
C.2. Proof-Chain Analysis 45consensus[EXPR, EXPR].C2prop_r_proofconsensus[EXPR, EXPR].OM0_ok_proofconsensus[EXPR, EXPR].OM0_prop_proofconsensus[EXPR, EXPR].OM_prop_proofconsensus[EXPR, EXPR].agree_nok_proofconsensus[EXPR, EXPR].agree_ok_proofconsensus[EXPR, EXPR].all_ok_proofconsensus[EXPR, EXPR].distr_prop_proofconsensus[EXPR, EXPR].faulty_members_card_remove_nok_proofconsensus[EXPR, EXPR].faulty_members_card_remove_ok_proofconsensus[EXPR, EXPR].ok_card_remove_proofconsensus[EXPR, EXPR].ok_others_proofconsensus[EXPR, EXPR].ok_self_proofconsensus[EXPR, EXPR].remove_nok_member_proofconsensus[EXPR, EXPR].remove_nok_proofconsensus[EXPR, EXPR].remove_ok_member_proofconsensus[EXPR, EXPR].remove_ok_proofconsensus[EXPR, EXPR].remove_others_proofconsensus[EXPR, EXPR].round_induct_proofconsensus_tcc[EXPR, EXPR].C1_final_TCC1_PROOFconsensus_tcc[EXPR, EXPR].C1_final_proof_TCC1_PROOFconsensus_tcc[EXPR, EXPR].C1prop_r_TCC1_PROOFconsensus_tcc[EXPR, EXPR].C2prop_r_TCC1_PROOFconsensus_tcc[EXPR, EXPR].OM0_ok_TCC1_PROOFconsensus_tcc[EXPR, EXPR].OM0_prop_TCC1_PROOFconsensus_tcc[EXPR, EXPR].OM_TCC1_PROOFconsensus_tcc[EXPR, EXPR].OM_TCC2_PROOFconsensus_tcc[EXPR, EXPR].OM_prop_TCC1_PROOFconsensus_tcc[EXPR, EXPR].agree_nok_TCC1_PROOFconsensus_tcc[EXPR, EXPR].agree_ok_TCC1_PROOFconsensus_tcc[EXPR, EXPR].next_round_TCC1_PROOFconsensus_tcc[EXPR, EXPR].ok_others_TCC1_PROOFconsensus_tcc[EXPR, EXPR].round_induct_TCC1_PROOFconsensus_tcc[EXPR, EXPR].round_induct_TCC2_PROOFconsensus_tcc[EXPR, EXPR].round_induct_proof_TCC1_PROOFconsensus_tcc[EXPR, EXPR].round_induct_proof_TCC2_PROOFinduction.dischargeinduction.ind_m_proofinduction.ind_proofinduction.limited_proofinduction_tcc.ind_m_proof_TCC1_PROOFtop[EXPR, EXPR].processors_TCC1_PROOFtop[EXPR, EXPR].rounds_TCC1_PROOFTotal: 49



44 Appendix C. The Full Speci�cation and Veri�cationconsensus[EXPR, EXPR].all_okconsensus[EXPR, EXPR].distr_propconsensus[EXPR, EXPR].faulty_members_card_remove_nokconsensus[EXPR, EXPR].faulty_members_card_remove_okconsensus[EXPR, EXPR].ok_card_removeconsensus[EXPR, EXPR].ok_othersconsensus[EXPR, EXPR].ok_selfconsensus[EXPR, EXPR].remove_nokconsensus[EXPR, EXPR].remove_nok_memberconsensus[EXPR, EXPR].remove_okconsensus[EXPR, EXPR].remove_ok_memberconsensus[EXPR, EXPR].remove_othersconsensus[EXPR, EXPR].round_inductconsensus_tcc[EXPR, EXPR].C1_final_TCC1consensus_tcc[EXPR, EXPR].C1_final_proof_TCC1consensus_tcc[EXPR, EXPR].C1prop_r_TCC1consensus_tcc[EXPR, EXPR].C2prop_r_TCC1consensus_tcc[EXPR, EXPR].OM0_ok_TCC1consensus_tcc[EXPR, EXPR].OM0_prop_TCC1consensus_tcc[EXPR, EXPR].OM_TCC1consensus_tcc[EXPR, EXPR].OM_TCC2consensus_tcc[EXPR, EXPR].OM_prop_TCC1consensus_tcc[EXPR, EXPR].agree_nok_TCC1consensus_tcc[EXPR, EXPR].agree_ok_TCC1consensus_tcc[EXPR, EXPR].next_round_TCC1consensus_tcc[EXPR, EXPR].ok_others_TCC1consensus_tcc[EXPR, EXPR].processors_TCC1consensus_tcc[EXPR, EXPR].round_induct_TCC1consensus_tcc[EXPR, EXPR].round_induct_TCC2consensus_tcc[EXPR, EXPR].round_induct_proof_TCC1consensus_tcc[EXPR, EXPR].round_induct_proof_TCC2consensus_tcc[EXPR, EXPR].rounds_TCC1induction.basic_inductioninduction.induction_minduction.limited_inductioninduction_tcc.ind_m_proof_TCC1noetherian[naturalnumber, induction.prev].well_foundedTotal: 49The completed proofs are:consensus[EXPR, EXPR].C1_final_proofconsensus[EXPR, EXPR].C1_proofconsensus[EXPR, EXPR].C1prop_0_proofconsensus[EXPR, EXPR].C1prop_r_proofconsensus[EXPR, EXPR].C2_proofconsensus[EXPR, EXPR].C2prop_0_proof



C.2. Proof-Chain Analysis 43induction.limited_inductionrequires the following TCCs to be proveninduction_tcc.ind_m_proof_TCC1Use of the formulanoetherian[naturalnumber, induction.prev].general_inductionrequires the following assumptions to be dischargednoetherian[naturalnumber, induction.prev].well_founded================== SUMMARY ==================The proof chain is completeThe axioms and assumptions at the base are:consensus[EXPR, EXPR].card_remove_axconsensus[EXPR, EXPR].fullset_card_axconsensus[EXPR, EXPR].maj_extconsensus[EXPR, EXPR].majaxconsensus[EXPR, EXPR].mn_propconsensus[EXPR, EXPR].non_empty_axconsensus[EXPR, EXPR].send_axfunctionprops[EXPR, EXPR].extensionalitynoetherian[EXPR, EXPR].general_inductionTotal: 9The definitions and type-constraints are:consensus[EXPR, EXPR].C1propconsensus[EXPR, EXPR].C2propconsensus[EXPR, EXPR].OMconsensus[EXPR, EXPR].faulty_membersnaturalnumbers.nat_invariantTotal: 5The formulae used are:consensus[EXPR, EXPR].C1consensus[EXPR, EXPR].C1_finalconsensus[EXPR, EXPR].C1prop_0consensus[EXPR, EXPR].C1prop_rconsensus[EXPR, EXPR].C2consensus[EXPR, EXPR].C2prop_0consensus[EXPR, EXPR].C2prop_rconsensus[EXPR, EXPR].OM0_okconsensus[EXPR, EXPR].OM0_propconsensus[EXPR, EXPR].OM_propconsensus[EXPR, EXPR].agree_nokconsensus[EXPR, EXPR].agree_ok



42 Appendix C. The Full Speci�cation and Veri�cationC.2 Proof-Chain AnalysisThe following pages reproduce the output from the Ehdm proof-chain analyzer in\terse mode" applied to the formula C1 final in module consensus. The analysisfor C2 final is similar. The Ehdm proof-chain analyzer examines the macroscopicstructure of a veri�cation|checking that all the premises used in a proof are eitheraxioms, de�nitions, or formulas which are, themselves, the target of a successfulproof elsewhere in the veri�cation. If any formulas are used from a module havingan assuming clause, then the proof-chain analyzer checks that those assumptionsare discharged by successful proofs; similarly, if formulas are used from a modulehaving a tcc module, then the proof-chain analyzer checks that all the tccs inthat module are discharged by successful proofs. The proof-chain analyzer ignoresunsuccessful proofs (such as automatically-generated tcc proofs) when a successfulproof for the same formula can be found. The \terse mode" output reproduced hereprovides a commentary on only the \interesting" cases, namely proof obligationsinvolving assuming clauses and tccs, and a summary. All the proofs listed in thesummary were performed by the Ehdm theorem prover in \checking mode."Terse proof chain for formula C1_final in module consensusInteresting cases from the analysis follow; see summary for statusUse of the formulaconsensus[EXPR, EXPR].C1_finalrequires the following TCCs to be provenconsensus_tcc[EXPR, EXPR].processors_TCC1consensus_tcc[EXPR, EXPR].rounds_TCC1consensus_tcc[EXPR, EXPR].OM_TCC1consensus_tcc[EXPR, EXPR].OM_TCC2consensus_tcc[EXPR, EXPR].C1_final_TCC1consensus_tcc[EXPR, EXPR].round_induct_TCC1consensus_tcc[EXPR, EXPR].round_induct_TCC2consensus_tcc[EXPR, EXPR].round_induct_proof_TCC1consensus_tcc[EXPR, EXPR].round_induct_proof_TCC2consensus_tcc[EXPR, EXPR].OM0_prop_TCC1consensus_tcc[EXPR, EXPR].OM_prop_TCC1consensus_tcc[EXPR, EXPR].OM0_ok_TCC1consensus_tcc[EXPR, EXPR].ok_others_TCC1consensus_tcc[EXPR, EXPR].next_round_TCC1consensus_tcc[EXPR, EXPR].C2prop_r_TCC1consensus_tcc[EXPR, EXPR].agree_nok_TCC1consensus_tcc[EXPR, EXPR].agree_ok_TCC1consensus_tcc[EXPR, EXPR].C1prop_r_TCC1consensus_tcc[EXPR, EXPR].C1_final_proof_TCC1Use of the formula



