
A PVS Speci�cation of OMH-FTPomhftp[T : type; error : T; num : above[2]; R; UnR : [T ! T ]] : theorybeginassuming R ax : assumption (8 (t : T ) : R(t) 6= error)UnR ax : assumption (8 (t : T ) : UnR(R(t)) = t)endassumingprocessor : type = below[num] interstage : type = below[num]G; p; q : var processor i : var interstaget : var T iv; iv2 : var [interstage ! T ]importing �nite cardinality[interstage; num; (� (x : below[num]) : x)];�nite cardinality[processor; num; (� (x : below[num]) : x)];�lters[below[num]];card set[interstage; num; (� (x : below[num]) : x)];card set[processor; num; (� (x : below[num]) : x)]proc(i : interstage) : processor = istatuses : type = fgood; arbitrary; manifest; symmetricgpstatus : [processor ! statuses] istatus : [interstage ! statuses]gp(p) : bool = good(pstatus(p)) gi(i) : bool = good(istatus(i))ap(p) : bool = arbitrary(pstatus(p)) ai(i) : bool = arbitrary(istatus(i))mp(p) : bool = manifest(pstatus(p)) mi(i) : bool = manifest(istatus(i))sp(p) : bool = symmetric(pstatus(p)) si(i) : bool = symmetric(istatus(i))gpair(i) : bool = gi(i) ^ gp(proc(i)) bpair(i) : bool = ai(i) _ si(i) _ ap(proc(i)) _ sp(proc(i))sendpti : [T; processor; interstage ! T ]senditp : [T; interstage; processor ! T ]sendgtp : [T; processor; processor ! T ]sendgtp ax1 : axiom gp(p) � sendgtp(t; p; q) = tsendpti ax1 : axiom gp(p) � sendpti(t; p; i) = tsenditp ax1 : axiom gi(i) � senditp(t; i; p) = tsendgtp ax2 : axiom mp(p) � sendgtp(t; p; q) = errorsendpti ax2 : axiom mp(p) � sendpti(t; p; i) = errorsenditp ax2 : axiom mi(i) � senditp(t; i; p) = errorsendgtp ax3 : axiom sp(G) � sendgtp(t;G; p) = sendgtp(t;G; q)senditp ax3 : axiom si(i) � senditp(t; i; p) = senditp(t; i; q)sendgtp ax4 : lemma : ap(G) � sendgtp(t;G; p) = sendgtp(t;G; q)senditp ax4 : lemma : ai(i) � senditp(t; i; p) = senditp(t; i; q)H Majority(iv) : TMajority ax1 : axiomjgpairj > jbpairj ^ (8 i : gpair(i) � iv(i) = t) ^ t 6= error^ (8 i : mi(i) � iv(i) = error) ^ (8 i : gi(i) ^ mp(proc(i)) � iv(i) = error)� Majority(iv) = tMajority ax2 : axiom(8 i : iv(i) = iv2(i)) � H Majority(iv) = H Majority(iv2)OMH FTP(G; t)(p) : T = UnR(H Majority(� i : senditp(sendpti(R(sendgtp(t;G; proc(i)));proc(i); i); i; p)))Validity Final : theoremgp(p) ^ : ap(G) ^ num > 2 � (japj+ jaij+ jspj+ jsij) + jmij+ jmpj� OMH FTP(G; t)(p) = sendgtp(t;G; p)Agreement Final : theoremgp(p) ^ gp(q) ^ japj+ jaij � 1 ^ num > 2 � (japj+ jaij+ jspj+ jsij) + jmij+ jmpj� OMH FTP(G; t)(p) = OMH FTP(G; t)(q)end omhftp 14
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whole proofs, when working on variations of problemswe have studied previously.The proof of the Validity property was constructedwith more di�culty, mostly because one part of itdepends on reasoning about the hybrid fault model,and another part on the asymmetric FTP architec-ture. Consequently, proof fragments were copied fromour earlier proofs of Validity for the n-plex OM-FTP,and from older proofs of OMH [17]. The main dif-�culty then lay in choosing where to put the correctfragments, and we made some poor choices initially,which led to our reconstructing large parts of the prooffrom scratch.After developing this formal speci�cation and ver-i�cation, we explored a few alternate statements oflemmas and axioms, but did not attempt the gen-eralization developed for n-plex OM-FTP to includeprocessors without interstages. We chose not to dothis because with the hybrid fault model one can sim-ply consider any missing interstage as manifest-faulty.We intend to continue exploring minor changes informulation as well as more fundamental changes tothe algorithm, architecture, and fault model using thesame copy-and-edit paradigm for the creation of for-mal speci�cations and formal proofs.3.4 DiscussionIn our formal investigation of the FTP architecture,we have found previous claims of its advantages to beveri�ably correct, but too modest. That is, the state-ments are true, but usefully stronger statements aretrue as well. For example, we found that the archi-tecture performs adequately even when some proces-sors have no associated interstage. Furthermore, algo-rithms such as OMH-FTP can use the architecture toresist larger numbers of faults than previously claimedfor OM-FTP.We believe that our insights and more exact analy-sis are the direct result of the process of formal speci-�cation and veri�cation. Without formal speci�cationand veri�cation, it is extremely di�cult to compre-hend the consequences of simultaneous variations inan architecture, algorithm, and fault model. It is hu-man nature to gloss over details when performing are-analysis under some subtly di�erent set of assump-tions, and thus it is human nature to make mistakesin this process. It requires superhuman attention tothe smallest detail of every case to perform these taskscorrectly.Fortunately, computers are exceedingly pro�cientat recording and checking such details. In a prop-erly engineered interactive veri�cation system such as

