Combining Theorem Proving and Model
Checking through Symbolic Analysis *

Invited Paper at CONCUR 2000

Natarajan Shankar

Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA
{shankar }@csl.sri.com
URL: http://www.csl.sri.com/ shankar/
Phone: +1 (650) 859-5272

Abstract. Automated verification of concurrent systems is hindered by
the fact that the state spaces are either infinite or too large for model
checking, and the case analysis usually defeats theorem proving. Com-
binations of the two techniques have been tried with varying degrees
of success. We argue for a specific combination where theorem proving
is used to reduce verification problems to finite-state form, and model
checking is used to explore properties of these reductions. This decom-
position of the verification task forms the basis of the Symbolic Analysis
Laboratory (SAL), a framework for combining different analysis tools for
transition systems via a common intermediate language. We demonstrate
how symbolic analysis can be an effective methodology for combining de-
duction and exploration.

The verification of large-scale concurrent systems poses a difficult challenge
in spite of the substantial recent progress in computer-aided verification. Tech-
nologies based on model checking [CGP99] can typically handle systems with
states that are no larger than about a hundred bits. Techniques such as symme-
try and partial-order reductions, partitioned transition relations, infinite-state
model checking, represent important advances toward ameliorating state explo-
sion, but they have not dramatically increased the overall effectiveness of au-
tomated verification. Model checking does have one advantage: it needs only a
modest amount of human guidance in terms of the problem description, possi-
ble variable orderings, and manually guided abstractions. Verification based on
theorem proving, on the other hand, requires careful human control by way of
suitable intermediate assertions, invariants, lemmas, and proofs. Can automated
verification ever combine the automation of model checking with the generality
of theorem proving?

* This work was funded by DARPA Contract No. F30602-96-C-0204 Order No. D855
and NSF Grants No. CCR-9712383 and CCR-9509931.

! The SAL project is a collaborative effort between Stanford University, SRI Interna-
tional, and the University of California, Berkeley.

It has often been argued that model checking and theorem proving could be
combined so that the former is applied to control-intensive properties while the
latter is invoked on data-intensive properties. Achieving an integration of theo-
rem proving and model checking is not hard. Both techniques verify claims that
look similar and it is possible to view model checking as a decision procedure for
a well-defined fragment of a specification logic [RSS95]. However, most systems
contain a rich interaction between control and data so that there is no simple
decomposition between data-intensive and control-intensive properties.

For the purpose of this paper, we view model checking as a technique for
the verification of temporal properties of a program based on the exhaustive ex-
ploration of a transition graph represented in explicit or symbolic form. Model
checking methods typically use graph algorithms, automata-theoretic construc-
tions, or finite fixed point computations. Theorem proving is usually based on
formalisms such as first-order or higher-order logic, and employs proof techniques
such as induction, rewriting, simplification, and the use of decision procedures.
Some infinite-state verifiers and semi-decision procedures can be classified as
both deductive and model checking techniques, but this ambiguity can be over-
looked for the present discussion.

We make several points regarding the use of theorem proving and model
checking in the automated verification of concurrent systems:

1. Correctness is over-rated. The objective of verification is analysis, i.e., the
accretion of useful observations regarding a system. Verifying correctness is
an important form of analysis, but correctness is usually a big property of
a system that is demonstrated by building on lots of small observations. If
these small observations could be cheaply obtained, then the demonstration
of larger properties would also be greatly simplified. The main drawback of
correctness is its exactitude. The verification of a correctness claim can only
either fail or succeed. There is no room for approximate answers or partial
information.

2. Theorem proving is under-rated. Deduction remains the most appropriate
technology for obtaining insightful, general, and reusable automation in the
analysis of systems, particularly those that are too complex to be analyzed
by a blunt instrument like model checking. Theorem proving can exploit the
mathematical properties of the control and data structures underlying an
algorithm in their fullest generality and abstractness

3. Theorem proving and model checking are very similar technigques. In the ver-
ification of transition systems, both techniques employ some representation
for program assertions, they compute the image of the transition relation
with respect to these assertions, and usually try to compute the least, great-
est, or some intermediate fixed point assertion for the transition relation.

The difference is that in theorem proving,
— The image constructions are usually more complicated since they involve

quantification in domains where quantifier elimination is either costly or
impossible.

— The least and greatest fixed points can seldom be effectively computed
and human guidance is needed to suggest an intermediate fixed point.

— Showing that one assertion is the consequence of another is typically

undecidable and requires the use of lemmas and human insight.
4. Theorem proving and model checking can be usefully integrated. Such an

integration requires a methodology that decomposes the verification task so

that
— Deduction is used to construct valid finite-state abstractions of a system.

