
Combining Theorem Proving and ModelChe
king through Symboli
 Analysis ?Invited Paper at CONCUR 2000Natarajan ShankarComputer S
ien
e LaboratorySRI InternationalMenlo Park CA 94025 USAfshankarg�
sl.sri.
omURL: http://www.
sl.sri.
om/~shankar/Phone: +1 (650) 859-5272Abstra
t. Automated veri�
ation of 
on
urrent systems is hindered bythe fa
t that the state spa
es are either in�nite or too large for model
he
king, and the 
ase analysis usually defeats theorem proving. Com-binations of the two te
hniques have been tried with varying degreesof su

ess. We argue for a spe
i�
 
ombination where theorem provingis used to redu
e veri�
ation problems to �nite-state form, and model
he
king is used to explore properties of these redu
tions. This de
om-position of the veri�
ation task forms the basis of the Symboli
 AnalysisLaboratory (SAL), a framework for 
ombining di�erent analysis tools fortransition systems via a 
ommon intermediate language. We demonstratehow symboli
 analysis 
an be an e�e
tive methodology for 
ombining de-du
tion and exploration.1The veri�
ation of large-s
ale 
on
urrent systems poses a diÆ
ult 
hallengein spite of the substantial re
ent progress in 
omputer-aided veri�
ation. Te
h-nologies based on model 
he
king [CGP99℄ 
an typi
ally handle systems withstates that are no larger than about a hundred bits. Te
hniques su
h as symme-try and partial-order redu
tions, partitioned transition relations, in�nite-statemodel 
he
king, represent important advan
es toward ameliorating state explo-sion, but they have not dramati
ally in
reased the overall e�e
tiveness of au-tomated veri�
ation. Model 
he
king does have one advantage: it needs only amodest amount of human guidan
e in terms of the problem des
ription, possi-ble variable orderings, and manually guided abstra
tions. Veri�
ation based ontheorem proving, on the other hand, requires 
areful human 
ontrol by way ofsuitable intermediate assertions, invariants, lemmas, and proofs. Can automatedveri�
ation ever 
ombine the automation of model 
he
king with the generalityof theorem proving?? This work was funded by DARPA Contra
t No. F30602-96-C-0204 Order No. D855and NSF Grants No. CCR-9712383 and CCR-9509931.1 The SAL proje
t is a 
ollaborative e�ort between Stanford University, SRI Interna-tional, and the University of California, Berkeley.



It has often been argued that model 
he
king and theorem proving 
ould be
ombined so that the former is applied to 
ontrol-intensive properties while thelatter is invoked on data-intensive properties. A
hieving an integration of theo-rem proving and model 
he
king is not hard. Both te
hniques verify 
laims thatlook similar and it is possible to view model 
he
king as a de
ision pro
edure fora well-de�ned fragment of a spe
i�
ation logi
 [RSS95℄. However, most systems
ontain a ri
h intera
tion between 
ontrol and data so that there is no simplede
omposition between data-intensive and 
ontrol-intensive properties.For the purpose of this paper, we view model 
he
king as a te
hnique forthe veri�
ation of temporal properties of a program based on the exhaustive ex-ploration of a transition graph represented in expli
it or symboli
 form. Model
he
king methods typi
ally use graph algorithms, automata-theoreti
 
onstru
-tions, or �nite �xed point 
omputations. Theorem proving is usually based onformalisms su
h as �rst-order or higher-order logi
, and employs proof te
hniquessu
h as indu
tion, rewriting, simpli�
ation, and the use of de
ision pro
edures.Some in�nite-state veri�ers and semi-de
ision pro
edures 
an be 
lassi�ed asboth dedu
tive and model 
he
king te
hniques, but this ambiguity 
an be over-looked for the present dis
ussion.We make several points regarding the use of theorem proving and model
he
king in the automated veri�
ation of 
on
urrent systems:1. Corre
tness is over-rated. The obje
tive of veri�
ation is analysis, i.e., thea

retion of useful observations regarding a system. Verifying 
orre
tness isan important form of analysis, but 
orre
tness is usually a big property ofa system that is demonstrated by building on lots of small observations. Ifthese small observations 
ould be 
heaply obtained, then the demonstrationof larger properties would also be greatly simpli�ed. The main drawba
k of
orre
tness is its exa
titude. The veri�
ation of a 
orre
tness 
laim 
an onlyeither fail or su

eed. There is no room for approximate answers or partialinformation.2. Theorem proving is under-rated. Dedu
tion remains the most appropriatete
hnology for obtaining insightful, general, and reusable automation in theanalysis of systems, parti
ularly those that are too 
omplex to be analyzedby a blunt instrument like model 
he
king. Theorem proving 
an exploit themathemati
al properties of the 
ontrol and data stru
tures underlying analgorithm in their fullest generality and abstra
tness3. Theorem proving and model 
he
king are very similar te
hniques. In the ver-i�
ation of transition systems, both te
hniques employ some representationfor program assertions, they 
ompute the image of the transition relationwith respe
t to these assertions, and usually try to 
ompute the least, great-est, or some intermediate �xed point assertion for the transition relation.The di�eren
e is that in theorem proving,{ The image 
onstru
tions are usually more 
ompli
ated sin
e they involvequanti�
ation in domains where quanti�er elimination is either 
ostly orimpossible.{ The least and greatest �xed points 
an seldom be e�e
tively 
omputedand human guidan
e is needed to suggest an intermediate �xed point.2