PVS, a user is able to replay earlier proofs under dif-ferent sets of assumptions and can quickly understandwhere the argument goes awry. The ability to dealquickly with routine parts of a veri�cation, so thathuman insight can be concentrated on the more chal-lenging aspects, is one of the requirements for movingformal methods beyond toy problems to the practicalanalysis of real systems design challenges.Combining the (irreplaceable) high-level under-standing of a human with the tirelessly meticulouslow-level checking of a computer yields an extremelye�ective team, in our experience. The productsof these human-computer collaborations include notonly machine-checked proofs, but more importantly adeeper understanding of the problem.4 ConclusionWe have described a high-level system architecturethat combines the reduced hardware cost and com-plexity of Draper Laboratory's FTP architecture withthe improved reliability (due to the tolerance of largernumbers of simple faults) of algorithms developed forhybrid fault models. We have formally speci�ed andveri�ed a traditional triplex FTP architecture undera standard Byzantine fault model, and extended thisspeci�cation and veri�cation using PVS's proof de-velopment tools to the n-plex case under a hybridfault model. This system architecture and algorithmprovide the best overall tradeo� we are aware of inByzantine-fault-tolerant architectures.In the future, we hope to examine related faultmodels, including link faults: a fault mode where re-ceivers may receive either the correct value or a man-ifestly bad value. This class of faults has been suc-cessfully analyzed with respect to clock synchroniza-tion [25]. Adding authentication to OMH(m) does in-crease resilience against this type of fault, but it isnot easy to characterize the fault tolerance achieved.In addition, our OMH-FTP algorithm does not makeuse of all the opportunities for single-round infor-mation exchange that are present in FTP (e.g., ex-changes among the processors, or incorporating mes-sages received directly from the transmitter in themajority vote). It may be possible to extend OM-FTP and OMH-FTP to tolerate multiple arbitraryfaults by exploiting additional opportunities for infor-mation exchange. Exploring these alternatives couldbe rather tedious, and we plan to investigate use ofstate-exploration techniques for this purpose.11



from interstages, and computes the UnR of the result.Note that the �-abstraction appearing as the argumentto H Majority denotes the set of values obtained as iranges over all interstages. This concise formulation ispossible because PVS is a higher-order logic.Speci�cation of the H Majority function is anotherkey element reused from earlier e�orts. Rather thanspecifying an algorithm for performing this operation,we simply axiomatize the two properties of the func-tion required for this application (see Majority ax1and Majority ax2 in the Appendix). The two axiomsare stated in terms of the fault-status of system com-ponents, a choice that simpli�es their application here,but slightly complicates the provision of a model. Wehave separately veri�ed that an implementation basedon the e�cient Boyer-Moore MJRTY algorithm [3]satis�es these axioms [17].We now turn our attention to the main propertieswe would like to verify: Validity and Agreement. Thefollowing speci�cation corresponds to the property Va-lidity stated informally earlier.Validity Final : theoremgp(p) ^ : ap(G)^ num > 2 � (japj+ jaij+ jspj+ jsij) + jmij+ jmpj� OMH FTP(G; t)(p) = sendgtp(t;G; p)Notations such as jspj represent the number ofsymmetric-faulty processors. The constant num is thenumber of processor-interstage pairs.In English, one might read this speci�cation asfollows. If a processor p is nonfaulty, and trans-mitter G is not arbitrary-faulty, and there are moreprocessor-interstage pairs than twice the number ofarbitrary- and symmetric-faulty components plus thenumber of manifest-faulty components, then the al-gorithm achieves the same result as a simple messagesend fromG to p. In the case that G is nonfaulty, thenthis is the correct value (t); if G is symmetric-faulty,this value is unknown, but is the same for all receivers.The Agreement property is formalized as follows.Agreement Final : theoremgp(p) ^ gp(q) ^ japj+ jaij � 1^ num > 2 � (japj+ jaij+ jspj+ jsij) + jmij+ jmpj� OMH FTP(G; t)(p) = OMH FTP(G; t)(q)In English, one might read this as follows. If pand q are nonfaulty processors, and there is at mostone arbitrary-faulty component in the system, andthere are more processor-interstage pairs than twicethe number of arbitrary- and symmetric-faulty compo-nents plus the number of manifest-faulty components,then after running the algorithm both p and q end upwith the same value.

