
Architecture-Driven Software Component Retrieval

R. A. Riemenschneider
System Development Laboratory

SRI International

333 Ravenswood Av

Menlo Park, CA 94025

Telephone: 650-859-2507

Fax: 650-859-2844

rar@sdl.sri.com

Abstract— This paper argues that retrieval of complex hard-
ware components is based on the use of architectural descriptions
rather than functional descriptions, and explores the idea of bas-
ing software component retrieval on architectural descriptions.
Architecture-driven retrieval is contrasted with retrieval based on
keywords that characterize a few relevant properties and with de-
ductive retrieval based on functional descriptions. A simple ex-
ample, development of a component-based compiler, is used to ex-
plain how specification patterns in a architecture description lan-
guage (Acme) can be used to drive component selection.

I. I NTRODUCTION

A thriving software component marketplace requires a solu-
tion to the problem of component retrieval. In a mature compo-
nent marketplace, it is reasonable to expect that, while no sin-
gle component will satisfy all software requirements, a properly
assembled collection of specialized versions of components —
perhaps supplemented by a modest amount of custom code —
will do so. But, how does one find the relevant components?
How does one know how to specialize them? How does one
know how to assemble them? The component marketplace in-
frastructure must support answers to these questions.

Two basic techniques have been used for finding relevant
components. The simpler technique somehow associates a set
of keywords with the component. (The association can be as
straightforward as choosing a descriptive component name, or
maintaining a keyword-component database, but use of elemen-
tary component introspection capabilities is a popular imple-
mentation choice.) However, it seems clear that this approach
doesn’t scale well. Keeping the number of keywords fixed as
the size of a component repository grows results in more and
more components being returned in response to each query,
while allowing the number of keywords to grow results in a
system where components are difficult to classify and retrievals
are hard to construct. In addition, unless keywords are used
only within a restricted application domain, both the number
of false-positives (i.e., identified components that are not actu-

The research described in this paper was supported by SRI International In-
ternal Research and Development funding.

ally relevant to the problem at hand) and false-negatives (i.e.,
relevant components that were not identified) tends to be large.

Both of the problems with the simpler technique are ad-
dressed by the more complex technique, deductive component
retrieval [1], [3], [4], [8], [9], [13], [14]. In this technique, the
query consists of a functional specification that the required
component must satisfy. Each component has a functional
specification associated with it, and a component is returned
only if the required functionality is guaranteed by the compo-
nent’s specification. In other words, if some deduction engine
can show that a component does everything it needs to do, the
component is returned. Unfortunately, the deductive approach
has two major shortcomings as well. First, deduction is ex-
pensive, hence relatively few components can be checked for
relevance. Second, it is not necessary for a component to pre-
cisely match all the requirements to be relevant. Making the
requirements relatively weak is not a solution to the latter prob-
lem, because weak requirements increases the number of false
positive and, more importantly, a component can — when ap-
propriately combined with other components — contribute to
satisfaction of many requirements without fully satisfying any
of them.1

A combination of the two techniques, using the simpler to
make a rough cut and then the more complex to refine the re-
sults, can be more effective than either separately. But ulti-
mately, as the number of components grows, the combination
suffers from all the deficiencies of both techniques.

Note that neither technique makes much contribution to the
problem of specializing and assembling the components re-
turned in response to a query.

So, what reason do we have for supposing that a software
component marketplace is feasible? Primarily, the fact that a
healthy hardware component marketplace exists. Therefore, a

1The later problem can be addressed in a deductive framework using Doug
Smith’s notion ofderived preconditions[11], [12]. However, determining a
useful derived precondition — where “useful” means, roughly, that some con-
junction of functional specifications of components likely imply the precondi-
tion — is far more expensive than determining whether a component’s spec-
ification implies the specification of required functionality without additional
preconditions, and the latter is already too expensive for large-scale practical
use.



closer look at the successful solution to the hardware compo-
nent retrieval problem may prove fruitful.

II. F INDING HARDWARE COMPONENTS

For very simple hardware components, selection seems to be
based on a scheme similar to the hybrid considered in the pre-
vious section. First, one makes a rough cut based based on
a component category, such asresistoror capacitor, and then
narrows the choices based on component functional specifica-
tions. This approach is quite effective because both the number
of categories and the number of component types in each cat-
egory are relatively small, and the functional specifications are
quite simple.

