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Abstract

Most formal approaches to security protocol analysis are
based on a set of assumptions commonly referred to as the
“Dolev-Yao model.” In this paper, we use a multiset rewrit-
ing formalism, based on linear logic, to state the basic as-
sumptions of this model. A characteristic of our formalism
is the way that existential quantification provides a succinct
way of choosing new values, such as new keys or nonces.
We define a class of theories in this formalism that cor-
respond to finite-length protocols, with a bounded initial-
ization phase but allowing unboundedly many instances of
each protocol role (e.g., client, server, initiator, or respon-
der). Undecidability is proved for a restricted class of these
protocols, andPSPACE-completeness is claimed for a class
further restricted to have no new data (nonces). Since it is
a fragment of linear logic, we can use our notation directly
as input to linear logic tools, allowing us to do proof search
for attacks with relatively little programming effort, andto
formally verify protocol transformations and optimizations.

1 Introduction

In the literature on security protocol design and analysis,
protocols are commonly described using an informal nota-
tion that leaves many properties of a protocol unspecified.
For example, a short challenge-response section of a proto-
col might be written like this:A �! B : fngKB �! A : ff(n)gK
In this notation, a message of the formfxgy consists of a
plaintextx encrypted with keyy. In this example protocol,�Partially supported by DoD MURI “Semantic Consistency in Infor-
mation Exchange” as ONR Grant N00014-97-1-0505, and by NSF Grants
CCR-9509931, CCR-9629754, and CCR-9800785 to various authors.

Alice chooses a random numbern and sends its encryption
to Bob. There is no specific indication of how Bob deter-
mines what to send in response, but we can see that Bob
returns a message that contains the encryption off(n). By
analogy with familiar protocols, we might assume that he
decrypts the message he receives to determinen, then ap-
pliesf to n and returns the result to Alice (encrypted with
the same key).

As written, the protocol description only gives an in-
tended trace or family of traces involving the honest prin-
cipals. There is no standard way of determining the ini-
tial conditions or assumptions about shared information, nor
can we see how the principals will respond to messages that
differ from those explicitly written. For example, in the case
at hand, we must explain in English thatK is assumed to be
a shared key and thatn is generated by Alice. Otherwise,
it is a perfectly reasonable interpretation of the two lines
above that Alice and Bob initially share a numbern. In
this case, Alice might sendfngK to Bob, with Bob return-
ing ff(n)gK to Alice only if he receives preciselyfngK .
While the two readings of the protocol give the same se-
quence of messages when no one interferes with network
transmission, the effects are different if an intruder inter-
cepts the message from Alice to Bob and replaces it with
another message. For this reason, the notation commonly
found in the literature does not provide a precise basis for
security protocol analysis.

Most formal approaches to protocol analysis are based
on a relatively abstract set of modeling assumptions, com-
monly referred to as the “Dolev-Yao model,” which appear
to have developed from positions taken by Needham and
Schroeder [26] and a model presented by Dolev and Yao
[11]. In this approach, messages are composed of indivisi-
ble abstract values, not sequences of bits, and encryption is
modeled in an idealized way. Although the same basic mod-
eling assumptions are used in theorem proving [27], model-
checking methods [18, 20, 25, 28, 29] and symbolic search
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tools [17], there does not appear to be any standard presen-
tation of the Dolev-Yao model as it is currently used in a
variety of projects. One goal of this paper is to identify the
modeling assumptions using the simplest formalism possi-
ble, so that the strengths and weaknesses of the Dolev-Yao
model can be analyzed, apart from properties of logics or
automated tools in which the model is commonly used.

While we began with the idea of creating a new formal-
ism for this purpose, we naturally gravitated toward some
form of rewriting, so that protocol execution could be car-
ried out symbolically. In addition to rewriting to effect state
transitions, we also needed a way to choose new values,
such as nonces or keys. While this seems difficult to achieve
directly in standard rewriting formalisms, the proof rules
associated with existential quantification appears to be just
what is required. Therefore, we have adopted a notation,
first presented in [24], that may be regarded as either an ex-
tension of multiset rewriting (see, e.g., [3, 4]), with existen-
tial quantification, or a Horn fragment of linear logic [14].
A similar fragment of linear logic is used in [16] to repre-
sent real-time finite-state systems. Two other efforts using
linear logic to model the state-transition aspect of protocols
(but not existential quantification for nonces) are [8, 9].

Using this formalism, it is relatively straightforward to
characterize the Dolev-Yao intruder and associated crypto-
graphic assumptions. The formalism also seems appropriate
for analyzing the complexity of protocol problems, and as a
potential intermediate language for systems or approaches
that might combine several different protocol analysis tools.
We develop a format for presenting finite-length protocols,
as the disjoint union of a set of initialization rules and sets
of independent transition rules for each protocol participant.
Using this form of protocol theory, we show that secrecy is
an undecidable property even if data constructors, message
depth, message width, number of distinct roles, role length,
and depth of encryption are bounded by constants. If any of
these restrictions are lifted, prior results, folklore, ora small
amount of thought can be used to show undecidability, but
we show even for the very small fragment with only nonces
secrecy is undecidable. Finally, we have used a linear logic
tool, LLF [5] in two ways. The first is to search executions
of a protocol and intruder for protocol flaws. While sym-
bolic search by a logic programming tool is not as efficient
as optimized search by tools such as Mur'[10], this method
does have the advantage that the input is substantially eas-
ier to prepare. The second use of LLF is to formally ver-
ify proofs of protocol optimizations. This provides a basis
for simplifying search-based analysis and theorem-proving
analysis of protocols.

2 Multiset rewriting with existential quantifi-
cation

2.1 Protocol Notation

The notation we use involvesfactsandtransitions. Our
facts are first-order atomic formulas, and transitions are
given by rewrite rules containing a precondition and post-
condition. One important property of this formalism is that
in applying a rule to a collection of facts, each fact that oc-
curs in the precondition of the rule is removed. This gives
us a direct way of representing state transitions, and pro-
vides the basis for the connection with linear logic. Another
key property is that the postconditions of a rule may con-
tain existentially quantified variables. Following the stan-
dard proof rules associated with existential quantification
(in natural deduction or sequent-style systems), this pro-
vides a mechanism for choosing new values that are distinct
from any other in the system.

More formally, our syntax involves terms, facts and
rules. If we want to represent a system in this notation,
we begin by choosing a vocabulary, orfirst-order signa-
ture. This is a standard notion from many-sorted algebra
or first-order logic (see, e.g., [13, section 4.3].) As usual,
the termsover a signature are the well-formed expressions
produced by applying functions to arguments of the correct
sort. A fact is a first-order atomic formula over the chosen
signature. This means that a fact is the result of applying a
predicate symbol to terms of the correct sorts. Astateis a
multiset of facts (all over the same signature).

A state transition is arule written using two multisets of
facts, and existential quantification, in the following syntac-
tic form:F1; : : : ; Fk �! 9x1 : : : 9xj :G1; : : : ; Gn
The meaning of this rule is that if some stateS contains
factsF1; : : : Fk, then one possible next state is the stateS0
that is similar toS, but with:� factsF1; : : : Fk removed,� G1; : : : Gm added, wherex1 : : : xj are replaced by

new symbols.