{ Showing that one assertion is the 
onsequen
e of another is typi
allyunde
idable and requires the use of lemmas and human insight.4. Theorem proving and model 
he
king 
an be usefully integrated. Su
h anintegration requires a methodology that de
omposes the veri�
ation task sothat{ Dedu
tion is used to 
onstru
t valid �nite-state abstra
tions of a system.The 
onstru
tion of a property-preserving abstra
tion generates simpleproof obligations that 
an be dis
harged, often fully automati
ally, usinga theorem prover. These are typi
ally assertions of the form: if propertyp holds in a state s from whi
h there is a transition R to a state s0, thenproperty q holds in s0. Similar proof obligations arise during veri�
ation(in the form of veri�
ation 
onditions) but these are usually not validand the assertions have to be strengthened in order to obtain provableveri�
ation 
onditions. While theorem proving is useful for examiningthe lo
al 
onsequen
e of properties, it is not very e�e
tive at dedu
ingglobal 
onsequen
es over a large program or around an iterative loop.Su
h 
omputations 
an be extremely ineÆ
ient and the 
omputation of�xed points around a loop rarely terminates.{ Exploration by means of model 
he
king is used to 
al
ulate global prop-erties of su
h abstra
tions. This means that model 
he
king is not usedmerely to validate or refute putative properties but is a
tually used to
al
ulate interesting invariants that 
an be extra
ted from the rea
ha-bility predi
ate or its approximations. Finite-state exploration of largestru
tures 
an also be ineÆ
ient but it is mu
h easier to make �nite-state
omputations 
onverge eÆ
iently.{ Dedu
tion is used to propagate the 
onsequen
es of su
h properties. Forexample, model 
he
king on a �nite-state abstra
tion might reveal anassertion x > 5 to hold at a program point simply be
ause it was trueinitially and none of the intermediate transitions a�e
ted the value of x.If the program point has a su

essor state that 
an only be rea
hed by atransition that in
rements x by 2, then we know that this su

essor statemust satisfy the assertion x > 7. Su
h a 
onsequen
e is easily dedu
edby theorem proving.In summary, we advo
ate a veri�
ation methodology where dedu
tion is em-ployed in the lo
al reasoning steps su
h as validating abstra
tions and propagat-ing known properties, whereas model 
he
king is used for deriving global 
on-sequen
es. In 
ontrast, early attempts to integrate theorem proving and model
he
king were dire
ted at using model 
he
king as a de
ision pro
edure withina theorem prover. These attempts were not all that su

essful be
ause it is not
ommon to �nd �nite-state subgoals within an in�nite-state dedu
tive veri�
a-tion.1 Ba
kgroundWe review some of the ba
kground and previous work in the 
ombined use oftheorem proving and model 
he
king te
hniques.3



1.1 Model Che
king as a De
ision Pro
edureJoy
e and Seger 
ombined the theorem prover HOL [GM93℄ with the symboli
traje
tory evaluation tool Voss [JS93℄ by treating the 
ir
uits veri�ed by Vossas uninterpreted 
onstants in HOL. This integration is somewhat ad ho
 sin
ethe de�nitions of the 
ir
uits veri�ed by Voss are not available to HOL. Dingeland Filkorn [DF95℄ use a model 
he
ker to establish assume{guarantee proper-ties of 
omponents and a theorem prover to dis
harge the proof obligations thatarise when two 
omponents are 
omposed. Rajan, Shankar, and Srivas [RSS95℄integrate a mu-
al
ulus [Par76,BCM+92℄ model 
he
ker [Jan93℄ as a de
isionpro
edure for a fragment of the PVS higher-order logi
 
orresponding to a �-nite mu-
al
ulus. While this integration smoothly in
orporates CTL and LTLmodel 
he
king into PVS, the work needed to redu
e a problem into model-
he
kable form 
an be substantial. This integration has re
ently been extendedwith an algorithm for 
onstru
ting �nite-state abstra
tions of mu-
al
ulus ex-pressions [SS99℄.21.2 Extending Model Che
king with Lightweight Theorem ProvingSeveral alternative approa
hes to the integration of model 
he
king and theoremproving have emerged in re
ent years. Some of these have taken the approa
h ofsupplementing a model 
he
ker with a proof assistant that provides rules for de-
omposing a veri�
ation goal into model-
he
kable subgoals. M
Millan [M
M99℄in his work with Caden
e SMV has extended the SMV model 
he
ker with thefollowing de
omposition rules that are used to redu
e in�nite-state systems tomodel-
he
kable �nite-state ones.1. Temporal splitting : Transforms a goal of the form 2(8i : A) into 2v = i � Afor ea
h i.2. Symmetry redu
tion: Typi
ally, the system being veri�ed and the propertyare symmetri
 in the 
hoi
e of i so that proving 2v = i � A for a sin-gle spe
i�
 value for i is equivalent to proving it for ea
h i. Examples ofsu
h symmetri
 
hoi
es in
lude the memory address or the pro
essor in theveri�
ation of multipro
essor 
a
he 
onsisten
y.3. Data abstra
tion: Large or in�nite datatypes 
an be redu
ed to small �nitedatatypes by suitably reinterpreting the operations on these datatypes. Forexample, with respe
t to the 
hoi
e of i in temporal splitting, the remainingvalues of the datatype 
an be abstra
ted by a single value non-i.4. Compositional veri�
ation: The veri�
ation of PkQ j= A^B is de
omposedas P j= :(B U :A) (B fails before A does) and Q j= :(A U :B). Thisallows di�erent 
omponents to be separately veri�ed up to time t + 1 byassuming the other 
omponents to be 
orre
t up to time t.These and other proof te
hniques have been used to verify an out-of-orderpro
essor, a large 
a
he 
oheren
e algorithm, and safety and liveness for a ver-sion of Lamport's N-pro
ess bakery algorithm for mutual ex
lusion [MQS00℄.2 These features are part of PVS 2.3 whi
h is a