C.1. The Speci�cation 41C1prop r proof: Prove C1prop r fromC1propfv v1@p3,y  z@p3,p p@p2,q  q@p2,caucus  caucus@p2� fy@p2gg,C1prop fr next round(r)g,agree nokfv2  v@p2,caucus  caucus@p2,p p@p2,q  q@p2,y  y@p2g,agree okfv2  v@p2,caucus  caucus@p2,p p@p2,q  q@p2,y  y@p2g,remove others fp p@p2, q  y@p2, caucus  caucus@p2g,remove others fp q@p2, q  y@p2, caucus  caucus@p2g,card remove ax fm1  caucus@p2, z  y@p2g,faulty members card remove nok fm1  caucus@p2, z  y@p2gC1 proof: Prove C1 fromround induct fround prop C1prop, s rg,C1prop 0,C1prop r fr r@p1gC1 �nal proof: Prove C1 �nal fromC1 fr mg, C1prop fr m, caucus  fullsetg, fullset card ax, mn propC2 �nal proof: Prove C2 �nal fromC2 fr mg, C2prop fr m, caucus  fullsetg, fullset card ax, mn propEnd consensus



40 Appendix C. The Full Speci�cation and Veri�cationagree nok proof: Proveagree nok fz  p@p3, v1  distr(next round(r); v2(y); y)g fromOM prop fr next round(r), v  v2, q yg,OM prop fr next round(r), v  v2, q y, p qg,maj extfcaucus caucus � fyg,v1  OMIC(r; distr(next round(r); v2(y); y); caucus � fyg)(p),v2  OMIC(r; distr(next round(r); v2(y); y); caucus � fyg)(q)g,distr prop fr next round(r), v  v2, p yg,distr prop fr next round(r), v  v2, p y, q  yg,distr prop fr next round(r), v  v2, p y, q  p@p1gagree ok: Lemma r < m^ jcaucusj > 3 � (r + 1)^ r + 1 � jfaulty members(caucus)j^ ok(p) ^ ok(q) ^ p 2 caucus ^ q 2 caucus ^ y 2 caucus ^ ok(y)� OMIC(r + 1; v2; caucus)(p)(y) = OMIC(r + 1; v2; caucus)(q)(y)agree ok proof: Prove agree ok fromC2 fr next round(r)g,C2prop fr next round(r), q  y, v  v2g,C2prop fr next round(r), p q, q y, v  v2gall ok proof: Prove all ok fromnon empty ax fm1  faulty members(caucus)g,faulty members fm1  caucus, z  pgC1prop 0: Lemma C1prop(0)C1prop 0 proof: Prove C1prop 0 fromC1prop fr 0g,OM0 ok fp p@p1, q y@p1, v  v@p1, caucus caucus@p1g,OM0 ok fp q@p1, q  y@p1, v  v@p1, caucus caucus@p1g,all ok fp y@p1, caucus caucus@p1g,nat invariant fnat var jfaulty members(caucus@p1)jgC1prop r: Lemma r < m ^C1prop(r) � C1prop(r + 1)



C.1. The Speci�cation 39C2prop r proof: Prove C2prop r fromC2propfv v1@P3,q  z@p3,p p@p2,caucus  caucus@p2� fq@p2gg,C2prop fr next round(r)g,ok othersfq q@p2,y  p@p2,v2  v@p2,caucus  caucus@p2g,ok selffr next round(r),y  p@p2,v2  v@p2,caucus  caucus@p2g,ok card remove fcaucus caucus@p2, q q@p2g,remove others fcaucus caucus@p2, q q@p2, p p@p2g,remove others fcaucus caucus@p2, q q@p2, p z@p3gC2 proof: Prove C2 fromround induct fround prop C2prop, s rg,C2prop 0,C2prop r fr r@p1gagree nok: Lemma r < m^ jcaucusj > 3 � (r + 1)^ r + 1 � jfaulty members(caucus)j^ ok(p) ^ ok(q)^ p 2 caucus^ q 2 caucus^ y 2 caucus^ :ok(y)^ ( 8 z; v1 :z 2 caucus � fyg� OMIC(r; v1; caucus � fyg)(p)(z)= OMIC(r; v1; caucus � fyg)(q)(z))� OMIC(r + 1; v2; caucus)(p)(y) = OMIC(r + 1; v2; caucus)(q)(y)



38 Appendix C. The Full Speci�cation and Veri�cationfaulty members card remove nok proof: Prove faulty members card remove nok fromremove nok, faulty members, card remove ax fm1  faulty members(m1@c)gok card remove: Lemmar < m ^ q 2 caucus ^ ok(q)� jcaucusj > 2 � jfaulty members(caucus)j+ r + 1� jcaucus � fqgj > 2 � jfaulty members(caucus � fqg)j+ rok card remove proof: Prove ok card remove fromcard remove ax fm1  caucus, z  qg,faulty members card remove ok fm1  caucus, z  qgok others: Lemma r < m^ jcaucus � fqgj > 2 � jfaulty members(caucus � fqg)j^ ok(y) ^ ok(q)^ y 2 caucus^ q 2 caucus^ y 6= q^ ( 8 z; v1 :z 2 caucus ^ ok(z) ^ z 6= q� OMIC(r; v1; caucus � fqg)(y)(z) = v1(z))� OMIC(r + 1; v2; caucus)(y)(q) = v2(q)next round: function[rounds! rounds] ==(� r! rounds : if r < m then r + 1 else 0 end if )ok others proof: Proveok others fz  p@p1, v1  distr(next round(r); v2(q); q)g frommajaxfcaucus caucus � fqg,v  OMIC(r; distr(next round(r); v2(q); q); caucus� fqg)(y),t v2(q)g,OM prop fr next round(r), v  v2, p yg,distr prop fr next round(r), v  v2, p q, q yg,distr prop fr next round(r), v  v2, p q, q qg,distr prop fr next round(r), v  v2, p q, q p@p1gC2prop 0: Lemma C2prop(0)C2prop 0 proof: Prove C2prop 0 fromC2prop fr 0g,OM0 ok fp p@p1, q q@p1, v  v@p1, caucus caucus@p1gC2prop r: Lemma r < m ^C2prop(r) � C2prop(r + 1)remove others: Lemma p 2 caucus ^ p 6= q � p 2 caucus � fqgremove others proof: Prove remove others



C.1. The Speci�cation 37OM prop: Lemma r > 0 � OMIC(r; v; caucus)(p)(q)= if p 2 caucus ^ q 2 caucusthen if p = qthen send(r; v(q); q; q)else maj(caucus � fqg;OMIC(r � 1; distr(r; v(q); q); caucus� fqg)(p))end ifelse undefend ifOM prop proof: Prove OM prop from OMICOM0 ok: Lemma ok(p) ^ ok(q) ^ p 2 caucus ^ q 2 caucus� OMIC(0; v; caucus)(p)(q) = v(q)OM0 ok proof: Prove OM0 ok from OM0 prop, send ax fr  0, t v(q@c)gok self: Lemma ok(y) ^ y 2 caucus � OMIC(r; v2; caucus)(y)(y) = v2(y)ok self proof: Prove ok self fromOM prop fv  v2, p y, q yg,OM0 prop fv  v2, p y, q yg,send ax fp y, q y, t v2(y)gremove ok member: Lemmaz 2 m1 ^ ok(z) � (p 2 faulty members(m1 � fzg), p 2 faulty members(m1))remove ok member proof: Prove remove ok member fromfaulty members fz  pg, faulty members fm1  m1 � fzg, z  pgremove ok: Lemma z 2 m1 ^ ok(z) � faulty members(m1 � fzg) = faulty members(m1)remove ok proof: Prove remove ok fromremove ok member fp a@p2g,extensionality fF  faulty members(m1), G faulty members(m1 � fzg)gremove nok member: Lemmaz 2 m1 ^ :ok(z) � (p 2 faulty members(m1 � fzg), p 2 faulty members(m1) � fzg)remove nok member proof: Prove remove nok member fromfaulty members fz  pg, faulty members fm1  m1 � fzg, z  pgremove nok: Lemma z 2 m1 ^ :ok(z)� faulty members(m1 � fzg) = faulty members(m1) � fzgremove nok proof: Prove remove nok fromremove nok member fp a@p2g,extensionality fF  faulty members(m1)� fzg, G faulty members(m1 � fzg)gfaulty members card remove ok proof: Prove faulty members card remove ok fromremove ok