While existential quantification does not semantically imply
there exist “new” values with certain properties, standard
proof rules for manipulating existential quantifiers require
introduction of fresh symbols (sometimes called Skolem
constants), as described below.

If there are free variables in the ruleF1; : : : ; Fk �!9x1 : : :9xj :G1; : : : ; Gn, these are treated as universally
quantified throughout the rule. In an application of a rule,



these variables may be replaced by any terms. To give a
quick example, consider the following state,S, and rule,R:S = fP (f(a)); P (b)gR = (P (x) �! 9z:Q(f(x); z) )
One possible next state is obtained by instantiating the ruleR to P (f(a)) �! 9z:Q(f(f(a)); z). Applying this rule,
we choose a new value,, for z and replaceP (f(a)) byQ(f(f(a)); ). This gives us the stateS0 = fQ(f(f(a)); ); P (b)g

The importance of existential quantification, for security
protocols, is that it provides a direct mechanism for choos-
ing a new value that is different from other values used in
the execution of a system. Since many protocols involve
choosing fresh nonces, fresh encryption keys, and so on,
existential quantification seems like a useful primitive for
describing security protocols.

The way that existential quantification is used in our for-
malism is based on the existential elimination rule from nat-
ural deduction. This proof rule is commonly written as fol-
lows.(9 elim) [y=x℄�

...9x:�   y not free in any
other hypothesis

If we have an existentially quantified axiom,9x:�, then this
rule says that if we wish to prove some formula , we can
choose a new symboly for the “x that is presumed to exist”
and proceed to derive from [y=x℄�. The side condition “y
not free in any other hypothesis in the proof of ” means
that the only hypothesis in the proof of that can containy
is the hypothesis[y=x℄�.

2.2 Simplified Needham-Schroeder

As a means of explaining the Dolev-Yao intruder and
encryption models using our notation, we begin with an
overly simplified form of the Needham-Schroeder public-
key protocol [26]. Without encryption, the core part of the
Needham-Schroeder protocol proceeds as follows:A �! B : NaB �! A : Na; NbA �! B : Nb
whereNa andNb are fresh nonces, chosen by Alice (A) and
Bob (B), respectively.

We can describe this simplified protocol in our notation
using the predicatesAi, Bi, Ni for 0 � i � 3, with the

following intuitive meaning:Ai( : : : ) Alice in local statei, with the indicated dataBi( : : : ) Bob in local statei, with indicated dataNi( : : : ) Network has messagei, with indicated data

The data associated with the state of some principal, or
a network message, will depend on the particular state or
message. Each principal begins in local state0, with no
data. Therefore, predicatesA0 andB0 are predicates with
no arguments. When Alice chooses a nonce, she moves into
local state1. Therefore, predicateA1 is a predicate of one
argument, intended to be the nonce chosen by Alice. Sim-
ilarly, predicateB1 has two arguments, the data received
from Alice in message one of the protocol and the nonce
chosen by Bob for his response.

Using these predicates, we can state the protocol using
four transition rules:A0() �! 9x:A1(x); N1(x)B0(); N1(x) �! 9y:B1(x; y); N2(x; y)A1(x); N2(x; y) �! A2(x; y); N3(y)B1(x; y); N3(y) �! B2(x; y)
Each rule corresponds to an action by a principal. In the
first rule, Alice chooses a nonce, sends it on the network,
and remembers the nonce by moving into a local state that
retains the nonce value. In the second step, Bob receives a
message on the network, chooses his own nonce, transmits
it and saves it in his local state. In the third step, Alice
receives Bob’s message and replies, while in the fourth step
Bob receives Alice’s final message and changes state.

In Table 1 is a sample trace generated from these rules,
beginning from stateA0; B0. Spacing is used to separate
the facts that participate in each step from those that do not.

2.3 Formalizing the intruder

There are two main parts of the Dolev-Yao model as
commonly used in protocol analysis. The first is the set
of possible intruder actions, applied nondeterministically
throughout execution of the protocol. The second is a
“black-box” model of encryption and decryption. We ex-
plain the intruder actions here, with the encryption model
presented in Section 2.4.

The protocol adversary or “intruder” may nondetermin-
istically choose among the following actions at each step:� Read any message and block further transmission,� Decompose a message into parts and remember them,� Generate fresh data as needed,� Compose a new message from known data and send.
By combining a read with resend, we can easily obtain the
effect of passively reading a message without preventing an-
other party from also receiving it.



B0(); A0() �! A1(nA); N1(nA); B0()A1(nA); B0(); N1(nA) �! B1(nA; nB); N2(nA; nB); A1(nA)B1(nA; nB); A1(nA); N2(nA; nB) �! A2(nA; nB); N3(nB); B1(nA; nB)A2(nA; nB); B1(nA; nB); N3(nB) �! B2(nA; nB); A2(nA; nB)
Table 1. Sample trace of simplified Needham-Schroeder

In general, the intruder processes data in three phases.
The first is to read and decompose data into parts. The
second is to remember parts of messages, and the third is
to compose a message from parts it remembers. We illus-
trate the basic form of the intruder actions using one unary
network-message predicateN1 and one binary network-
message predicateN2. Using predicatesD for decompos-
able messages andM for the intruder “memory”, the basic
rules for intercepting, decomposing and remembering mes-
sages are N1(x) �! D(x)N2(x; y) �! D(x; y)D(x; y) �! D(x); D(y)D(z) �! M(z)
While the predicateD may appear to be an unnecessary
intermediary here, a protocol with more complicated mes-
sages will lead to more interesting ways of destructuring
messages. As noted in [7], it is important in proof search
to separate the decomposition phase from the composition
phase, which is accomplished here using separateD andC
predicates. The rules for composing messages from parts
are written using theC, for “composable”, predicate as fol-
lows: M(x) �! C(x);M(x)C(x) �! N1(x)C(x); C(y) �! C(x; y)C(x; y) �! N2(x; y)
The rule for generating new data is�! 9x:M(x)
The reason we need the last transition rule (which can be
applied any time without any hypothesis) is that the intruder
may need to choose new data in order to trick an honest
participant in a protocol. This is illustrated in the following
attack on the simplified (and obviously insecure) form of
the Needham-Schroeder protocol.

For the simplified example at hand, we can compose

rules to eliminate theD andC predicates as follows:N1(x) �! M(x)M(x) �! N1(x);M(x)N2(x; y) �! M(x);M(y)M(x);M(y) �! N2(x; y);M(x);M(y)N3(x) �! M(x)M(x) �! N3(x);M(x)
This reduces the number of steps in the trace, shown in Ta-
ble 2, which has actions of the honest participants in the left
column and actions of the intruder indented. For simplicity,
duplicate copies ofM( ) facts are not shown, since these
have no effect on the execution of the protocol or intruder.