The construction of a property-preserving abstraction generates simple
proof obligations that can be discharged, often fully automatically, using
a theorem prover. These are typically assertions of the form: if property
p holds in a state s from which there is a transition R to a state s’, then
property ¢ holds in s’. Similar proof obligations arise during verification
(in the form of verification conditions) but these are usually not valid
and the assertions have to be strengthened in order to obtain provable
verification conditions. While theorem proving is useful for examining
the local consequence of properties, it is not very effective at deducing
global consequences over a large program or around an iterative loop.
Such computations can be extremely inefficient and the computation of
fixed points around a loop rarely terminates.

— Ezploration by means of model checking is used to calculate global prop-
erties of such abstractions. This means that model checking is not used
merely to validate or refute putative properties but is actually used to
calculate interesting invariants that can be extracted from the reacha-
bility predicate or its approximations. Finite-state exploration of large
structures can also be inefficient but it is much easier to make finite-state
computations converge efficiently.

— Deduction is used to propagate the consequences of such properties. For
example, model checking on a finite-state abstraction might reveal an
assertion x > 5 to hold at a program point simply because it was true
initially and none of the intermediate transitions affected the value of .
If the program point has a successor state that can only be reached by a
transition that increments x by 2, then we know that this successor state
must satisfy the assertion > 7. Such a consequence is easily deduced
by theorem proving.

In summary, we advocate a verification methodology where deduction is em-
ployed in the local reasoning steps such as validating abstractions and propagat-
ing known properties, whereas model checking is used for deriving global con-
sequences. In contrast, early attempts to integrate theorem proving and model
checking were directed at using model checking as a decision procedure within
a theorem prover. These attempts were not all that successful because it is not
common to find finite-state subgoals within an infinite-state deductive verifica-
tion.

1 Background

We review some of the background and previous work in the combined use of
theorem proving and model checking techniques.

1.1 Model Checking as a Decision Procedure

Joyce and Seger combined the theorem prover HOL [GM93] with the symbolic
trajectory evaluation tool Voss [JS93] by treating the circuits verified by Voss
as uninterpreted constants in HOL. This integration is somewhat ad hoc since
the definitions of the circuits verified by Voss are not available to HOL. Dingel
and Filkorn [DF95] use a model checker to establish assume-guarantee proper-
ties of components and a theorem prover to discharge the proof obligations that
arise when two components are composed. Rajan, Shankar, and Srivas [RSS95]
integrate a mu-calculus [Par76,BCM*92] model checker [Jan93] as a decision
procedure for a fragment of the PVS higher-order logic corresponding to a fi-
nite mu-calculus. While this integration smoothly incorporates CTL and LTL
model checking into PVS, the work needed to reduce a problem into model-
checkable form can be substantial. This integration has recently been extended
with an algorithm for constructing finite-state abstractions of mu-calculus ex-
pressions [SS99].2

1.2 Extending Model Checking with Lightweight Theorem Proving

Several alternative approaches to the integration of model checking and theorem
proving have emerged in recent years. Some of these have taken the approach of
supplementing a model checker with a proof assistant that provides rules for de-
composing a verification goal into model-checkable subgoals. McMillan [McM99]
in his work with Cadence SMV has extended the SMV model checker with the
following decomposition rules that are used to reduce infinite-state systems to
model-checkable finite-state ones.

1. Temporal splitting: Transforms a goal of the form O(Vi: A) into Ov =i D A
for each 1.

2. Symmetry reduction: Typically, the system being verified and the property
are symmetric in the choice of i so that proving Ov = i D A for a sin-
gle specific value for i is equivalent to proving it for each i. Examples of
such symmetric choices include the memory address or the processor in the
verification of multiprocessor cache consistency.

3. Data abstraction: Large or infinite datatypes can be reduced to small finite
datatypes by suitably reinterpreting the operations on these datatypes. For
example, with respect to the choice of 7 in temporal splitting, the remaining
values of the datatype can be abstracted by a single value non-i.

4. Compositional verification: The verification of P||Q |E A A B is decomposed
as P = (B U —A) (B fails before A does) and) = —(A U —B). This
allows different components to be separately verified up to time ¢ + 1 by
assuming the other components to be correct up to time t.

These and other proof techniques have been used to verify an out-of-order
processor, a large cache coherence algorithm, and safety and liveness for a ver-
sion of Lamport’s N-process bakery algorithm for mutual exclusion [MQS00].

2 These features are part of PVS 2.3 which is accessible at the URL pvs.csl.sri.com.

McMillan’s approach is substantially deductive. The rules of inference, such as
symmetry reduction and compositional verification, are specialized but quite
powerful.

Seger [Seg98] has extended the Voss tool for symbolic trajectory evaluation
with lightweight theorem proving. Symbolic trajectory evaluation (STE) which is
a limited form of linear temporal logic model checking. A few simple proof rules
are used to decompose proof obligations on the basis of the logical connectives
such as conjunction, disjunction, and implication. These rules can be used to
decompose a large model checking problem into smaller ones.

