nat,port_array: ARRAY[{i:nat|i<size} -> port℄#℄4.2 EdgesAn edge is a dire
ted line
onne
ting two ports. Mathemati
ally, it is a relation on twoports. For
onvenien
e, we will
all the port from whi
h the edge is dire
ted the sour
e,and the port to whi
h the edge is dire
ted to the sink. There are two kinds of edges inSIL: data-
ow edge and sequen
e edge. A data-
ow edge between two ports indi
atesthe
ow of a token from the sour
e to the sink. A sequen
e edge between two portsspe
i�es the ordering between them: we will say that a port A is less than a port B ifand only if, the token �red at B determines the value of a sink port C
onne
ted to Aand B, rather than the token �red at A. A data-
ow edge between two ports enfor
esan impli
it ordering between the sour
e and sink. The sour
e is stri
tly less than thesink. There is no token
ow through a sequen
e edge.We spe
ify both kinds of edges as relations on ports. They modify the behavior ofa SIL graph in di�erent ways. We postpone the dis
ussion of the properties of theserelations to the next
hapter, and just spe
ify the types of the relations as predi
ates {pred { on pairs ports. A true value of the predi
ate indi
ates the presen
e of an edgebetween the ports, while a false value indi
ates the absen
e of an edge between theports. The predi
ate dfe is the data-
ow edge relation, and sqe is the sequen
e edgerelation as shown in Table 4.1.We
an expli
itly de�ne
orresponding relations between arrays of ports. For exam-ple, we de�ne the data-
ow edges between arrays of ports as:34

Figure 4.1: SIL data-
ow and sequen
e edges; see Table 4.1.par, par0: parraysame_size(par,par0) =size(par) = size(par0)dfear(par0,(par1:{par|same_size(par,par0)})) =FORALL (i|i<size(par0)):dfe(port_array(par0)(i),port_array(par1)(i))The dire
tion of the edges is from the �rst port to the se
ond port. We illustratethis in Figure 4.1.4.3 Node, Conditional Node and GraphA node is a stru
ture that takes inputs and gives outputs, satisfying a data relationasso
iated with the node. Some of the typi
al nodes are adders and multplexers asso
i-ated with
orresponding addition and multiplexing data relations. We also asso
iate anorder relation, whi
h imposes an order on the inputs and outputs. Externally, a nodere
eives inputs at input ports, and delivers outputs at output ports. Sin
e a port is apla
eholder for a de�nite set of data values { of a de�nite type { the input and outputvalues should belong to the type of the input and output ports.A
onditional node is a node having spe
ial Boolean inputs, whi
h
ontrol whetherthe data relation between the inputs and outputs holds. Su
h inputs are known as
onditions. The
onditions
ould appear either inverted or noninverted. If all thenoninverted
onditions on a node are true, and all the inverted
onditions are false,then the outputs and inputs of the node satisfy its data relation. But, if any one ofthe noninverted
onditions is false or any one of the inverted
onditions is true, thenthe output has an arbitrary value. In su
h a
ase, the output value is restri
ted onlyby the type of the output port. E�e
tively, we
an repla
e all the
ondition ports of a
onditional node by just one
ondition port, whi
h takes the
onjun
tion of the
onditioninputs with appropriate inversions [EMH 93℄.A graph is a stru
ture
onstru
ted by using ports, edges, nodes, and
onditionalnodes. However, we
an hide the stru
ture of a graph, and externally view it as a nodewith input and output ports, data and order relations. We
an then spe
ify graphsas nodes with internal stru
ture and internal relations. This allows for hierar
hi
al
onstru
tion of smaller graphs into larger graphs.35

node: TYPE =[#inports: parray,outport: port,intports: parray,
ondport: port,
ond:pred[port℄,datarel: pred[[{p:parray|size(p)=size(inports)},port℄℄,orderrel:pred[[{p:parray|size(p)=size(inports)},port℄℄,intrel: pred[[parray,parray℄℄#℄Table 4.2: PVS spe
i�
ation of
onditional node as a re
ord type; see Figure 4.2.In our spe
i�
ation, we �rst introdu
e a
onditional node in PVS as a re
ord type asshown in Table 4.2, where� inports are the input ports de
lared as parray type { that is, they are taken togetheras one array of an unspe
i�ed size.� outport is an output port de
lared just as a port. In this work we
onsider a singleoutput port for
onvenien
e in spe
i�
ation. However, in general, output shouldalso be de
lared as an array of ports, as is the
ase for hierar
hi
ally built graphsand for primitive nodes su
h as SPLIT.� intports are the internal ports de
lared as a parray type to spe
ify the internalports the
onditional node might have internally. Su
h a
onditional node wouldbe a hierar
hi
ally built graph.�
ondport is a single port providing a

ess for the
ondition input.�
ond is a
ondition fun
tion giving the value of the
ondition on the
onditionport: this
an be either true or false. This is de
lared as a type pred[port℄ { thatis, a predi
ate on port.� datarel is the data relation governing the output value based on the inputs. Thisis de
lared as a predi
ate or relation pred on a tuple. The �rst type in the tupleis a subset of port arrays, whose size is the same as the inports, and the se
ondtype is a port
orresponding to the outport.� orderrel is de
lared as exa
tly the same type as datarel. The di�eren
e lies onlyin that, it governs the order of output and input values. This is not seen in thestru
tural type de�nition here. 36

Figure 4.2: SIL
onditional node; see Table 4.2.� intrel is the internal relation
orresponding to the internal stru
ture and
onne
-tivity of the
onditional node. This is derived from the internal ports and theedges
onne
ting the internal ports.The
onditional node is shown in Figure 4.2.We introdu
e predi
ates to
ompare the stru
tures of
onditional nodes based ontheir number of input ports:
n0,
n1:
nodesame_size(
n0,
n1) =size(inports(
n0)) = size(inports(
n1))A node without a
onditional port is modeled as a
onditional node with the
on-dition on its
onditional port being always true. The advantage of su
h a modeling isthat it
aptures both an un
onditional node and a
onditional node whose
onditionalport is always set to true. Sin
e they have identi
al behavior, it minimizes our modelby having just one stru
ture for both. In PVS, a feature known as subtyping allowsone to de�ne a type, whi
h denotes a subset of values of an already de�ned type. Wespe
ify the node type in Table 4.3 by using this PVS subtyping feature. The Figure 4.3illustrates this spe
i�
ation.We model a graph exa
tly the same as a
onditional node, sin
e we have
onstru
teda
onditional node to have internal stru
ture and internal relation. This allows forviewing a graph as another node, and thus allows for a hierar
hi
al
onstru
tion oflarger graphs. We spe
ify a graph as a type equal to a
onditional node type:37

node: TYPE = {n:
node|
ond(n) = LAMBDA (p:port):TRUE}Table 4.3: Node as a subtype of a
onditional node; see Figure 4.3.

Figure 4.3: Node as a subtype of a
onditional node; see Table 4.3.
38

graph: TYPE =
node4.4 Well-formedness of a SIL GraphA SIL graph has to satisfy
ertain stru
tural rules governing the
onne
tivity of ports.Only then
an the behavior of a SIL graph be well-de�ned. For example, we
annot
onne
t two input ports by a data-
ow edge: a sour
e has to be an output port, whilea sink has to be either an input port or a
onditional port. The stru
tural rules arestated as axioms in PVS.Every port has to be exa
tly one of an input port, output port, and
onditional port:no port
an be left dangling. Even the terminal I/O ports at the SIL graph boundaryare asso
iated with spe
ial I/O nodes. We express this as two axioms { in
lusivity andex
lusivity { as follows:port_in
lusive_ax: AXIOMFORALL (p:port): is_inport(p) OR is_outport(p) OR is_
ondport(p)port_ex
lusive_ax: AXIOMFORALL (p:port): is_inport(p) IMPLIESNOT (is_outport(p) OR is_
ondport(p)) ANDis_outport(p) IMPLIESNOT (is_inport(p) OR is_
ondport(p)) ANDis_
ondport(p) IMPLIESNOT (is_inport(p) OR is_
ondport(p))where is inport, is outport, and is
ondport are appropriately de�ned, asserting theexisten
e of a (
onditional) node whose input/output/
ondition is the port being
on-sidered, as indi
ated in the following PVS spe
i�
ation:is_inport(p) = (EXISTS
n, (i:{j:nat|j<size(inports(
n))}):p=inport(
n,i))is_outport(p) = (EXISTS
n: p=outport(
n))is_
ondport(p)= (EXISTS
n: p=
ondport(
n))That a port
an be one of the internal ports of a
onditional node is
onsistent with theproperties de�ned here, be
ause even internal ports should be one of the three types ofports.A data-
ow edge is legal only if it
onne
ts an input port to an output or a
onditionalport: 39

dfe_port_ax: AXIOMFORALL p1,p2:dfe(p1,p2) IMPLIES (is_outport(p1) AND(is_inport(p2) OR is_
ondport(p2)))We
an derive that self data-
ow edges are forbidden by the properties of ports andthe data-
ow edge from the above property. If we make p1 = p2 in the above axiom,and use the port ex
lusivity axiom (given earlier) that any port
an be exa
tly oneof input, output and
ondition, we get the
orresponding theorem for preventing selfdata-
ow edges:self_edge_not_th: THEOREMFORALL (p:port): NOT dfe(p,p)It should be noted that data-
ow edges between output ports of a node and the inputports of the same node are not prohibited.Self sequen
e edges are also prohibited, sin
e sequen
e edges impose stri
t orderingon ports. This has to be asserted as an axiom, as we have not imposed any restri
tiveproperty on the sequen
e edge:self_seq_edge_not_ax: AXIOMFORALL (p:port) NOT sqe(p,p)Sin
e sequen
e edge introdu
es ordering on ports, we expe
t sqe to be transitive. But, inorder to have a
lear separation of stru
ture and behavior, we do not impose the propertyon sqe here. However, as we will see in Chapter 5, we formalize the ordering due to thesequen
e edges, and due to the behavior of a
ondition node when the
ondition porthas a false value, by introdu
ing weights on pairs of ports. The transitivity property isthen imposed on the ordering of weights.