In this attack, the intruder intercepts messages betweenA andB, replacing data so that the two principals have a
different view of the messages that have been exchanged.
Specifically, the intruder replaces Alice’s noncenA by a
valuen chosen by the intruder. When Bob responds to the
altered message, the intruder intercepts the result and re-
placesn by nA so that Alice receives the message she ex-
pects.

2.4 Modeling Perfect Encryption

The commonly used “black-box” model of encryption
may be written in our multiset notation using the follow-
ing vocabulary. For concreteness, we discuss public-key
encryption. Symmetric or private-key encryption can be
characterized similarly. We assume that plaintexts have sortplain and ciphertexts have sortipher.� Additional sorts:e key; d key� Predicate:Key pair(e key; d key)� Function:en : e key� plain! ipher
We could also include a decryption functionde : d key �ipher ! plain. However, it seems simpler to write pro-
tocols using pattern-matching (encryption on the left-hand-
side of a rule) to express decryption.



B0(); A0() Initial configuration�! A1(nA); N1(nA); B0() Alice chooses nonce and sends�! A1(nA); B0();M(nA) Intruder intercepts messagenA�! A1(nA); B0();M(nA);M(n) Intruder generates fresh valuen�! A1(nA); N1(n); B0();M(nA);M(n) Intruder sendsn to Bob�! B1(n; nB); N2(n; nB); A1(nA);M(nA);M(n) Bob receives, generates nonce, replies�! A1(nA); B1(n; nB);M(nA);M(n);M(nB) Intruder intercepts message withn�! A1(nA); N2(nA; nB); B1(n; nB);M(nA);M(n);M(nB) Intruder sends message withnA�! A2(nA; nB); N3(nB); B1(n; nB);M(nA);M(n);M(nB) Alice receives and responds�! B2(n; nB); A2(nA; nB);M(nA);M(n);M(nB) Bob changes to final state, indicating
successful completion of protocol

Table 2. Sample attack on simplified Needham-Schroeder

Example The core Needham-Schroeder protocol with en-
cryption begins with each principal generating and publish-
ing a key pair. Therefore the “local state 0” predicate for
each principal will contain a key pair. For example, Bob’s
initial actions can be stated as the following rules:�! 9k : e key: 9k0 : d key: B0(k);Key pair(k; k0)B0(k) �! Announe(k); B0(k)
The first rule (without hypotheses) lets Bob generate a key
pair, while the second announces the public key so that other
principals can choose to communicate with Bob. Alice sim-
ilarly chooses and publishes her public key. After doing so,
she chooses a principal to communicate with from the set
of announced public keys and transmits a message.A0(k);Announe(k0) �! 9x: A1(k; k0; x);N1(en(k0; hx; ki));Announe(k0)
The following transition rule then allows Bob to decrypt the
message from Alice.B0(k); N1(en(k; hx; k0i)) �! 9y: B1(k; k0; x; y);N2(en(k0; hx; yi))
A complete presentation with slightly more general initial-
ization steps is given in Appendix A, for the interested
reader.

Intruder To model the encryption capabilities of the in-
truder, we add a decomposition and a composition rule to
the intruder model. The decomposition rule allows the in-
truder to decrypt a message (or part of a message) when the

decryption key is known.D(enc(k,x)); Key pair(k; k0); M(k0)�! D(x); Key pair(k; k0); M(k0)
The composition rule allows the intruder to encrypt a mes-
sage with any encryption key known to the intruder.M(k); C(x) �! C(enc(k,x)); M(k)
3 Bounded protocols

It is relatively straightforward to use the multiset rewrit-
ing framework summarized in the preceding section to de-
scribe finite-state and infinite-state systems. Using func-
tion symbols, it is possible to describe computation over
unbounded data types. In particular, it is easy to encode
counter machines or Turing machines, implying that impli-
cation is undecidable. However, the principal authentication
and secrecy protocols of interest are all of bounded length
(see [6] for a relevant survey).

In order to study finite-length protocols more carefully,
we identify the syntactic form of a class of well-founded
protocol theories, called simplywell-founded theoriesin
this paper.

3.1 Creation, consumption, persistence

Some preliminary definitions involve the ways that a
fact may be created, preserved, or consumed by a rule.
While multiple copies of some facts may be needed in some
derivations, we are able to eliminate the need for multiple
copies of certain facts.



Definition 1. A rule l ! r in a theoryT createsP facts if
someP (~t) occurs more times inr than inl. A rule l! r in
a theoryT preservesP facts if everyP (~t) occurs the same
number of times inr and l. A rule l ! r in a theoryT
consumesP facts if some factP (~t) occurs more times inl
than inr. A predicateP in a theoryT is persistentif every
rule in T which containsP either creates or preservesP
facts.

To give an example, a rule of formP (~x)! P (~y)
does not preserveP facts, since it can be used to create a
factP (~t) and consume a factP (~s).

Since a persistent fact is never consumed by any rule,
there is no need to generate more than one copy of a par-
ticular fact – as long as that fact is never needed twice by a
single rule. By simple transformation, it is possible to elim-
inate the need for more than one copy of any persistent fact.
For example, a rule of form:P (~x); P (~y); : : :! Q(~x; ~y); P (~x); P (~y); : : :
(with P a persistent predicate) can be replaced by rules of
form:P (~x) ! P1(~x); P (~x)P (~x) ! P2(~x); P (~x)P1(~x); P2(~y); : : : ! Q(~x; ~y); P1(~x); P2(~y); : : :
whereP1 andP2 are persistent predicates.

Definition 2. A rule l ! r in a theoryT is a single-
persistent ruleif all predicates that are persistent in theoryT appear at most once inl. A theoryT is auniform theory
if all rules inT are single-persistent rules.

Since any theory can be rewritten as a uniform theory,
we will assume that all theories discussed from this point
are uniform theories.

Definition 3. Let P be a set of predicates, each persistent
in a uniform theoryT. Two statesS andS0 areP-similar
(denotedS 'P S0) if, after removing all duplicate persistentP facts from each state, they are equal multisets.

Lemma 1. Given a uniform theoryT, P the set of predi-
cates persistent inT,� a substitution, andR a rule that cre-

ates only persistent facts, ifS T!! T is a derivation which
invokes�R more than once, then there exists a derivationS T!! T 0 that invokes�R only once, withT 'P T 0.
3.2 Protocol theories

In many protocols, there is an implicit or explicit ini-
tialization phase that distributes keys or establishes other

shared information. We incorporate this into our formal
definitions by letting a protocol theory consist of an initial-
ization theory, together with the disjoint union of bounded
subtheories that characterize the behavior of each protocol
agent (role). In order to bound the entire protocol, we must
assume that the initialization theory is bounded, and that
initialization can be completed prior to the execution of the
protocol steps proper.

Definition 4. A rule R = l ! r enablesa rulel0 ! r0 if
there exist�; �0 such that some factP (~t) 2 �r is also in�0l0. A theoryT precedesa theoryR if no rule inR enables
a rule inT.

In particular, if a theoryT precedes a theoryR, then no
predicates that appear in the left hand side of rules inT are
created by rules that are inR.