essible at the URL pvs.
sl.sri.
om.4



M
Millan's approa
h is substantially dedu
tive. The rules of inferen
e, su
h assymmetry redu
tion and 
ompositional veri�
ation, are spe
ialized but quitepowerful.Seger [Seg98℄ has extended the Voss tool for symboli
 traje
tory evaluationwith lightweight theorem proving. Symboli
 traje
tory evaluation (STE) whi
h isa limited form of linear temporal logi
 model 
he
king. A few simple proof rulesare used to de
ompose proof obligations on the basis of the logi
al 
onne
tivessu
h as 
onjun
tion, disjun
tion, and impli
ation. These rules 
an be used tode
ompose a large model 
he
king problem into smaller ones.1.3 Abstra
tion and Model Che
kingAbstra
tion has been studied in the 
ontext of model 
he
king as a te
hniquefor redu
ing in�nite-state or large �nite-state models to �nite-state models ofmanageable size [BBLS92,Kur94,CGL94,LGS+95,Dam96,BLO98℄.Some of the work on abstra
tion is based on data abstra
tion where a vari-able X over a 
on
rete datatype T is mapped to a variable x over an abstra
ttype t. For example, a variable over the natural numbers 
ould be repla
ed bya boolean variable representing the parity of its value. Clarke, Grumberg, andLong [CGL94℄ gave a simple 
riterion for abstra
tions that preserve 8CTL�+properties. Let the 
on
rete transition system be given by hIC ; NCi where IC isthe initialization predi
ate and NC is the next-state relation. Then the veri�
a-tion of a 
on
rete judgement hIC ; NCi j= PC 
an be redu
ed by means of the ab-stra
tion fun
tion � to the veri�
ation of an abstra
t judgement hIA; NAi j= PAprovided1. IC v IA Æ �2. NC v NA Æ h�; �i3. PA Æ � v PCData abstra
tion has the advantage that the abstra
t des
ription 
an bestati
ally 
onstru
ted from the 
on
rete program. The drawba
k is that manyuseful abstra
tions are on relations between variables rather than on individualvariables.Graf and Sa��di [SG97℄ introdu
ed predi
ate abstra
tion as a way of repla
-ing predi
ates or relations over a set of variables by the 
orresponding booleanvariables. For example, given two variables x and y over the integers, and thepredi
ate x < y over these variables, predi
ate abstra
tion would repla
e thevariables x and y by a boolean variable b that represents the behavior of thepredi
ate.The appli
ation of predi
ate abstra
tion makes signi�
ant use of theoremproving. Graf and Sa��di used predi
ate abstra
tion to 
onstru
t an abstra
trea
hability graph for a 
on
rete program by a pro
ess of elimination. If a rep-resent an abstra
t state, a0 a putative su

essor, 
(a) the 
on
rete state 
orre-sponding to a, and 
(a0) the 
on
rete state 
orresponding to a0, then if
(a) � wp(P )(:(
(a0)))5



is provable, the 
orresponding transition between a and a0 
an be ruled out.3However, if a proof attempt fails, the 
orresponding su

essor node 
an be 
on-servatively in
luded in the abstra
t rea
hability graph. Using predi
ate abstra
-tions with the PVS theorem prover [ORS92℄, Graf and Sa��di [SG97℄ were able toverify a variant of the alternating bit proto
ol 
alled the bounded retransmissionproto
ol [HSV94℄. Das, Dill, and Park [DDP99℄ extended this te
hnique usingthe SVC de
ision pro
edures [BDL96℄ and were able to verify su
h impressiveexamples as the FLASH 
a
he 
oheren
e proto
ol, and a 
ooperative garbage
olle
tor.Predi
ate abstra
tion 
an also be used to 
onstru
t an abstra
t transitionrelation instead of the abstra
t rea
hability graph. It is typi
ally less expen-sive to 
onstru
t the abstra
t transition relation sin
e fewer proof obligationsare generated, but it typi
ally results in a 
oarser abstra
tion than one thatis obtained by dire
tly 
omputing the abstra
t rea
hability graph. In the lat-ter 
onstru
tion, information about the 
urrent set of abstra
t rea
hable states
an be used to rule out unrea
hable su

essor states. Bensalem, Lakhne
h, andOwre [BLO98℄ des
ribe an abstra
tion tool 
alled InVeSt that uses the elimi-nation method to 
onstru
t an abstra
t transition system from a 
on
rete onein a 
ompositional manner. Colon and Uribe [CU98℄ give another 
ompositionalmethod for 
onstru
ting abstra
tions with the framework of the STeP theoremprover [MtSG95℄.All of the above abstra
tion te
hniques preserve only 8CTL�+ proper-ties, namely those in the positive fragment of CTL� with universal pathquanti�
ation. For more general 
al
uli, 
riteria for abstra
tions that preserveCTL* [DGG94℄ and mu-
al
ulus [LGS+95℄, but these results are quite te
hni
al.Sa��di and Shankar [SS99℄ gave a simple method for 
onstru
ting predi
ate ab-stra
tions over the full relational mu-
al
ulus [Par76℄. The two key observationsin this work are:1. The operators of the mu-
al
ulus are monotoni
 with respe
t to upper andlower approximations.2. The over-approximation of a literal (an atomi
 formula or its negation) 
anbe eÆ
iently 
omputed in 
onjun
tive normal form by using a theorem proveras an ora
le.Veri�
ation diagrams [MBSU99℄ 
an also be seen as a form of predi
ate ab-stra
tion. These diagrams employ graphs whose nodes are labeled by assertionsand the edges 
orrespond to program transitions within the diagram. Properties
an be dire
tly 
he
ked with respe
t to the veri�
ation diagram.The primary advantage of predi
ate abstra
tion is that it is suÆ
ient toguess a relevant predi
ates without having to guess the exa
t invariant in thesepredi
ates. For n predi
ates, the 
onstru
tion of the abstra
t transition system3 All programs are assumed to be total as transition system, i.e., the domain of thenext-state relation is the set of all states. Thus, wp(P )(A) is the set of states thathave no transitions in P to states in :A. The dual notion sp(P )(A) is the set ofstates rea
hable from some state in A by a transition of P .6