3.3 Formal Veri�cation of OMH-FTPGiven the speci�cation sketched above, which wasquickly assembled from several previous sources, weset about formally verifying it. In some ways, themost interesting aspect of this project was the reuseof the formal proofs.Using the PVS proof-editing facility, proof scriptsfrom existing veri�cations of OM-FTP and OMH werecombined as rough drafts for proofs of properties ofOMH-FTP. This happened to be most successful forthe Agreement property, but reuse of existing prooffragments was also instrumental in the rapid construc-tion of a proof for the Validity property.As an example, in developing the proof of theAgreement property, we began by copying verbatiman earlier proof script of the same property for the n-plex OM-FTP algorithm. We ran that proof, and en-countered an immediate di�culty: the OM-FTP proofuses the proof command (CASE "gp(G!1)") to do acase split on whether the transmitter is nonfaulty. Incase the transmitter is not nonfaulty, then in the orig-inal proof it must be arbitrary-faulty (because of the\Byzantine-only" fault model of the previous veri�-cation), and since there is at most one faulty com-ponent, no interstages can be faulty. This reasoningfails in the hybrid fault model, so we altered the com-mand to split explicitly on whether the transmitter isarbitrary-faulty or not with the command (CASE "notap(G!1)"). For the case the transmitter is arbitrary-faulty, the reused proof failed again for a similar rea-son: there is a deeper case split on whether a partic-ular interstage is nonfaulty or not. The same repairand one other minor change was required to completethis branch of the proof. For the case the transmit-ter is not arbitrary-faulty, the original proof assumedthe transmitter was nonfaulty, and thus sent consistentvalues. In the new proof we appeal instead to a lemma,proved separately, which states that non-arbitrary-faulty components always send consistent (althoughperhaps incorrect) values.This proof-development process involved runningthe rough drafts of proof scripts several times, makingsmall changes to the script each time. On failure of aproof branch, PVS puts the user in the proof-contextof the failed branch; the user can interactively con-struct the rest proof from there, or can go back to theproof-editor to make more global changes to the proofscript. Of course, we could have built the proof ofOMH-FTP from scratch, using our intuition from theinformal proof to give direction, but we have foundit much more e�cient to re-use proof fragments or10



OMH FTP(G; t)(p) : T = UnR(H Majority(� i : senditp(sendpti(R(sendgtp(t;G; proc(i))); proc(i); i); i; p)))Figure 2: PVS Speci�cation of the Algorithm OMH-FTPIf the transmitter has a nonfaulty interstage, thenthe transmitter is counted among the m0p. A nonfaultyreceiver therefore receives at least n�1� (a+s+m0i+(m0p � 1)) values equal to RE, and at least m0i + m0pequal to E. If the transmitter has a faulty interstage,then the transmitter is not counted among the m0p,but its interstage is among those counted in a, s, ormi. A nonfaulty processor therefore receives at leastn � 1 � ((a + s +m0i � 1) +m0p) values equal to RE,and at least m0i +m0p equal to E.In each case, the bound stated in the Lemma is suf-�cient to ensure that the value RE is returned in theH-majority vote in step (4). 2Theorem 1 For any a, s, m, algorithm OMH-FTPsatis�es the Agreement property if n > 2(a + s) + mand a � 1.Proof: We �rst consider the case in which the trans-mitter is not arbitrary-faulty. Then Validity is ensuredby Lemma 1, and we have agreement on the valueactually sent or on E, depending whether or not thetransmitter is manifest-faulty.Now consider the case where the transmitter isarbitrary-faulty. There is at most one arbitrary-faultycomponent, so none of the receivers or interstages canbe arbitrary-faulty. Thus, whatever each interstagedoes, whether it is faulty or not, it sends the samevalues to every processor. Each processor thereforereceives the same set of values from the interstages,and will therefore obtain the same H-majority valuein step (4) (remember, this value is functionally deter-mined), thereby ensuring Agreement. 