Definition 5. A theoryA is awell-founded principal theory
if it has an ordered set of predicates, called theprincipal role
statesand numberedA0; A1; : : : ; Ak for somek, such that
each rulel ! r contains exactly one state predicateAi 2 l
and one state predicateAj 2 r, with i < j. We call the first
role state,A0, aninitial role state.

By defining a principal theory in this way, we ensure that
each application of a rule inA advances the state forward.
Each instance of a principal role can only result in a finite
number of steps in the derivation.

Definition 6. A theoryS � T is abounded sub-theoryif all
rulesR in S that create a fact fall into one of the following
categories:

1. The facts created byR contain existentials.

2. The facts created byR are initial role states ofT.

3. The facts created byR are persistent inT.

Definition 7. A theoryP is awell-founded protocol theory
if P = I ℄ A ℄ B ℄ C : : : whereI is a bounded sub-theory
(called theinitialization theory) andA;B;C : : : are a finite
number of well-founded principal theories, withI precedingA;B;C : : : .

The structure of protocol theories allows derivations to
be broken down into two stages – the initialization stage,
and the non-initialization (protocol run) stage. Any deriva-
tion in the theory can be reordered to contain all initializa-
tion steps before any non-initialization steps.

Lemma 2. Given a well-founded protocol theoryP = I ℄A, whereI is the initialization theory, andA is the disjoint

union of one or more principal theories, ifS P!! T is a

derivation overP, then there is a derivationS I!! S0 andS0 A!! T , where all rules fromI are applied before any
rules fromA.



3.3 Intruder theory

One motivation for using multiset rewriting for proto-
col analysis is that this framework allows us to use essen-
tially the same theory for all adversaries for all protocols.
In this subsection, we specify the properties of intruder the-
ories that are needed to bound the number of intruder steps
needed to produce a given message. As explained in [7], the
actions of the standard intruder can be separated into two
phases, one in which messages are decomposed into smaller
parts, and one in which these parts are (re)assembled into a
message that will be sent to some protocol agent. An addi-
tional detail is that we sometimes need to postpone decom-
position of a specific fact until a later time, such as until a
decryption key becomes available.

In determining thesizeof a fact, we count the predicate
name, each function name, and each variable or constant
symbol. For example, factP (A;B) has size 3, and factP (f(A;B); C) has size 5.

Definition 8. A rule R = l ! r is a composition ruleif
the non-persistent facts inr have larger size than the facts
in l. A ruleR = l ! r is adecomposition ruleif the non-
persistent facts inr have smaller size than the facts inl.

For example,C(A); C(B) ! C(hA;Bi)
is a composition rule, andD(hA;Bi) ! D(A); D(B)
is a decomposition rule.

For the intruder theories we will consider, we allow per-
sistent facts to appear in both the left and right hand sides.
So, in general a decomposition rule is of form:D(hA;Bi); ~P (: : : )! D(A); D(B); ~P 0(: : : )
where~P and ~P 0 are sets of persistent predicates, with~P �~P 0 (and similarly for composition rules).

We also need to introduce more complicated decompo-
sition rules, which we call “Decomposition rules with Aux-
iliary facts”. These are pairs of rules of form:D(t); ~P (: : : )! ~P 0(: : : ); A(t)
and A(t); ~Q(: : : ) ! ~Q0(: : : ); D(t0)
where ~P � ~P 0, ~Q � ~Q0, andsize(t0) < size(t). Here,A
represents an Auxiliary fact (which can appear only in a pair
of rules of this form) which is used to amortize the decom-
position ofD(t) intoD(t0) across the two rules. Appendix
A.3 shows an example of when this type of decomposition
rule is needed, in order to allow for decrypting an old fact
with a newly learned encryption key.

Definition 9. A theoryT is a two-phasetheory if its rules
can be divided into three disjoint theories,T = I ℄ C ℄ D,
whereI is a bounded sub-theory precedingC andD, C con-
tains only composition rules,D contains only decomposi-
tion rules, and no rules inC precede any rules inD.

Definition 10. A normalized derivationis a derivation
where all rules from the decomposition theory are applied
before any rules from the composition theory.

As also shown in [7] in a slightly different context, all
derivations in a two-phase theory can be expressed as nor-
malized derivations.

Lemma 3. If a theoryT is two-phase, and we limit the size
of terms, and we limit the number of times each existential
is instantiated, then there are a finite number of normalized
derivations in the theory.

3.4 Protocol and intruder

Definition 11. Given a well-founded protocol theoryP =I℄A and a two-phase intruder theoryM, astandard traceis
a derivation which has all steps from the initialization theoryI first, then interleaves steps from the principal theoriesA
with normalized derivations from the intruder theoryM.

Theorem 1. LetP be any well-founded protocol theory andM be any two-phase intruder theory. If we bound the num-
ber of uses of each existential, and we bound the size of each
term, then the set of standard traces ofP [M is finite.

4 Intractability

There are many undecidable properties of arbitrary pro-
tocols. If we consider all possible systems that are defin-
able using Horn logic as protocols, then undecidability fol-
lows easily from the undecidability of Horn-clause logic.
In particular, it is possible to give finite descriptions of
infinite-state systems using function symbols. For exam-
ple, if we have0 : nat andsu : nat ! nat, then we can
write expressions for arbitrarily many natural numbers. It
is straightforward to go from there to various undecidabil-
ity results based on counter machines. However, this kind
of intractability result ignores the fact that most protocols
used in practice have a fixed number of steps and commu-
nicate data of bounded complexity. If we restrict our at-
tention to finite-length protocols, of the form identified in
the previous section, then it does not seem possible to write
protocols whose behavior is as complicated as arbitrary Tur-
ing machines. However, as shown in this section, there are
nontrivial lower bounds if we combine protocols with an
intruder. Throughout this section, we will restrict our at-
tention to runs in which all terms have fewer than some
fixed number of symbols and the protocol principals have
bounded activity.



4.1 Protocols without nonces

Even without generating new data, determining a secu-
rity property may require exponentially-many runs of a pro-
tocol and the decision problem isPSPACE-Complete. The
first result, that there are protocols without nonces where
the shortest insecure run is exponential, is illustrated bythe
following family of protocols, one for each integerk. The
protocol for integerk assumes that a private symmetric keyK is shared between principalsA;B1; :::; Bk andC. (The
same effect can occur achieved in a public key protocol,
by first running secure key exchange steps.) In Table 3 we
show the protocol fork = 4.

In this artificial protocol,A sendsC a message contain-
ing (0; 0; 0; 0) but C will only respond to a message with(1; 1; 1; 1). However, principalsB1; : : : ; Bk implement ak-bit increment on encrypted tuples. Therefore, if an in-
truder routes the initial message fromA through2k � 1 B
principals in repeated runs of the protocol,C will expose
the secret key. It is easy to see that unless an exponential
number of messages are sent, the keyK remains secret.

If we formulate security as a decision problem without
requiring the faulty trace as output, it is easy to show that
the problem isPSPACE-hard by straightforward reduction
from linear-bounded Turing machines. An interesting as-
pect of the protocol above is that it shows that a protocol
can be secure against polynomial-time attack, but consid-
ered insecure under Dolev-Yao assumptions.