For complex hardware components, a somewhat different se-
lection scheme is employed. One key difference is that a com-
plex component is characterized by the rôle it typically plays in
architectures. An example should make this point clearer. To a
first approximation, a resistor is characterized by the fact it is a
resistor and by the amount of resistance it provides. There is no
non-trivial characterization of how resistors are typically used
in circuits, or how they combine with other components to pro-
vide functionality. There are no general “patterns” that provide
guidance in the typical use of resistors. About all one can say
is: insert a resistor when resistance is required.

Contrast this with the building of a PC. A typical sequence
of design decisions might begin

1) Choose a CPU with adequate performance (say, a
700MHz AMD K7).

2) Choose an appropriate motherboard that supports ade-
quate memory (AMD K7’s use a “slot-A” type mother-
board, so the choice is highly constrained.)

3) Choose a case that supplies adequate power and will
house desired peripherals. (“Slot-A” type motherboards
require ATX form factor cases and K7’s require 300W
power supplies, so again the choice is highly con-
strained.)

One key feature of the PC example is that the complex com-
ponents are characterized, not in terms of detailed functional
specifications, but in terms of the rôles they play in the PC’s
architecture (“CPU”, “motherboard”, “case”, and so on), and a
few key functional properties. The complete functional speci-
fication of the K7 is enormously complex, and almost entirely
irrelevant; specifying that the rôle it typically plays is CPU in
a PC tells us very nearly everything we need to know about it.
And the selection process essentially consists of fleshing out
a generic description of a PC’s architecture by selecting com-
ponents to play various rôles. As each component is selected,
additional constraints are introduced that simplify the selection
of subsequent components. The initial generic description is
successively refined as each selection is made, and, eventually,
a complete concrete description of the architecture to be imple-
mented, in terms of components that can be purchased, results.
This concrete description determines how every component is
used, and how it contributes to the system under construction.

So, for these complex components, it is typical architectural
rôles, rather than functional descriptions, that drive the selec-
tion process. These architectural rôles describe the typical use
of the components. “Patterns” that provide guidance in the se-
lection of components are easy to define. (Indeed, several are
implicit in the sample sequence of design decisions.) In brief,
one might say that the selection of complex hardware compo-
nents isarchitecture-driven.

III. A RCHITECTURE-DRIVEN RETRIEVAL

It is easy to see that the combination of retrieval based on
keywords and deductive retrieval sketched in the introduction
corresponds to the process used for selection of simple hard-
ware components. Thus, we might expect that it is effective for
libraries of simple software components, where “simple” means
that the components have simple specifications, not necessarily
simple implementations, and they make minimal assumptions
about how they are to be used. A library of scientific subrou-
tines is a good example. Each subroutine has a relatively short,
high level mathematical specification, and the subroutines are
freely combined to achieve more complex functionality. A li-
brary of standard data structures — queues, buffers, and so on
— is another. The library of standard Unix utilities is yet an-
other.

We are exploring a different approach to retrieval, inspired
by the process of selecting complex hardware components out-
lined above. The central idea is to make retrieval architecture-
driven. This means associating, with each component, not a
specification of what it does on its own, but rather
• a specification of what (sub)systems built using that com-

ponent, in conjunction with components that provide ad-
ditional functionality, can do,

• how each of those components contributes to the overall
functionality, and

• efficient procedures for finding those other components.
More specifically, one or more architecture descriptions are as-
sociated with each component. The architecture descriptions
show how that component is typically used, i.e., they identify
typical architecture r̂oles that the component plays.

As each component is selected, the associated architectural
description that led us to select it is “unified” with the architec-
tural description of the system we are building. The unification
process constrains the list of candidates for filling remaining
holes in the architecture. The process focuses attention on can-
didate components that are likely to be useful. Moreover, the
selection process can be distributed in a natural way. As a re-
sult, the cost of the deduction that is required should be quite
tolerable.

Revisiting the PC example should make all this clearer. (The
architectural description will be somewhat simplified, since this
is just an illustration.) Imagine that the architecture-driven ap-
proach to retrieval has been implemented for PC components.
The architectural specification associated with a CPU might



Power buss

Motherboard

Data buss

Case

Internal peripherals External peripherals

Power supply
CPU

Memory

Fig. 1. CPU Architectural Specification

look something like the diagram in Fig. 1. The solid lines rep-
resent concrete components — in this case, the CPU itself is
the only concrete component — and the dashed lines indicate
placeholders that must be filled with concrete components to
complete the system. Since the next step in building a PC after
selecting a CPU is to select a motherboard, direct links from
the Motherboard placeholder to candidate motherboard com-
ponents are provided. Since choice of CPU directly constrains
the choice of a power supply (and we assume the case includes
a power supply), links to candidate case components may be
supplied as well. On the other hand, choice of a CPU does not
usefully constrain the choice of internal and external peripher-
als, links to candidate peripherals are probably not supplied.