36 Appendix C. The Full Speci�cation and Veri�cationC1prop: function[rounds! bool] =(� r : ( 8 p; q; y; caucus; v :ok(p) ^ ok(q) ^ p 2 caucus^ q 2 caucus^ y 2 caucus ^ jcaucusj > 3 � r ^ r � jfaulty members(caucus)j� OMIC(r; v; caucus)(p)(y) = OMIC(r; v; caucus)(q)(y)))C2prop: function[rounds! bool] =(� r : ( 8 p; q; caucus; v :ok(p) ^ ok(q) ^ p 2 caucus^ q 2 caucus ^ jcaucusj > 2 � jfaulty members(caucus)j+ r� OMIC(r; v; caucus)(p)(q) = v(q)))C1: Lemma C1prop(r)C2: Lemma C2prop(r)ProofUsing induction; functionprops[processors; bool]i: Var natround prop: Var function[rounds! bool]round induct: Lemma (round prop(0)^ ( 8 r : r < m ^ round prop(r) � round prop(r + 1)))� round prop(s)round induct proof: Proveround induct fr if i@p1 in rounds then i@p1 else 0 end if g fromlimited inductionfm 0,m1  m,p (� i : if i in rounds then round prop(i) else false end if ),n sgdistr prop: Lemma ok(p) ^ ok(q) � distr(r; v(p); p)(q) = v(p)distr prop proof: Prove distr prop fromsend ax ft v(p), p q, q pgOM0 prop: Lemma OMIC(0; v; caucus)(p)(q)= if p 2 caucus ^ q 2 caucus then send(0; v(q); q; p) else undef end ifOM0 prop proof: Prove OM0 prop from OMIC fr 0g



C.1. The Speci�cation 35all ok: Lemma 0 = jfaulty members(caucus)j ^ p 2 caucus � ok(p)card remove ax: Axiom z 2 m1 � jm1 � fzgj = jm1j � 1faulty members card remove ok: Lemmaz 2 m1 ^ ok(z) � jfaulty members(m1 � fzg)j = jfaulty members(m1)jfaulty members card remove nok: Lemmaz 2 m1 ^ :ok(z) � jfaulty members(m1 � fzg)j = jfaulty members(m1)j � 1maj: function[set; vector! T ]majax: Axiom jcaucusj > 2 � jfaulty members(caucus)j^ ( 8 p : ok(p) ^ p 2 caucus � v(p) = t)� maj(caucus; v) = tmaj ext: Axiom ( 8 p : p 2 caucus � v1(p) = v2(p))� maj(caucus; v1) = maj(caucus; v2)send: function[rounds; T; processors; processors ! T ]send ax: Axiom ok(p) ^ ok(q) � send(r; t; q; p) = tdistr: function[rounds; T; processors ! vector] ==(� r; t; p : (� z : send(r; t; p; z)))terminates: function[rounds; vector; set! nat] == (� r; v; caucus! nat : r)OMIC: Recursive function[rounds; vector; set! function[processors ! vector]]= (� r; v; caucus :if r = 0then (� p : (� q :if p 2 caucus ^ q 2 caucus then send(r; v(q); q; p) else undef end if ))else (� p : (� q :if p 2 caucus ^ q 2 caucusthen if p = qthen send(r; v(q); q; q)else maj(caucus � fqg;OMIC(r � 1; distr(r; v(q); q); caucus� fqg)(p))end ifelse undefend if ))end if ) by terminatesC1 �nal: Theorem ok(p) ^ ok(q)� OMIC(m; v; fullset)(p)(y) = OMIC(m; v; fullset)(q)(y)C2 �nal: Theorem ok(p) ^ ok(q) � OMIC(m; v; fullset)(p)(q) = v(q)



34 Appendix C. The Full Speci�cation and Veri�cationbut so few of their properties are needed here that we have preferred to specify themin line.consensus: Module [m;n: nat]Exporting allAssumingmn prop: Formula 3 �m < nTheoryx: Var natprocessors: Type from nat with (� x : x < n)rounds: Type from nat with (� x : x � m)T: Typevector: Type is function[processors ! T ]r; s: Var roundsv; v1; v2: Var vectorp; q; y; z: Var processorsundef: Tt: Var Tset: Type is function[processors ! bool]fullset: set == (� z : true)ok: function[processors ! bool]caucus;m1;m2: Var setp 2 m1: function[processors; set! bool] == (� p;m1 : m1(p))faulty members: function[set! set] = (� m1 : (� z : z 2 m1 ^ :ok(z)))?1� f?2g: function[set; processors ! set] ==(� caucus; q : caucus with [(q) := false])j ? 1j: function[set! nat]non empty ax: Axiom ( 9 p : p 2 m1), jm1j 6= 0fullset card ax: Axiom jfullsetj = n ^ jfaulty members(fullset)j � m



Appendix CThe Full Speci�cation andVeri�cationThe speci�cation text and veri�cation output that follow were processed by EhdmVersion 5.2; some minor changes to the input syntax (e.g., deletion of the PROOFkeyword) will be necessary in order to use the current version of Ehdm (numbered6.1.1).C.1 The Speci�cationWe reproduce here the text of our speci�cation and veri�cation for the IC versionof the OM algorithm. The text comprises the module consensus. In the inter-ests of brevity, we do not reproduce the system-generated module consensus tccthat contains the \typecheck-consistency conditions" (tccs), nor the module topthat gives their proofs. Neither do we reproduce the library modules noetherian,induction and functionprops. The module noetherian speci�es the axiom ofNoetherian Induction (see, for example [15, page 99], [13, page 62] or [17, pages57{61]), and the module induction (see, for example [13, page 63]) derives somemore specialized induction schemes from that general formulation. One of theseis used to prove the round induct induction scheme over rounds that is employedhere. The functionprops module (see, for example [15, page 99]) simply speci�esan axiom of function extensionality.C.1.1 Module \Consensus"This module contains the speci�cation and veri�cation of the OMIC algorithm. Cer-tain subsidiary concepts, such as sets and cardinality are de�ned here, too. Normallythese concepts are imported from library modules (see, for example [13, page 66]),33



32 Appendix B. The Byzantine Generals Formulation of the Algorithm
terminatesBG: function[processors; rounds; T; set! nat] ==(� p; r; t; caucus! nat : r)OMBG: Recursive function[processors; rounds; T; set! vector] =(�G; r; t; caucus :if r = 0then (� p : if caucus(p)^ caucus(G)then send(r; t; G; p)else undefend if )else (� p : if caucus(p) ^ caucus(G)then if p = Gthen send(r; t; G;G)else maj(caucus� fGg;(� q : OMBG(q; r� 1; send(r; t; G; q); caucus� fGg)(p)))end ifelse undefend if )end if ) by terminatesBGFigure B.1: Our Formulation of the Byzantine Generals Version of the Algorithm



Appendix BThe Byzantine GeneralsFormulation of the AlgorithmWe specify the Byzantine Generals formulation of the Oral Messages algorithm asa function OMBG of four arguments: G the identity of the General, m the numberof rounds, t the value the General wishes to communicate, and caucus, the set ofparticipants (which includes the General). OMBG will return a vector of valuesin which OMBG(G;m; t; caucus)(p) is lieutenant p's opinion of the General's value.The correctness conditions are the following.BG1 �nal: Theorem ok(p) ^ ok(q)� OMBG(G;m; t; fullset)(p) = OMBG(G;m; t; fullset)(q)BG2 �nal: Theorem ok(p) ^ ok(G) � OMBG(G;m; t; fullset)(p) = tThe speci�cation of OMBG is rather interesting; it is due to our colleague Shankar.In the case r = 0, lieutenant p's component of the vector returned is simply the valuereceived by p from the General; in the case r > 0, lieutenant p's component of thevector is the value the General receives from himself when p = G, otherwise it is theresult of applying the maj function to the vector of values that p obtains when eachof the lieutenants in the caucus (less G but including p himself) acts as the Generalin the OMBG algorithm with r � 1 rounds to distribute the value received by thatlieutenant from the original General. Notice how the higher-order capabilities ofthe Ehdm speci�cation language allow us to specify the inner, iterative applicationof OMBG by means of a �-abstraction, thereby avoiding the mutually recursivefunctions of Bevier and Young's speci�cation.The formal veri�cation of OMBG is very similar to that of OMIC, and wasderived from that of OMIC in less than a day. It is available from the author onrequest. 31



30 Appendix A. The \Real" Speci�cations
OMIC: RECURSIVE function[rounds, vector, set-> function[processors -> vector]] =(LAMBDA r, v, caucus :IF r = 0THEN (LAMBDA p :(LAMBDA q :IF member(p, caucus) AND member(q, caucus)THEN send(r, v(q), q, p) ELSE undef END IF))ELSE (LAMBDA p :(LAMBDA q :IF member(p, caucus) AND member(q, caucus)THEN IF p = qTHEN send(r, v(q), q, q)ELSE maj(remove(caucus, q),OMIC(r - 1, distr(r, v(q), q),remove(caucus, q))(p))END IFELSE undefEND IF))END IF)BY terminatesFigure A.2: Our Speci�cation|The Raw Text Version



29
De�nition(vom flg m g v l vec)=(if flg(if (zerop m)(vom0 g v l vec)(votelist(pair (vom0 g v l vec)(vom f (sub1 m) l (vom0 g v l vec) l vec)l)))(if (listp g-list)(pair (vom t m (car g) (get (car g) vom0)(delete (car g) l) vec)(vom f m (cdr g) v l vec)(delete (car g) l))(init nil (length vec))))Figure A.1: Bevier and Young's Speci�cation|The Real Version