4.2 Undecidability

4.2.1 Restricted protocol form

In general, it is convenient to write the steps of a protocol
agentA in the formAi(: : : ); Nj(: : : ); P (: : : ); Q(: : : ); : : :! ~9 : : : :Ak(: : : ); Nk(: : : ); P (: : : ); Q(: : : ); : : :
whereP (: : : ); Q(: : : ); : : : are persistent facts appearing on
the left and right of the rule. However, for the purpose of
proving a stronger negative result, we restrict our attention
to a simpler form of protocol step in this section. Specifi-
cally, we say a protocol theory is inrestricted formif the
constituent principal theories consist only of rules of the
form Ai(: : : ); Nj(: : : ) ! ~9 : : : :Ak(: : : ); N`(: : : )
with one principal role state and one network message on
the left and one principal role state and one network mes-
sage on the right. As with all finite-length protocols, we
assume the states of agentA are given by a finite list of
predicatesA1; : : : ; Aa. We also assume that set of possi-
ble network messages are given by a finite list of predicates

N1; : : : ; Nn, with i < k � a andj < ` � n in each rule of
the form above.

Theorem 2. Secrecy is undecidable for finite-length proto-
cols of restricted form. More specifically, there is no algo-
rithm for deciding whether a given protocol, run in com-
bination with the standard intruder, allows the intruder to
gain access to a given initial secret.

The proof involves representing existential Horn theo-
ries as protocols, as described below. While space limita-
tions prevent us from presenting the proof in detail, we will
sketch the main ideas.

4.2.2 Representation of existential Horn theories

Given a set of existential Horn formulas, of the form de-
scribed in Appendix B and repeated below, we can con-
struct a protocol so that, when combined with the standard
intruder theory, the intruder memory may contain formulas
representing all consequences of the theory.

In order to do this, we must use the intruder in an essen-
tial way. Specifically, each agent can only execute a finite
sequence of steps. Therefore, we use a separate agent for
each Horn clause. The role of the intruder is to convert the
final message sent by one agent to an initial message re-
ceived by another agent. As a result of intruder actions, a
datum may pass through an unbounded number of protocol
steps.

At the same time, in order to represent the Horn theory
faithfully, we cannot give the intruder complete access to
all to atomic formulas used in a Horn clause. In particu-
lar, we cannot let the intruder combine data from different
messages. For example, if one agent sends a message rep-
resentingP (a; b), we cannot allow the intruder to intercept
this message and replace it withP (b; a). However, it is easy
to prevent this form of interference if we encrypt atomic for-
mulas with a shared private key.

Putting these two ideas together, we represent an exis-
tential Horn clause theory by a protocol with one agent per
clause. The agentA for a clause8x1 : : :8xi[(�1 ^ : : : ^ �k)=) 9y1 : : : 9yj(�1 ^ : : : ^ �`)℄
is A0; Na0(d�1 ^ : : : ^ �ke)! 9y1 : : : 9yj : A1; Na1(d�1 ^ : : : ^ �`e)
where the encodingd�1 ^ : : : ^ �ke of a conjunction of
atomic formulas as a single atomic formula is described be-
low.

There are several ways to represent a conjunction of
atomic formulas as a single network message, containing
only one predicate symbol, hidden from the adversary. One



A �! C : (0; 0; 0; 0)KC �! A : if sent(1; 1; 1; 1)K then respondKB1 �! A : if sent(x1; x2; x3; 0)K then respond(x1; x2; x3; 1)KB2 �! A : if sent(x1; x2; 0; 1)K then respond(x1; x2; 1; 0)KB3 �! A : if sent(x1; 0; 1; 1)K then respond(x1; 1; 0; 0)KB4 �! A : if sent(0; 1; 1; 1)K then respond(1; 0; 0; 0)K
Table 3. Rules for exponential protocol, k = 4

way, intended to keep syntactic complication to a mini-
mum, is to assume that for eachk, we have ak-ary encryp-
tion functionEnryptk. For notational simplicity, we will
suppressk in the description below. We also assume that
for each sequence of predicatesP1; : : : ; Pk that occurs to-
gether in the left or right hand side of is a given Horn clause,
we have a constant symbolP1:P2: : : : :Pk. (Although we
have used a sequence of letters, numbers and subscripts to
write out our name for this constant symbol, we assume it
is an atomic constant symbol of the language.) Given these
assumptions, we letdP1(t1;1; : : : t1;i1 ^ : : : ^ Pj(tj;1; : : : ; tj;i1)e= Enrypt(P1:P2: : : : :Pk; t1;i1 ; : : : ; tj;1; : : : ; tj;i1)
We assume that all encryption is done using the same key,
the key is shared among honest participants, but not re-
vealed to the intruder. (It suffices to have one principal exe-
cuting several roles, using a private key.)

The final main idea in the representation of Horn theo-
ries is the way that a set of conjunctions may be combined
to produce the conjunction of atomic formulas needed to
apply another Horn clause. This is perhaps best illustrated
by example.

Suppose that the existential Horn clause8x8y[(P (x) ^Q(x; y) ^ R(y)) =) 9z(P (z) ^Q(y; z)℄
is part of the Horn theory we wish to represent by a protocol.
In order to use this implication, the protocol must produce a
message containingd(P (a)^Q(a; b)^R(b)e for somea andb. However, the protocol agents that represent Horn clauses
produce encodings of conjunctions of atomic formulas, and
the atomic formulas here may come from different rules.
Therefore, we need additional protocol agents that select
atomic formulas out of conjunctions and combine them.

The process is very similar to the encoding of the in-
truder, except that protocol agents can manipulate encrypted
values. For each conjunction form (including variables) that
appears on the right-hand side of a Horn clause, such as

P (z) ^ Q(y; z), we includedecomposition agentsof the
form A0; N0(dP (z) ^Q(y; z)e)! A1; N1(dP (z)e)
andB0; N0(dP (z) ^Q(y; z)e)! B1; N1(dQ(y; z)e)
for predicatesA0; A1; B0; B1 not used for other agents. We
also need acomposition agentfor the left-hand-side of each
original Horn clause. For the clause above, the agent will
have statesA0; A1; A2 andA3. At each step, the agent reads
one of the atomic formulas in its target conjunction, sending
out either a dummy message or, at the last step, a message
containing the conjunction of atomic formulas needed. In
order to assembled(P (x)^Q(x; y)^R(y)e, we can use an
agentA with the following steps:A0; N0(dP (x)e) ! A1(dP (x)e); N1()A1(dP (x)e); N2(dQ(x; y)e)!A2(dP (x) ^Q(x; y)e); N3()A2(dP (x) ^Q(x; y)e); N4(dR(y)e)!A3(); N5(dP (x) ^Q(x; y) ^R(y)e)
After this agent sends messageN5, the intruder can read the
datadP (x)^Q(x; y)^R(y)e contained in this message and
forward it to the agent representing the Horn clause with
hypothesisP (x) ^Q(x; y) ^ R(y).

In each of our examples, we have numbered the network
messagesN0; N1; : : : , but it is possible to renumber them
so that each message number has a fixed format.