40

Chapter 5Spe
i�
ation of SIL GraphBehavior and Re�nementWe informally dis
ussed in Chapter 2, the behavior of a SIL graph. We re
all thatthe behavior is the set of ordered tuples of data values that the ports of the graph
anassume, and an external or I/O behavior is the set of ordered tuples of values at the I/Oports of the SIL graph. The behavior of a SIL graph is determined by the data relationsand order relations of the nodes,
onne
tivity due to the data-
ow edges, and orderingimposed by sequen
e edges. Any impli
it state information in a SIL graph is
ontainedin the data relations of the nodes. Thus, a
omparison of behaviors in any given
lo
k
y
le would not require
omparing exe
ution histories due to possible impli
it states in aSIL graph. We dis
uss behavior in Se
tion 5.1, followed by a presentation of re�nementand equivalen
e in Se
tion 5.2.5.1 BehaviorA detailed de�nition of behavior would require establishing a
on
rete formal semanti
sof SIL, sin
e the data values and ordering
an be arbitrary. A denotational semanti
sof SIL has been dis
ussed by Huijs [HuK 94℄. However, at the level of abstra
tionwe have
hosen to spe
ify, we bring about high-level properties of dependen
y graphs,re�nement and equivalen
e that should hold independent of a detailed behavior model.We
an thus obviate the need to spe
ify a
on
rete behavioral model of dependen
ygraphs. Su
h me
hanisms for spe
i�
ation by de�ning the properties that have to hold
onstitute our axiomati
 approa
h. As we will see in the next
hapter, we
omparetwo SIL graphs by asserting the properties that need to be satis�ed by the graphs withrespe
t to their behavior. We
an thus establish the
orre
tness of transformations. Amodi�
ation in the
on
rete behavioral model faithful to the properties on whi
h wehave based our approa
h would not
hange our spe
i�
ation and veri�
ation results.Further dis
ussion of the advantages of our approa
h is postponed to Chapter 7.41

The behavior asso
iated with an a

ess point or a port is des
ribed by the sameuninterpreted type, as we used in the introdu
tion of the stru
tural spe
i�
ation of aport:port: TYPEThis is the stage where the spe
i�
ation of stru
ture and behavior
oin
ide. The typedenoting the set of values being unspe
i�ed gives us the freedom to model the behavior(as with the stru
ture) irrespe
tive of the value type.5.2 Re�nement and Equivalen
eWe have developed spe
i�
ation te
hniques to des
ribe
on
epts
omparing SIL graphswith respe
t to behavior. A SIL graph SG2 is a re�nement of another SIL graph SG1, ifthe behavior exhibited by SG2 is allowed by SG1. SG2
an then be an implementationof its spe
i�
ation SG1. In order to de�ne graph re�nement, we �rst des
ribe portre�nement, and derive graph re�nement from the stru
tural
onne
tivity of a SIL graph.We introdu
e an abstra
t re�nement relation on ports:silimp: pred[[port,port℄℄The re�nement relation on ports
ould be interpreted as follows. A port p1 is a re�ne-ment of a port p2, if the set of data values allowed by p1 is a subset of values allowed byp2. An instan
e of su
h a relation
omes about due to the non-deterministi

hoi
e asillustrated in Figure 5.1. Another kind of re�nement
ould be a data type re�nement:when one port is a subtype of another. The re�nement relation has to be re
exive andtransitive. We do not impose antisymmetry to allow the de�nition of equivalen
e as aspe
ial
ase of re�nement:silimp(p1,p1)silimp_trans_ax: AXIOMsilimp(p1,p2) AND silimp(p2,p3) IMPLIESsilimp(p1,p3)The re�nement relation between arrays of ports is introdu
ed by a property statingthat a re�nement relation between all
orresponding ports of the port arrays implies are�nement relation between the port arrays.42

Figure 5.1: Example: re�nement of ports due to non-deterministi

hoi
e.

43

Figure 5.2: Example: array re�nement does not imply every individual port re�nement.par1, par2: parraysilimpar(par1,par2)silimpar_def_ax: AXIOMFORALL par1,(par2|same_size(par1,par2):(FORALL (i| i< size(par1)):EXISTS j: silimp(port_array(par1)(i),port_array(par2)(j))) IFFsilimpar(par1,par2)It should be noted that the re�nement between port arrays does not ne
essarily implythe re�nement relation between
orresponding individual ports of the port arrays. Weillustrate this notion with an example in Figure 5.2. The reason for under
onstrainingthe de�nition of port array re�nement is to allow re�nements for graphs whi
h mighthave di�erent numbers of input and output ports. We
an thus allow behavioral re�ne-ment without over
onstraining the stru
tures of the graphs.The properties of re
exivity and transitivity that have to be satis�ed by the re�ne-ment relation on port arrays are similar to those satis�ed by the re�nement relation onports:silimpar_refl_th: THEOREMsilimpar(par,par)silimpar_trans_ax: AXIOMsilimpar(par1,par2) AND silimpar(par2,par3) IMPLIESsilimpar(par1,par3) 44

The equivalen
e of SIL graphs sileq is de�ned by introdu
ing the symmetry propertyin the re�nement relations de�ned above:sileq(p1,p2) = silimp(p1,p2) ANDsilimp(p2,p1)sileqar(par1,par2) = silimp(par1,par2) ANDsilimp(par2,par1)A data-
ow edge
onne
ting two ports modi�es the behavior of the sink in a

ordan
ewith other data-
ow edges
onne
ting the same edge output. If a port is the sink ofmultiple data-
ow edges, then the behavior of the sink port is determined by an orderingof the sour
e ports. Su
h a port is
alled a join. In terms of the token
ow
on
ept,we re
all from Chapter 2, that the ordering depends on the whi
h of the tokens �redfrom the sour
e ports determines the value of the join. The sequen
e edges in a SILgraph indi
ate su
h an ordering. However, sin
e the ordering
ould be a�e
ted by thebehavior of a
onditional node, we need a general me
hanism to spe
ify the ordering. Wemodel this ordering by asso
iating weights with the data-
ow edges, rather than sour
eports. Introdu
ing weights to represent sequen
e edges also, permits a
lear separationof stru
ture from and behavior: whereas a sequen
e edge is a stru
tural entity, weightis a behavioral entity that
ould be derived not only from sequen
e edges, but also duethe behavior of a
onditional node. We �rst introdu
e weight as an uninterpreted type.A fun
tion w on ports would return a weight, while a fun
tion war on arrays of portswould return a weight:weight: TYPEw: [port,port -> weight℄war: [parray,parray -> weight℄The ordering is used to determine the behavior of a join. This means that we need to
ompare the weights on the data-
ow edges that form a join. The weights on data-
owedges that do not form a join need not be
ompared. However, the de�nition of SILspe
i�es that no two data-
ow edges
ommuni
ate tokens simultaneously into a join,and no two weights on the edges forming a join
an be equal. This suggests that we needa re
exive, transitive, and antisymmetri
 ordering relation on weights: su
h a relationis
alled partial order. We de�ne a partial ordering relation1 < on weights, and assertthe fa
t that the weights are ordered if and only if the asso
iated data-
ow edges forma join. We give the PVS spe
i�
ation of this property in Table 5.1 and illustrate it inFigure 5.3.1We do not use the usual notation � to stress that no two weights on di�erent edges forming a join
an be equal. 45

<: pred[[weight,weight℄℄partial_order(<)dfe_w_ax: AXIOMp0 /= p1 IMPLIESdfe(p0,p2) AND dfe(p1,p2)IFF(w(p0,p2) < w(p1,p2) ORw(p1,p2) < w(p0,p2))Table 5.1: Using weights for ordering data-
ow edges: PVS spe
i�
ation; see Figure5.3.

Figure 5.3: Using weights for ordering data-
ow edges; see Table 5.1.
46

join_ax: AXIOMFORALL p1,p2:(FORALL p:w(p,p2) < w(p1,p2)) IMPLIESsilimp(p1,p2)Table 5.2: Using weights to determine join behavior; see Figure 5.4.

Figure 5.4: Using weights to determine join behavior; see Table 5.2.We des
ribe the property that the behavior of a join depends on the ordering ofthe data-
ow edges, by
omparing weights on the edges
owing into the join port. Thegreater the weight on a data-
ow edge, the later the token is
ommuni
ated throughit. We state the property that the join port is a re�nement (an implementation) of thesour
e whose asso
iated data-
ow edge has the maximum weight in the axiom shownin Table 5.2. It should be noted that we do not impose equivalen
e sileq, a relationstronger than re�nement silimp. This would give the freedom to
onne
t a port p1 top2, when the set of data values allowed by p1 is always a subset of the set of data valuesallowed by p2. The property is shown in Figure 5.4.We still have to
apture the notion of behavior of ports
onne
ted to the outputport of a
onditional node. The behavior of the output port of a
onditional node, whenthe
ondition port holds a false value, is not de�ned. In the
ase where a join port is
onne
ted to a
onditional node, the behavior of the join is solely determined by edgesthat propagate well-de�ned values. This situation is spe
i�ed by making the asso
iatedweight of the data-
ow edge emanating out of a
onditional node the least of all theweights asso
iated with other data-
ow edges. The other data-
ow edges, with whi
hthe
omparison is performed should be
onne
ting the join port to output ports of nodesor
onditional nodes whose
ondition is never false. However, this does not pre
lude ajoin port to have an arbitrary value - be
ause, it does not prohibit a graph
onstru
tion47

ond_bottom_ax: AXIOMNOT
ond(
n)(
ondport(
n)) IMPLIESFORALL p:dfe(outport(
n),p) IMPLIESFORALL (n:node): dfe(outport(n),p) IMPLIESw(outport(
n),p) < w(outport(n),p)Table 5.3: Weight when the
ondition on a
onditional node is false; see Figure 5.5.

Figure 5.5: Weight when the
ondition on a
onditional node is false; see Table 5.3.
Figure 5.6: Absen
e of join: ex
lusive data-
ow edge; see Table 5.4.where the join port is
onne
ted ex
lusively to a single
onditional node or multiple
onditional nodes whose
onditions are false, and whose output ports are
onne
ted tothe join port. The property is spe
i�ed as an axiom in Table 5.3, and illustrated inFigure 5.5.We
an derive the behavior due to a data-
ow edge whose sink is not the output ofany other data-
ow edge. We will
all su
h an edge an ex
lusive data-
ow edge { xdfede�ned in Table 5.4 and shown in Figure 5.6.We
an expli
itly de�ne an ex
lusive data-
ow edge relation for arrays of ports asin Table 5.5. We
an prove the property that an ex
lusive data-
ow edge provides are�nement relation between the sour
e and the sink. However, for this property to hold,we have to impose a restri
tion on the sour
e port { that it has to be an output port of48

xdfe(p1,p2) = dfe(p1,p2) ANDFORALL p:(p /= p1) IMPLIES NOT dfe(p,p2)Table 5.4: Absen
e of join: ex
lusive data-
ow edge; see Figure 5.6.