generates of the order of 2n proof obligations. The resulting abstra
t model 
analso be model 
he
ked in time that is exponential in n to yield useful invariants.With dedu
tion, there are 22n boolean fun
tions that are 
andidate invariantsin these n predi
ates so that it is harder to guess suitable invariants.1.4 Automati
 Invariant GenerationAutomati
 invariant generation has been studied sin
e the1970s [CH78,GW75,KM76,SI77℄. This study has re
ently been revivedthrough the work of Bj�rner, Browne, and Manna [BBM97℄, and Bensalem,Lakhne
h, and Sa��di [BLS96,Sa��96,BL99℄.The strongest invariant of a transition system P is given by the least �xedpoint starting from the initial states of P of the strongest post
ondition operatorfor P , �X:IP _ sp(P )(X). If this 
omputation terminates, it would yield the setof rea
hable states of P whi
h is its strongest invariant. Unfortunately, the least�xed point 
omputation rarely terminates for in�nite-state systems. A programwith a single integer variable x that is initially 0 and is repeatedly in
rementedby one, yields a nonterminating least �xed point 
omputation. Widening te
h-niques [CC77℄ are needed to a

elerate the �xed point 
omputation so that itdoes terminate with a �xed point that is not ne
essarily the least one.A di�erent, more 
onservative approa
h to invariant generation is givenby the 
omputation of the greatest �xed point of the strongest post
ondition�X:sp(P )(X). For example, a greatest �xed point 
omputation on a programwith a single variable x and a single guarded transition x � 0 �! x := x + 1would terminate and yield the invariant x � 0. The greatest �xed point invari-ant 
omputation also may not terminate and 
ould require narrowing as a wayof a

elerating termination. However, one 
ould stop the greatest �xed point
omputation after any bounded number of iterations and the resulting predi
atewould always be a valid invariant.Dually, a putative invariant p 
an be strengthened to an indu
tive one by
omputing the greatest �xed point with respe
t to the weakest pre
onditionof the program of the given invariant �X:p ^ wp(P )(X). If this 
omputationterminates, the result is an invariant that is indu
tive.Automati
 invariant generation is not yet a su

essful te
hnology. Right now,it is best used for propagating invariants that are 
omputed from other sour
esby taking the greatest �xed point with respe
t to the strongest post-
onditionstarting from a known invariant. However, as theorem proving te
hnology be-
omes more powerful and eÆ
ient, invariant generation is likely to be quite afruitful te
hnique.2 Symboli
 AnalysisSymboli
 analysis is simply the 
omputation of �xed point properties of programsthrough a 
ombination of dedu
tive and explorative te
hniques. We have alreadyseen the key elements of symboli
 analysis as7



1. Automated dedu
tion, in 
omputing property preserving abstra
tions andpropagating the 
onsequen
es of known properties.2. Model 
he
king , as a means of 
omputing global properties of by means ofsystemati
 symboli
 exploration. For this purpose, model 
he
king is used fora
tually 
omputing �xed points su
h as the rea
hable state set, in additionto verifying given temporal properties.3. Invariant generation, as a te
hnique for 
omputing useful properties andpropagating known properties.2.1 SAL: A Symboli
 Analysis LaboratorySAL is a framework for integrating di�erent symboli
 analysis te
hniques in-
luding theorem proving and model 
he
king. The 
ore of SAL is a des
riptionlanguage for transition systems. The design of this intermediate language hasbeen in
uen
ed by SMV [M
M93℄, UNITY [CM88℄, Murphi [MD93℄, and Rea
-tive Modules [AH96℄. Transition systems des
ribed in SAL 
onsist of moduleswith input, output, global, and lo
al variables. Initializations and transitions
an be either spe
i�ed by de�nitions of the form variable = expression or byguarded 
ommands. The assignment part of a guarded 
ommand 
onsists of as-signments of the form x0 = expression , meaning the new value of x is the valueof the expression , as well as sele
tions x0 2 set , meaning the new value of xis nondeterministi
ally sele
ted from the value of the nonempty set set . SAL isa syn
hronous language in the spirit of Esterel [BG92℄, Lustre [HCRP91℄, andRea
tive Modules [AH96℄, in the sense that transitions 
an depend on lat
hedvalues as well as 
urrent inputs. SAL modules 
an be 
omposed by means of1. Binary syn
hronous 
omposition PkQ whose transitions 
onsist of lo
k-stepparallel transitions of P and Q.2. Binary asyn
hronous 
omposition P [℄Q whose transitions are the interleav-ing of those of P and Q.3. N-fold syn
hronous 
omposition (jj (i) : P [i℄)4. N-fold asyn
hronous 
omposition ([℄ (i) : P [i℄)The implementation of SAL is still ongoing. The version to be released sometime in 2000 will 
onsist of a parser, type
he
ker, translators to SMV and PVS,a translator to Java (for animation), and a translator from Verilog, among othertools.Sin
e the SAL implementation is still in
omplete, we informally des
ribe someexamples that motivate the need for a symboli
 analysis framework integratingabstra
tion, invariant generation, theorem proving, and model 
he
king.2.2 Analysis of a Two Pro
ess Mutual Ex
lusion AlgorithmAs a �rst example, we use a simpli�ed 2-pro
ess version of Lamport's Bakeryalgorithm for mutual ex
lusion [Lam74℄. The algorithm 
onsists of two pro
essesP and Q with 
ontrol variables p
p and p
q, respe
tively, and shared variables8