5 Multiset rewriting and LLF

5.1 Linear logic and LLF

The multiset-rewriting notation used in this paper is the
first-order Horn fragment of linear logic [14], with existen-
tial quantification. Specifically, each transition ruleA1; : : : ; An �! 9~x:B1; : : : ; Bm



can be written as a linear logic formulaA1 
 : : :
An�Æ9~x:B1 
 : : :
Bm
Under this correspondence, every derivation using multiset
rewriting corresponds to a linear logic derivation, and con-
versely. This allows us to use linear logic tools for proto-
col analysis. In particular, we have used the linear logical
frameworkLLF [5] to simulate the execution of protocols,
detect attacks, and construct formal proofs about protocol
transformations. Similar results could be obtained using
other linear logic systems such asForum[23] orLygon[15],
except that our proofs about protocol transformations rely
on the proof-term representation ofLLF, discussed below.

Since we will describe some aspects of the protocol
proofs carried out using LLF, we give a brief overview of
LLF. Although operators
 and9 are not provided directly
in LLF, it is possible to write rules as logically equivalent
formulas using other linear logic connectives. Although
the exact syntax is not overly important, we give an il-
lustration since it provides an opportunity to illustrate an
operational reading of linear logic formulas. As in other
forms of logic, conjunction in hypotheses,A 
 B�ÆC,
is equivalent to nested implication,A�ÆB�ÆC. There
is also a double-negation property of linear logic, with(A�Æ false)�Æ false equivalent toA, that allows us to write
existential quantification using negated universal quantifi-
cation. In place offalse , we use a propositional vari-
able, which is implicitly universally quantified. This leads
to a form of “continuation-passing” logic program, of the
sort usually associated with double-negation in constructive
logic. Usingloopas our propositional variable, the formulaA1 
 : : :
An�Æ9~x:B1 
 : : :
Bm can be written as the
clause A1�Æ : : : �ÆAn�Æ 8~x:(B1�Æ : : : �ÆBm�Æ loop)�Æ loop

Following conventional logic-programming notation, we
often write this clause with the outer implications reversed:

loop Æ�A1: : :Æ�AnÆ�8~x:(B1�Æ : : : �ÆBm�Æ loop)
This formula may be read operationally as follows: “in or-
der to make an iteration, consumeA1; : : : ; An, generate
new constants~ and substitute them for the variables~x,
then assert the factsB1; : : : ; Bm, and finally try another
rule (clause)”.

5.2 Protocol Formulation in LLF

The signature used to describe protocols uses different
types for messages, keys, nonces, and so on. For example,

we use typekey for both public keys and principal names,
which we identify. Nonces have typeatm , for atomic mes-
sage, while other messages have typemsg. The function
symbols@andk2m are used as type conversion functions
from nonces and keys to messages, respectively. Compos-
ite messages are obtained from their parts using the infix*
operator, and a messageM encrypted with keyK is written
crypt M K. A key K is made public by a fact of the
form annKey K. The inverse of a keyK is specified as
inv K.

Messages sent by a principal have the formtoNet PN M , whereP identifies the protocol,N is the message
number within that protocol, andM is the message itself.
Principals receive messages in packets of the formfrom-
Net P N M . As we will see, both the network and the
intruder can converttoNet assertions tofromNet asser-
tions.

In actual LLF syntax, Alice’s first step in the Needham-
Schroeder protocol is written as follows:

nsA1: loop
o- annKey B
o- a0 A
o- ({Na:atm}

a1 A B (@ Na)
-o toNet ns 1

(crypt ((@ Na) * (@ (k2m A))) B)
-o loop).

HerensA1 is a label, used to name this clause in traces,
andfNa:atm g indicates a quantified variableNa of type
atm .

5.3 Network and intruder

The network simply converts everytoNet assertion into
a fromNet assertion, so that each message sent to the net-
work can be read as message from the network by other
principals. The intruder can intercept a message and de-
compose it into its atomic constituents (of the form@N
or k2m K). The intruder then builds up a message from
these fragments and possibly newly generated data. Finally
it sends it off in the form of afromNet message.

5.4 An equivalence proof

As an example equivalence proof, we describe an opti-
mization of our Needham-Schroeder model and prove the
equivalence between the “standard” model with network
and intruder and an optimized version in which the network
is eliminated. Since the intruder can simulate the network,
by decomposing and then recomposing each message, the
two models are equivalent, in the sense that for every trace
of the system with network and intruder, there is a corre-
sponding trace of the system without the network in which



all honest parties see exactly the same sequences of mes-
sages, and conversely.

We state the equivalence using standard logical notation.
Specifically, we write� ` A if there is a derivationD of
this judgment of linear logic. LetNS , I ,N , andInit be the
multisets of linear logic formulas representing the steps of
the Needham-Schroeder protocol, the intruder, the network,
and the initial facts, respectively. For any pair of principalsA,B in Init , let�AB be the formula�AB = 9xa; xb:A2(A;B; xa; xb)
B2(B;A; xa; xb)
stating that the protocol betweenA andB runs to comple-
tion. We use this formula as an example goal for proof
search; similar equivalences hold for other goals.

Theorem 3 (Equivalence).If there is a derivationD of(NS ; I; N; Init) ` �AB , then there is a derivationD0 of(NS ; I; Init) ` �AB . Moreover, it is the case thatD andD0 contain the same protocol steps in the same order.

5.5 Formal proof in LLF

While LLF is not a complete proof checker, there is a
precise sense in which LLF can be used to develop machine-
checkable proofs. In comparison with proof methods using
more standard logics, e.g. [27], LLF has some advantages
and disadvantages. One advantage is that the constructive
nature of proofs is immediately apparent: from an LLF
proof of the equivalence above, we obtain an algorithm that
transform a trace of one system into a trace of the other.
This is in part a result of the way we formalize the equiva-
lence, and in part a consequence of the constructive nature
of our fragment of linear logic. A disadvantage of LLF is
that it supports only a restricted fragment of linear logic.
Moreover, we must write proofs in a certain style in order
for LLF to be able to check their correctness.

Overview of the proof We wish to prove that for every
trace, possibly relying on the network to carry messages to
principals, there exist an equivalent trace where the network
is never used. We do this by formulating two versions of the
protocol. Traces of the system including a separate network
have typeloop1 , while traces of the system without a net-
work have typeloop2 . Our definition ofequivalenttraces
is that there is no noticeable difference from the point of
view of any honest participant in the protocol: they send and
receive the same messages and apply the same transitions.
The LLF formalization of this proof involves definition of a
binary predicatenet2intr which relates a derivation pos-
sibly involving the network (of typeloop1 ), and a deriva-
tion that is network free (of typeloop2 ). The arguments
of this predicate are LLF terms corresponding to derivations
and therefore representing traces. The proof of equivalence

proceeds by induction on the structure of the derivation us-
ing the network, using a nested induction on the structure
of the messages whenever we encounter a network trans-
mission.