1.3 Abstraction and Model Checking

Abstraction has been studied in the context of model checking as a technique
for reducing infinite-state or large finite-state models to finite-state models of
manageable size [BBLS92,Kur94, CGL94,LGST95,Dam96,BLO98].

Some of the work on abstraction is based on data abstraction where a vari-
able X over a concrete datatype T is mapped to a variable z over an abstract
type t. For example, a variable over the natural numbers could be replaced by
a boolean variable representing the parity of its value. Clarke, Grumberg, and
Long [CGL94] gave a simple criterion for abstractions that preserve VCT L**
properties. Let the concrete transition system be given by (I, N¢) where I is
the initialization predicate and N is the next-state relation. Then the verifica-
tion of a concrete judgement (I, N¢) |= Pco can be reduced by means of the ab-
straction function « to the verification of an abstract judgement (I4, Na) |= Pa
provided

1. IcCljoa
2. No E Ny o {a,q)
3. PoaC P

Data abstraction has the advantage that the abstract description can be
statically constructed from the concrete program. The drawback is that many
useful abstractions are on relations between variables rather than on individual
variables.

Graf and Saidi [SG97] introduced predicate abstraction as a way of replac-
ing predicates or relations over a set of variables by the corresponding boolean
variables. For example, given two variables x and y over the integers, and the
predicate x < y over these variables, predicate abstraction would replace the
variables x and y by a boolean variable b that represents the behavior of the
predicate.

The application of predicate abstraction makes significant use of theorem
proving. Graf and Saidi used predicate abstraction to construct an abstract
reachability graph for a concrete program by a process of elimination. If a rep-
resent an abstract state, a’ a putative successor, y(a) the concrete state corre-
sponding to a, and y(a') the concrete state corresponding to a', then if

~v(a) 2 wp(P)(=(v(a)))

is provable, the corresponding transition between a and a’ can be ruled out.?
However, if a proof attempt fails, the corresponding successor node can be con-
servatively included in the abstract reachability graph. Using predicate abstrac-
tions with the PVS theorem prover [ORS92], Graf and Saidi [SG97] were able to
verify a variant of the alternating bit protocol called the bounded retransmission
protocol [HSV94]. Das, Dill, and Park [DDP99] extended this technique using
the SVC decision procedures [BDL96] and were able to verify such impressive
examples as the FLASH cache coherence protocol, and a cooperative garbage
collector.

Predicate abstraction can also be used to construct an abstract transition
relation instead of the abstract reachability graph. It is typically less expen-
sive to construct the abstract transition relation since fewer proof obligations
are generated, but it typically results in a coarser abstraction than one that
is obtained by directly computing the abstract reachability graph. In the lat-
ter construction, information about the current set of abstract reachable states
can be used to rule out unreachable successor states. Bensalem, Lakhnech, and
Owre [BLO98] describe an abstraction tool called InVeSt that uses the elimi-
nation method to construct an abstract transition system from a concrete one
in a compositional manner. Colon and Uribe [CU98] give another compositional
method for constructing abstractions with the framework of the STeP theorem
prover [MtSG95].

All of the above abstraction techniques preserve only YCTL** proper-
ties, namely those in the positive fragment of CTL* with universal path
quantification. For more general calculi, criteria for abstractions that preserve
CTL* [DGGY4] and mu-calculus [LGST95], but these results are quite technical.
Saidi and Shankar [SS99] gave a simple method for constructing predicate ab-
stractions over the full relational mu-calculus [Par76]. The two key observations
in this work are:

1. The operators of the mu-calculus are monotonic with respect to upper and
lower approximations.

2. The over-approximation of a literal (an atomic formula or its negation) can
be efficiently computed in conjunctive normal form by using a theorem prover
as an oracle.

Verification diagrams [MBSU99] can also be seen as a form of predicate ab-
straction. These diagrams employ graphs whose nodes are labeled by assertions
and the edges correspond to program transitions within the diagram. Properties
can be directly checked with respect to the verification diagram.

The primary advantage of predicate abstraction is that it is sufficient to
guess a relevant predicates without having to guess the exact invariant in these
predicates. For n predicates, the construction of the abstract transition system

3 All programs are assumed to be total as transition system, i.e., the domain of the
next-state relation is the set of all states. Thus, wp(P)(A) is the set of states that
have no transitions in P to states in —A. The dual notion sp(P)(A) is the set of
states reachable from some state in A by a transition of P.

generates of the order of 2™ proof obligations. The resulting abstract model can
also be model checked in time that is exponential in n to yield useful invariants.
With deduction, there are 22" hoolean functions that are candidate invariants
in these n predicates so that it is harder to guess suitable invariants.