par, par0: parrayxdfear(par0,(par1:{par|same_size(par,par0)})) =FORALL (i|i<size(par0)):xdfe(port_array(par0)(i),port_array(par1)(i))Table 5.5: Array version of ex
lusive data-
ow edge
49

dfe2_join_th: THEOREM(dfe(p1,p3) AND dfe(p2,p3) AND(FORALL p0:dfe(p0,p3) IMPLIES ((p0 = p1) OR (p0 = p2))))IMPLIESIF w(p1,p3) < w(p2,p3) THENsileq(p2,p3)ELSE sileq(p1,p3)ENDIF Table 5.6: A theorem on join of exa
tly two data-
ow edgesa non
onditional node. If the sour
e is an output port of a
onditional node, then thevalue false on the
ondition port will produ
e an unde�ned value on its output port.However, a data-
ow edge transforms the unde�ned value into an arbitrary value of anappropriate type of sink. The unde�ned value is not
ommuni
ated by a data-
ow edgebe
ause the sink
ould be an input to another node. In pra
ti
e, as we have pointed outin Chapter 2, an input is required to be a well-de�ned value, while an output generated
ould be an unde�ned value:xdfe_silimp_th: THEOREMFORALL (n1:node),(p2:port):xdfe(outport(n1),p2) IMPLIES silimp(outport(n1),p2)We again point out that the relation between the sour
e and the sink is a re�nementrather than equivalen
e. This weaker relation would lead more optimization than if itwere equivalen
e. This issue is dis
ussed further in Chapter 6 as part of generalizationsof transformations.A useful theorem involving a join of exa
tly two data-
ow edges, shown in Table 5.6,states that the behavior of a join asso
iated with exa
tly two data-
ow edges is equalto the behavior of the port from whi
h the edge with a greater weight emanates.We postulate that the ordering on edges is preserved by behavioral re�nement (andtherefore also equivalen
e). We express the property in PVS as an axiom in Table 5.7 andshow it in Figure 5.7. We
an then derive useful extensions of this property of preservingorder by behavioral re�nement. One useful extension for
omparing SIL graphs expressesthat the order is preserved with an introdu
tion of an ex
lusive data-
ow edge betweenan output port of a node and another port. This is shown in Figure 5.8. The statementof the property is the theorem in Table 5.8.50

po_preserve_ax: AXIOMw(p0,p2) < w(p1,p2) ANDsilimp(p0,p00) ANDsilimp(p2,p22) ANDdfe(p00,p22) ANDdfe(p11,p22)IMPLIESw(p00,p22) < w(p11,p22)Table 5.7: Order preserved by re�nement and optimization; see Figure 5.7.

Figure 5.7: Order preserved by re�nement and optimization; see Table 5.7.po_preserve_xdfe_th: THEOREMw(p0,p2) < w(p1,p2) ANDsilimp(p2,outport(n3)) ANDxdfe(outport(n3),p4) ANDdfe(p00,p44) ANDdfe(p11,p44) ANDsilimp(p0,p00) ANDsilimp(p1,p11) ANDsilimp(p4,p44)IMPLIESw(p00,p44) < w(p11,p44)Table 5.8: Order preserved by re�nement and ex
lusive data-
ow edge; see Figure 5.8.51

Figure 5.8: Order preserved by re�nement and ex
lusive data-
ow edge; see Table 5.8.

52

sub_kind_implement_ax: AXIOMFORALL (n0:node),(n1:node|same_size(n0,n1)):sub_kind(n0,n1) AND silimpar(inports(n0),inports(n1)) IMPLIESsilimp(outport(n0),outport(n1))Table 5.9: Graph re�nement: property expressing relation between outputs and inputsof graphs independent of underlying behavior; see Figure 5.9.Similarly, we have
orresponding postulates and theorems for arrays of ports insteadof individual ports. However, we have to make a slight modi�
ation on
omparing portarrays for inequality { that is, we will interpret the inequality operator /= to meanthat the port arrays do not have any port in
ommon. We have su
h a fa
ility ofoverloading operators and fun
tions in PVS. In
omparing behaviors of SIL graphs, we�nd that the properties expressed using arrays of ports instead of individual ports, makespe
i�
ations more su

in
t and e
onomi
al.Finally, we need a re�nement relation for graphs. A graph re�nes or implementsanother graph, when the data relation of the implementing node is
ontained in the datarelation of the spe
i�
ation node. We
all the implementing graph the sub kind of thespe
i�
ation node. Instead of des
ribing the graph re�nement by des
ribing
ontainmentof their data relations, we spe
ify the relationship by using a higher level property. Itis the property that, when the inputs of the implementation graph are a re�nementof the inputs of the spe
i�
ation graph, then the outputs of the implementation graphhave to be re�nements of the spe
i�
ation graph. It should be noted that any stateinformation impli
it in a SIL graph is en
apsulated in the data relations, thus obviatingthe need to
onsider behavior histories, rather than a single
lo
k
y
le behavior. ThePVS spe
i�
ation in Table 5.9 illustrates the property in Figure 5.9.This allows us to
ompare output ports, given a relationship among the input portsand the relationship between the nodes. It should be noted that this represents atypi
al example of how we express a property for
omparing ports, without a detailedrepresentation of the input/output ports and data relations of the nodes. We alsointrodu
e
onvenient predi
ates in Table 5.10 to express that two nodes, having thesame number of input ports (i.e., they are of the same size), are of the same kind if theyhave the same data relations.
53

Figure 5.9: Graph re�nement: property expressing relation between outputs and inputsof graphs independent of underlying behavior; see Table 5.9.

same_kind(
n0,(
n1|same_size(
n1,
n0))) =datarel(
n0) = datarel(
n1)sks(
n0,
n1) =same_size(
n0,
n1) AND same_kind(
n0,
n1)Table 5.10: Predi
ates for expressing the sameness of nodes
54

Chapter 6Spe
i�
ation and Veri�
ation ofTransformations
The formal model of the SIL graph stru
ture and behavior
an be used to spe
ify andverify the
orre
tness of transformations. Here, we present optimization transforma-tions, su
h as Common Subexpression Elimination and Cross-Jumping Tail-Merging.We have veri�ed the
orre
tness of other optimization transformations, and a similarte
hnique
an be adopted for verifying the
orre
tness of re�nement transformations.We present an overview of spe
i�
ation and veri�
ation of transformations in se
tion 6.1.We explain in detail
ommon subexpression elimination in Se
tion 6.2 and
ross-jumpingtail-merging in se
tion 6.3. We brie
y mention spe
i�
ation and veri�
ation of othertransformations and proofs in Se
tion 6.4, and generalization and
omposition of trans-formations in Se
tion 6.5. In Se
tion 6.6, we illustrate with an example the usefulness ofthe axiomati
 spe
i�
ation in investigating \what-if" s
enarios. Finally, in Se
tion 6.7,we illustrate a new transformation devised in the pro
ess of generalization and \what-if" analysis. This transformation
an be used for further optimization and re�nement.This
ould not have been a
hieved by the existing transformations de�ned in the
urrentsynthesis framework.6.1 OverviewThe general method we employ to spe
ify and verify transformations
onsists of thefollowing steps:1. Spe
ify the stru
ture of SIL graph on whi
h the transformation is to be applied.The stru
ture spe
i�
ation
ould be of graph templates or
lasses of SIL graphsrather than a parti
ular
on
rete graph.55

Figure 6.1: Common subexpression elimination; see Table 6.1.2. Assert that the stru
ture of the SIL graph satis�es the pre
onditions imposed onits stru
ture for applying the transformation. The pre
onditions would
onsistof
onstraints imposed on stru
tural
onne
tivity and ordering through sequen
eedges.3. Spe
ify the stru
ture of the SIL graph expe
ted after the transformation is applied.4. In the
ase of verifying re�nement, we impose the
onstraint that the
orrespond-ing inputs of the SIL graphs before and after transformation are silimpar { thatis, the set of input values to the SIL graph after transformation is a subset ofthe set of input values to the SIL graph before the transformation. For behavioralequivalen
e, the
onstraint is imposed as sileqar: the sets of input values to bothgraphs are identi
al.5. Verify the property that the outputs of the SIL graph before transformation aresilimpar { that is, the outputs of SIL graph after transformation are re�nementsof
orresponding outputs of the SIL graph before transformation. In the
ase ofbehavior preserving transformation, the
orresponding outputs are veri�ed to besileqar.6.2 Common Subexpression EliminationIn this transformation, two nodes of the same kind, whi
h take identi
al inputs, aremerged into one node as shown in the Figure 6.1.We �rst spe
ify the pre
onditions imposed on the nodes and the input ports
on-ne
ted to the nodes:� The nodes must be of the same kind56

� The ports
onne
ted to the input ports of one node must be identi
al to those
onne
ted to the input ports of the other node.� The input ports should not be left dangling: they are required to have an in
omingdata-
ow edge.For
onvenien
e, we will assume that the joins at the input ports of the nodes havebeen resolved. Su
h a resolution of the joins would leave exa
tly one data-
ow edge
onne
ting ea
h input port of the nodes. Relaxing that assumption would not
hangeour veri�
ation of
orre
tness of the transformation, ex
ept for an additional step ofresolving the joins before the transformation is applied:pre
onds(dot0,(dot1:{dot1|same_kind(dot0,dot1)})):boolean =% input ports of dot0 and dot1 are
onne
ted to identi
al ports,% and there exists at least one su
h set of ports(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)) IFF xdfear(par,inports(dot1))) AND(EXISTS (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)))We then spe
ify the stru
ture of the graphs before and after applying the transfor-mation. The statement of
orre
tness is asserted as a theorem that, if the inputs forthe graph are sileq then the outputs of the graph are sileq. The theorem is stated inTable 6.1.6.3 Cross-Jumping Tail-MergingIn the
ross-jumping tail-merging transformation, two
onditional nodes whose outputports
onne
t to the same sink are
he
ked for being mutually ex
lusive { that is, ifthe
onditions on both of the
onditional ports are not true (or false) at the same time(when exa
tly one of them is true at any time). In su
h a
ase, the two nodes
an bemerged into one un
onditional node of the same kind, and the
onditions moved to thenodes of the subgraph
onne
ting it. We show this transformation in Figure 6.2.In the
ourse of our spe
i�
ation in PVS, we found a mistake in the informal spe
-i�
ation of the transformation. We show the erroneous transformation that was givenin the original informal spe
i�
ation in Figure 6.3.However, the same mistake was dis
overed later by inspe
tion of the informal spe
-i�
ation [Klo 94℄ independently, without the aid of our formalization. The error thato

urred in the original informal spe
i�
ation was the in
orre
t pla
ing of the
onditionson the nodes. With su
h a pla
ing, the
orre
tness of the transformation depends onthe ordering of the output ports of dot0 and dot1. When
ondition
 is true, the values57

CSubE: THEOREMFORALL dot0,(dot1|same_kind(dot1,dot0)),(dot01|same_kind(dot01,dot0)):((pre
onds(dot0,dot1) AND% stru
ture before transformation(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)) IFF(EXISTS (parr|is_outportar(parr) ANDsame_size(parr,inports(dot0))):% ports
onne
ting to dot0 and dot01 are equivalent(sileqar(par,parr) AND xdfear(parr,inports(dot01))))))IMPLIES%
orresponding output ports of graphs before and after transformation are% equivalent(FORALL p1,p2:((xdfe(outport(dot0),p1) ORxdfe(outport(dot1),p1)) ANDxdfe(outport(dot01),p2)) IMPLIESsileq(p1,p2))) Table 6.1: Corre
tness of
ommon subexpression elimination; see Figure 6.1.

Figure 6.2: Cross-jumping tail-merging:
orre
ted.58

Figure 6.3: Cross-jumping tail-merging: in
orre
tly spe
i�ed in informal do
ument.