The architectural specification of a motherboard might look
something like Fig. 2. For the motherboard, we might expect
links to CPUs, cases, and memory, with peripheral choices left
indirectly constrained.

Once the CPU and motherboard are both selected, the ar-
chitecture representation for the system under construction is
shown in Fig. 3. In addition, the constraints imposed on case
by the CPU (a lower bound on the power supply) and the moth-
erboard (form factor) are conjoined to focus the next selection
on a narrow range of cases: a candidate case for the system un-
der construction must be among the CPU’s case candidates and
among the motherboard’s case candidates.

The architectural specification of a case might look like
Fig. 4. This case has two drive bays, which is reflected in the
architecture by including two drives among the internal periph-
erals. (Of course, the case provides other constraints as well,
such as choice of keyboard and mouse, but these are omitted
from simplicity.) The result of unifying this case description
with the partial system description in Fig. 3 is shown in Fig. 5.

Now that meaning ofarchitecture-driven component re-
trieval is clearer, the issue of appropriate technology for achiev-
ing this objective remains. One key technology, illustrated in
the example above, is provided by architecture description lan-
guages (ADLs): the ability to formally describe software archi-
tectures. In fact, our own work on transformation of architec-
tural descriptions provides tools for dealing with descriptions

that contain “variables”, including match routines that can be
generalized to provide unification of architectural “templates”
represented in an ADL. Another key technology is provided by
work on custom theorem proving systems that can be used to se-
lect appropriate components based on a description of key func-
tional properties. Our idea is that each component will attempt
to prove that it can contribute to the satisfaction of some request
for functionality in the context of an architecture by finding the
right partners to team with.

Basically, each component would be provided with intro-
spective capabilities that allow it to determine, not what it can
do on its won, but what it can do in conjunction with other com-
ponents. In terms of the PC example, a 700 MHz AMD K7’s
wrapper would know it can, combined with other components,
become a 700MHz PC. Thus, on receiving a request for a PC
that runs at at least 633MHz, it is capable of determining that it
can potentially play a role in the requested system. It will then
pass on a more specific request for a PC with a 700MHZ AMD
K7 to potential motherboard partners. Any motherboards that
believe that are candidates will pass on an even more specific
request to the cases, and so on.

The main distinctions between this approach and deductive
retrieval are, first, that the deduction is more sharply focussed,
and, second, that proof is considerably simplified. The focus is
gained by having each component be aware of architecturally-
compatible partners. Components with a fundamental architec-
tural mismatch (e.g., motherboards that won’t hold a K7, cases
that won’t hold a given motherboard) are never even consid-
ered. Proof simplification is achieved by reasoning about only
key functional properties, such as parameters that directly affect
system performance, rather than a complete functional specifi-
cation. By formalizing these properties in a customized high-
level modal logic of requirements, efficient resolution-based
proof systems tailored to these logics can be employed. The
focus on components that are likely to be relevant to the overall
solution, simplified high-level component specifications, and
the use of custom proof systems all contribute to making the
cost of deduction more tolerable.



Power buss

Motherboard

Data buss

Case

Internal peripherals External peripherals

Power supply
CPU

Memory

Fig. 2. Motherboard Architectural Description

Power buss

Motherboard

Data buss

Case

Internal peripherals External peripherals

Power supply
CPU

Memory

Fig. 3. CPU and Motherboard Architectural Descriptions Unified

Power buss

Data buss

Case

Drive Drive
21 peripherals

Additional

Power supply

Motherboard External peripherals

CPU

Memory

Fig. 4. PC Case Architectural Description

IV. A SOFTWARE EXAMPLE

Since a mature software component infrastructure does not
yet exist, any example of architecture-driven component re-
trieval and assembly for software components is bound to be
a bit contrived. However, the following somewhat artificial ex-
ample will illustrate how the scheme could be made to work in
a software context.