Appendix AThe \Real" Speci�cationsIn this Appendix we reproduce the \real" speci�cations of the algorithms employedby Bevier and Young and by ourselves. Bevier and Young's speci�cation di�ersfrom that of Figure 3.1 by combining the pair of mutually recursive functions intoa single function with a \
ag" argument; our speci�cation is the same as that givenon page 17, but is reproduced here in its raw text form.
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24 Chapter 5. Discussion and Conclusionthe complexity of the formal proof," we believe that a mechanical theorem provershould help the user develop reasonably clear and straightforward proofs.In summary, we believe this small example provides some substantiation for ourbelief that the bene�ts of formal speci�cation and veri�cation are best assisted byrather rich speci�cation languages that permit natural forms of expression, and byapproaches to theorem proving that permit fairly direct control by the user.Finally, recall that in the Introduction, we stated that our other motivationsfor undertaking this work were to see whether we derived bene�ts similar to thoseobtained in earlier formal veri�cations that we had undertaken (e.g, discovery of
aws in previous proofs), and to compare the di�culty of verifying of an algorithmfor interactive consistency with that of one for clock synchronization.Unlike our experience with clock synchronization algorithms, the bene�ts wederived from formal veri�cation of OMIC did not include discovery of 
aws in thepreviously published proof of correctness of the algorithm. However, building onthe experience gained in the exercise described here, we have discovered an errorin the algorithm (not just the proof) of Thambidurai and Park [21] for InteractiveConsistency under a hybrid fault model; working with Patrick Lincoln, we have alsodeveloped and formally veri�ed a correct algorithm for this problem.Regarding di�culty, we can report that we found veri�cation of OMIC to be anorder of magnitude simpler than that of Interactive Convergence [15,16]: four dayswork compared to about 40, and 23 subsidiary lemmas compared with nearly 200.Given its relatively small size, but rather interesting character, we invite others totry formal speci�cation and veri�cation of the Oral Messages Algorithm using theirfavorite veri�cation system. We have used the Byzantine Generals formulation ofthis algorithm as one of the test cases in the development of our new PrototypeVeri�cation System, PVS [11]. Using PVS, we are now able to construct the mainproofs for correctness of OMBG in under an hour. For those more interested infault-tolerant algorithms than the performance-testing of veri�cation systems, aninteresting challenge is to develop and formally verify some of the many variantsthat have been proposed for the Oral Messages Algorithm. We, for example, haveinvestigated the algorithm of Thambidurai and Park as already mentioned, and havealso formally veri�ed a generalization of the algorithm used to provide InteractiveConsistency in the Draper FTP architecture [7].



5.2. Conclusion 23for example, our improved argument for the correctness of the Interactive Conver-gence clock synchronization algorithm [15,16]). We are strongly of the opinion thatformal methods must contribute to, and cannot stand apart from, established andinformal practices in software and hardware engineering. Thus, speci�cations mustbe readable by others than their authors, and formal veri�cations must yield a chainof argument that can be presented to, and will convince, a suitably knowledgeablehuman reviewer.5.2 ConclusionAs with other formal developments that we have performed, we derived a signi�cantbene�t from this exercise quite apart from the mechanically-checked veri�cation ofan interesting argument. Here, the bene�t was a reformulation of the Oral MessagesAlgorithm to solve the Interactive Consistency, rather than the Byzantine Generalsproblem. This is not only a more useful form of the algorithm in practice, it is rathersimpler to specify and to verify. As always, this bene�t could have been obtainedwithout formalization, but it was the discipline of formalization that led us to focuson the problem in the manner required.The simpli�cation produced by our reformulation can be gauged by comparingour formal speci�cation and veri�cation with that of Bevier and Young. Bevier andYoung state [3, page 1]� \We believe that our formulation provides a very clear and unam-biguous characterization of the algorithm.� \Our machine checked proof elucidates several issues which aretreated rather lightly in the published version of the proof. In par-ticular, the invariant maintained in the recursive subcases of thealgorithm is signi�cantly more complicated than is suggested bythe published proof.\The latter two advantages arise as a consequence of providing a fullyformal proof, whether machine checked or not. However, the use of apowerful mechanical theorem prover as a checker is a boon in managingthe complexity of the formal proof."Regarding the �rst of these claims, we believe that our formulation is rather clearerand simpler (and more useful) than Bevier and Young's, but that may be a matterof taste. We believe we have demonstrated that their second claim is mistaken: ourmachine-checked proof is essentially the same as the published version of the proof,and we think it likely that the complexity discovered by Bevier and Young was anartifact of their formalization and of the theorem prover at their disposal. Ratherthan agreeing that \a powerful mechanical theorem prover : : : is a boon in managing



22 Chapter 5. Discussion and Conclusionare exact replicas of itself: and it may be worth modifying the algorithm, or itsrequirement, or both, in order to make this so. A related observation, one that we�rst heard explicitly articulated by our colleague Shankar, is that recursions shouldalways be formulated so that the base case is completely di�erent from the recursivecase|since otherwise one may end up verifying substantially the same argumenttwice.But our simpler veri�cation cannot be entirely attributed to our reformulationof the Oral Messages algorithm into the IC form, for we have also veri�ed the BGversion of the algorithm as considered by Bevier and Young. Our speci�cationof the BG form is not exactly the same as theirs, since our richer speci�cationlanguage allows us to specify the algorithm without the need to simulate a pair ofmutually recursive functions (see Appendix B). Nonetheless, our BG formulation issubstantially the same as Bevier and Young's and yet its veri�cation is only a littlemore complex than that of OMIC.1 However, we must admit that the formulationand veri�cation of the BG version would have been signi�cantly more di�cult hadwe not already performed the IC version; that is speci�cation and veri�cation of ICfollowed by BG is probably much simpler than tackling BG alone.But allowing for the advantage we gained by choosing the more tractable ap-proach, we still seem to have found this exercise more straightforward that Bevierand Young, and we attribute some of this to the design decisions embodied in Ehdm.The speci�cation language ofEhdm is intended to provide a fairly direct and naturalmeans for expressing a variety of mathematical concepts, while retaining a straight-forward logical foundation. We were grati�ed to �nd that the language helped usto achieve clear descriptions of these tricky algorithms. We �nd the strong typesystem and higher-order capabilities particularly helpful in this regard. Identify-ing the types of the variables and functions involved is a valuable �rst step in theformulating the speci�cation, since it suggests the ways in which functions shouldbe combined and thereby, in this case, helps determine the shape of the recursion.Higher-order logic allows many ideas to be expressed is a direct manner: thus, we donot require the mutual recursion that complicates Bevier and Young's speci�cation,and we can represent values as functions, without the need to introduce lists.We have had similar experiences with other speci�cations that we have under-taken. For example, our formal development in Ehdm of a model for fault-maskingand transient-recovery in digital 
ight-control systems [13, 14] was undertaken inparallel with a similarly detailed development using conventional pencil-and-papermathematical notation [5,6]. The Ehdm version took no longer to develop than theother, is more general, is equally readable, and has been fully veri�ed.The simplifying reformulation of the Oral Messages Algorithm into its IC formis very much the kind of bene�t that we strive to obtain from formal methods (see,1The veri�cation, which is available from the author on request, was obtained by modifying theOMIC version, and took about a man-day to produce.



Chapter 5Discussion and Conclusion5.1 DiscussionWe have presented the formal speci�cation and veri�cation of an algorithm for In-teractive Consistency derived from the Oral Messages algorithm for the ByzantineGenerals Problem. Both the speci�cation of the algorithm and the arguments forits correctness are straightforward and closely modeled on those given by Lamport,Shostak and Pease in their journal presentation [9]. Development of the formal spec-i�cation and its veri�cation in Ehdm took about four days. By comparison, Bevierand Young [3], using the Boyer-Moore theorem prover, found formal veri�cation oftheir version of the algorithm \a fairly di�cult exercise in mechanical theorem prov-ing" that occupied them for about a month. We do not know all the complexitiesthat confronted Bevier and Young, and so we cannot identify, much less apportioncredit to, all the reasons why we apparently found the veri�cation easier than them.However, one explanation for these di�erent assessments of the di�culty of theexercise may lie in the di�erent formulations employed for the algorithm. Bevier andYoung used the Byzantine Generals formulation, which must be applied iterativelyin order to solve the Interactive Consistency problem that is the topic of real interest,and whose recursive subcase likewise requires iteration. This potentially complicatesthe inductions at the heart of the proof (since the recursive subcase is not simplya smaller instance of the original problem), and the larger veri�cation along withit. The speci�cation of the algorithm may become similarly complicated in thisformulation. In contrast, our reformulation of the Oral Messages algorithm solvesthe Interactive Consistency problem directly, and its recursive subcase is a smallerinstance of itself. The formal speci�cation, main inductions, and overall veri�cationare then entirely straightforward.The lesson here is a variation on the well-known observation that it is sometimeseasier to prove a stronger than a weaker theorem when using induction. In partic-ular, it is much easier to prove properties of an algorithm whose recursive subcases21