59

Figure 6.4: Cross-jumping tail-merging: generalized and veri�ed; see Table 6.3.at q1 and so r1 are arbitrary, while the values at q0 and r0 are well-de�ned. Thus if anordering is imposed su
h that the port pp0 gets the value at r2, then that value wouldbe arbitrary. However, in the transformed �gure, the
ondition
 being true results inan ordering su
h that r01 gets the value of q00, and vi
e-versa when
 is false. Thus,the transformation would not be
orre
tness preserving.The pla
ing of the
onditions as given in Figure 6.3 is leads to violation of pre
ondi-tions - be
ause it prohibits
omparing two ports joined ex
lusively to
onditional nodes {that is, xdfe(p1,p2) AND is outport of
onditionalnode(p1) does not ensure sileq(p1,p2).We found this violation at the very early stage of stating the theorem
orresponding tothe transformation. Further, we
ould relax the mutual ex
lusiveness
onstraint. Weintrodu
e a weak assumption that the ordering of the data-
ow edges
oming out of thenodes dot0 and dot1 in the original graph is the same as the ordering of the data-
owedges
oming into the node dot01 in the optimized graph. We have suitably modi�ed,generalized, and veri�ed the transformation. The generalized transformation is shownin Figure 6.4. The PVS spe
i�
ation of the pre
onditions is shown in Table 6.2, andthe theorem statement is shown in Table 6.3.6.4 Other Transformations and ProofsWe have spe
i�ed and veri�ed other transformations, su
h as
opy propagation,
onstantpropagation,
ommon subexpression insertion,
ommutativity, asso
iativity, distributiv-ity and strength redu
tion des
ribed by Engelen and others [EMH 93℄.In general, the proofs of transformations, pro
eed by rewriting, using axioms andproved theorems, and �nally simplifying to a set of Boolean expressions
ontaining onlyrelations between ports and port arrays. At this �nal stage the BDD simpli�er in PVS isused to determine that the
onjun
tion of Boolean expressions is indeed true. We showthe number of high level inferen
e rule appli
ations required for verifying the varioustransformations in Table 6.4. The high level inferen
e rules are the rules that the user60

would use to guide the PVS theorem prover to derive a proof of a theorem. Examplesof high level inferen
e rules [SOR 93-2℄ are skolem! for removing universal quanti�ers,assert to apply arithmeti
 de
ision pro
edures and rewriting, bddsimp for Booleanreasoning using BDD, and inst? for heuristi
 instantiation of existential quanti�ers.The PVS de
ision pro
edures for rewriting, and arithmeti
 and Boolean reasoning
oulduse a number of lower level inferen
e rules that are hidden from the user. Examples ofproof trans
ripts for
ommon subexpression elimination and
ross-jumping tail-mergingare given in Appendix B.6.5 Generalization and Composition of TransformationsWe have seen earlier, in Chapter 6.3, that the spe
i�
ation has assisted in generalizingthe transformation. In addition, we
an make other observations on using our workto generalize many transformations. For example, by repla
ing the equivalen
e rela-tion sileq by silimp, we �nd that the optimization transformations
an be generalizedas re�nement transformations, and the pre
onditions imposed by the transformations
ould be relaxed. Having a me
hanized formal approa
h su
h as ours, as opposed toapproa
hes that are informal or formal approa
hes not me
hanized has an advantage inthe aspe
t of modifying spe
i�
ations - the experiments of modifying spe
i�
ations
ouldbe performed in a framework, that allows one to rapidly verify that the modi�
ationsdo not violate the
orre
tness properties.The general te
hnique to investigate
omposition of transformations is to determinethat the pre
onditions imposed by one transformation are satis�ed by another transfor-mation. This also applies in the
ase where a transformation
ould be applied on onesubgraph, while another
ould be applied on a disjoint subgraph, without having to takeinto a

ount the e�e
t of one transformation on the pre
onditions imposed by another.For example,
ommon subexpression elimination (CsubE) produ
es a subgraph with anoutput port that is a distribute. Whereas,
opy propagation (Copy Prop) [EMH 93℄
an be applied only to a subgraph that does not have a distribute output port. We
an determine in our spe
i�
ation that if we perform CsubE, the
onjun
tion of thesubgraph relation thus obtained and the pre
onditions for performing Copy Prop onthe same subgraph are false.6.6 Investigations into \What-if?" S
enariosOne of the bene�ts of our formalism is that it allows us to provide answers to questionson the appli
ability of transformations, and provide formal justi�
ations that supportthe answer. A question that
omes up quite often in a transformational design pro
essis whether a transformation that has been applied on a graph
ould still be appliedwith small
hanges in the graph. We illustrate this point in the
ontext of a situation61

Figure 6.5: Cross-jumping tail-merging: inappli
able when two nodes are merged intoone.that resulted during the transformational design of a dire
tion dete
tor [Mid 94-2℄. Itinvolved a variation of the
ross-jumping tail-merging transformation. In Figure 6.4, ifwe merge the nodes nodes dot0 and dot1 in the graph before applying the transforma-tion, the pre
ondition for the transformation would no longer be true. This is shown inFigure 6.5.Sin
e the nodes are merged, w0 = w1. While, due the ordering imposed by join,either war0 < war1 or war1 < war0. Thus the equivalen
e relation w0 < w1 IFF war0 <war1 no longer holds, and so the pre
ondition for the appli
ation of the transformationis violated. This pre
ludes the appli
ation of the transformation on the modi�ed graph.6.7 Devising New TransformationsIn Se
tion 6.6, we argued that
ross-jumping tail-merging
ould not be applied in
asesas shown in Figure 6.5. However, we would like to have su
h a transformation for fur-ther optimization in
ases as shown in Figure 6.6. We
an view this as a transformationderived from the pro
ess of generalizing
ross-jumping tail-merging and
ommon subex-pression elimination. In this transformation, two identi
al nodes with mutually ex
lusive
onditions (i.e exa
tly one node will be a
tive at any time) have inputs from identi
alnodes, whi
h in turn have identi
al inputs. At �rst, it appears that we
ould apply a
ombination of
ommon subexpression elimination and
ross-jumping tail-merging. Ifwe apply
ommon subexpression elimination �rst, to obtain a single node whose out-put is
onne
ted to the mutually ex
lusive nodes, then we
annot apply
ross-jumpingtail-merging as shown in Figure 6.7. On the other hand, if we apply
ross-jumpingtail-merging �rst, the outputs of the other pair of identi
al nodes form a join at theinput of the single node obtained. In this
ase, we
annot apply
ommon subexpressionelimination as shown in Figure 6.8.The problem
an be solved by devising a new and simple transformation as follows.In the des
ription of
ommon subexpression elimination shown in Figure 6.1, the outputsof nodes dot01 and dot1 were required to be not
onne
ted to join ports. However,62

Figure 6.6: Further optimization impossible using existing transformations.

Figure 6.7: Inappli
ability of
ross-jumping tail-merging after
ommon subexpressionelimination: due to pre
ondition restri
tions.
63

Figure 6.8: Inappli
ability of
ommon subexpression elimination after
ross-jumpingtail-merging: due to pre
ondition restri
tions.

64

Figure 6.9: A simple new transformation: obvious, post-fa
to.we
an relax this
onstraint, and provide a new and simple transformation that
an beused to optimize a dependen
y graph. We show the new transformation in Figure 6.9.We
ould have arrived at the transformation in an ad ho
 manner simply by examiningthe semanti
s of a
onditional expression. However, we devised the transformationafter examining by doing a \what-if" analysis formally in the problem of
omposingtwo transformations. This suggests that our formal model
an be used to devise newtransformations in a methodi
al manner.

65

sks(
n1:
node,
n2:
node) = same_kind(
n1,
n2) AND same_size(
n1,
n2)pre
onds(dot0,(dot1:{dot|sks(dot,dot0)}),(dot01:{dot|sks(dot,dot0)}),(par0:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par1:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par00:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par11:{par|is_outportar(par)&same_size(par,inports(dot0))}),pp0,pp00)=%
onne
tivity at the input ports of SIL graph before transformationxdfear(par0,inports(dot0)) AND xdfear(par1,inports(dot1)) AND(w(outport(dot0),pp0) < w(outport(dot1),pp0) IFFwar(par00,inports(dot01)) < war(par11,inports(dot01))) AND%
onne
tivity at the output ports of SIL graph before transformationdfe(outport(dot0),pp0) AND dfe(outport(dot1),pp0) AND(FORALL pp: ((pp /= outport(dot0)) OR (pp /= outport(dot1)))IMPLIES NOT dfe(pp,pp0)) AND%
onne
tivity at the input ports of SIL graph after transformationdfear(par00,inports(dot01)) AND dfear(par11,inports(dot01)) AND(FORALL (par|size(par)=size(par00)):(par /= par00 AND par /= par11)IMPLIES NOT dfear(par,inports(dot01))) AND%
onne
tivity at the output ports of SIL graph after transformationxdfe(outport(dot01),pp00) AND%
orresponding input ports of graph before and after transformation% are equivalentsileqar(par0,par00) AND sileqar(par1,par11)Table 6.2: PVS spe
i�
ation of pre
onditions for
ross-jumping tail-merging
66

CjtM: THEOREMFORALL (dot0:
node):LETsks = LAMBDA (
n0:
node),(
n1:
node):same_size(
n0,
n1) AND same_kind(
n0,
n1),sk = LAMBDA (n:
node):sks(n,dot0),ios = LAMBDA par:is_outportar(par) & same_size(par,inports(dot0))INFORALL (dot1|sk(dot1)),(dot01|sk(dot01)),(par0|ios(par0)),(par1|ios(par1)),(par00|ios(par00)),(par11|ios(par11)):% stru
ture and pre
onditions on graphs before and after transformationpre
onds(dot0,dot1,dot01,par0,par1,par00,par11,pp0,pp00)IMPLIES%
orresponding output ports are equivalentsileq(pp0,pp00)Table 6.3: Corre
tness of
ross-jumping tail-merging; see Figure 6.4.Transformation Number of high level inferen
e rule appli
ationsCommon subexpression elimination 30Common subexpression insertion 25Cross-jumping tail-merging 56Copy propagation 10Constant propagation 2Strength redu
tion 2Commutativity 3Asso
iativity 3Distributivity 3Retiming 3Self-inverse 1Table 6.4: Number of high level inferen
e rule appli
ations for various transformations67