x and y. The 
ontrol states of these pro
esses are either sleeping, trying,or 
riti
al. Initially, p
p and p
q are both set to sleeping and the 
ontrolvariables satisfy x = y = 0. The transitions for P arep
p = sleeping �! x0 = y + 1; p
p0 = trying[℄ p
p = trying^ (y = 0 _ x < y) �! p
p0 = 
riti
al[℄ p
p = 
riti
al �! x0 = 0; p
p0 = sleepingSimilarly, the transitions for Q arep
q = sleeping �! y0 = x+ 1; p
q0 = trying[℄ p
q = trying^ (x = 0 _ y � x) �! p
0 = 
riti
al[℄ p
q = 
riti
al �! y0 = 0; p
q0 = sleepingThe invariant we wish to establish for P [℄Q is :(p
p = 
riti
al ^ p
q =
riti
al. Note that P [℄Q is an in�nite-state system and in fa
t the values ofthe variables x and y 
an in
rease without bound. We 
an therefore attempt toverify the invariant by means of a property-preserving predi
ate abstra
tion toa �nite-state system.The abstra
tion predi
ates suggest themselves from the initializations,guards, and assignments. We therefore abstra
t the predi
ate x = 0 with theboolean variable x0, the predi
ate y = 0 with the boolean variable y0, and thepredi
ate x < y with the boolean variable xy. The resulting abstra
t system 
anbe 
omputed as P 0 and Q0, where in the initial state, x0 ^ y0 ^ :xy, and thetransitions for P 0 arep
p = sleeping �! x00 = false; xy0 = false; p
p0 = trying;[℄ p
p = trying^ (y0 _ xy) �! p
p0 = 
riti
al;[℄ p
p = 
riti
al �! x00 = true;xy0 2 ftrue; falseg; p
p0 = sleeping;The transitions for Q0 arep
q = sleeping �! y00 = false; xy0 = true; p
q0 = trying;[℄ p
q = trying^ (x0 _ :xy) �! p
p0 = 
riti
al;[℄ p
p = 
riti
al �! y00 = true;xy0 = false; p
p0 = sleeping;Model 
he
king the abstra
t system P 0 [℄Q0 easily veri�es the invariant:(p
p = 
riti
al^ p
q = 
riti
al):The theorem proving needed to 
onstru
t the abstra
tion is at a trivial levelthat 
an be handled automati
ally by the de
ision pro
edures over quanti�er-free formulas in a 
ombination of theories [RS00℄. Su
h de
ision pro
eduresare present in systems like PVS [ORS92℄, ESC [Det96℄, SVC [BDL96℄, andSTeP [MtSG95℄. The above example 
an be veri�ed fully automati
ally by meansof the abstra
t-and-model-
he
k 
ommand in PVS [SS99℄.9



2.3 Analysis of an N-Pro
ess Mutual Ex
lusion AlgorithmWe next examine a �
tional example, namely, one that has not been me
hani
allyveri�ed by us. This example is a simpli�ed form of the N-pro
ess Bakery algo-rithm due to Lamport [Lam74℄. The des
ription below shows a hand-exe
utedsymboli
 analysis.In this version of the Bakery algorithm, there are N pro
esses P (0) toP (N �1), with a shared array x of size N over the natural numbers. The logi
alvariables i, j, and k range over the subrange 0::(N � 1). The operation max (x)returns the maximal element in the array x. Initially, ea
h P (i) is in the 
ontrolstate sleeping, and for ea
h i, x(i) = 0. Let hx; ii � hy; ji be de�ned as the lex-i
ographi
 ordering x < y _ (x = y ^ i � j). We abbreviate y = 0_ hx; ii � hy; jias hx; ii � hy; ji.The transitions of pro
esses P (i) for 0 � i < N are interleaved and ea
hnon-stuttering transition exe
utes one of the following guarded 
ommands.p
(i) = sleeping �! x0(i) = 1 +max (x);p
0(i) = trying;[℄ p
(i) = trying^ (8j : hx(i); ii � hx(j); ji) �! p
0(i) = 
riti
al;[℄ p
(i) = 
riti
al �! x0(i) = 0;p
0(i) = sleeping;We want to prove the invarian
e property(8i : p
(i) = 
riti
al � (8j : p
(j) = 
riti
al � i = j)): (1)Invariant generation te
hniques 
an be used to generate trivial invariantssu
h as (8i : x(i) = 0 i� p
(i) = sleeping): (2)We omit the details of the invariant generation step. The above invariant willprove useful in the next stage of the analysis.We next skolemize the mutual ex
lusion statement so as to obtain a 
orre
t-ness goal about a spe
i�
 but arbitrary i whi
h we 
all a. The main invariantnow be
omesp
(a) = 
riti
al � (8j : p
(j) = 
riti
al� a = j) (3)The goal now is to redu
e the N -pro
ess proto
ol to a two pro
ess proto
ol
onsisting of pro
ess a and another pro
ess b that is an existential abstra
tion ofthe remaining N�1 pro
esses. By an existential abstra
tion, we mean one wherethe N�1 pro
esses are represented by a single pro
ess b su
h that a transition byany of the N � 1 pro
esses is mapped to a 
orresponding transition of b. In su
han abstra
tion, b is in 
ontrol state 
riti
al if any one of the N�1 pro
esses is
riti
al. Otherwise, b is in 
ontrol state trying if none of the N � 1 pro
esses isin the state 
riti
al and at least one of them is in its trying state. If none ofthe N � 1 pro
ess is either trying or 
riti
al, then b is in its sleeping state.10