1.4 Automatic Invariant Generation

Automatic invariant generation has been studied since the
1970s [CH78,GW75,KM76,5177]. This study has recently been revived
through the work of Bjgrner, Browne, and Manna [BBM97], and Bensalem,
Lakhnech, and Saidi [BLS96,5a196,BL99].

The strongest invariant of a transition system P is given by the least fixed
point starting from the initial states of P of the strongest postcondition operator
for P, uX.Ip V sp(P)(X). If this computation terminates, it would yield the set
of reachable states of P which is its strongest invariant. Unfortunately, the least
fixed point computation rarely terminates for infinite-state systems. A program
with a single integer variable z that is initially 0 and is repeatedly incremented
by one, yields a nonterminating least fixed point computation. Widening tech-
niques [CCT77] are needed to accelerate the fixed point computation so that it
does terminate with a fixed point that is not necessarily the least one.

A different, more conservative approach to invariant generation is given
by the computation of the greatest fixed point of the strongest postcondition
vX.sp(P)(X). For example, a greatest fixed point computation on a program
with a single variable x and a single guarded transition © > 0 — z 1=z + 1
would terminate and yield the invariant > 0. The greatest fixed point invari-
ant computation also may not terminate and could require narrowing as a way
of accelerating termination. However, one could stop the greatest fixed point
computation after any bounded number of iterations and the resulting predicate
would always be a valid invariant.

Dually, a putative invariant p can be strengthened to an inductive one by
computing the greatest fixed point with respect to the weakest precondition
of the program of the given invariant vX.p A wp(P)(X). If this computation
terminates, the result is an invariant that is inductive.

Automatic invariant generation is not yet a successful technology. Right now,
it is best used for propagating invariants that are computed from other sources
by taking the greatest fixed point with respect to the strongest post-condition
starting from a known invariant. However, as theorem proving technology be-
comes more powerful and efficient, invariant generation is likely to be quite a
fruitful technique.

2 Symbolic Analysis

Symbolic analysis is simply the computation of fixed point properties of programs
through a combination of deductive and explorative techniques. We have already
seen the key elements of symbolic analysis as

1. Automated deduction, in computing property preserving abstractions and
propagating the consequences of known properties.

2. Model checking, as a means of computing global properties of by means of
systematic symbolic exploration. For this purpose, model checking is used for
actually computing fixed points such as the reachable state set, in addition
to verifying given temporal properties.

3. Invariant generation, as a technique for computing useful properties and
propagating known properties.

2.1 SAL: A Symbolic Analysis Laboratory

SAL is a framework for integrating different symbolic analysis techniques in-
cluding theorem proving and model checking. The core of SAL is a description
language for transition systems. The design of this intermediate language has
been influenced by SMV [McM93], UNITY [CM88], Murphi [MD93], and Reac-
tive Modules [AH96]. Transition systems described in SAL consist of modules
with input, output, global, and local variables. Initializations and transitions
can be either specified by definitions of the form wvariable = expression or by
guarded commands. The assignment part of a guarded command consists of as-
signments of the form z’' = expression, meaning the new value of z is the value
of the expression, as well as selections z' € set, meaning the new value of x
is nondeterministically selected from the value of the nonempty set set. SAL is
a synchronous language in the spirit of Esterel [BG92], Lustre [HCRP91], and
Reactive Modules [AH96], in the sense that transitions can depend on latched
values as well as current inputs. SAL modules can be composed by means of

1. Binary synchronous composition P||@) whose transitions consist of lock-step
parallel transitions of P and).
2. Binary asynchronous composition P []) whose transitions are the interleav-
ing of those of P and Q.
. N-fold synchronous composition (|| (i) : P[i])
4. N-fold asynchronous composition ([] (i) : PJi])

w

The implementation of SAL is still ongoing. The version to be released some
time in 2000 will consist of a parser, typechecker, translators to SMV and PVS,
a translator to Java (for animation), and a translator from Verilog, among other
tools.

Since the SAL implementation is still incomplete, we informally describe some
examples that motivate the need for a symbolic analysis framework integrating
abstraction, invariant generation, theorem proving, and model checking.

2.2 Analysis of a Two Process Mutual Exclusion Algorithm

As a first example, we use a simplified 2-process version of Lamport’s Bakery
algorithm for mutual exclusion [Lam74]. The algorithm consists of two processes
P and) with control variables pep and peq, respectively, and shared variables

z and y. The control states of these processes are either sleeping, trying,
or critical. Initially, pcp and pcq are both set to sleeping and the control
variables satisfy x = y = 0. The transitions for P are

pcp = sleeping — ' =y + 1; pep’ = trying
pep = trying A (y =0V z < y) — pep’ = critical
ying
pep = critical — 1’ = 0; pcp’ = sleeping

Similarly, the transitions for) are

pcq = sleeping — y' = x + 1; pe¢’ = trying
[| peq = trying A (x =0V y < z) — pc’ = critical
] peq = critical — y' = 0; pcq' = sleeping

The invariant we wish to establish for P[] @ is —(pcp = critical A peq =
critical. Note that P[] @ is an infinite-state system and in fact the values of
the variables z and y can increase without bound. We can therefore attempt to
verify the invariant by means of a property-preserving predicate abstraction to
a finite-state system.