68

Chapter 7Dis
ussion and Con
lusionsOne of the goals of high-level synthesis is to a
hieve designs that are
orre
t by
onstru
-tion. We re
all from Chapter 1 that a transformation is
orre
t if the set of behaviorsallowed by the implementation derived from the transformation is a subset of the be-haviors permitted by the original spe
i�
ation. In this work, we have attempted tohelp a

omplish the goal of
orre
tness by
onstru
tion in verifying the
orre
tness oftransformations used in dependen
y graph formalisms. However, we have to note thedistin
tion between the transformations as do
umented and intended by the informalspe
i�
ation and the transformations a
tually implemented in software. We explain thisdistin
tion in Se
tion 7.1. In Se
tion 7.2, we brie
y present our experien
e in developinga formal spe
i�
ation from an informal do
ument. We highlight the advantages of anaxiomati
 approa
h in Se
tion 7.3. Finally, Se
tion 7.4 summarizes the
on
lusions.7.1 Intent versus ImplementationOur veri�
ation has addressed the transformations as do
umented and intended by theinformal spe
i�
ation, and not the transformations a
tually implemented in software.One has to determine manually if the implemented transformations do, in fa
t,
arryout the intended transformations that have been veri�ed. In general, there is no pra
-ti
al me
hanized method to
he
k if software programs (su
h as those implementedin C) satisfy their spe
i�
ations. But, in order to
he
k the
orre
tness of the imple-mented transformations, one has to �rst ensure that the intended transformations asdo
umented are
orre
t.The
orre
tness problem of the implemented transformations
ould be partly ta
kledin another manner. We
an
ompare the dependen
y graph that is taken as the inputby the software for transformation with the dependen
y graph that is the output ofthe software after applying the transformation. However, this would entail developing
on
rete behavioral models of the dependen
y graphs. But, a
on
rete behavior modelbasis would make the appli
ability of the formalization more restri
ted.69

7.2 From Informal to Formal Spe
i�
ationThe most diÆ
ult part in this investigation has been developing a proper formal spe
i-�
ation from informal spe
i�
ations. Even though the informal spe
i�
ations were well-do
umented,
reating a formal spe
i�
ation required expressing informal ideas su
h asbehavior and mutual ex
lusiveness in mathemati
ally pre
ise terms. One parti
ulardetail in this respe
t is the following: the informal do
ument des
ribes a value of a
onditional node as unde�ned when the
ondition on its
ondition port is false. In-trodu
ing a notion of unde�ned value would need a spe
ial entity to be introdu
ed forevery data type. Further, we would also have to asso
iate a meaning with su
h spe
ialentities. To avoid spe
i�
ation diÆ
ulties in stating what unde�ned means, we
hose tospe
ify how an unde�ned value a�e
ts the overall behavior of a subgraph in whi
h su
ha node is embedded. Su
h
hoi
es have to be made with
are towards spe
i�
ation andveri�
ation ease.One of the �rst tasks that aids the spe
i�
ation pro
ess is the
hoi
e of abstra
tionlevel: how mu
h of the detail present in the informal do
ument should the spe
i�
a-tion represent? The
hoi
e
ould be based on how the formal spe
i�
ation has to beveri�ed. For example, we
hose not to represent behavior at all: we
ould express be-havioral equivalen
e (re�nement) by an equivalen
e (re�nement) relation, and expressthe properties that needed to be satis�ed by the SIL graphs.Another important issue in developing a formal spe
i�
ation from an informal do
-ument is de
iding on data stru
tures to represent entities spe
i�ed informally. It isdesirable to have a formal spe
i�
ation that very
losely resembles the informal do
u-ment. This is essential to map a formal spe
i�
ation ba
k to its informal do
ument. Itis essential also for understanding a formal spe
i�
ation, and for tra
ing errors that havebeen found in the spe
i�
ation ba
k to its informal representation. We
an highlightone su
h data stru
ture that PVS allows us to use: the re
ord type. As we have seen inTable 4.2, it permits us to pa
kage all the �elds of a
onditional node
n, and then a
-
ess the individual �elds su
h as inports of the
n by inports(
n). This syntax
loselyresembles the informal spe
i�
ation. Besides providing a simple syntax, the re
ord typealso allows making the type of one �eld depend on the type of another �eld. We haveseen su
h dependent typing in our de�nition of arrays of ports parray in Chapter 4.Alternatively, we
ould have used Abstra
t Data Types (ADT) in our formal spe
i�
a-tion. This would have an advantage of en
apsulating well-formedness of the stru
tureof dependen
y graphs within the behavior spe
i�
ation. However, this would mean im-posing an abstra
t syntax stru
ture for the behavior. Sin
e our investigation primarilyinvolves transformations whi
h transform stru
ture, it would be diÆ
ult to work witha spe
i�
ation that has an integrated stru
ture and behavior.The properties we have tabled in our formalism
ould form the basis of studying howwe
ould formulate a
omposite behavior from smaller behavioral relations. In an earlierwork at the register-transfer level [KoW 93℄, an automati
 pro
edure for fun
tionalveri�
ation of retiming, pipelining and bu�ering optimization has been implemented in70

RetLab as part of the PHIDEO tool at PRL. We have arrived at proofs of propertiesthat
ould form the basis of a semiautomati
 pro
edure for
he
king re�nement andequivalen
e at higher levels.7.3 Axiomati
 Approa
h versus Other Formal Ap-proa
hesThe advantage in an axiomati
 framework is that we
ould assert properties of SILgraphs that have to hold, without having to spe
ify in detail the behavioral relationsor their
omposition and equivalen
e. We
ould therefore embed o�-the-shelf data-
owdiagrams used in the Stru
tured Analysis/Design approa
h [TDM 94,HMW 94℄ in ourformalism. One parti
ular example of the advantage of our approa
h is establishingre�nement and equivalen
e, without expressing the
on
rete relation between outputsand inputs of nodes. This property, expressed in Table 5.9 and Figure 5.9, does notuse any information on the
on
rete data and order relations of the nodes. Moreover,the automati
 veri�
ation pro
edures, simple intera
tive
ommands, and many featuressu
h as editing and rerunning proofs in PVS made the task of
he
king properties and
orre
tness mu
h easier than anti
ipated.In
ontrast to an axiomati
 approa
h, a model-oriented approa
h would
ompare twodependen
y graph models with respe
t to behavior. Su
h a model-
omparison methodwould involve verifying that the behavior of the transformed model satis�es the behav-ior of the original model. However, this entails developing
on
rete behavioral modelsof the dependen
y graphs, and formulating the meaning of behavioral re�nement, andequivalen
e. Su
h
on
rete modeling of behavior, re�nement and equivalen
e would im-pose restri
tions on the domains where the formalization
ould be applied. Furthermore,su
h a modeling would make it in
onvenient to study the
orre
tness of transformationson graphs with arbitrary stru
ture. For example, in our approa
h, we
ould handlenodes with an unspe
i�ed number of ports in studying the
orre
tness problem. Thisdistin
tion is similar to the
ontrast between axiomati
 semanti
s and denotational oroperational semanti
s in the
ontext of programming languages. Denotational and op-erational models worked out by de Jong and Huijs [GGJ 93,HuK 94℄
ould be used asa
on
rete model that satis�es the axiomati
 spe
i�
ation dis
ussed in this report.As a typi
al example, we are given the behavioral relations of the nodes in a SILgraph and the stru
tural
onne
tivity of the graph. There is no general way to
omposethese relations into a single behavioral relation for
omparison with that obtained fromanother SIL graph. Moreover, from the behavioral des
ription in SIL, it is not possible ingeneral to extra
t a state ma
hine or a �nite automaton model, and use state ma
hine orautomata
omparison te
hniques. This is due to the generality of the dependen
y graphbehavior. In addition, sin
e many synthesis transformations are applied to des
riptionsof behavior within a single
lo
k
y
le, there is no expli
it notion of state in su
h a71

des
ription. This reinfor
es the judgment that state ma
hine or automata
omparisonte
hniques are not suitable.7.4 Con
lusions and Future WorkIn this work, we have provided an axiomati
 spe
i�
ation for a general dependen
y graphspe
i�
ation language. We have given a small set of axioms that
apture a general no-tion of re�nement and equivalen
e of dependen
y graphs. We have spe
i�ed and veri�edabout a dozen of the optimization and re�nement transformations. We found errors inthis pro
ess, and suggested
orre
tions. We have also generalized the transformationsby weakening the pre
onditions for applying the transformations, and veri�ed their
or-re
tness. In this pro
ess, we have devised new transformations for further optimizationand re�nement than would have been possible before. We have explored generatingpre
onditions for transformations semiautomati
ally from the spe
i�
ations. Our workhas also aided investigating intera
tions between the transformations, and thus the im-portan
e of the order of applying the transformations. The transformations we haveveri�ed are being used in industry to design hardware from high level spe
i�
ations.We also plan to use our framework to investigate the
orre
tness of transformationsinvolving s
heduling and resour
e allo
ation.The approa
h we have used, based on expressing properties at a high level, does notdepend on the underlying model of behavior. This enabled us to use our formalism fordependen
y graph spe
i�
ations in other areas su
h as stru
tured analysis in softwaredesign. Thus, the ability to
apture an o� the shelf formalism underpins our thesis thatan axiomati
 spe
i�
ation
oupled with an eÆ
ient me
hani
al veri�
ation is the mostsuitable approa
h to study the
orre
tness of transformations on generi
 dependen
ygraphs. Finally, we have shown that our approa
h, and formal methods in general
an
reatively help dis
over new te
hniques in system design. As part of the future work,we are
onsidering a seemless integration of our veri�
ation s
heme with VLSI CADtools for hardware design and CASE tools for software design.

72

Referen
es[AaL 94℄ M. Aagaard and M. LeeserPBS: Proven Boolean Algorithm, IEEE Trans. on CAD of ICs. Vol 13, No. 4, April1994.[AAD 93℄ F.V. Aelten, J. Allen, and S. DevadasVeri�
ation of Relations between Syn
hronous Ma
hines, IEEE Trans. on CAD ofICs. Vol. 12, No. 12, De
ember 1993.[Ael 94℄ F.V. Aelten, J. Allen, and S. DevadasEven-Based Veri�
ation of Syn
hronous Globally Controlled, Logi
 Designs AgainstSignal Flow Graphs, IEEE Trans. on CAD of ICs., Vol. 13, No. 1 January 1994.[Ang 94℄ C. AngeloFormal Hardware Veri�
ation in a Sili
on Compilation Environment by means oftheorem proving, PhD Thesis, IMEC, Leuven, Belgium, February 1994.[Ba
 88℄ R.J.R. Ba
kA Cal
ulus of Re�nements for Program Derivations, A
ta Informati
a, Vol. 25,pp.593-624, 1988.[Bar 81℄ M. R. Barba

iInstru
tion Set Pro
essor Spe
i�
ations (ISPS): The notation and appli
ations,IEEE Trans. on Computers, C-30(1): pp 24-40, 1981.[BRB 90℄ K.S. Bra
e, R.L. Rudell, and R.E. BryantEÆ
ient Implementation of a BDD Pa
kage, Pro
eedings of the 27th ACM/IEEEDesign Automation Conferen
e, Orlando, Florida, June 24-28, 1990, pp. 40-45.[YIF 88℄ R.K. Brayton, R. Camposano, G. DeMi
heli, R.H.J.M. Otten, and J.T.J. vanEijndhovenThe Yorktown Sili
on Compiler System, Sili
on Compilation, D. Gajski (Ed.),Addison-Wesley, 1988.[BCM 90℄ J.R. Bur
h, E.M. Clarke, K.L. M
Millan, D.L. Dill, and J. HwangSymboli
 Model Che
king: 1020 states and beyond, Pro
eedings of the Fifth AnnualSymposium on Logi
 in Computer S
ien
e, June 1990.73