20 Speci�cation and Veri�cation in EHDMThe case when y is nonfaulty is treated in the following lemmaagree ok: Lemmar < m ^ jcaucusj > 3 � (r + 1) ^ r + 1 � jfaulty members(caucus)j^ ok(p) ^ ok(q)^ p 2 caucus ^ q 2 caucus ^ y 2 caucus^ ok(y)� OMIC(r + 1; v2; caucus)(p)(y) = OMIC(r + 1; v2; caucus)(q)(y)whose proof is a consequence of C2 �nal.These two lemmas are su�cient to establish the inductive step for C1 �nal ;note that the hypothesis to this step discharges the quanti�ed subexpression inagree nok . C1 �nal follows from C1prop(r) in the same way that C2 �nal followsfrom C2prop(r).The full speci�cation and veri�cation requires development of some \backgroundknowledge." For example, the inductions require a specialized induction scheme thatgoes from 0 only as far as m. This is stated as the Lemma round induct that isultimately derived from an axiom for Noetherian induction contained in a standardEhdm library module. The variable round prop is some arbitrary property of roundsthat is to be shown to hold for all rounds.round prop: Var function[rounds! bool]round induct: Lemma(round prop(0) ^ ( 8 r : r < m ^ round prop(r) � round prop(r + 1)))� round prop(s)A full listing of the formal speci�cation is provided in Appendix C, togetherwith Ehdm's \proof chain" analysis for C1 �nal. The latter identi�es the axiomaticfoundation for our development: this comprises the 6 axioms and the assumptionshown here, plus an axiom for induction and another for function extensionalitythat come from library modules. The subsidiary lemmas required to carry out theformal veri�cation number 23 (plus the two theorems), with another 4 in librarymodules, and a further 20 typecheck correctness conditions (tccs|these are proofobligations that must be discharged to ensure type-correctness) that are generatedby the typechecker. Only 2 of the tccs require user-generated proofs; the other 18are proved automatically.



19Veri�cation of this property depends on the majax axiom of the maj function.The two lemmas above are su�cient to establish the inductive step for veri�-cation of C2prop(r); observe that the hypothesis to the inductive step dischargesthe quanti�ed subexpression in ok others. The theorem C2 �nal follows straightfor-wardly from C2prop(r) by substitution of m for r and fullset for caucus , and usingthe axiomfullset card ax: Axiom jfullsetj = n ^ jfaulty members(fullset)j � mand the constraint that less than a third of the processors may be faulty:mn prop: Formula 3 �m < nThis property is stated as a formula in the assuming section of the Ehdm modulethat speci�es the theory developed here. It speci�es an assumption on the param-eters m and n to the module: inside the module, this assumption is treated as anaxiom; it must be discharged whenever the module is instantiated.IC1 is similarly proved by induction, using the following predicate.C1prop: function[rounds! bool] =(� r : ( 8 p; q; y; caucus; v :ok(p) ^ ok(q)^ p 2 caucus ^ q 2 caucus ^ y 2 caucus^ jcaucusj > 3 � r ^ r � jfaulty members(caucus)j� OMIC(r; v; caucus)(p)(y) = OMIC(r; v; caucus)(q)(y)))Again the base case is straightforward; the inductive step has two cases, dependingon whether the processor y is faulty or not. The case that it is faulty is dealt within the following lemma, whose proof is a consequence of the maj ext axiom of themaj function.agree nok: Lemmar < m ^ jcaucusj > 3 � (r + 1) ^ r + 1 � jfaulty members(caucus)j^ ok(p) ^ ok(q)^ p 2 caucus ^ q 2 caucus ^ y 2 caucus^ :ok(y)^ ( 8 z; v1 : z 2 caucus � fyg� OMIC(r; v1; caucus� fyg)(p)(z) = OMIC(r; v1; caucus� fyg)(q)(z))� OMIC(r + 1; v2; caucus)(p)(y) = OMIC(r + 1; v2; caucus)(q)(y)



18 Speci�cation and Veri�cation in EHDMWe invite the reader to compare this speci�cation with that of Bevier and Youngthat was shown in Figure 3.1. Since our speci�cation is pretty-printed (a functionperformed automatically by Ehdm), while Bevier and Young's is given in raw textform, the versions shown in Appendix A, which reproduce the exact text submittedto their respective theorem proving environments, allow more exact comparison.The Interactive Consistency conditions IC1 and IC2 are easily stated as theoremsto be proven:C1 �nal: Theoremok(p) ^ ok(q) � OMIC(m; v; fullset)(p)(y) = OMIC(m; v; fullset)(q)(y)C2 �nal: Theorem ok(p) ^ ok(q) � OMIC(m; v; fullset)(p)(q) = v(q)where fullset is the set of all processors.As in the informal proof of Section 2.2.1, we begin by proving a lemma similarto IC2. The proof is by induction and in formal veri�cations it is usually convenientto reformulate the theorem to be proved as a predicate on the induction variable.Here, we call the predicate C2prop.C2prop: function[rounds! bool] =(� r : ( 8 p; q; caucus; v :ok(p) ^ ok(q)^ p 2 caucus ^ q 2 caucus^ jcaucusj > 2 � jfaulty members(caucus)j+ r� OMIC(r; v; caucus)(p)(q) = v(q)))The base case of the induction (i.e., C2prop(0)) follows by straightforward appli-cation of de�nitions; the inductive step (i.e., r < m ^ C2prop(r) � C2prop(r + 1))follows from two lemmas. The �rst, which asserts that a good processor has thecorrect opinion of its own value, is straightforward:ok self: Lemma ok(y) ^ y 2 caucus � OMIC(r; v2; caucus)(y)(y) = v2(y)The second, which asserts that under certain conditions a good processor forms thecorrect opinion of the private value of another good processor, is more complex.ok others: Lemmar < m ^ jcaucus � fqgj > 2 � jfaulty members(caucus � fqg)j^ ok(y) ^ ok(q)^ y 2 caucus ^ q 2 caucus^ y 6= q^ ( 8 z; v1 : z 2 caucus ^ ok(z) ^ z 6= q� OMIC(r; v1; caucus � fqg)(y)(z) = v1(z))� OMIC(r + 1; v2; caucus)(y)(q) = v2(q)



17
terminates: function[rounds; vector; set! nat] = (� r; v; caucus! nat : r)OMIC: Recursive function[rounds; vector; set! function[processors! vector]] =(� r; v; caucus :if r = 0then (� p :(� q :if p 2 caucus ^ q 2 caucusthen send(r; v(q); q; p)else undefend if ))else (� p :(� q :if p 2 caucus ^ q 2 caucusthen if p = qthen send(r; v(q); q; q)else maj(caucus � fqg;OMIC(r � 1; distr(r; v(q); q); caucus� fqg)(p))end ifelse undefend if ))end if )by terminatesFigure 4.1: Our speci�cation of the Oral Messages Algorithm



16 Speci�cation and Veri�cation in EHDMThe function maj takes a set caucus of processors, and a vector v, and computes themajority value (if any) in that vector over that set. Actually, requiring this functionto be implemented by a majority vote overspeci�es the problem. All that is reallyrequired is speci�ed in the following axiom, which states that if the good processorsform a majority in caucus , and if all the good processors have the same value in thevector, then that is the value of the maj function. Notice that taking the medianof the values of the members of caucus (assuming they come from an ordered set)would also satisfy this speci�cation (as was correctly noted by Lamport, Shostakand Pease [9, page 388]).majax: Axiomjcaucusj > 2 � jfaulty members(caucus)j ^ ( 8 p : ok(p) ^ p 2 caucus � v(p) = t)� maj(caucus; v) = tThe function application faulty members(caucus) that appears here is the set offaulty (i.e., not ok) processors in the set caucus :faulty members: function[set! set] = (� m1 : (� z : z 2 m1 ^:ok(z)))Vertical bars denote the cardinality function. The only properties we require of thisfunction are captured in the following axioms.j ? 1j: function[set! nat]non empty ax: Axiom ( 9 p : p 2 m1), jm1j 6= 0card remove ax: Axiom z 2 m1 � jm1 � fzgj = jm1j � 1A second requirement on the maj function is that its value depends on onlythose elements of the vector corresponding to members of the set caucus .maj ext: Axiom( 8 p : p 2 caucus � v1(p) = v2(p)) � maj(caucus; v1) = maj(caucus; v2)We now return to the speci�cation of OMIC. The two behaviors that were statedabove (for the cases m = 0, and m > 0, respectively) could be speci�ed as axiomsde�ning the function; we prefer, however, to specify the function de�nitionally andto deduce those properties as (straightforward) lemmas. The advantage of the de�-nitional speci�cation is that the Ehdm typechecker will guarantee its soundness (inthe sense of not introducing inconsistencies). To do this, we are required to exhibita measure function that takes the same arguments as OMIC and whose value is anatural number that can be proved to decrease across recursive calls. In the presentcase, we use the measure function terminates that simply returns its �rst argument(i.e., the number of rounds). The �nal speci�cation for OMIC is given in Figure 4.1.