The abstraction predicates suggest themselves from the initializations,
guards, and assignments. We therefore abstract the predicate x = 0 with the
boolean variable zq, the predicate y = 0 with the boolean variable yo, and the
predicate z < y with the boolean variable zy. The resulting abstract system can
be computed as P’ and @', where in the initial state, g A yo A —ay, and the
transitions for P’ are

pep = sleeping — xy = false; zy' = false; pep' = trying;
[| pcp = trying A (yo V zy) — pcp' = critical;
pep = critical —) = true; zy’ € {true, false}; pcp’ = sleeping;

The transitions for Q" are

peq = sleeping — y|, = false; zy’' = true; pcg’ = trying;
[| pcq = trying A (xo V —azy) — pep’ = critical;
] pep = critical — y = true; zy’ = false; pcp' = sleeping;

Model checking the abstract system P'[] Q' easily verifies the invariant
—(pep = critical A peq = critical).

The theorem proving needed to construct the abstraction is at a trivial level
that can be handled automatically by the decision procedures over quantifier-
free formulas in a combination of theories [RS00]. Such decision procedures
are present in systems like PVS [ORS92], ESC [Det96], SVC [BDL96], and
STeP [MtSG95]. The above example can be verified fully automatically by means
of the abstract-and-model-check command in PVS [SS99].

2.3 Analysis of an N-Process Mutual Exclusion Algorithm

We next examine a fictional example, namely, one that has not been mechanically
verified by us. This example is a simplified form of the N-process Bakery algo-
rithm due to Lamport [Lam74]. The description below shows a hand-executed
symbolic analysis.

In this version of the Bakery algorithm, there are N processes P(0) to
P(N —1), with a shared array z of size N over the natural numbers. The logical
variables i, j, and k range over the subrange 0..(N — 1). The operation maz(z)
returns the maximal element in the array x. Initially, each P(7) is in the control
state sleeping, and for each i, z:(i) = 0. Let (z,i) < (y,j) be defined as the lex-
icographic ordering x < y V (z = y Ai < j). We abbreviate y = 0V (z,1) < (y, j)
as (z,1) 2 (y, J)-

The transitions of processes P(i) for 0 < i < N are interleaved and each
non-stuttering transition executes one of the following guarded commands.

pe(i) = sleeping — x'(i) = 1 4+ maz(z);
pc'(i) = trying;
[pc(i) =trying — pc'(i) = critical;

A (V5 2 (i), i) < (2(5), 5)
[pe(i) = critical — ' (i) = 0;
pcl(i) = sleeping;

We want to prove the invariance property
(Vi : pe(i) = critical D (Vj: pe(j) = critical D i = j)). (1)

Invariant generation techniques can be used to generate trivial invariants
such as

(Vi : z(i) = 0 iff pe(i) = sleeping). (2)

We omit the details of the invariant generation step. The above invariant will
prove useful in the next stage of the analysis.

We next skolemize the mutual exclusion statement so as to obtain a correct-
ness goal about a specific but arbitrary ¢ which we call a. The main invariant
now becomes

pe(a) = critical D (V) : pc(j) = critical D a = j) (3)

The goal now is to reduce the N-process protocol to a two process protocol
consisting of process a and another process b that is an existential abstraction of
the remaining N —1 processes. By an existential abstraction, we mean one where
the V —1 processes are represented by a single process b such that a transition by
any of the N — 1 processes is mapped to a corresponding transition of b. In such
an abstraction, b is in control state critical if any one of the N —1 processes is
critical. Otherwise, b is in control state trying if none of the N — 1 processes is
in the state critical and at least one of them is in its trying state. If none of
the N — 1 process is either trying or critical, then b is in its sleeping state.

10

By examining the predicates appearing in the initialization, guards, and the
property, we can directly obtain the following abstraction predicates given by
the function « which maps abstract variables to the corresponding concrete
predicates:

7(pea) = pe(a)

v(peb) = if (37 :j #aApe(j) = critical)
then critical
elsif (35 :j # a Apc(j) = trying)
then trying
else sleeping

(z(a) = 0)
(Vj:j#aDzx(j)=0)
(Vi : (z(a),a) < (z(4), 7))
(

(

y(zag
($b0

) =
)
(ma) =
) =
) =

202

3j = (Vk = (2(), 1) 2 ((k), k)
Vj:pc(j) = critical D a =j)