[Cam 89℄ R. CamposanoBehavior Preserving Transformations in High Level Synthesis, Hardware Spe
i�-
ation, Veri�
ation and Synthesis: Mathemati
al Aspe
ts, Cornell MSI Workshop,Le
ture Notes in Computer S
ien
e 408, pp 106-128, Springer-Verlag, July 1989.[UNI 88℄ M. Chandy and J. MisraParallel Program Design: a foundation, Reading, Mass. : Addison-Wesley Pub.Co.,
1988.[CBL 92℄ R. Chapman, G. Brown, and M. LeeserVeri�ed High-Level Synthesis in BEDROC, Pro
eedings of the 1992 EuropeanDesign Automation Conferen
e, Mar
h 1992, IEEE Press.[ELL 90℄ Computer General Ele
troni
 DesignThe ELLA Language Referen
e Manual, The New Chur
h,Henry St. Bath BA1 1JR, U.K., issue 4.0, 1990.[Cyr 93℄ D. CyrlukMi
ropro
essor Veri�
ation in PVS: A methodology and simple example,SRI-CSL-93-12, Te
hni
al Report, Computer S
ien
e Laboratory, SRI Interna-tional, Menlo Park, CA, De
ember 1993.[CRS 94℄ D. Cyrluk, S. Rajan, N. Shankar, and M. SrivasE�e
tive Theorem Proving for Hardware Veri�
ation, Pro
eedings of the 2nd Inter-national Conferen
e on Theorem Provers in Cir
uit Design, Bad Heerenalb (Bla
k-forest), Germany, 26-29 September, 1994.[TDM 94℄ Tom DeMar
oStru
tured Analysis and System Spe
i�
ation, Yourdon Press, New Jersey, USA,1979.[EMH 93℄ W.J.A Engelen, P.F.A. Middelhoek, C. Huijs, J. Hofstede, and Th. KrolApplying Software Transformations to SIL,SPRITE deliverable Ls.a.5.2/UT/Y5/M6/1A, June 1993.[Fou 90℄ M. P. FourmanFormal System Design, Formal Methods for VLSI Design, J. Staunstrup (ed.),North-Holland, IFIP 1990.[GaG 89℄ S. J. Garland and J. V. GuttagAn Overview of LP: the Lar
h Prover, Pro
eedings of the Third InternationalConferen
e on Rewriting Te
hniques and Appli
ations, Springer-Verlag, 1989.[GoM 93℄ M. J. C. Gordon and T. F. Melham (Ed.)Introdu
tion to HOL: a theorem proving environment for higher order logi
, Cam-bridge University Press, 1993. 74

[Hoa 85℄ C. A. R. HoareCommuni
ating Sequential Pro
esses, Prenti
e Hall, Hemel Hempstead, UK, 1985.[Hil 85℄ P. N. Hil�ngerSilage: a High-level Language and Sili
on Compiler for Digital Signal Pro
essing,Pro
eedings of IEEE Custom Integrated Cir
uits Conferen
e pp 213-216, Portland,OR, May 1985.[Hoo 94℄ Jozef HoomanCorre
tness of Real Time Systems by Constru
tion, Pro
eedings, Symposium onFormal Te
hniques in Real Time and Fault Tolerant Systems, LNCS, Springer-Verlag, September 20-24, 1994 (to appear).[HHK 92℄ C. Huijs, J. Hofstede, and Th. KrolTransformations and semanti
al
he
ks for SIL-1,SPRITE deliverable LS.a.5.1/UT/Y4/M6/1, November 1992.[HuK 94℄ C. Huijs and Th. KrolA Formal Semanti
 Model to �t SIL for Transformational Design, to appear in:Mi
ropro
essing and Mi
roprogramming 39 (1994) Pro
eedings of Euromi
ro '94,September 5-8-1994 Liverpool.[VHD 88℄ The Institute of Ele
tri
al and Ele
troni
s EngineersIEEE Standard VHDL Language Referen
e Manual, IEEE std. 1076-88, IEEEPress, New York, 1988.[Jan 93℄ G. JanssenROBDD software, Department of Ele
tri
al Engineering, Te
hni
al University ofEindhoven, Eindhoven, Netherlands, O
tober 1993.[Joh 94℄ S. D. JohnsonSynthesis of Digital Designs from Re
ursion Equations, MIT Press, Cambridge,1984.[Jon 90℄ G. Jones and M. SheeranCir
uit Design in Ruby, Formal Methods for VLSI Design, J. Staunstrup (ed.),North-Holland, IFIP 1990.[GGJ 93℄ G.G de JongGeneralized data
ow graphs: theory and appli
ations, PhD Thesis, EindhovenUniversity of Te
hnology, O
tober 1993.[JRS 91℄ J. Joy
e, E. Liu, J. Rushby, N. Shankar, R. Suaya, and F. von HenkeFrom Formal Veri�
ation to Sili
on Compilation, Pro
eedings of the IEEE Com-p
on, San Fran
is
o, CA, February 1991, pp. 450-45575

[Klo 92℄ W.E.H. Kloosterhuis, M.R.R. ey
kmans, J. Hofstede, C. Huijs, Th. Krol, O.P.M
Ardle, W.J.M. Smits, and L.G.L. SvenssonThe SPRITE Input Language SIL-1, Language Report, SPRITE, deliverable Ls.a.a/ Philips / Y3 / M12 / 2, O
tober 1992.[Klo 94℄ W.E.H. KloosterhuisPersonal Communi
ation, January 1994.[KoW 93℄ A. P. Kostelijk and A. van der WerfFun
tional Veri�
ation for Retiming and Rebu�ering Optimization, Pro
eedingsof The European Conferen
e on Design Automation with the European Event inASIC Design, Paris, Fran
e, Feb 22-25, 1993, IEEE Computer So
iety Press.[Kro 92℄ Th. Krol, J.v. Meerbergen, C. Niessen, W. Smits, and J. HuiskenThe SPRITE Input Language, An intermediate format for High Level Synthesis,Pro
eedings of EDAC 92, Brussels, 16-19 Mar
h 1992, pp 186-192.[LOR 93℄ Patri
k Lin
oln, Sam Owre, John Rushby, N. Shankar, F. von HenkeEight Papers on Formal Veri�
ation, Te
hni
al Report SRI-CSL-93-4, ComputerS
ien
e Laboratory, SRI International, Menlo Park, CA, May 1993.[M
F 93℄ M.C. M
FarlandFormal Analysis of Corre
tness of Behavioral Transformations, Formal Methodsin Systems Design Vol.2, No.3 pp. 231-257, Kluwer, June 1993.[M
P 83℄ M.C. M
Farland and A.C. ParkerAn Abstra
t Model of Behavior for Hardware Des
riptions, IEEE Trans. on Com-puters C-32(7), pp.621-36, July 1983.[KLM 92℄ Kenneth L. M
MillanSymboli
 Model Che
king, PhD Thesis, Te
hni
al Report, CMU-CS-92-131 pp 97-99, May 1992.[Mid 93℄ P.F.A. MiddelhoekTransformational Design of Digital Cir
uits, Pro
eedings of the Seventh WorkshopComputersystems, 26 November 1993, Eindhoven, The Netherlands, pp. 57-68.[Mid 94℄ P.F.A. MiddelhoekTransformational Design of Digital Signal Pro
essing Appli
ations, Pro
eedings ofthe ProRISC/IEEE workshop on CSSP, 24 Mar
h 1994, pp. 175-180.[Mid 94-2℄ P.F.A. MiddelhoekTransformational Design of a Dire
tion Dete
tor for the Progressive S
an Con-version Algorithm, Preliminary, Department of Computer S
ien
e, University ofTwente, May 25, 1994. 76

[OSR 93℄ S. Owre, N. Shankar, and J.M. RushbyUser Guide for the PVS Spe
i�
ation and Veri�
ation System, Language, and ProofChe
ker (Beta Release), Computer S
ien
e Laboratory, SRI International, MenloPark, CA, USA, February, 1993.[RTJ 93℄ Kamlesh Rath, M. Esen Tuna, and Steven D. JohnsonAn Introdu
tion to Behavior Tables, Te
hni
al Report No. 392, Computer S
ien
eDepartment, Indiana University, De
ember 1993.[Ros 90℄ Lars RossenFormal Ruby, Formal Methods for VLSI Design, J. Staunstrup (ed.), North-Holland, IFIP 1990.[Sax 93℄ J. B. Saxe, J.J. Horning, J.V. Guttag, and S.J. GarlandUsing Transformations and Veri�
ation in Cir
uit Design, Formal Methods inSystems Design Vol.3, No.3, pp. 181-209, Kluwer, De
ember 1993.[SOR 93-1℄ N. Shankar, S. Owre, and J.M. RushbyA Tutorial on Spe
i�
ation and Veri�
ation using PVS (Beta Release), ComputerS
ien
e Laboratory, SRI International, Menlo Park, CA, USA, Mar
h 31, 1993.[SOR 93-2℄ N. Shankar, S. Owre, and J.M. RushbyThe PVS Proof Che
ker, A Referen
e Manual (Beta Release), Computer S
ien
eLaboratory, SRI International, Menlo Park, CA, USA, Mar
h 31, 1993.[Kid 90℄ Douglas R. SmithKIDS: A Semi-Automati
 Program Development System, Transa
tions on SoftwareEngineering: Spe
ial Issue on Formal Methods, Vol. 16, No. 9, September, 1990.[Sta 90℄ J. Staunstrup and M. GreenstreetSyn
hronized Transitions, Formal Methods for VLSI Design, J. Staunstrup (ed.),North-Holland, IFIP 1990.[Tho 98℄ D. Thomas, E.M. Dirkes, R.A. Walker, J.V. Rajan, J.A. Nestor, and R.L.Bla
kburnThe System Ar
hite
t's Workben
h, Pro
eedings of the 25th Design AutomationConferen
e, ACM/IEEE, pp 337-343, 1988.[Vem 90℄ R. VemuriHow to Prove the Completeness of a Set of Register Level Design Transformations,Pro
eedings of the 27th Design Automation Conferen
e, pp. 207-212, ACM/IEEE,June 1990[WMM 94℄ A. van der Werf, J.L. van Meerbergen, O. M
Ardle, P.E.R. Lippens, W.F.J.Verhaegh, and D. GrantPro
essing Unit Design, Pro
eedings of the SPRITE workshop on \VLSI Synthesisfor DSP", Se
tion 12, Philips Resear
h Labs, Eindhoven, Mar
h 1994.77

[JMW 90℄ Jeannette M. WingA Spe
i�er's Introdu
tion to Formal Methods, IEEE Computer, Vol. 23, Number9, pp 8-22, IEEE Computer So
iety Press, September 1990[HMW 94℄ M. WongInformal, Semi-formal, and Formal Approa
hes to the spe
i�
ation of software Re-quirements, Masters Thesis, Department of Computer S
ien
e, UBC, September1994.[WrS 91℄ J. von Wright and K. SereProgram Transformations and Re�nements in HOL, Higher Order Logi
 TheoremProving and its Appli
ations, International Workshop, Pro
eedings, M. Ar
her,J.J. Joy
e, K.N. Levitt and P.J. Windley (Eds.), IEEE Computer So
iety Press,August 28-30, 1991.