15The only e�ect and purpose of this modi�ed treatment of the send function is tomake it more clear that no assumptions at all are made about values communicatedwhen either the sender or receiver is faulty.2The speci�cation of the behavior of OMIC in the casem = 0 needs to be adjustedaccommodate the changed functionality of send :OMIC(0; v; caucus)(p)(q)= if p 2 caucus ^ q 2 caucus then send(0; v(q); q; p) else undef end ifFor the case m = r, r > 0, we require that p's opinion of q's private value shouldbe send(r; v(q); q; q) if p = q,3 otherwise it should be the majority value in p's ICvector, after performing OMIC with m = r� 1 on the current set of processors withq excluded, and the values received from q as the private values. Thus we requirer > 0 � OMIC(r; v; caucus)(p)(q)= if p 2 caucus ^ q 2 caucusthen if p = qthen send(r; v(q); q; q)else maj(caucus � fqg;OMIC(r � 1; distr(r; v(q); q); caucus � fqg)(p))end ifelse undefend ifHere, distr(r; v(q); q) is simply a function that uses send in round r to distributethe value v(q) from q to every other process:4distr: function[rounds; T; processors! vector] = (� r; t; p : (� z : send(r; t; p; z)))2Even the modi�ed formulation of send is not free of the suggestion that the value delivered bya faulty processor is functionally determined. The only way to completely remove this taint is touse a relational speci�cation for send , with the interpretation that send(t1; q; p; t2) is true if p couldpossibly receive t2 when q sends it t1, and the axiom:send ax: Axiom ok(p) ^ ok(q) � send(t; q; p; t)The problem with this reformulation is that it has rami�cations throughout the speci�cation, re-quiring the de�nition of the Oral Messages algorithm itself, as well as several subsidiary functions,to become relations also. Our colleague Shankar has recently developed such a speci�cation andveri�cation of OMIC, but here we prefer to stay with the simpler, if slightly 
awed, functionalde�nition of send .3We could specify v(q) in this case; we have chosen the weaker assumption that a faulty processormay not even know its own value.4It might be less \wasteful" to add the set of recipient processors (i.e., caucus�fqg) as an addi-tional argument to distr , rather than have the value sent to every process. This sort of \economy"would be important in an implementation of the algorithm, but would clutter the speci�cation andproof.



14 Speci�cation and Veri�cation in EHDMprocessor p following the OMIC algorithm, and OMIC(m; v; caucus)(p)(q) will bep's opinion of q's private value (i.e., of v(q)). Notice that we are using higher-orderfunctions (i.e., functions whose values are functions) here. We have found higher-order constructions very convenient in several speci�cations that we have undertaken(see for example [13]).1In preparation for formally specifying OMIC, we �rst state its behavior for thecase m = 0. In this and the formulas that follow, free variables are treated as uni-versally quanti�ed at the outermost level, and we do not generally identify the typesof the variables appearing in these formulas (see the full speci�cation in Appendix Cfor these subsidiary declarations).OMIC(0; v; caucus)(p)(q)= if p 2 caucus ^ q 2 caucus then send(v(q); q; p) else undef end ifHere, undef is some arbitrary value and send(v(q); q; p) is, as in Bevier and Young'sformulation a function that represents the value received by p when q sends it thevalue v(q). Our requirement on OMIC in the case m = 0 simply states that if pand q are both participants to the algorithm (i.e., both in the set caucus), then p'sopinion of q's private value v(q) following the algorithm should be send(v(q); q; p).The property assumed of send is captured in the following axiomsend ax: Axiom ok(p) ^ ok(q) � send(t; q; p) = twhere ok(p) is the predicate that asserts that processor p is nonfaulty. (We regarda processor that is faulty at any point in the algorithm as being faulty throughout.)Essentially, this axiom captures Assumption A1 of oral messages. Notice that ifeither p or q are faulty, we know nothing whatever about the value send(t; q; p).Well, not exactly nothing: we do know that its value is functionally determined byt, p, and q. Thus, if q were to send t to p in a later round, the value received wouldbe the same as in this round, whatever the fault-status of the processors concerned.This may not be realistic if p or q are faulty, so we will reformulate send to take theround number as an argument: send(r; t; q; p) then represents the value received byp when q sends it the value t in round r. The round number does not a�ect thetransmission when nonfaulty processors are involved:send ax: Axiom ok(p) ^ ok(q) � send(r; t; q; p) = t1Higher-order functions are also used in Ehdm to specify set operations, which appear frequentlyin this speci�cation. Sets are speci�ed as their characteristic predicates in Ehdm and the operationthat, for example, removes a processor from a set of processors has the speci�cationcaucus � fqg: function[set;processors ! set] = (� caucus; q : caucus with [(q) := false])



Chapter 4Speci�cation and Veri�cationin EHDMOne source of complexity in both the speci�cation and veri�cation of Bevier andYoung's formulation of OMBG is the need for a pair of mutually recursive functions.An additional burden is the need to perform a second speci�cation and veri�cationin order to connect BG to IC. Both of these di�culties can be avoided by developinga version of OM that solves IC directly. One way to see that this approach is likelyto be bene�cial is to observe that the iterated recursion inside OMBG is solving aninstance of IC: after the General has transmitted his value to all the lieutenants, eachof those lieutenants has a private value (the value he received from the General), andthe subgoal is for the n� 1 lieutenants to perform IC on those private values. Eachlieutenant will then have an IC vector that gives the value sent by the General toeach lieutenant; all nonfaulty lieutenants will have the same IC vector, and selectingthe majority value from those vectors will cause each of them to assign the samevalue to the General.It follows that a generalization of OMBG from BG to IC should be simpler thanOMBG, since the recursive subproblems will be the same as the parent. We willcall this generalization the OMIC algorithm. We present the algorithm and theargument for its correctness in the next few pages. All the speci�cations that followin this section are taken directly from our formal veri�cation, and are in the languageof Ehdm [17]; the proof sketches are also taken from our formal veri�cation. Thefull speci�cation and veri�cation is presented in Appendix C.We will specify OMIC as a function of three arguments: m the number of rounds,v a vector giving the private values of each processor, and caucus the set of processorsparticipating in the algorithm. Processors are represented by natural numbers inthe range 0 : : :n � 1, and vectors are functions from processors to values (of someuninterpreted type T ). OMIC will return a \vector" of vectors: that is a functionfrom processors to vectors. Thus OMIC(m; v; caucus)(p) will be the IC vector of13



12 Chapter 3. Bevier and Young's Veri�cationTheorem. VOM-IC2-INVARIANT(implies(and (setp l)(bounded-number-listp l (length vec))(member i l)(not (faulty i)))(if flg(implies(and (not (member g l))(not (faulty g))(leq (plus (times 2 (fault-count l)) m)(length l)))(equal (get i (vom flg m g v l vec))v))(implies(and (subbagp g l)(equal (length v) (length vec))(lessp (plus (times 2 (fault-count l)) m)(length l))(non-faulty-agreement (non-faulty-value g v)g v))(not (lessp (occurrences(non-faulty-value g v)(get i (vom flg m g v l vec)))(if (member i g)(sub1 (good-count g))(good-count g)))))))Figure 3.2: Bevier and Young's \Invariant" for BG2



11his value directly (the call to vom0), and voting on each element in theresulting map (the call to votelist).\The function voml* takes as arguments the number m of exchanges,a list g-list of names of processes which will serve in turn as the generalin this round, a vector vom0 in which each process's slot is �lled with itsvalue sent to it by the General, a list l of the other lieutenants, and avector vec in which the message tra�c is recorded. It returns a vectorin which each lieutenant's name is bound to the list of messages thatlieutenant has received in this round of message exchanges."Bevier and Young state that the veri�cation that their speci�cations of OMBGsatisfy BG1 and BG2 is \a fairly di�cult exercise in mechanical theorem prov-ing" [3, page 1] but that they \gained considerable insight into the algorithm" fromtheir formalization [3, page 13]. They illustrate the latter point by referring to thepublished proof of OMBG (reproduced in Section 2.2.1 above) and observing:\Though seemingly straightforward, there is a considerable degree ofsuppressed detail in this proof. In particular, the induction hypothesisrefers to what happens after each round of message exchange withoutworrying about the intermediate states which occur during each round.In terms of our mutually recursive version of the algorithm, the proofabove describes the induction by referring to what happens after eachcall to vom* and simply assumes what happens in the calls to voml*.\What happens in these calls, and what is crucial from the point ofview of a fully formal proof, is that there is a rather involved invariantmaintained by the algorithm. A key part of this invariant can be statedroughly as follows: after each round of message exchange all of the non-faulty processors agree on a value for the General, that value being theGeneral's actual value. This notion we call non-faulty agreement .\Formulating and proving an appropriate version of the invariant forBG2 was the primary e�ort in the proof."The invariant referred to above is reproduced in Figure 3.2. Bevier and Young \donot bother to describe some of the subsidiary concepts such as non-faulty-valuewhich are involved in the statement of the invariant" [3, page 14] and do not ex-hibit the corresponding invariant for BG1, but note that it \is substantially moreinvolved."