Suppose that we are assembling a compiler for some lan-
guage from a stock of existing components — lexers, parsers,
and so on. As a starting point, we might decide that our com-

piler architecture should match the pattern shown in Fig. 6,
since that is what compilers built from the supposed stock of
components typically look like, at a high level of abstraction.
The architecture is described in a version of the Acme architec-
ture description language [2], augmented with pattern variables
that serve as place holders for as-yet undetermined elements.2

2Unfortunately, for present purposes, Acme uses ‘role’ to denote its solution
to:X is toconnectorasport is tocomponent. Hopefully, no confusion between
roles of connectors, in this sense, and the rôles played by connectors (and com-
ponents) in an architecture will result. To help distinguish between the two



Power buss

Data buss

Case

Drive Drive
21 peripherals

Additional

Power supply

Motherboard External peripherals

CPU

Memory

Fig. 5. Refined System Architectural Description

system our_compiler = {
component @Lex = {

ports { @LIn: character; @LOut: @Tok; @@LPorts; };
property role_in_architecture = lexer ;
};

component @Par = {
ports { @PIn: @Tok; @POut: @Parse_Tree; @@PPorts; };
property role_in_architecture = parser ;
};

component @Gen = {
ports { @GIn: @Parse_Tree; @GOut: code; @@GPorts; };
property role_in_architecture = analyzer__optimizer__code_generator ;
};

connector @Lex2Par = { roles { @L2PIn, @L2POut: @Tok; @@L2PRoles; } };
connector @Par2Gen = { ports { @P2GIn, @P2GOut: @Parse_Tree; @@P2GRoles; } };
attachments {

@Lex.@LOut to @Lex2Par.@L2PIn; @Par.@PIn to @Lex2Par.@L2POut;
@Par.@POut to @Par2Gen.@P2GIn; @Gen.@GIn to @Par2Gen.@P2GOut;
@@Attachments;
};

@@Rest
}

Fig. 6. Starting Point: A Compiler Architecture Pattern

This description says that the architecture for
our compiler consists of (at least) three components
and (at least) two connectors. One component, or combination
of components, performs lexing; the pattern variable@Lex
will be bound to this component. Note thatlexer is sim-
ply the label of a r̂ole a component can play in a compiler
architecture, not a shorthand for a formal definition of what
lexers do. The component has two ports, whose names are
undetermined, one where characters are consumed and the
other where values of some undetermined type — the same
undetermined type, the value of@Tok, that is consumed by
the undetermined component performing theparser role
in the architecture — are produced, as well as possibly other
ports. (The pattern variable@@L2Ports will be bound to
the remaining ports, if any.) The type@Tok is left under-
determined, because different candidates for thelexer and
parser rôles in the architecture may produce and consume,
respectively, different types. The pattern variables@LIn
and @LOut, for “lexer in” and “lexer out”, will be bound to

usages, the somewhat old-fashioned spelling of ‘rôle’ with a circumflex accent
over theo will be employed only when referring to rôles in the latter sense.

these two ports of the lexing component. The descriptions
of the parsing component,@Par, and the code generation
component,@Gen, are similar, as are the descriptions of the
connectors,@Lex2Par and @Par2Gen, that play the r̂oles
of links betweenlexer andparser and betweenparser
and analyzer optimizer code generator . The
description of the attachments of component ports to connector
roles should be clear once the use of pattern variables is
understood.

As a first step in constructing the compiler, suppose we se-
lect a lexer for the language of interest. The various lexer
components will have been designed to play thelexer rôle
in one or more architectures. Of course, the lexer we select
must be compatible with the architectural pattern that is our
starting point, in the sense that one of the architectural pat-
terns associated with the lexer must be unifiable with the pattern
for our compiler . A compatible lexer pattern is shown in
Fig. 7.3 Note that use of this lexer introduces an auxiliary data
structure, a symbol table, into the data structure as well. This

3Definitions of the token and symbol types have been omitted, for simplicity.



system @Comp = {
component lexer = {

ports { in: character; out1: token; out2: symbol; };
property role_in_architecture = lexer ;
};

component symbol_table = {
ports { in: symbol; out: symbol; };
property role_in_architecture = symbol_table ;
};

component @Par = {
ports { @PIn1: token; @PIn2: symbol; @POut: @Parse_Tree; @@PPorts; };
property role_in_architecture = parser ;
};

component @Gen = {
ports { @GIn: @Parse_Tree; @GOut: @Code; @@GPorts; };
property role_in_architecture = analyzer__optimizer__code_generator ;
};