78

Appendix A
De�nitions, Axioms andTheorems
A.1 De�nitionsport: TYPEparray: TYPE = [# size:nat,port_array: ARRAY[{i:nat|i<size}->port℄ #℄
node: TYPE =[#inports: parray,outport: port, % stri
tly, this should also be% parray (as in SPLIT) for% hierar
hi
al nodes.intports: parray,
ondport: port,
ond:pred[port℄,datarel: pred[[{p:parray|size(p)=size(inports)},port℄℄,orderrel:pred[[{p:parray|size(p)=size(inports)},port℄℄,intrel: pred[[parray,parray℄℄#℄% derive a node as a subtype of
nodenode: TYPE = {n:
node|
ond(n)=LAMBDA (p:port):TRUE}79

n0,
n1: VAR
nodepar0,par1: VAR parray% Useful fun
tions in
omparing nodes and parrayssame_size(
n0,
n1):boolean =size(inports(
n0)) = size(inports(
n1))same_size(par0,par1):boolean =size(par0) = size(par1)% same_size appears as a type
onstraintsame_kind(
n0,(
n1|same_size(
n1,
n0))) =datarel(
n0) = datarel(
n1)sks(
n0,
n1) =same_size(
n0,
n1) AND same_kind(
n0,
n1)% refinement/implementation relationship between nodessub_kind(
n0,(
n1|same_size(
n1,
n0))):booleansbks(
n0,
n1) = same_size(
n0,
n1) AND sub_kind(
n0,
n1)% defines behavioral impli
ation of sil graphs/portssilimp: pred[[port,port℄℄p0,p1,p2: VAR portpar,par1,par2,par3: VAR parrayi: VAR nat% defines array version of silimp: note the weak axiom defsilimpar(par1,par2):boolean% defines a behavioral equivalen
e of sil graphssileq(p1,p2):boolean =silimp(p1,p2) AND silimp(p2,p1)

80

% array versionsileqar(par1,par2):boolean =FORALL (i| i < size(par1)):sileq(port_array(par1)(i),port_array(par2)(i))% Arbitrary fun
tions
orresponding to data_rel of nodessilf: VAR [port->port℄silfar: VAR [parray->port℄<: pred[[weight,weight℄℄% data flow edge is a relation on portsdfe: [port,port -> boolean℄% an arbitrary fixed fun
tion
orresponding to portsw: [port,port->weight℄p,p0,p1,p2,p3,p4: VAR port
n,
n0,
n1,
n2,
n3: VAR
noden,n0,n1,n2,n3: VAR nodeinport(
n,(i:{j:nat|j<size(inports(
n))})):port =(port_array(inports(
n)))(i)intport(
n,(i:{j:nat|j<size(intports(
n))})):port =(port_array(intports(
n)))(i)% define useful ma
rosis_outport(p) = (EXISTS
n: p=outport(
n))is_inport(p) = (EXISTS
n,(i:{j:nat|j<size(inports(
n))}):p=inport(
n,i))is_
ondport(p) = (EXISTS
n: p=
ondport(
n))

81

% array version of dfear and xdfear and orderingwar: [parray,parray->weight℄ % or weightarray??par,parr,par0,par1,par00,par11,par2,par3: VAR parraydfear(par0,(par1:{par|same_size(par,par0)})):boolean =(FORALL (i|i<size(par0)):dfe(port_array(par0)(i),port_array(par1)(i)))xdfear(par0,(par1:{par|same_size(par,par0)})):boolean =(FORALL (i|i<size(par0)):xdfe(port_array(par0)(i),port_array(par1)(i)))% array version of the above
orresponding theorems -% illustrates
larity of spe
ifi
ationis_node_outport(p):boolean =EXISTS n: p = outport(n)is_outportar(par):boolean =FORALL (i|i<size(par)): is_node_outport(port_array(par)(i))is_
node_outport(p):boolean =EXISTS (
n:
node): p = outport(
n)is_
noutportar(par):boolean =FORALL (i|i<size(par)): is_
node_outport(port_array(par)(i))% definition of an assignment nodeasignment(
n:
node):node =
n WITH [inports := inports(
n) WITH [size := 1℄℄WITH [dataf := LAMBDA (p:parray): outport(
n) =port_array(inports(
n))(0)℄% definition of floor fun
tion for real-integer% refinement transformationfloor(x): int =epsilon (LAMBDA y: y <= x AND y > (x-1))

82

A.2 Axioms

n: VAR
node
node_ax: AXIOMFORALL
n:
ond(
n)(
ondport(
n)) IMPLIESdatarel(
n)(inports(
n),outport(
n))silimpar_ax: AXIOMFORALL par1,(par2|same_size(par1,par2):(FORALL (i| i< size(par1)):EXISTS j: silimp(port_array(par1)(i),port_array(par2)(j))) IFFsilimpar(par1,par2)% Reflexivitysilimp_refl_ax: AXIOM silimp(p1,p1)% Transitivitysilimp_trans_ax: AXIOMFORALL p0,p1,p2:silimp(p0,p1) AND silimp(p1,p2) IMPLIES silimp(p0,p2)silimpar_trans_ax: AXIOMsilimpar(par1,par2) AND silimpar(par2,par3)IMPLIESsilimpar(par1,par3) 83

% sub kind nodes implement ea
h othersub_kind_implement_ax: AXIOMFORALL (n0:node),(n1:node|same_size(n0,n1)):sub_kind(n0,n1) AND silimpar(inports(n0),inports(n1))IMPLIESsilimp(outport(n0),outport(n1))self_seq_edge_not_ax: AXIOM FORALL (p:port) NOT sqe(p,p)% partial order relation on weightspartial_order(<:pred[[weight,weight℄℄)dfe_port_ax1: AXIOMdfe(p1,p2) IMPLIES is_outport(p1)dfe_port_ax2: AXIOMdfe(p1,p2) IMPLIES (is_inport(p2) OR is_
ondport(p2))% We need these general axioms on dfes and partial order on w'sdfe_w_ax: AXIOM(dfe(p0,p2) AND dfe(p1,p2))IFF(w(p0,p2) < w(p1,p2) ORw(p1,p2) < w(p0,p2))% if the
onditional port val is false, then the w involving its% output port is the least!: this is the property of the bottom% we want!!
ond_bottom_ax: AXIOMNOT
ond(
n)(
ondport(
n)) IMPLIESFORALL p:dfe(outport(
n),p)IMPLIESFORALL (n:node): dfe(outport(n),p) IMPLIESw(outport(
n),p) < w(outport(n),p)% Generalized join axiomjoin_ax: AXIOM(dfe(p1,p2) AND(FORALL p: dfe(p,p2) IMPLIES w(p,p2) < w(p1,p2)))IMPLIESsilimp(p1,p2)
84

% Partial order preservation: Advan
ed axiom (we
an't prove it% unless we introdu
e extra delay axioms for nodes/silimp)p00,p11,p22,p33,p44: VAR portpo_preserve_ax: AXIOM(w(p0,p2) < w(p1,p2) ANDsilimp(p0,p00) ANDsilimp(p2,p22) ANDdfe(p00,p22) AND dfe(p11,p22))IMPLIESw(p00,p22) < w(p11,p22)% Generalized join axiom for arraysjoinar_ax: AXIOMFORALL par1,(par2|same_size(par2,par1)):(dfear(par1,par2) AND(FORALL (par|same_size(par,par1)):dfear(par,par2) IMPLIES war(par,par2) < war(par1,par2)))IMPLIESsilimpar(par1,par2)

85

86

A.3 Theorems

% property of an non-
onditional nodenode_data_rel_th: THEOREMFORALL (n:node): datarel(n)(inports(n),outport(n))silimpar_refl_th: THEOREMsilimpar(par,par)% sileq_ar_reflsileqar_refl_th: THEOREMsileqar(par1,par1)% sileq_ar_symsileqar_sym_th: THEOREMFORALL par1,(par2:{par|same_size(par,par1)}):sileqar(par1,par2)= sileqar(par2,par1)% sileq_ar_transsileqar_trans_th: THEOREMFORALL par1,(par2:{par|same_size(par,par1)}),(par3:{par|same_size(par,par1)}):(sileqar(par1,par2) AND sileqar(par2,par3))IMPLIESsileqar(par1,par3)% same kind non-
onditional nodes propagate similar outputsin_eqar_imp_outeq: THEOREMFORALL (n0:node),(n1:node|sks(n0,n1)):sileqar(inports(n0),inports(n1))IMPLIESsileq(outport(n0),outport(n1)) 87

% Make sure of no joins in this theorem:% Holds only if the dfe
onne
ts an outport of a% non-
onditional node: partly taken
are of by typing% (n1 is an ordinary node type)xdfe_sileq_th: THEOREMxdfe(outport(n1),p2) IMPLIES sileq(outport(n1),p2)% partial order preservation extension theorempo_preserve_xdfe_th: THEOREM(w(p0,p2) < w(p1,p2) ANDsileq(p2,outport(n3)) ANDxdfe(outport(n3),p4) ANDdfe(p00,p44) AND dfe(p11,p44) AND silimp(p0,p00) ANDsilimp(p1,p11) AND silimp(p4,p44))IMPLIESw(p00,p44) < w(p11,p44)% Join of 2 dfesdfe2_join_th: THEOREM(dfe(p1,p3) AND dfe(p2,p3) AND(FORALL p0:((p0 /= p1) OR (p0 /= p2))IMPLIES NOT dfe(p0,p3)))IMPLIESIF w(p1,p3) < w(p2,p3) THENsileq(p2,p3)ELSE sileq(p1,p3)ENDIF

88

% array version theoremsinports_sileqar_th: THEOREMFORALL (nd:node):FORALL (n0:node|same_size(n0,nd)),(n1:node|same_size(n1,nd)):((FORALL (i|i<size(inports(nd))),n:xdfe(outport(n),inport(n0,i)) IFF(EXISTS (nn:node): sileq(outport(n),outport(nn)) ANDxdfe(outport(nn),inport(n1,i)))) AND(FORALL (i|i<size(inports(nd))):EXISTS n: xdfe(outport(n),inport(n0,i)))IMPLIESsileqar(inports(n0),inports(n1)))inports_eqar_th: THEOREMFORALL (n0:node),(n1:node|same_size(n0,n1)):((FORALL (i|i<size(inports(n0))),n:xdfe(outport(n),inport(n0,i)) IFFxdfe(outport(n), inport(n1,i))) AND(FORALL (i|i<size(inports(n0))):EXISTS n: xdfe(outport(n),inport(n0,i)))IMPLIESsileqar(inports(n0),inports(n1)))xdfear_sileqar_th: THEOREMFORALL (par0|is_outportar(par0)),(par1|same_size(par1,par0)):xdfear(par0,par1) IMPLIES sileqar(par0,par1)