10 Chapter 3. Bevier and Young's Veri�cationDe�nition(vom0 g v l vec)=(if (listp l)(put (car l)(send v g (car l))(vom0 g v (cdr l) vec))vec)De�nition(vom* m g v l vec)=(if (zerop m)(vom0 g v l vec)(votelist(pair (vom0 g v l vec)(voml* (sub1 m) l (vom0 g v l vec) l vec)l)))De�nition(voml* m g-list vom0 1 vec)=(if (listp g-list)(pair (vom* m (car g-list) (get (car g-list) vom0)(delete (car g-list) l) vec)(voml* m (cdr g-list) vom0 l vec)(delete (car g-list) l))(init nil (length vec)))Figure 3.1: Bevier and Young's Speci�cation of the Oral Messages Algorithm



Chapter 3Bevier and Young's Veri�cationBevier and Young [3] performed a formal speci�cation and veri�cation of the OMBGAlgorithm using the Boyer-Moore theorem prover [4]. Insofar as the restrictions ofthe Boyer-Moore logic allow1, Bevier and Young's speci�cation and veri�cation fol-lows the published version of Lamport, Shostak and Pease [9] very closely. Sincethe problem of practical interest is IC rather than BG, they augment their descrip-tion [3, Section 3.4] with the speci�cation and veri�cation of an additional step thatapplies OMBG iteratively (with each process in turn taking the role of the General),thereby extending it to a solution for IC.Bevier and Young specify OMBG in terms of two mutually recursive functions,vom* and voml*; the former is the main OMBG function, while the latter speci�esthe iterative application over all lieutenants required in step (2) of the former. Inaddition, the function vom0 speci�es the base case OMBG(0). These functions arereproduced in Figure 3.1 (taken from [3, Figure 5, page 7]).2Bevier and Young explain these functions as follows [3, pages 6,7]. Note thatthe function (send v i j) denotes the value received when process i sends value vto j. \vom* is the top-level function which takes as arguments the numberm of rounds, the General's name g and value v, a list l of lieutenantnames, and the vector vec in which the message tra�c is recorded.It returns a vector in which each lieutenant's position is �lled by thatlieutenant's view of the General's value. Arriving at this view requiresm � 1 rounds of communication (the call to the voml* function) com-bined (pair'd) with the initial round in which the General distributes1The Boyer-Moore logic is an untyped, unquanti�ed �rst-order logic resembling pure lisp.2In order to satisfy the de�nitional principle of the Boyer-Moore system, the mutually recursivepair vom* and voml* are encoded in the actual speci�cation as a single function with a \
ag"argument to distinguish the two cases. This version is reproduced in Appendix A, Figure A.1.9



8 Chapter 2. Informal Overviewso we can apply the induction hypothesis to conclude that every loyallieutenant gets vj = v for each loyal Lieutenant j. Since there are atmost k traitors, and n� 1 > 2k+ (m� 1) � 2k, a majority of the n� 1lieutenants are loyal. Hence, each loyal lieutenant has vi = v for a ma-jority of the n � 1 values i, so he obtains majority(v1; : : : ; vn�1) = v instep (3), proving BG2. 2Theorem 1 For any m, Algorithm OMBG(m) satis�es conditions BG1and BG2 if there are more than 3m participants and at most m traitors.Proof: The proof is by induction onm. If there are no traitors, then it iseasy to see that OMBG(0) satis�es BG1 and BG2. We therefore assumethat the theorem is true for OMBG(m� 1) and prove it for OMBG(m),m > 0.We �rst consider the case in which the General is loyal. By takingk equal to m in Lemma 1, we see that OMBG(m) satis�es BG2. BG1follows from BG2 if the General is loyal, so we only need verify BG1 inthe case the General is a traitor.There are at most m traitors, and the General is one of them, so atmostm�1 of the lieutenants are traitors. Since there are more than 3mgenerals, there are more than 3m�1 lieutenants, and 3m�1 > 3(m�1).We may therefore apply the induction hypothesis to conclude thatOMBG(m�1) satis�es conditions BG1 and BG2. Hence, for each j, anytwo loyal lieutenants get the same value for vj in step (3). (This followsfrom BG2 if one of the two lieutenants is Lieutenant j, and from BG1otherwise). Hence, any two loyal lieutenants get the same vector of valuesv1; : : : ; vn�1, and therefore obtain the same value majority(v1; : : : ; vn�1)in step (3), proving BG1. 2



2.2. Byzantine Generals 7The Oral Messages (OM) algorithm solves the BG problem under the sameassumptions as OA; it can be regarded as a substantial reformulation of OA, ratherthan an independent algorithm. In order to distinguish the BG version of thealgorithm from the IC version to be introduced later, we denote them OMBG andOMIC, respectively. The algorithm is characterized by the number of rounds to bemade: OMBG(m) is the instance of the algorithm that makes m + 1 rounds. Thefollowing description is taken verbatim from [9, page 388]. Note that under theByzantine Generals metaphor, faulty processors are called \traitors," and nonfaultyones are \loyal." First we describe the simplest case, OMBG(0):OMBG(0)1. The General sends his value to every lieutenant.2. Each lieutenant uses the value he receives from the General, or usesthe value retreat if he receives no value.Now we can describe the general case.OMBG(m), m > 01. The General sends his value to every lieutenant.2. For each i, let vi be the value Lieutenant i receives from the General,or else be retreat if he receives no value. Lieutenant i acts as theGeneral in Algorithm OMBG(m� 1) to communicate the value vito each of the n� 2 other lieutenants.3. For each i, and each j 6= i, let vj be the value Lieutenant i receivedfrom Lieutenant j in step (2) (using Algorithm OMBG(m� 1)), orelse retreat if he received no such value. Lieutenant i uses the valuemajority(v1; : : : ; vn�1).2.2.1 The Correctness ArgumentThe argument for the correctness of OMBG is taken verbatim from [9, page 390]Lemma 1 For any m and k, Algorithm OMBG(m) satis�es BG2 ifthere are more than 2k +m participants and at most k traitors.Proof: The proof is by induction on m. BG2 only speci�es whatmust happen if the General is loyal. Using A1, it is easy to see that thetrivial algorithm OMBG(0) works if the General is loyal, so the lemmais true for m = 0. We now assume it is true for m� 1, m > 0, and proveit for m.In step (1), the loyal General sends a value v to all n� 1 lieutenants.In step (2), each loyal lieutenant applies OMBG(m� 1) with n� 1 gen-erals. Since by hypothesis n > 2k +m, we have n � 1 > 2k + (m� 1),



6 Chapter 2. Informal Overview1. If for some subset Q of P of size > (n +m)=2 and some value �,�p(pwq) = v for each string w over Q of length � m, p records �.2. Otherwise the algorithm for m�1, n�1 is recursively applied withP replaced by P � fqg, and �p by the mapping �̂p de�ned by�̂p(pw) = �p(pwq)for each string w of length � m over P �fqg. If at least b(n+m)=2cof the n � 1 elements in the vector obtained in the recursive callagree, p records the common value; otherwise p records NIL.Note that �̂p corresponds to the m-level subscenario of � in which qis excluded and in which each processor's private value is the value itobtains directly from q in �."We expect that many readers will share our opinion that this description ofOA is a challenge to comprehension. The argument for its correctness [12, page231] is similarly hard to follow. The original authors also may have considered thepresentation somewhat di�cult, for a couple of years after the original publicationthey reformulated the problem, the algorithm, and the argument for its correctness.The revised presentation was couched in the metaphor of \Byzantine Generals" andis described in the next section.2.2 Byzantine GeneralsAs mentioned earlier, BG di�ers from IC in that there is a distinguished processorcalled the General whose value is to be communicated to all other processors (calledlieutenants).1 Again, there are n processors in total, of which some (possibly includ-ing the General) may be faulty. The General has some \order" v and the problemis to devise an algorithm that will allow each Lieutenant p to compute an estimate�p of the General's order satisfying the following conditions:BG1: If Lieutenants p and q are nonfaulty, then they agree on the value ascribedto the General; that is �p = �q.BG2: If the General is nonfaulty, then every nonfaulty lieutenant has the correctorder; that is �p = v.We have renamed these conditions BG1 and BG2 to distinguish them from thecorresponding conditions of the IC case.1Lamport, Shostak and Pease [9] often speak of the \Commanding General," and refer to theothers as the \lieutenant generals."