LLF proof checking The LLF equivalence proof consists
of clauses that formalize each inductive case of the proof.
While LLF checks the type of each clause, type checking
does not guarantee that the proof is correct since (a) the
LLF implementation does not guarantee that each case is
covered, and (b) it does not check whether uses of the induc-
tion hypothesis are well-founded. However, we can prove
an adequacy theorem which shows that any type-checked
proof of a certain form must be a correct proof.

In order to state this result, we write� `LLF M : A for
the judgment that the LLF termM has typeA with respect
to the (intuitionistic and linear) declarations in�. Let�NS
be the complete set of declarations used in the equivalence
proof.

Theorem 4 (Adequacy of representation).Let A and B
be principals inInit , and�AB defined as above� There is a bijection between derivationsD of(NS ; I; N; Init) ` �AB and LLF termsM such�NS `LLF M : loop1 is derivable,� There is a bijection between derivationsD0 of(NS ; I; Init) ` �AB and LLF termsM 0 such that�NS `LLF M 0 : loop2 is derivable,� For every termM such that�NS `LLF M : loop1

is derivable, there exist termsM 0 and P such that�NS `LLF M 0 : loop2 and �NS `LLF P :
net2intrM M 0 are derivable.

The termsM andM 0 above contain the same sequences of
protocol steps, and the sametoNet andfromNet tokens,
in the same order.

6 Conclusion

We believe that a logic-based formalism as described in
this paper, with existential quantification for choosing new
values, provides a useful notation for examining the stan-
dard Dolev-Yao protocol security assumptions. Using this
formalism, we can describe all protocols we have encoun-
tered by formulating a rewrite rule (or several related rules)
for each step of each principal. In addition, we have devel-
oped standard theories (sets of rewrite rules) for initializa-
tion steps such as generating and announcing public keys,
and for the nondeterministic Dolev-Yao intruder. This gives
us a set of conventions for describing protocols and provides
the basis for developing general theorems and techniques
for protocol analysis.



There are several advantages and intentional disadvan-
tages of the formalism used in this paper. The intent of
the design is that this formalism provides exactly the prim-
itives needed to formalize protocols, no more. This makes
it possible to analyze protocols without having to confront
complications that might be inherent in a formalism but not
intrinsic to protocols themselves. In particular, we are able
to prove lower bounds on protocol analysis that seem faith-
ful to the notion of finite-length protocol. Since the formal-
ism is based on linear logic, we have a direct method for
describing state changes. In contrast, axiomatizing protocol
traces in higher-order logic requires rather complex condi-
tions to guarantee that when a principal moves from one
state to another, the previous state is no longer available for
further use. In comparison with using CSP [18, 28, 29] or
Mur' [25], our notation allows us to describe unbounded
runs of the protocol simply, recovering bounded instances
of th protocol by restricting the uses of existential quantifi-
cation. Perhaps the closest formalism is spi-calculus [1].
However, there are several characteristics of the underly-
ing pi-calculus, such as creation of new channels, that are
absent from our system, making it simpler to prove meta-
theoretic results. Finally, we should make clear that the for-
malism presented in this paper is not intended to be a logic
for specifying and reasoning about protocols, only a nota-
tion for defining the behavior of a protocol in the face of
network intruder.

We have found the linear-logic toolLLF useful for rea-
soning about protocols. As a first step toward developing an
algorithmic meta-theory of protocols, we have proved cor-
rectness of a protocol/intruder optimization using this tool.
We expect to develop and verify additional optimizations
and transformations. In addition to meta-results,LLF also
seems useful for searching the possible runs of a protocol
and intruder. While we do not expect pureLLF to be more
efficient or more comprehensive than tools such as the NRL
analyzer [21] that have been refined over many years, there
is some benefit in the simplicity of the tool. If we can im-
prove our search-strategy language to make it more effec-
tive in common cases, then this may lead to better under-
standing of general techniques that could be adopted in a
variety of settings.

Finally, although not discussed in this paper, we believe
that there may be some advantage in developing translations
between the notation used here and other standard proto-
col formalisms. We believe the translation into Mur' is
straightforward and easy to implement, as is a translation
into process calculus with� operator [12]. On this basis,
we believe there may be practical translations into CSP, for
example, based on choosing bounds on the number of new
values that are to be generated in any run. It also seems
feasible to translate protocol definition languages such as
CASPER [19] and CAPSL [22] into this formalism, mak-

ing it possible to use our framework as an intermediate lan-
guage in some kind of federated protocol analysis environ-
ment.
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A Example: Needham-Schroeder Public Key
Protocol

As an example, we give the full theory of the three-step
core of the Needham-Schroeder public-key protocol.A �! B : fA;NagKbB �! A : fNa; NbgKaA �! B : fNbgKb

Note that this is a simplified version of the protocol,
where the use of a trusted server to distribute the public keys
is omitted. This results in a particularly straightforwardrep-
resentation for the Initialization and Protocol Theories.

A.1 Initialization Theory

The Initialization Theory is shown in Table 4. Here, the
predicateGoodGuy indicates an uncompromised principal,
parameterized by its encryption and decryption (public and
private) keys. For simplicity, we identify the principal with
its public key (i.e. where “A” appears in the protocol, we
use the public key “Ka”). The GOODGUY rule allows for
the creation of an unlimited number of principals, each with
a unique key pair, denoted by the predicateKP .

The BADKEY rule provides a mechanism for specify-
ing an unlimited number of compromised key pairs, which
appear to belong to valid principals, but whose private keys
are known to the intruder. The predicateBadKey denotes
these compromised key pairs.

ROLA and ROLB allow an unlimited number of sessions
to be started for any principal to act in the role of either “Al-
ice” (the initiator) or “Bob” (the responder).A0 andB0
denote the initial role state for the A and B roles, respec-
tively, parameterized by the public key (principal) actingin
that role.

Since we are omitting the trusted server from this exam-
ple, we accomplish key distribution by having the principals
announce their keys. The ANNK rule accomplishes this for
theGoodGuy participants, while the ANNKB rule does the
same for theBadKey pairs. Note that both rules generate
a predicateAnnK indicating a public key that is available
for communication, so from this point the valid participants
can’t distinguish the good guys from the bad guys.

Note that in this initialization theory, all predicates are
persistent except for initial role statesA0 andB0.
A.2 Protocol Theory

The protocol theories, shown in Table 4, are derived
directly from the specification of the Needham-Schroeder
protocol. TheoryA corresponds to the role of “Alice”, and
theoryB corresponds to “Bob”.

In rule A1, which corresponds to the first line of the pro-
tocol, a principalke, in its initial stateA0, decides to talk
to another principalk0e, whose key has been announced. A
new noncex is generated, along with a network messageNS1 corresponding to the first message sent in the protocol,
and the principal moves to the new state A1, remembering
the values ofx andk0e. Note that sinceAnnK is persistent,
it must also appear on the right hand side of the rule.