89

% Inports
onne
ted by ex
lusive data flow edge arrays% to identi
al ports are sileqarinportsar_eqar_th: THEOREMFORALL (n0:node),(n1:node|same_size(n0,n1)):(((FORALL (par|is_outportar(par) AND same_size(par,inports(n0))):xdfear(par, inports(n0)) IFF xdfear(par,inports(n1))) AND(EXISTS (par|is_outportar(par) AND same_size(par,inports(n0))):xdfear(par, inports(n0)))) IMPLIESsileqar(inports(n0),inports(n1)))% Inports
onne
ted by ex
lusive data flow edge arrays% to sileq port arrays sileqarinportsar_sileqar_th: THEOREMFORALL (n0:node),(n1:node|same_size(n0,n1)):(((FORALL (par|is_outportar(par) AND same_size(par,inports(n0))):xdfear(par,inports(n0)) IFF(EXISTS (parr|is_outportar(par) ANDsame_size(parr,inports(n0))):(sileqar(par,parr) ANDxdfear(parr,inports(n1))))) ANDEXISTS (par|is_outportar(par) AND same_size(par,inports(n0))):xdfear(par,inports(n0)))IMPLIES sileqar(inports(n0),inports(n1)))

90

dfear2_join_th: THEOREMFORALL par1,(par2|same_size(par2,par1)),(par3|same_size(par3,par1)):(dfear(par1,par3) AND dfear(par2,par3)) AND(FORALL (par|same_size(par,par1)):(par /= par1 OR par /= par2)IMPLIESNOT dfear(par,par3))IMPLIESIF war(par1,par3) <= war(par2,par3)THEN sileqar(par2,par3)ELSE sileqar(par1,par3)ENDIF% Common Subexpression Elimination Transformationp0,p1,p2,p3: VAR portpar,parr: VAR parraydot0,dot1,dot01: VAR node% The pre
onditions
an be weakend at par, su
h as -% to exists par1: silimp(par1,par)pre
onds(dot0,(dot1:{dot1|same_kind(dot0,dot1)})):boolean =(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)) IFF xdfear(par,inports(dot1))) AND(EXISTS (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)))CsubE: THEOREMFORALL dot0,(dot1|same_kind(dot1,dot0)),(dot01|same_kind(dot01,dot0)):((pre
onds(dot0,dot1) AND(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)) IFF(EXISTS (parr|is_outportar(parr) ANDsame_size(parr,inports(dot0))):(sileqar(par,parr) AND xdfear(parr,inports(dot01)))))) IMPLIES(FORALL p1,p2:((xdfe(outport(dot0),p1) OR xdfe(outport(dot1),p1)) ANDxdfe(outport(dot01),p2)) IMPLIES sileq(p1,p2)))
91

% Cross Jumping Tail Merging Theoremp0,p00,p1,p11,p2,p22,p3,p33,pp,pp0,pp00: VAR portn,dot,dot0,dot1,dot01: VAR node
n2,
n3,
n22,
n33: VAR
nodepar,par0,par1,par00,par11,par2,par3: VAR parray% pre
onditionspre
onds(dot0,(dot1:{dot|sks(dot,dot0)}),(dot01:{dot|sks(dot,dot0)}),(par0:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par1:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par00:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par11:{par|is_outportar(par)&same_size(par,inports(dot0))}),pp0,pp00) =xdfear(par0,inports(dot0)) AND xdfear(par1,inports(dot1))AND(w(outport(dot0),pp0) < w(outport(dot1),pp0)IFFwar(par00,inports(dot01)) < war(par11,inports(dot01)))ANDdfe(outport(dot0),pp0) AND dfe(outport(dot1),pp0)AND(FORALL pp: ((pp /= outport(dot0)) OR (pp /= outport(dot1)))IMPLIESNOT dfe(pp,pp0))ANDdfear(par00,inports(dot01)) AND dfear(par11,inports(dot01))AND(FORALL (par|size(par)=size(par00)):(par /= par00 OR par /= par11)IMPLIESNOT dfear(par,inports(dot01)))ANDxdfe(outport(dot01),pp00) ANDsileqar(par0,par00) ANDsileqar(par1,par11)

92

% Cross jumping tail merging transformations is
orre
t when% the pre
onditions are satisfiedCjtM: THEOREMFORALL dot0:LET sk = LAMBDA n:sks(n,dot0),ios = LAMBDA par:is_outportar(par) &same_size(par,inports(dot0))INFORALL (dot1|sk(dot1)),(dot01|sk(dot01)),(par0|ios(par0)),(par1|ios(par1)),(par00|ios(par00)),(par11|ios(par11)):pre
onds(dot0,dot1,dot01,par0,par1,par00,par11,pp0,pp00)IMPLIESsileq(pp0,pp00)

93

94

Appendix BProof Trans
ripts
B.1 Common Subexpression EliminationTerse proof for CSubE.CSubE:f1g 8 dot0; (dot1 j same kind(dot1; dot0));(dot01 j same kind(dot01; dot0)) :((pre
onds(dot0; dot1)^(8 (par j is outportar(par) ^ size(par) = size(inports(dot0))) :xdfear(par; inports(dot0)),(9 (parrj is outportar(parr) ^ size(parr) = size(inports(dot0))) :(sileqar(par; parr) ^ xdfear(parr; inports(dot01))))))�(8 p1;p2 :((xdfe(outport(dot0); p1) _ xdfe(outport(dot1); p1))^ xdfe(outport(dot01); p2))� sileq(p1; p2)))Expanding the de�nition of pre
onds,For the top quanti�er in 1, we introdu
e Skolem
onstants: (dot0!1 dot1!1 dot01!1),Applying disjun
tive simpli�
ation to
atten sequent,Applying inportsar eqar th where n0 gets dot0!1, n1 gets dot1!1,Repla
ing using formula -2,Repla
ing using formula -3, 95

Invoking de
ision pro
edures,Applying inportsar sileqar th where n0 gets dot0!1, n1 gets dot01!1,Repla
ing using formula -5,Repla
ing using formula -4,Invoking de
ision pro
edures,Deleting some formulas,For the top quanti�er in 1, we introdu
e Skolem
onstants: (p01 p02),Applying sileqar trans inv th where par1 gets inports(dot0!1), par2 gets inports(dot1!1),par3 gets inports(dot01!1),Invoking de
ision pro
edures,Applying in eqar imp outeq where n0 gets dot0!1, n1 gets dot01!1,Applying in eqar imp outeq where n0 gets dot1!1, n1 gets dot01!1,Applying xdfe sileq th whereInstantiating quanti�ed variables,Instantiating quanti�ed variables,Instantiating quanti�ed variables,Invoking de
ision pro
edures,Deleting some formulas,Applying sileq trans inv th whereInstantiating the top quanti�er in -1 with the terms: outport(dot0!1), p01,outport(dot01!1),Instantiating the top quanti�er in -1 with the terms: outport(dot1!1), p01,outport(dot01!1),Applying sileq trans ax whereInstantiating the top quanti�er in -1 with the terms: p01, outport(dot01!1), p02,Applying bddsimp, whi
h is trivially true. This
ompletes the proof of CSubE.Q.E.D. 96

B.2 Cross Jumping Tail MergingTerse proof for CjtM.CjtM:f1g (8 (pp0; pp00 : port) :8 (dot0 : node) :let sk : [node ! bool℄ =� (n : node) : same size(n; dot0) ^ same kind(n; dot0);ios : [parray ! bool℄ =� (par : parray) : is outportar(par)^ size(par) = size(inports(dot0))in 8 (dot1 : node j sk(dot1)); (dot01 : node j sk(dot01));(par0 : parray j ios(par0)); (par1 : parray j ios(par1));(par00 : parray j ios(par00));(par11 : parray j ios(par11)) :pre
onds(dot0; dot1; dot01; par0; par1; par00; par11; pp0; pp00)� sileq(pp0; pp00))Expanding the de�nition of pre
onds,For the top quanti�er in 1, we introdu
e Skolem
onstants: (pp0!1 pp00!1),For the top quanti�er in 1, we introdu
e Skolem
onstants: (dot0!1),For the top quanti�er in 1, we introdu
e Skolem
onstants: (dot1!1 dot01!1 par0!1par1!1 par00!1 par11!1),Applying disjun
tive simpli�
ation to
atten sequent,Applying xdfear sileqar th whereInstantiating quanti�ed variables,Instantiating quanti�ed variables,Applying dfe2 join th whereInstantiating the top quanti�er in -1 with the terms: outport(dot0!1), outport(dot1!1),pp0!1,Repla
ing using formula -8,Repla
ing using formula -9,Repla
ing using formula -10,Applying dfear2 join th whereInstantiating the top quanti�er in -1 with the terms: par00!1, par11!1, inports(dot01!1),Repla
ing using formula -12,Repla
ing using formula -13, 97

Repla
ing using formula -14,Letting war01 name war(par0!1; inports(dot0!1)) � war(par1!1; inports(dot1!1)),Letting war001 name war(par00!1; inports(dot01!1)) � war(par11!1; inports(dot01!1)),Letting w01 name w(outport(dot0!1); pp0!1) � w(outport(dot1!1); pp0!1),Repla
ing using formula -1,Hiding formulas: -1,Repla
ing using formula -1,Hiding formulas: -1,Repla
ing using formula -1,Hiding formulas: -1,Invoking de
ision pro
edures,Deleting some formulas,Deleting some formulas,Repla
ing using formula -6,Repla
ing using formula -5,Hiding formulas: -5, -6,Applying sileqar trans inv th whereInstantiating the top quanti�er in -1 with the terms: par0!1, inports(dot0!1), par00!1,Instantiating the top quanti�er in -1 with the terms: par1!1, inports(dot1!1), par11!1,Applying in eqar imp outeq whereInstantiating the top quanti�er in -1 with the terms: dot0!1, dot01!1,Instantiating the top quanti�er in -1 with the terms: dot1!1, dot01!1,Applying xdfe sileq th whereInstantiating quanti�ed variables,Invoking de
ision pro
edures,Deleting some formulas,Applying sileqar trans th whereInstantiating the top quanti�er in -1 with the terms: inports(dot1!1), par11!1,inports(dot01!1),Instantiating the top quanti�er in -1 with the terms: inports(dot0!1), par00!1,inports(dot01!1),Invoking de
ision pro
edures,Deleting some formulas,Applying sileq trans inv th where 98

Instantiating the top quanti�er in -1 with the terms: outport(dot0!1), pp0!1,outport(dot01!1),Instantiating the top quanti�er in -1 with the terms: outport(dot1!1), pp0!1,outport(dot01!1),Applying sileq trans ax whereInstantiating the top quanti�er in -1 with the terms: pp0!1, outport(dot01!1), pp00!1,Applying bddsimp,whi
h is trivially true.This
ompletes the proof of CjtM.Q.E.D.

99