2.1. Interactive Consistency 5A2: The receiver of a message knows who sent it.A3: The absence of a message can be detected.An algorithm based on Oral Messages solves the IC problem under these as-sumptions. The principal di�culty that must be overcome by such an algorithm isthat a faulty processor may send di�erent values to di�erent nonfaulty processors,thereby complicating satisfaction of condition IC1. To overcome this, an algorithmwill use several \rounds" of message exchange during which processor p tells pro-cessor q what value it received from processor r and so on. Of course, if processorp is faulty, it may \lie" about the value it received from processor r. By makingsu�ciently many rounds, an algorithm can defeat this threat.2.1.2 The Original AlgorithmThe original algorithm [12, page 230], which we will abbreviate as OA, is parame-terized by n, the number of processors, and m (where n � 3m + 1), the maximumnumber of faulty processors. The following description of OA is taken verbatimfrom [12, page 230] (except that we have changed V to v).\Let P be the set of processors and v a set of values. For k � 1, wede�ne a k-level scenario as a mapping from the set of nonempty strings(possibly having repetitions) over P of length � k+1, to v. For a givenk-level scenario, � and string w = p1p2 : : : pr, 2 � r � k + 1, �(w) isinterpreted as the value p2 tells p1 that p3 told p2 that p4 told p3: : : that prtold pr�1 is pr's private value. For a single-element string p, �(p) simplydesignates p's private value vp. A k-level scenario thus summarizes theoutcome of a k-round exchange of information. (Note that if a faultyprocessor lies about who gave it information, this is equivalent to lyingabout a value it was given.) Note also that for a given subset of nonfaultyprocessors, only certain mappings are possible scenarios; in particular,since nonfaulty processors are always truthful in relaying information, ascenario must satisfy �(pqw) = �(qw)for each nonfaulty processor q, arbitrary processor p, and string w.\The messages a processor p receives in a scenario � are given bythe restriction �p of � to strings beginning with p. The procedure wepresent now for arbitrary m � 0, n � 3m+1, is described in terms of p'scomputation for a given �p, of the element of the interactive-consistencyvector corresponding to each processor q (i.e., Vp(q)). The computationis as follows:



Chapter 2Informal OverviewIn this section we brie
y review the Interactive Consistency (IC) and Byzantine Gen-erals (BG) problems, and the \Original" (OA) and Oral Messages (OM) algorithmsfor solving them. We follow the presentations of Pease, Shostak, and Lamport [9,12]very closely.2.1 Interactive ConsistencyConsider a set of n isolated processors, of which some may be faulty. It is not knownwhich processors are faulty, nor how many, nor what behavior may be exhibited byfaulty processors. Suppose also that each processor p has some private value vp(such as its reading of some sensor). The problem is to devise an algorithm that willallow each processor p to compute a vector Vp of values, in which, for each processorr, Vp(r) is p's estimate of r's private value, satisfying the following conditions:IC1: If processors p and q are nonfaulty, then they agree on the value ascribed toany other processor r; that is: Vp(r) = Vq(r).IC2: If processors p and r are nonfaulty, then the value ascribed to r by p is indeedr's private value; that is, Vp(r) = vr.2.1.1 Oral MessagesThere are many variations on the IC and BG problems that di�er in the assumptionsmade about interprocessor communications. For example, whether the processorsare fully connected, whether messages can be lost, and whether a faulty processorcan forge a message purporting to have come from another. The Oral Messagesassumptions are:A1: Every message that is sent between nonfaulty processors is correctly delivered.4



3There are relatively few examples of interesting or di�cult veri�cations under-taken by more than one group, or using more than one system for formal speci�ca-tion and veri�cation. Bill Young's comparison of Z and Gypsy [24] and the 12-waycomparison reported by Jeannette Wing [23] are concerned solely with speci�cation.Rather more interesting are David Basin and Matt Kaufmann's comparison of twoveri�cations of the �nite Ramsey theorem [1], and Bill Young's duplication [25] ofour veri�cation [15,16] of a clock synchronization algorithm [8].One reason for the paucity of comparisons using substantial or di�cult examplesis that only a handful of veri�cation systems are capable of undertaking such exam-ples, and the developers and users of those systems are fully engaged in their ownlines of enquiry. When they can be performed, however, such comparisons are veryuseful, since they provide the only reasonable way to compare claims for \readabil-ity" or \expressiveness" in speci�cation languages, and \power" or \e�ectiveness"in veri�cation environments.Comparative studies can be undertaken at several di�erent levels: two dif-ferent systems can be used to proof-check the same veri�cation (cf. the clock-synchronization example mentioned above); two di�erent veri�cations can be per-formed for the same speci�cation; two di�erent formalizations can be developed forthe same speci�cation (cf. the study reported by Jeannette Wing); or two completelyseparate formal developments can be performed for a single problem. Di�erentlessons are likely to be learned from these di�erent levels of comparison: when onetool or notation is simply substituted for another, we may learn something about theability of the second to duplicate the results of the �rst on its \home ground," butwe will not learn how the problem might have been approached di�erently had thesecond tool or notation been used from the start; and when two independent devel-opments are undertaken, we may learn more about the problem-solving approachesof the individuals concerned than about the tools employed.The experiment described here is of the latter kind, and it may be that the mainconclusion to be drawn concerns the considerable impact that apparently smallchanges in the formulation of a problem can have on the tractability of its formalveri�cation. On the other hand, this example also invites speculation on the bene�-cial in
uence that an expressive speci�cation language and a direct approach to proofmay have in the development of felicitous formulations of interesting algorithms.



2 Chapter 1. Introductioncerned with the reliable communication of a value from a distinguished participant(called the \General") to all the others (who are called \lieutenants"). In practi-cal applications, it is the Interactive Consistency formulation that is appropriate,but the colorful metaphor of the Byzantine Generals has proved so memorable thatthis formulation is better known; indeed, the whole �eld of algorithm design foragreement in the presence of faults has become known as that of \Byzantine Agree-ment," and the asymmetrical kind of fault mentioned earlier has become known asa \Byzantine fault."A problem related to Interactive Consistency is Byzantine fault-tolerant clocksynchronization [8]. In 1988, we formally veri�ed the \Interactive Convergence"algorithm for this problem [8, Algorithm CNV] and found that the published anal-ysis of this algorithm was incorrect in a number of details [15, 16]. Our colleagueShankar has formally veri�ed the generalized clock synchronization paradigm ofSchneider [18] and similarly found a number of small errors [19,20]. In both cases,the formal veri�cation led to improved and simpli�ed presentations of the infor-mal justi�cations for the correctness of the algorithm concerned. We have oftenwondered whether formal veri�cation of the Oral Messages algorithm for Byzan-tine Agreement would yield similar bene�ts, and have been curious to know howdi�cult the formal veri�cation of this algorithm would be, compared to the clocksynchronization algorithms.In 1990, a formal veri�cation of the Oral Messages Algorithm was published byBevier and Young [3] as part of the documentation of a more substantial exercisein which they also veri�ed the design of a circuit to perform the algorithm, and thetheorem that the fault-tolerance of the Oral Messages Algorithm is optimal amongits class of algorithms.Bevier and Young described the algorithm as \quite di�cult" and have indi-cated elsewhere that development of its formal veri�cation (using the Boyer-Mooreprover [4]) took them about a month. We found this surprising, since the publishedjournal proof for the correctness of the Oral Messages algorithm [9, page 390] isshort (less than a page) and straightforward. The time taken may be explained byBevier and Young's observation [3, page 1] that their machine-checked proof\: : :elucidates several issues which are treated rather lightly in the pub-lished version of the proof. In particular, the invariant maintained inthe recursive subcases of the algorithm is signi�cantly more complicatedthan is suggested by the published proof."After careful study of Bevier and Young's presentation, however, we were unable topersuade ourselves that their claim of suppressed complexity in the published journalproof is justi�ed. On the contrary, we continued to �nd the journal description andproof more compelling than their formal presentation. In order to resolve our doubts,we decided to undertake a separate formal veri�cation using our Ehdm system [17].



Chapter 1IntroductionFault tolerant systems, such as those used in digital 
ight control, require a wayto ensure that the replicated processors all work on the same input values. Forexample, each processor may sample di�erent sensors (or the same sensor at di�erenttimes) and thereby obtain di�erent estimates of some external value; these di�erentestimates need to be combined into a single consensus value that is the same forall processors. By starting with the same inputs, all correctly working processorsshould then compute the same outputs and faults can be masked using exact-matchmajority voting.The problem of deciding on a single consensus value can be broken into twostages. In the �rst stage, the processors exchange their private data values amongthemselves. At the end of this stage, each processor has a vector giving the datavalues of all the other processors; if there are no faults, these vectors will be identi-cal on all processors. The second stage may then comprise any data conditioning,selection, or averaging algorithms whatever: provided all processors run the same al-gorithms, and start with the same vectors, they will end up with the same consensusvalues.We are interested in the �rst stage of this process, and with ensuring that itperforms reliably in the presence of arbitrary faults. (The worst kinds of faultare \asymmetrical" ones where a faulty processor communicates di�erent valuesto di�erent processors, potentially causing nonfaulty processors to disagree amongthemselves.) This problem of reaching agreement in the presence of faults was �rstposed, named, and solved by Pease, Shostak, and Lamport in 1980 [12]. They namedthe problem that of achieving \Interactive Consistency." In 1982, the same authorsdeveloped their analysis further, and reformulated it as the \Byzantine GeneralsProblem" [9]; they named a revised version of the algorithm from their earlier paperthe \Oral Messages" algorithm. The principal di�erence between the InteractiveConsistency and Byzantine Generals problems is that the former is concerned withthe reliable exchange of values among all the participants, whereas the latter is con-1
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AbstractWe describe the formal speci�cation and veri�cation of an algorithmfor Interactive Consistency [12] based on the Oral Messages algorithm forByzantine Agreement [9]. We compare our treatment with that of Bevierand Young [2,3], who presented a formal speci�cation and veri�cation fora very similar algorithm. Unlike Bevier and Young, who observed that\the invariant maintained in the recursive subcases of the algorithm issigni�cantly more complicated than is suggested by the published proof"and who found its formal veri�cation \a fairly di�cult exercise in me-chanical theorem proving," our treatment is very close to the previouslypublished analysis of the algorithm, and our formal speci�cation andveri�cation are straightforward.This example illustrates how delicate choices in the formulation ofa problem can have signi�cant impact on the readability of its formalspeci�cation and on the tractability of its formal veri�cation.
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