~v(mb
~v(ea

Since mb is only relevant when pc(j) = trying for j # a, we can use invari-
ant (2) to prove that

j # anpe(j) # sleeping > y(mb) = 7(~ma)

thereby dispensing with mb in the abstraction.
With the above abstraction mapping, the goal invariant (3) becomes

pca = critical D ea.
and the resulting abstracted transition system is one where initially
pca = sleeping A pchb = sleeping A xag A xby A ma A ea

Each non-stuttering step in the computation of the abstract program executes
one of the guarded commands shown in Figure 1.
Model checking the abstract protocol fails to verify the invariant

pca = critical D ea

as the model checker could generate the following counterexample sequence of
transitions:

|transiti0n| pea | ra |ma| ea | pch | b |

initially |sleeping| true | true | true |sleeping| true
sleeping| true | false| true | trying |false
sleeping| true | false|false| critical | false
trying |false|false|false|critical |false
trying |false|true |false| critical | false
critical | false| true |false| critical | false

DNO| OO | | o

11

pca = sleeping —>

pca = trying A ma —
pca = critical —

I pch = sleeping —

[] pcb = trying A ~ma —
I pch = critical —

za' = false;

ma’ = xb;

pea’ = trying;
pea’ = critical;
pca’ = sleeping;
ma' = xb;

ea’ = =(pcb = critical);
za' = true;
peb’ = trying; zb’ = false;
!
ma' = -za
peb’ = critical; ea’ = false;
peh’ = sleeping;

ea’ = true;

ma’ = true;

b = true;

peb’ = trying;

ea’ = true;

ma’ € {true, ma};
pch = critical — ma’ € {true, ma};

pcb = critical —

[

Fig. 1. Abstract transitions for the N-process Bakery Algorithm

An inspection of the counterexample and the abstract model confirms that
the mutual exclusion invariant would follow if the invariant —za A ma D ea were
to hold. Mapped back in the concrete domain, this corresponds to

Vi a(i) £ OA(VG @ 2(j) = 0V {(x(i),)

IN

This goal can be generalized as

(Vi, g : (i) # OA(2(5) = OV (2(i), 7))

and further rearranged as

IN

(x(4),4) D (pc(j) = critical i = j)).
= J)-

By the invariant (2), we can eliminate the subformula z(j) = 0 and simplify the
goal to the equivalent formula

(Vi,j : pe(j) = critical D (a(i) # 0A(a(j) = OV (a(i), i) < (w(j),]))) D i

(Vi,j : pc(j) = critical D x(i) = 0V (x(5),5) < {(x(i),1)).

This can be rearranged as
(Vj = pe(j) = critical 5 (Vi : 2(i) = 0V (z(4),j) < (2(i),))).

But this is the just the invariant pca = critical D ma which is already implied
by the abstract model.

The safety property is thus verified by using a judicious combination of a
small amount of theorem proving and model checking. The abstractions were

12

((5),4)) > (Vi : pe(j) = critical i = j).

suggested by the predicates in the text of the program. Simple invariant gener-
ation methods were adequate for generating trivial invariants. Theorem proving
in the context of these invariants could be used to discharge the proof obli-
gations needed to construct an accurate abstraction of the N-process protocol.
Abstraction mappings of this sort are quite standard and work for many mu-
tual exclusion and cache consistency algorithms [Sha97]. The abstract model did
not discharge the main safety invariant but it was easy to extract the minimal
condition needed to verify the invariant from the abstract model. A reachability
analysis of the abstract model delivered enough useful invariants so that a small
amount of theorem proving could discharge this condition. Neither the model
checking nor the theorem proving used here is especially difficult. While some
guidance is needed in selecting lemmas and conjectures, the proofs of these can
be carried out with substantial automation.

3 Conclusion

We have argued that verification technology is best employed as an analysis
technique to generate properties of specifications and programs rather than as
a method for establishing the correctness of specific properties. Such a sym-
bolic analysis framework can employ both theorem proving and model checking
as appropriate to generate useful abstractions and automatically derive system
properties.

Many ideas remain to be explored within the symbolic analysis framework.
The construction of the symbolic analysis laboratory SAL as an open framework
will support the exploration of ideas at the interface of theorem proving and
model checking.

Acknowledgments. Many collaborators and colleagues have contributed ideas
and code to the SAL language and framework, including Saddek Bensalem,
David Dill, Tom Henzinger, Luca de Alfaro, Vijay Ganesh, Yassine Lakhnech,
Cesar Munoz, Sam Owre, Harald Ruef}; John Rushby, Vlad Rusu, Hassen Saidi,
Eli Singerman, Mandayam Srivas, Jens Skakkebak, and Ashish Tiwari. John
Rushby read an earlier draft of the paper and suggested numerous improve-
ments.

References

[AH96] Rajeev Alur and Thomas A. Henzinger. Reactive modules. In Proceedings,
11" Annual IEEE Symposium on Logic in Computer Science, pages 207
218, New Brunswick, New Jersey, 27-30 July 1996. IEEE Computer Society
Press.