connector l2t_pipe: pipe = { roles { in, out: symbol; } };
connector @Lex2Par = { roles { @L2PIn, @L2POut: token; @@L2PRoles; } };
connector @Tab2Par = { roles { @T2PIn, @T2POut: symbol; @@T2PRoles; } };
connector @Par2Gen = { ports { @P2GIn, @P2GOut: @Parse_Tree; @@P2GRoles; } };
attachments {

lexer.out1 to @Lex2Par.@L2PIn; @Par.@PIn1 to @Lex2Par.@L2POut;
lexer.out2 to l2t_pipe.in; symbol_table:in to l2t_pipe.out;
symbol_table.out to @Tab2Par.@T2PIn; @Par.@PIn2 to @Tab2Par.@T2POut;
@Par.@POut to @Par2Gen.@P2GIn; @Gen.@GIn to @Par2Gen.@P2GOut;
@@Attachments;
};

@@Rest
}

Fig. 7. One R̂ole the Componentlexer Can Play

choice of a lexer thus further constrains the choice of a parser.4

Choosing this lexer means unifying this description with the
current architecture description to obtain a new, more fully de-
termined description of the architecture. Since the description
associated withlexer is basically an instance of the archi-
tectural description, unification essentially replaces the initial
architecture description with the description in Fig. 7, but with
@Compbound toour compiler and@Codebound tocode .

Next, suppose we select a parser. A rôle description asso-
ciated with a candidate parser component is shown in Fig 8,
and the result of unifying this description with the evolving de-
scription of the architecture ofour compiler is shown in
Fig. 9. This step illustrates how our notion of architectural pat-
tern unification involves an element of refinement: the undeter-
mined lexer component@Lexin the r̂ole pattern for component
parser is “bound to” a complex consisting of the connected
lexer and symbol table components of the current de-
scription ofour compiler , and the undetermined connector
@Lex2Par of theparser description is “bound to” the pair
of undetermined connectors@Lex2Par and@Tab2Par of the
description ofour compiler .

Finally, we need to select a backend that performs analysis
of the parse tree, high-level optimization, and code generation.
We suppose that this is done in two stages, first selecting a com-
ponent that performs that analysis and optimization, and then

4Since, to keep the example as simple as possible, our Acme descriptions
omit the low-level details of interfaces, this constraint simply shows up as an
additional parser port. If the communication protocols were explicitly repre-
sented, the nature of the constraint — roughly, that the parser must use a cer-
tain protocol to extract certain information from the symbol table – would be
clearer.

selecting an associated generator to obtain output of the desired
type,code .5 An architectural r̂ole description associated with
the componentanalyzer optimizer is shown in Fig. 10,
the result of unifying that description with the description of
our compiler — note the refinement element introduced by
the r̂ole description — in Fig. 11, and a rôle description asso-
ciated with the componentcode generator in Fig. 12. The
choice ofcode generator , and binding the remaining un-
determined connectors to pipes, completes the description of
our compiler , as shown in Fig. 13.

Although this example has been described in terms of a series
of selections by a system designer, the same series of architec-
ture pattern unifications could result from a more agent-oriented
approach. The idea is that, after selecting the initial structure
for the compiler, in which the components and connections are
entirely underdetermined, a bid for a compiler with this struc-
ture could be sent to various lexer agents.6 If the lexer agent
succeeds in establishing a match, it requests candidate parser

5We are assuming that the values of the property
role in architecture are a fixed part of the component infras-
tructure, and that the values are ordered so as to form a meet semi-
lattice. Thus, possible decompositions of underdetermined component
@Genin our compiler is constrained by the fact that the meet of the
role in architecture values of the subcomponents must beana-
lyzer optimizer code generator . This is one way of making
decomposition inexpensive enough to consider.

6The exact mechanism for determining the candidates is inessential — they
might register with an agent that stores the initial structural pattern, they might
be obtainable by querying a central agent registry, and so on — butsomemech-
anism for bounding the candidates to lexers that are likely to be able to con-
tribute to a complete system solution is essential. Generally, asking every agent
to dynamically determine whether it can possibly contribute to a solution would
result in an enormous amount of wasted effort on failed unifications, even if an
inexpensive check of therole in architecture values were employed.



system @Comp = {
component @Lex = {

ports { @LIn: @Char; @LOut1: token; @LOut2: symbol; @@LPorts};
property role_in_architecture = lexer ;
};

component parser = {
ports { in1: token; in2: symbol; out: parse_tree; };
property role_in_architecture = parser ;
};

component @Gen = {
ports { @GIn: parse_tree; @GOut: @Code; @@GPorts; };
property role_in_architecture = analyzer__optimizer__code_generator ;
};

connector @Lex2Par = {
roles {

@L2PIn1, @L2POut1: token;
@L2PIn2, @L2POut2: symbol;
@@L2PRoles;
}

};
connector @Par2Gen = { ports { @P2GIn, @P2GOut: @Parse_Tree; @@P2GRoles; } };
attachments {