By examining the predi
ates appearing in the initialization, guards, and theproperty, we 
an dire
tly obtain the following abstra
tion predi
ates given bythe fun
tion 
 whi
h maps abstra
t variables to the 
orresponding 
on
retepredi
ates: 
(p
a) = p
(a)
(p
b) = if (9j : j 6= a ^ p
(j) = 
riti
al)then 
riti
alelsif (9j : j 6= a ^ p
(j) = trying)then tryingelse sleeping
(xa0) = (x(a) = 0)
(xb0) = (8j : j 6= a � x(j) = 0)
(ma) = (8j : hx(a); ai � hx(j); ji)
(mb) = (9j : (8k : hx(j); ji � hx(k); ki)
(ea) = (8j : p
(j) = 
riti
al � a = j)Sin
e mb is only relevant when p
(j) = trying for j 6= a, we 
an use invari-ant (2) to prove thatj 6= a ^ p
(j) 6= sleeping � 
(mb) = 
(:ma)thereby dispensing with mb in the abstra
tion.With the above abstra
tion mapping, the goal invariant (3) be
omesp
a = 
riti
al� ea:and the resulting abstra
ted transition system is one where initiallyp
a = sleeping ^ p
b = sleeping ^ xa0 ^ xb0 ^ma ^ eaEa
h non-stuttering step in the 
omputation of the abstra
t program exe
utesone of the guarded 
ommands shown in Figure 1.Model 
he
king the abstra
t proto
ol fails to verify the invariantp
a = 
riti
al � eaas the model 
he
ker 
ould generate the following 
ounterexample sequen
e oftransitions: transition p
a xa ma ea p
b xbinitially sleeping true true true sleeping true3 sleeping true false true trying false4 sleeping true false false 
riti
al false1 trying false false false 
riti
al false8 trying false true false 
riti
al false2 
riti
al false true false 
riti
al false11



p
a = sleeping �! xa0 = false;ma0 = xb;p
a0 = trying;[℄ p
a = trying ^ma �! p
a0 = 
riti
al;[℄ p
a = 
riti
al �! p
a0 = sleeping;ma0 = xb;ea0 = :(p
b = 
riti
al);xa0 = true;[℄ p
b = sleeping �! p
b0 = trying; xb0 = false;ma0 = :xa[℄ p
b = trying ^ :ma �! p
b0 = 
riti
al; ea0 = false;[℄ p
b = 
riti
al �! p
b0 = sleeping;ea0 = true;ma0 = true;xb0 = true;[℄ p
b = 
riti
al �! p
b0 = trying;ea0 = true;ma0 2 ftrue;mag;[℄ p
b = 
riti
al �! ma0 2 ftrue;mag;Fig. 1. Abstra
t transitions for the N-pro
ess Bakery AlgorithmAn inspe
tion of the 
ounterexample and the abstra
t model 
on�rms thatthe mutual ex
lusion invariant would follow if the invariant :xa^ma � ea wereto hold. Mapped ba
k in the 
on
rete domain, this 
orresponds to8i : x(i) 6= 0^(8j : x(j) = 0_hx(i); ii � hx(j); ji) � (8j : p
(j) = 
riti
al � i = j):This goal 
an be generalized as(8i; j : x(i) 6= 0^(x(j) = 0_hx(i); ii) � hx(j); ji � (p
(j) = 
riti
al� i = j)):and further rearranged as(8i; j : p
(j) = 
riti
al � (x(i) 6= 0^(x(j) = 0_hx(i); ii � hx(j); ji)) � i = j):By the invariant (2), we 
an eliminate the subformula x(j) = 0 and simplify thegoal to the equivalent formula(8i; j : p
(j) = 
riti
al � x(i) = 0 _ hx(j); ji � hx(i); ii):This 
an be rearranged as(8j : p
(j) = 
riti
al � (8i : x(i) = 0 _ hx(j); ji � hx(i); ii)):But this is the just the invariant p
a = 
riti
al � ma whi
h is already impliedby the abstra
t model.The safety property is thus veri�ed by using a judi
ious 
ombination of asmall amount of theorem proving and model 
he
king. The abstra
tions were12



suggested by the predi
ates in the text of the program. Simple invariant gener-ation methods were adequate for generating trivial invariants. Theorem provingin the 
ontext of these invariants 
ould be used to dis
harge the proof obli-gations needed to 
onstru
t an a

urate abstra
tion of the N-pro
ess proto
ol.Abstra
tion mappings of this sort are quite standard and work for many mu-tual ex
lusion and 
a
he 
onsisten
y algorithms [Sha97℄. The abstra
t model didnot dis
harge the main safety invariant but it was easy to extra
t the minimal
ondition needed to verify the invariant from the abstra
t model. A rea
habilityanalysis of the abstra
t model delivered enough useful invariants so that a smallamount of theorem proving 
ould dis
harge this 
ondition. Neither the model
he
king nor the theorem proving used here is espe
ially diÆ
ult. While someguidan
e is needed in sele
ting lemmas and 
onje
tures, the proofs of these 
anbe 
arried out with substantial automation.3 Con
lusionWe have argued that veri�
ation te
hnology is best employed as an analysiste
hnique to generate properties of spe
i�
ations and programs rather than asa method for establishing the 
orre
tness of spe
i�
 properties. Su
h a sym-boli
 analysis framework 
an employ both theorem proving and model 
he
kingas appropriate to generate useful abstra
tions and automati
ally derive systemproperties.Many ideas remain to be explored within the symboli
 analysis framework.The 
onstru
tion of the symboli
 analysis laboratory SAL as an open frameworkwill support the exploration of ideas at the interfa
e of theorem proving andmodel 
he
king.A
knowledgments. Many 
ollaborators and 
olleagues have 
ontributed ideasand 
ode to the SAL language and framework, in
luding Saddek Bensalem,David Dill, Tom Henzinger, Lu
a de Alfaro, Vijay Ganesh, Yassine Lakhne
h,Cesar Mu~noz, Sam Owre, Harald Rue�, John Rushby, Vlad Rusu, Hassen Sa��di,Eli Singerman, Mandayam Srivas, Jens Skakkeb�k, and Ashish Tiwari. JohnRushby read an earlier draft of the paper and suggested numerous improve-ments.Referen
es[AH96℄ Rajeev Alur and Thomas A. Henzinger. Rea
tive modules. In Pro
eedings,11th Annual IEEE Symposium on Logi
 in Computer S
ien
e, pages 207{218, New Brunswi
k, New Jersey, 27{30 July 1996. IEEE Computer So
ietyPress.[BBLS92℄ Saddek Bensalem, Ahmed Bouajjani, Claire Loiseaux, and Joseph Sifakis.Property preserving simulations. In Computer-Aided Veri�
ation, CAV '92,volume 630 of Le
ture Notes in Computer S
ien
e, pages 260{273, Montr�eal,Canada, June 1992. Springer-Verlag. Extended version available with title\Property Preserving Abstra
tions.".13