[BBLS92] Saddek Bensalem, Ahmed Bouajjani, Claire Loiseaux, and Joseph Sifakis.
Property preserving simulations. In Computer-Aided Verification, CAV 92,
volume 630 of Lecture Notes in Computer Science, pages 260 273, Montréal,
Canada, June 1992. Springer-Verlag. Extended version available with title
“Property Preserving Abstractions.”.

13

[BBM97] Nikolaj Bjgrner, I. Anca Browne, and Zohar Manna. Automatic generation
of invariants and intermediate assertions. Theoretical Computer Science,
173(1):49-87, 1997.

[BCM*92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 10?° states and beyond. Information and Com-
putation, 98(2):142-170, June 1992.

[BDL96] Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combi-
nations of theories with equality. In Mandayam Srivas and Albert Camilleri,
editors, Formal Methods in Computer-Aided Design (FMCAD ’96), volume
1166 of Lecture Notes in Computer Science, pages 187-201, Palo Alto, CA|
November 1996. Springer-Verlag.

[BG92] G. Berry and G. Gonthier. The Esterel synchronous programming language:
Design, semantics, and implementation. Science of Computer Programming,
19(2):87-152, 1992.

[BL99] Saddek Bensalem and Yassine Lakhnech. Automatic generation of invari-
ants. Formal Methods in Systems Design, 15(1):75 92, July 1999.

[BLO98] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstrac-
tions of infinite state systems compositionally and automatically. In Hu and
Vardi [HV98], pages 319 331.

[BLS96] Saddek Bensalem, Yassine Lakhnech, and Hassen Saidi. Powerful techniques
for the automatic generation of invariants. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided Verification, CAV 96, volume 1102 of
Lecture Notes in Computer Science, pages 323 335, New Brunswick, NJ,
July/August 1996. Springer-Verlag.

[CCTT7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis. In 4th ACM Symposium on Principles of Programming
Languages. Association for Computing Machinery, January 1977.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model check-
ing and abstraction. ACM Transactions on Programming Languages and
Systems, 16(5):1512 1542, September 1994.

[CGP99] E. M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, 1999.

[CHT8] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables. In 5th ACM Symposium on Principles of Programming Languages.
Association for Computing Machinery, January 1978.

[CM8S] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Founda-
tion. Addison-Wesley, Reading, MA, 1988.

[CU98] M. A. Colon and T. E. Uribe. Generating finite-state abstractions of re-
active systems using decidion procedures. In Hu and Vardi [HV98], pages
293 304.

[Dam96] Dennis René Dams. Abstract Interpretation and Partition Refinement for
Model Checking. PhD thesis, Eindhoven University of Technology, P.O. Box
513, 5600 MB Eindhoven, The Netherlands, July 1996.

[DDP99] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate
abstraction. In Halbwachs and Peled [HP99], pages 160 171.

[Det96] David L. Detlefs. An overview of the Extended Static Checking system. In
First Workshop on Formal Methods in Software Practice (FMSP ’96), pages
1 9, San Diego, CA, January 1996. Association for Computing Machinery.

[DF95] Jirgen Dingel and Thomas Filkorn. Model checking for infinite state sys-
tems using data abstraction, assumption-commitment style reasoning and
theorem proving. In Computer-Aided Verification 95, 1995. This volume.

14

[DGGY4]

[GM93]

[GW75]

[HCRP91]

[HP99]

[HSV94]

[HVO8]

[Jan93]

[7593]

[KM76]

[Kur94]

[Lam74]

[LGS195)

[MBSU99]

[McM93]

[McM99)]

[MD93]

Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract interpretation
of reactive systems: Abstractions preserving VCTL*, JCTL* and CTL*. In
Ernst-Riidiger Olderog, editor, Programming Concepts, Methods and Calculi
(PROCOMET ’94), pages 561 581, 1994.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A The-
orem Proving Environment for Higher-Order Logic. Cambridge University
Press, Cambridge, UK, 1993.

S. M. German and B. Wegbreit. A synthesizer for inductive assertions.
IEEE Transactions on Software Engineering, 1(1):68-75, March 1975.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
chronous dataflow programming language Lustre. Proceedings of the IEEE,
79(9):1305-1320, September 1991.

Nicolas Halbwachs and Doron Peled, editors. Computer-Aided Verification,
CAV 99, volume 1633 of Lecture Notes in Computer Science, Trento, Italy,
July 1999. Springer-Verlag.

L. Helmink, M. P. A. Sellink, and F. W. Vaandrager. Proof-checking a
data link protocol. Technical Report CS-R9420, Centrum voor Wiskunde
en Informatica (CWI), Amsterdam, The Netherlands, March 1994.

Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Verification,
CAV 798, volume 1427 of Lecture Notes in Computer Science, Vancouver,
Canada, June 1998. Springer-Verlag.