@Lex.@LOut1 to @Lex2Par.@L2PIn1; parser.in1 to @Lex2Par.@L2POut1;
@Lex.@LOut2 to @Lex2Par.@L2PIn2; parser.in2 to @Lex2Par.@L2POut2;
@Par.@POut to @Par2Gen.@P2GIn; @Gen.@GIn to @Par2Gen.@P2GOut;
@@Attachments;
};

@@Rest
}

Fig. 8. One R̂ole the Componentparser Can Play

system our_compiler = {
component lexer = {

ports { in: character; out1: token; out2: symbol; };
property role_in_architecture = lexer ;
};

component symbol_table = {
ports { in: symbol; out: symbol; };
property role_in_architecture = symbol_table ;
};

component parser = {
ports { in1: token; in2: symbol; out: parse_tree; };
property role_in_architecture = parser ;
};

component @Gen = {
ports { @GIn: parse_tree; @GOut: code; @@GPorts; };
property role_in_architecture = analyzer__optimizer__code_generator ;
};

connector l2t_pipe: pipe = { roles { in, out: symbol; } };
connector @Lex2Par = { roles { @L2PIn, @L2POut: token; @@L2PRoles; } };
connector @Tab2Par = { roles { @T2PIn, @T2POut: symbol; @@T2PRoles; } };
connector @Par2Gen = { ports { @P2GIn, @P2GOut: @Parse_Tree; @@P2GRoles; } };
attachments {

lexer.out1 to @Lex2Par.@L2PIn; parser.in1 to @Lex2Par.@L2POut;
lexer.out2 to l2t_pipe.in; symbol_table:in to l2t_pipe.out;
symbol_table.out to @Tab2Par.@T2PIn; parser.in2 to @Tab2Par.@T2POut;
parser.out to @Par2Gen.@P2GIn; @Gen.@GIn to @Par2Gen.@P2GOut;
@@Attachments;
};

@@Rest
}

Fig. 9. Architecture ofour compiler After parser is Chosen



system @Comp = {
component @Lex = {

ports { @LIn: @Char; @LOut: @Tok; @@LPorts};
property role_in_architecture = lexer ;
};

component @Par = {
ports { @PIn: @Tok; @POut: parse_tree; @@PPorts};
property role_in_architecture = parser ;
};

component analyzer_optimizer = {
ports { in: parse_tree; out: annotated_syntax_tree; };
property role_in_architecture = analyzer_optimizer ;
};

component @Gen = {
ports { @GIn: annotated_syntax_tree; @GOut: @Code; @@GPorts; };
property role_in_architecture = code_generator ;
};

connector @Lex2Par = { roles { @L2PIn, @L2POut: @Tok; @@L2PRoles; } };
connector @Par2Ana = { ports { @P2AIn, @P2AOut: parse_tree; @@P2ARoles; } };
connector @Ana2Gen = { ports { @A2GIn, @A2GOut: annotated_syntax_Tree; @@A2GRoles; } };
attachments {

@Lex.@LOut to @Lex2Par.@L2PIn; @Par.@PIn to @Lex2Par.@L2POut;
@Par.@POut to @Par2Ana.@P2AIn; analyzer_optimizer.in to @Par2Ana.@P2AOut;
analyzer_optimizer.out to @Ana2Gen.@P2AIn; @Gen.@GIn to @Ana2Gen.@A2GOut;
@@Attachments;
};

@@Rest
}

Fig. 10. One R̂ole the Componentanalyzer optimizer Can Play

system our_compiler = {
component lexer = {

ports { in: character; out1: token; out2: symbol; };
property role_in_architecture = lexer ;
};

component symbol_table = {
ports { in: symbol; out: symbol; };
property role_in_architecture = symbol_table ;
};

component parser = {
ports { in1: token; in2: symbol; out: parse_tree; };
property role_in_architecture = parser ;
};

component analyzer_optimizer = {
ports { in: parse_tree; out: annotated_syntax_tree; };
property role_in_architecture = analyzer_optimizer ;
};