[BBM97℄ Nikolaj Bj�rner, I. An
a Browne, and Zohar Manna. Automati
 generationof invariants and intermediate assertions. Theoreti
al Computer S
ien
e,173(1):49{87, 1997.[BCM+92℄ J. R. Bur
h, E. M. Clarke, K. L. M
Millan, D. L. Dill, and L. J. Hwang.Symboli
 model 
he
king: 1020 states and beyond. Information and Com-putation, 98(2):142{170, June 1992.[BDL96℄ Clark Barrett, David Dill, and Jeremy Levitt. Validity 
he
king for 
ombi-nations of theories with equality. In Mandayam Srivas and Albert Camilleri,editors, Formal Methods in Computer-Aided Design (FMCAD '96), volume1166 of Le
ture Notes in Computer S
ien
e, pages 187{201, Palo Alto, CA,November 1996. Springer-Verlag.[BG92℄ G. Berry and G. Gonthier. The Esterel syn
hronous programming language:Design, semanti
s, and implementation. S
ien
e of Computer Programming,19(2):87{152, 1992.[BL99℄ Saddek Bensalem and Yassine Lakhne
h. Automati
 generation of invari-ants. Formal Methods in Systems Design, 15(1):75{92, July 1999.[BLO98℄ Saddek Bensalem, Yassine Lakhne
h, and Sam Owre. Computing abstra
-tions of in�nite state systems 
ompositionally and automati
ally. In Hu andVardi [HV98℄, pages 319{331.[BLS96℄ Saddek Bensalem, Yassine Lakhne
h, and Hassen Sa��di. Powerful te
hniquesfor the automati
 generation of invariants. In Rajeev Alur and Thomas A.Henzinger, editors, Computer-Aided Veri�
ation, CAV '96, volume 1102 ofLe
ture Notes in Computer S
ien
e, pages 323{335, New Brunswi
k, NJ,July/August 1996. Springer-Verlag.[CC77℄ P. Cousot and R. Cousot. Abstra
t interpretation: a uni�ed latti
e modelfor stati
 analysis. In 4th ACM Symposium on Prin
iples of ProgrammingLanguages. Asso
iation for Computing Ma
hinery, January 1977.[CGL94℄ Edmund M. Clarke, Orna Grumberg, and David E. Long. Model 
he
k-ing and abstra
tion. ACM Transa
tions on Programming Languages andSystems, 16(5):1512{1542, September 1994.[CGP99℄ E. M. Clarke, Orna Grumberg, and Doron Peled. Model Che
king. MITPress, 1999.[CH78℄ P. Cousot and N. Halbwa
hs. Automati
 dis
overy of linear restraints amongvariables. In 5th ACM Symposium on Prin
iples of Programming Languages.Asso
iation for Computing Ma
hinery, January 1978.[CM88℄ K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Founda-tion. Addison-Wesley, Reading, MA, 1988.[CU98℄ M. A. Col on and T. E. Uribe. Generating �nite-state abstra
tions of re-a
tive systems using de
idion pro
edures. In Hu and Vardi [HV98℄, pages293{304.[Dam96℄ Dennis Ren�e Dams. Abstra
t Interpretation and Partition Re�nement forModel Che
king. PhD thesis, Eindhoven University of Te
hnology, P.O. Box513, 5600 MB Eindhoven, The Netherlands, July 1996.[DDP99℄ Satyaki Das, David L. Dill, and Seungjoon Park. Experien
e with predi
ateabstra
tion. In Halbwa
hs and Peled [HP99℄, pages 160{171.[Det96℄ David L. Detlefs. An overview of the Extended Stati
 Che
king system. InFirst Workshop on Formal Methods in Software Pra
ti
e (FMSP '96), pages1{9, San Diego, CA, January 1996. Asso
iation for Computing Ma
hinery.[DF95℄ J�urgen Dingel and Thomas Filkorn. Model 
he
king for in�nite state sys-tems using data abstra
tion, assumption-
ommitment style reasoning andtheorem proving. In Computer-Aided Veri�
ation 95, 1995. This volume.14