G. Janssen. ROBDD Software. Department of Electrical Engineering, Eind-
hoven University of Technology, October 1993.

Jeffrey J. Joyce and Carl-Johan H. Seger. Linking BDD-based symbolic
evaluation to interactive theorem proving. In Proceedings of the 30th Design
Automation Conference. Association for Computing Machinery, 1993.

S. Katz and Z. Manna. Logical analysis of programs. Communications of
the ACM, 19(4):188 206, 1976.

R. P. Kurshan. Computer-Aided Verification of Coordinating Processes—
The Automata-Theoretic Approach. Princeton University Press; Princeton,
NJ, 1994.

Leslie Lamport. A new solution of Dijkstra’s concurrent programming prob-
lem. Communications of the ACM, 17(8):453-455, August 1974.

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6:11-44, 1995.

Zohar Manna, Anca Browne, Henny B. Sipma, and Tomaés E. Uribe. Visual
abstractions for temporal verification. In Armando M. Haeberer, editor, Al-
gebraic Methodology and Software Technology, AMAST’98, volume 1548 of
Lecture Notes in Computer Science, pages 28 41, Amazonia, Brazil, January
1999. Springer-Verlag.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, Boston, MA, 1993.

K. L. McMillan. Verification of infinite state systems by compositional
model checking. In Laurence Pierre and Thomas Kropf, editors, Correct
Hardware Design and Verification Methods, number 1703 in Lecture Notes
in Computer Science, pages 219-233. Springer Verlag, September 1999.
Ralph Melton and David L. Dill. Mur¢ Annotated Reference Manual. Com-
puter Science Department, Stanford University, Stanford, CA, March 1993.

15

[MQS00]

[MtSG95]

[ORS92]

[Par76]

[RS00]

[RSS95]

[Sai96]

[Seg98]

[SG97]

[Sha97]

[SI77]

[SS99]

K. McMillan, S. Qadeer, and J. Saxe. Induction in compositional model
checking. In E. A. Emerson and A. P. Sistla, editors, Computer-Aided Ver-
ification, Lecture Notes in Computer Science. Springer Verlag, 2000. To
appear.

Z. Manna and the STeP Group. STeP: The Stanford Temporal Prover.
In Peter D. Mosses, Mogens Nielsen, and Michael I. Schwartzbach, editors,
TAPSOFT ’95: Theory and Practice of Software Development, volume 915
of Lecture Notes in Computer Science, pages 793 794, Aarhus, Denmark,
May 1995. Springer Verlag.

Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype ver-
ification system. In Deepak Kapur, editor, Automated Deduction - CADE-
11, 11th International Conference on Automated Deduction, Lecture Notes
in Artifical Intelligence, pages 748 752. Springer Verlag, June 1992.

David Park. Finiteness is mu-ineffable. Theoretical Computer Science,
3:173-181, 1976.

H. Ruefl and N. Shankar. Deconstructing Shostak. Available from
http://www.csl.sri.com/shankar/shostak2000.ps.gz., January 2000.

S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-checking
with automated proof checking. In Pierre Wolper, editor, Computer-Aided
Verification, CAV ’95, volume 939 of Lecture Notes in Computer Science,
pages 84-97, Liege, Belgium, June 1995. Springer-Verlag.

Hassen Saidi. A tool for proving invariance properties of concurrent systems
automatically. In Tools and Algorithms for the Construction and Analysis
of Systems TACAS ’96, volume 1055 of Lecture Notes in Computer Science,
pages 412 416, Passau, Germany, March 1996. Springer-Verlag.
Carl-Johan H. Seger. Formal methods in CAD from an industrial perspec-
tive. In Ganesh Gopalakrishnan and Phillip Windley, editors, Formal Meth-
ods in Computer-Aided Design (FMCAD ’98), volume 1522 of Lecture Notes
in Computer Science, Palo Alto, CA, November 1998. Springer-Verlag.
Hassen Saidi and Susanne Graf. Construction of abstract state graphs with
PVS. In Orna Grumberg, editor, Computer-Aided Verification, CAV ’97,
volume 1254 of Lecture Notes in Computer Science, pages 72-83, Haifa,
Israel, June 1997. Springer-Verlag.

N. Shankar. Machine-assisted verification using theorem proving and model
checking. In M. Broy and Birgit Schieder, editors, Mathematical Methods in
Program Development, volume 158 of NATO ASI Series F: Computer and
Systems Science, pages 499 528. Springer, 1997.

N. Suzuki and K. Ishihata. Implementation of an array bound checker.
In 4th ACM Symposium on Principles of Programming Languages, pages
132 143, January 1977.

Hassen Saidi and N. Shankar. Abstract and model check while you prove.
In Halbwachs and Peled [HP99], pages 443-454.

16