In step B1, corresponding to the second step of the pro-
tocol, a principalke, in the initial stateB0, responds to a



Initialization Theory I:
GOODGUY: ! 9ke:kd:GoodGuy(ke; kd);KP(ke; kd)
BADKEY: ! 9ke:kd:KP(ke; kd);BadKey(ke; kd)
ROLA: GoodGuy(ke; kd) ! GoodGuy(ke; kd); A0(ke)
ROLB: GoodGuy(ke; kd) ! GoodGuy(ke; kd); B0(ke)
ANNK: GoodGuy(ke; kd) ! AnnK (ke);GoodGuy(ke; kd)
ANNKB: BadKey(ke; kd) ! AnnK (ke);BadKey(ke; kd)

Protocol TheoriesA andB:

A1: AnnK (k0e); A0(ke) ! 9x:A1(ke; k0e; x); NS1(en(k0e; hx; kei));AnnK (k0e)
A2: A1(ke; k0e; x); NR2(en(ke; hx; yi)) ! A2(ke; k0e; x; y); NS3(en(k0e; y))
B1: B0(ke); NR1(en(ke; hx; k0ei));AnnK (k0e) ! 9y:B1(ke; k0e; x; y); NS2(en(k0e; hx; yi));AnnK (k0e)
B2: B1(ke; k0e; x; y); NR3(en(ke; y)) ! B2(ke; k0e; x; y)

Table 4. Needham Schroeder Theory

message on the network which is of the expected format
(i.e. encrypted withke’s public key, and with the identity
of a participant whose key has been announced, embedded
inside).ke generates another nonce, and replies to the mes-
sage, moving to a new stateB1 where all the information
(the two nonces and the two principals) is remembered.

Similarly, A2 corresponds to the third line of the pro-
tocol, and B2 corresponds to the implicit step where the
responder actually receives the final message.

Note that sent messages are denoted byNSi and received
messages are denoted by a corresponding predicateNRi.
The intruder theory, described in the next section, can be
thought of as providing a network that, at a minimum, trans-
formsNSi’s toNRi’s, so the protocol can execute.

A.3 Intruder Theory

The Intruder Theory is shown in Table 5. Here theM
predicate denotes persistent facts known to the intruder,
whileD andC represent non-persistent facts which can be
decomposed and composed into other facts.

LRNKB is an initialization rule that allows the intruder
to learn any Bad Keys. SinceBadKey predicates are gener-
ated only by the initialization theory, we know from Lemma
1 that this rule only needs to be applied once per derivation,
perBadKey fact.

The REC and SND rules are used to connect the intruder
to the network being used by the participants. The REC
rule intercepts a message from the network and saves it as
a decomposable fact. The SND rule sends composed facts
onto the network.

The COMP rule allow the user to compose small terms

into larger ones, while the DCMP rule allows for decompo-
sition of large terms into smaller ones..

LRN converts a decomposable fact into intruder knowl-
edge, and USE converts intruder knowledge into a compos-
able fact.

The ENC and DEC rules allow the intruder to decrypt
a message if it knows the private key, and to generate en-
crypted message from known public keys.

Note that LRNA and DECA are decomposition rules
with auxilliary facts that handle a special case for encrypted
messages. If the message can’t be decrypted because the
key isn’t currently known, LRNA remembers the decrypted
message with the special “Auxilliary” predicate,A. The
DECA rule allows Auxilliary messages to be decrypted at a
later time, if the decryption key becomes known.

Finally, GEN allows the intruder to generate new facts
(i.e. nonces) as needed.

This Intruder Theory can be divided into Composition
and Decomposition rules, as shown in Table 5. So, this is a
Two-Phase Intruder Theory, as described in Section 3.3.

B Horn Clauses with Existential Quantifica-
tion

An existential Horn clauseis a closed first-order formula
of the form 8x1 : : :8xi[(�1 ^ : : : ^ �k)=) 9y1 : : : 9yj(�1 ^ : : : ^ �`)℄
where�1; : : : ; �k; �1; : : : ; �` are first-order atomic formu-
las. Without restriction on the form of the atomic formu-
las, undecidability of the implication problem for existen-



Initialization Rules:
LRNKB: BadKey(ke; kd) ! M(ke);M(kd);BadKey (ke; kd)

I/O Rules:
REC: NSi(x) ! D(x)
SND: C(x) ! NRi(x)

Decomposition Rules:
DCMP: D(hx; yi) ! D(x); D(y)
LRN: D(x) ! M(x)
DEC: M(kd);KP(ke; kd); D(en(ke; x)) ! M(kd);KP(ke; kd); D(x);M(en(ke; x))
LRNA: D(en(ke; x)) ! M(en(ke; x)); A(en(ke; x))
DECA: M(kd);KP(ke; kd); A(en(ke; x)) ! M(kd);KP(ke; kd); D(x)

Composition Rules:
COMP: C(x); C(y) ! C(hx; yi)
USE: M(x) ! C(x);M(x)
ENC: M(ke); C(x) ! C(en(ke; x));M(ke)
GEN: ! 9x:M(x)

Table 5. Two-Phase Intruder Theory

tial Horn clauses follows immediately from the undecid-
ability of Horn clauses without existential quantifiers. The
problem of interest to us, however, is implication when the
atomic formulas contain no function symbols.

The formulas we are interested in are a special case of
database dependencies [2]. However, while database de-
pendencies include existential quantification and do not in-
volve function symbols, database dependencies also allow
equality in the conclusions of Horn clauses. Since we do
not use equality in our protocols (except by pattern match-
ing in the hypotheses of rules), it is not immediately clear
to us whether the following theorem is a consequence of
standard results in database dependency theory.

Theorem 5. The implication problem for existential Horn
clauses without function symbols is undecidable. In par-
ticular, there is no algorithm for deciding whether a set of
existential Horn clauses without function symbols impliesa
single atomic formulaA(b1; : : : ; bk) without function sym-
bols or variables.

This theorem has a straightforward direct proof based
on axiomatizing a Cook’s-theorem-style Turing machine
tableau. Specifically, given any Turing machine, we write

axioms of the form8x; y; z:[(Adj(x; y) ^ Adj(y; z)^Cont(x; 0) ^ Cont(y; 1:qi) ^ Cont(z; 1))=) 9x0; y0; z0((Adj(x0; y0) ^ Adj(y0; z0)^Below(x0; x) ^ Below(y0; y) ^ Below(z0; z))^Cont(x0; 0:qj) ^ Cont(y0; 0) ^ Cont(z; 1))
In this formula, the variables represent cells of the Turing
machine tableau (i.e., cells of the tape at some stage of the
computation); a nice picture of the tableau we use appears
in [30, page 255]. The constants0 and1 indicate symbols
in these cells, and constants of the form0:qi or 1:qj indicate
that the cell contains a symbol0 or 1 and is the location
of the tape head, with machine in stateqi or qj (respec-
tively). A factAdj(x; y) means that cellx is adjacent toy,Below(x0; x) that cellx0 is below cellx, andCont(x; ) that
the cellx has contents described by constant, possibly giv-
ing the machine state in addition to the symbol contained in
the cell. The atomic formulaA(b1; : : : ; bk) mentioned in
the statement of the theorem can be an atomic formula that
is derivable by a rule that requires, in its hypothesis, thatthe
Turing machine is in a halting state.