[DGG94℄ Dennis Dams, Orna Grumberg, and Rob Gerth. Abstra
t interpretationof rea
tive systems: Abstra
tions preserving 8CTL*, 9CTL* and CTL*. InErnst-R�udiger Olderog, editor, Programming Con
epts, Methods and Cal
uli(PROCOMET '94), pages 561{581, 1994.[GM93℄ M. J. C. Gordon and T. F. Melham, editors. Introdu
tion to HOL: A The-orem Proving Environment for Higher-Order Logi
. Cambridge UniversityPress, Cambridge, UK, 1993.[GW75℄ S. M. German and B. Wegbreit. A synthesizer for indu
tive assertions.IEEE Transa
tions on Software Engineering, 1(1):68{75, Mar
h 1975.[HCRP91℄ N. Halbwa
hs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
hronous data
ow programming language Lustre. Pro
eedings of the IEEE,79(9):1305{1320, September 1991.[HP99℄ Ni
olas Halbwa
hs and Doron Peled, editors. Computer-Aided Veri�
ation,CAV '99, volume 1633 of Le
ture Notes in Computer S
ien
e, Trento, Italy,July 1999. Springer-Verlag.[HSV94℄ L. Helmink, M. P. A. Sellink, and F. W. Vaandrager. Proof-
he
king adata link proto
ol. Te
hni
al Report CS-R9420, Centrum voor Wiskundeen Informati
a (CWI), Amsterdam, The Netherlands, Mar
h 1994.[HV98℄ Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Veri�
ation,CAV '98, volume 1427 of Le
ture Notes in Computer S
ien
e, Van
ouver,Canada, June 1998. Springer-Verlag.[Jan93℄ G. Janssen. ROBDD Software. Department of Ele
tri
al Engineering, Eind-hoven University of Te
hnology, O
tober 1993.[JS93℄ Je�rey J. Joy
e and Carl-Johan H. Seger. Linking BDD-based symboli
evaluation to intera
tive theorem proving. In Pro
eedings of the 30th DesignAutomation Conferen
e. Asso
iation for Computing Ma
hinery, 1993.[KM76℄ S. Katz and Z. Manna. Logi
al analysis of programs. Communi
ations ofthe ACM, 19(4):188{206, 1976.[Kur94℄ R. P. Kurshan. Computer-Aided Veri�
ation of Coordinating Pro
esses|The Automata-Theoreti
 Approa
h. Prin
eton University Press, Prin
eton,NJ, 1994.[Lam74℄ Leslie Lamport. A new solution of Dijkstra's 
on
urrent programming prob-lem. Communi
ations of the ACM, 17(8):453{455, August 1974.[LGS+95℄ C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Propertypreserving abstra
tions for the veri�
ation of 
on
urrent systems. FormalMethods in System Design, 6:11{44, 1995.[MBSU99℄ Zohar Manna, An
a Browne, Henny B. Sipma, and Tom�as E. Uribe. Visualabstra
tions for temporal veri�
ation. In Armando M. Haeberer, editor, Al-gebrai
 Methodology and Software Te
hnology, AMAST'98, volume 1548 ofLe
ture Notes in Computer S
ien
e, pages 28{41, Amazonia, Brazil, January1999. Springer-Verlag.[M
M93℄ Kenneth L. M
Millan. Symboli
 Model Che
king. Kluwer A
ademi
 Pub-lishers, Boston, MA, 1993.[M
M99℄ K. L. M
Millan. Veri�
ation of in�nite state systems by 
ompositionalmodel 
he
king. In Lauren
e Pierre and Thomas Kropf, editors, Corre
tHardware Design and Veri�
ation Methods, number 1703 in Le
ture Notesin Computer S
ien
e, pages 219{233. Springer Verlag, September 1999.[MD93℄ Ralph Melton and David L. Dill. Mur� Annotated Referen
e Manual. Com-puter S
ien
e Department, Stanford University, Stanford, CA, Mar
h 1993.15



[MQS00℄ K. M
Millan, S. Qadeer, and J. Saxe. Indu
tion in 
ompositional model
he
king. In E. A. Emerson and A. P. Sistla, editors, Computer-Aided Ver-i�
ation, Le
ture Notes in Computer S
ien
e. Springer Verlag, 2000. Toappear.[MtSG95℄ Z. Manna and the STeP Group. STeP: The Stanford Temporal Prover.In Peter D. Mosses, Mogens Nielsen, and Mi
hael I. S
hwartzba
h, editors,TAPSOFT '95: Theory and Pra
ti
e of Software Development, volume 915of Le
ture Notes in Computer S
ien
e, pages 793{794, Aarhus, Denmark,May 1995. Springer Verlag.[ORS92℄ Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype ver-i�
ation system. In Deepak Kapur, editor, Automated Dedu
tion - CADE-11, 11th International Conferen
e on Automated Dedu
tion, Le
ture Notesin Arti�
al Intelligen
e, pages 748{752. Springer Verlag, June 1992.[Par76℄ David Park. Finiteness is mu-ine�able. Theoreti
al Computer S
ien
e,3:173{181, 1976.[RS00℄ H. Rue� and N. Shankar. De
onstru
ting Shostak. Available fromhttp://www.
sl.sri.
om/shankar/shostak2000.ps.gz., January 2000.[RSS95℄ S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-
he
kingwith automated proof 
he
king. In Pierre Wolper, editor, Computer-AidedVeri�
ation, CAV '95, volume 939 of Le
ture Notes in Computer S
ien
e,pages 84{97, Liege, Belgium, June 1995. Springer-Verlag.[Sa��96℄ Hassen Sa��di. A tool for proving invarian
e properties of 
on
urrent systemsautomati
ally. In Tools and Algorithms for the Constru
tion and Analysisof Systems TACAS '96, volume 1055 of Le
ture Notes in Computer S
ien
e,pages 412{416, Passau, Germany, Mar
h 1996. Springer-Verlag.[Seg98℄ Carl-Johan H. Seger. Formal methods in CAD from an industrial perspe
-tive. In Ganesh Gopalakrishnan and Phillip Windley, editors, Formal Meth-ods in Computer-Aided Design (FMCAD '98), volume 1522 of Le
ture Notesin Computer S
ien
e, Palo Alto, CA, November 1998. Springer-Verlag.[SG97℄ Hassen Sa��di and Susanne Graf. Constru
tion of abstra
t state graphs withPVS. In Orna Grumberg, editor, Computer-Aided Veri�
ation, CAV '97,volume 1254 of Le
ture Notes in Computer S
ien
e, pages 72{83, Haifa,Israel, June 1997. Springer-Verlag.[Sha97℄ N. Shankar. Ma
hine-assisted veri�
ation using theorem proving and model
he
king. In M. Broy and Birgit S
hieder, editors, Mathemati
al Methods inProgram Development, volume 158 of NATO ASI Series F: Computer andSystems S
ien
e, pages 499{528. Springer, 1997.[SI77℄ N. Suzuki and K. Ishihata. Implementation of an array bound 
he
ker.In 4th ACM Symposium on Prin
iples of Programming Languages, pages132{143, January 1977.[SS99℄ Hassen Sa��di and N. Shankar. Abstra
t and model 
he
k while you prove.In Halbwa
hs and Peled [HP99℄, pages 443{454.
16