component @Gen = {
ports { @GIn: annotated_syntax_tree; @GOut: code; @@GPorts; };
property role_in_architecture = code_generator ;
};

connector l2t_pipe: pipe = { roles { in, out: symbol; } };
connector @Lex2Par = { roles { @L2PIn, @L2POut: token; @@L2PRoles; } };
connector @Tab2Par = { roles { @T2PIn, @T2POut: symbol; @@T2PRoles; } };
connector @Par2Ana = { ports { @P2AIn, @P2AOut: @Parse_Tree; @@P2ARoles; } };
connector @Ana2Gen = { ports { @A2GIn, @A2GOut: @Parse_Tree; @@A2GRoles; } };
attachments {

lexer.out1 to @Lex2Par.@L2PIn; parser.in1 to @Lex2Par.@L2POut;
lexer.out2 to l2t_pipe.in; symbol_table:in to l2t_pipe.out;
symbol_table.out to @Tab2Par.@T2PIn; parser.in2 to @Tab2Par.@T2POut;
parser.out to @Par2Ana.@P2AIn; analyzer_optimizer.in to @Par2Ana.@P2AOut;
analyzer_optimizer.out to @Ana2Gen.@A2GIn; @Gen.@GIn to @Ana2Gen.@A2GOut;
@@Attachments;
};

@@Rest
}

Fig. 11. Architecture ofour compiler After analyzer optimizer is Chosen



system @Comp = {
component @Lex = {

ports { @LIn: @Char; @LOut: @Tok; @@LPorts};
property role_in_architecture = lexer ;
};

component @Par = {
ports { @PIn: @Tok; @POut: @Parse_Tree; @@PPorts};
property role_in_architecture = parser ;
};

component @Ana = {
ports { @AIn: @Parse_Tree; out: annotated_syntax_tree; @@APorts};
property role_in_architecture = analyzer_optimizer ;
};

component code_generator = {
ports { in: annotated_syntax_tree; out: code; };
property role_in_architecture = code_generator ;
};

connector @Lex2Par = { roles { @L2PIn, @L2POut: @Tok; @@L2PRoles; } };
connector @Par2Ana = { ports { @P2AIn, @P2AOut: @Parse_Tree; @@P2ARoles; } };
connector @Ana2Gen = { ports { @A2GIn, @A2GOut: annotated_syntax_tree; @@A2GRoles; } };
attachments {

@Lex.@LOut to @Lex2Par.@L2PIn; @Par.@PIn to @Lex2Par.@L2POut;
@Par.@POut to @Par2Ana.@P2AIn; @Ana.@AIn to @Par2Ana.@P2AOut;
@Ana.@AOut to @Ana2Gen.@P2AIn; code_generator.in to @Ana2Gen.@A2GOut;
@@Attachments;
};

@@Rest
}

Fig. 12. One R̂ole the Componentcode generator Can Play

system our_compiler = {
component lexer = {

ports { in: character; out1: token; out2: symbol; };
property role_in_architecture = lexer ;
};

component symbol_table = {
ports { in: symbol; out: symbol; };
property role_in_architecture = symbol_table ;
};

component parser = {
ports { in1: token; in2: symbol; out: parse_tree; };
property role_in_architecture = parser ;
};

component analyzer_optimizer = {
ports { in: parse_tree; out: annotated_syntax_tree; };
property role_in_architecture = analyzer_optimizer ;
};

component code_generator = {
ports { in: annotated_syntax_tree; out: code; };
property role_in_architecture = code_generator ;
};

connector l2t_pipe: pipe = { roles { in, out: symbol; } };
connector l2p_pipe: pipe = { roles { in, out: token; } };
connector t2p_pipe: pipe = { roles { in, out: symbol; } };
connector p2a_pipe: pipe = { ports { in, out: parse_tree; } };
connector a2g_pipe: pipe = { ports { in, out: annotated_syntax_tree; } };
attachments {

lexer.out1 to l2p_pipe.in; parser.in1 to l2p_pipe.out;
lexer.out2 to l2t_pipe.in; symbol_table:in to l2t_pipe.out;
symbol_table.out to t2p_pipe.in; parser.in2 to t2p_pipe.out;
parser.out to p2a_pipe.in; analyzer_optimizer.in to p2a_pipe.out;
analyzer_optimizer.out to a2g_pipe.in; code_generator.in to a2g_pipe.out;
};

}

Fig. 13. Final Architecture ofour compiler



agents whether they can extend the match. If a parser agent suc-
ceeds, it requests candidate amalyzer/optimizer/codegenerator
whether they can establish a match, and so on. Whenever this
process terminates in a fully determinate description of an ar-
chitecture, that candidate gets returned as a solution to the orig-
inal request.

V. CONCLUSIONS

While there is always ground for skepticism regarding the ca-
pabilities of untested component retrieval techniques, we have
good grounds for thinking that an architecture-driven approach
will prove successful. Research in agent-based systems has led
to a variety of architectures, from SRI’s Open Agent Architec-
ture [5], with its centralized facilitator, to completely indepen-
dent, autonomous agents. The proposed approach to retrieval
can be seen as a generalization of the Open Agent Architecture
that makes every agent a facilitator and that employs somewhat
more sophisticated representations of the functional rôles that
components play. Moreover, it is based largely on technology
for architecture description and architectural pattern description
that has already been implemented and proven to work effec-
tively for both design time [6], [7] and runtime [10] transfor-
mation of architectural descriptions. The required component
introspective capabilities are straightforward generalizations of
capabilities in standard frameworks, such as Java Beans. How-
ever, the key question —Just how much efficiency is gained
by basing retrieval on descriptions of architectural rôles rather
than functionality?— can only be answered by experimenta-
tion.

ACKNOWLEDGEMENTS

I came up with the idea of using architecture descriptions as
a basis for software component retrieval, based on the analogy
with hardware, in discussions with Hassen Saı̈di about how we
might make use of Michael Fisher’s work on custom resolution
theorem provers in our component-based systems research at
SRI. So, first of all, thanks to Hassen for inspiring conversation,
and to Michael for crossing the pond to visit SRI and talk about
his work. (Subsequent discussions with Michael made the idea
of joint work on architecture-based retrieval attractive, and that
fact is dimly reflected in some of the remarks about resolution
theorem provers in this paper.)

Victoria Stavridou, the Director of SRI’s System Develop-
ment Laboratory, supported elaborating the idea, and writing
this paper, with her IR&D budget, so thanks to her as well.

REFERENCES

[1] B. Fischer and J. Schumann. NORA/HAMMR: Making deduction-based
software component retrieval practical. InProceedings CADE-14 Work-
shop on Automated Theorem Proving in Software Engineering, July 1997.

[2] D. Garlan, R. Monroe, and D. Wile. ACME: An architecture descrip-
tion interchange language, InProceedings CASCON’97, November 1997,
pp. 169–183.

[3] R. J. Hall. Generalized behavior-based retrieval. InProceedings of the
15th International Conference on Software Engineering, May 1993,
pp. 371–380.

[4] J.-J. Jeng and B. Cheng. Using formal methods to construct a software
library. In Proceedings of the 4th European Software Engineering Con-
ference, LNCS vol. 717, September 1993, pp. 397–417.

[5] D. Martin, A. Cheyer, and D. B. Moran. The Open-Agent Architecture:
A framework for building distributed software systems,Applied Artificial
Intelligence, vol. 13, January–March 1999, pp. 91–128.

[6] M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct architecture
refinement,IEEE Transactions on Software Engineering, vol. 21, no. 4,
April 1995, pp. 356–372.

[7] M. Moriconi and R. A. Riemenschneider.Introduction toSADL 1.0: A
language for specifying software architecture hierarchies, Technical Re-
port SRI-CSL-97-01, Computer Science Laboratory, SRI International,
Menlo Park, CA, March, 1997.

[8] J. Penix.Automated Component Retrieval and Adaptation Using Formal
Specifications, Ph.D. Thesis, University of Cincinnati, April 1998.

[9] J. Penix and P. Alexander. Efficient specification-based component re-
trieval,Automated Software Engineering, to appear.

[10] R. A. Riemenschneider. Dependability gauges for dynamic systems. Sub-
mitted to CDSA 2001.

[11] D. R. Smith. Derived preconditions and their use in program synthesis.
In Proceedings of the 6th Conference on Automated Deduction, LNCS
vol. 138, June 1982, pp. 172–193.

[12] D. R. Smith. Top-down synthesis of divide-and-conquer algorithms.Arti-
ficial Intelligence, vol. 27, no. 1, 1985, pp. 43–96.

[13] A. M. Zaremski.Signature and Specification Matching, Ph.D. Thesis,
Carnegie Mellon University, January 1996.

[14] A. M. Zaremski and J. M. Wing. Specification matching of software com-
ponents. in3rd ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, October 1995.