23.2 Formal Speci�cation of OMH-FTPThe formal speci�cation of OMH-FTP was derivedfrom those developed previously for OM-FTP andOMH(m). In this section we outline the speci�cationand discuss some interesting aspects; the full speci�-cation appears in Appendix A.7As noted earlier, the key to all these speci�cationsis the use of functions to model distributed behav-iors, with the fault model encoded in a send function7The PVS system and its documentation can be obtained byanonymous ftp from ftp.csl.sri.com/pub/pvs, or via WWWfrom http://www.csl.sri.com/sri-csl-pvs.html.

that models message transmission. Similar approacheshave been used in several recent published formal ver-i�cations, but it has been noted that in some cases theuse of functions to model message transmission actu-ally introduces an extra (hidden) assumption of con-sistency on the behavior of Byzantine components inthe later rounds of message passing (see [23] for morediscussion of this point). In the present case the useof these functions introduces no such hidden assump-tion, since we only analyze the single-round case, anduse separate send functions for each class of messagetransfers.In particular, the speci�cation of the algorithmOMH-FTP appears as the simple nonrecursive (buthigher-order) function shown in Figure 2, wheresendgtp, sendpti, and senditp model the transmissionof messages from the transmitter (called the Generalin the formal speci�cation) to the other processors (re-ceivers), from processors to their interstages, and frominterstages to the processors, respectively. (Both pro-cessors and interstages are represented by the inte-gers 0; : : : ; num� 1; this range is speci�ed in PVS asbelow[num].)The fault model is speci�ed in eight axioms aboutthese functions|such as the following, which capturesthe behavior of a symmetric-faulty transmitter.sendgtp ax3 : axiomsp(G) � sendgtp(t;G; p) = sendgtp(t;G; q)Here, sp is a predicate that is true if its argumentis a symmetric-faulty processor. We also use gp, ap,and mp for nonfaulty (\good"), arbitrary-faulty, andmanifest-faulty processors, respectively, and si, gi, ai,and mi for the corresponding classes of interstages.The other functions appearing in the speci�cationof OMH FTP are R, UnR, H Majority: these modelthe translation of E into RE and vice-versa, and thecalculation of the H-majority (majority with E valuesexcluded), respectively.The function OMH FTP is read most easily frominside to out: the transmitter G sends a value t to theprocessor associated with interstage i. This proces-sor, proc(i), then records the R of the value receivedand sends the result to its associated interstage i. In-terstage i then sends the value received to all proces-sors, which take the H-majority of all values received9



3.1.4 The AlgorithmWe use the Byzantine Generals formulation, in whichthere is a distinguished transmitter. In addition to thespecial value E that denotes the value received froma manifestly-faulty processor or interstage, we also in-troduce a special value RE that is used for \ReportedErrors."OMH-FTP1. The transmitter sends its value to everyreceiver. If the transmitter has an in-terstage, it also sends its value to thatinterstage.2. Each receiver with an interstage sendsthe value received to its interstage, ex-cept that if E was received, RE is sentto the interstage.3. Each interstage relays the value it re-ceives (if any) to every processor.4. For each processor q, let vq(i) bethe value received from interstagei. Processor q uses the value H-majority(vq(1); : : : ; vq(n)), which de-notes the absolute majority in the setfvq(i)j1 � i � n; vq(i) 6= Eg if it exists,otherwise some arbitrary, but function-ally determined value. If the result isRE, it is replaced by E.Notice that there is a subtlety in the treatment of Eand RE. A receiver that detects a missing or bad valuepasses it to its interstage as RE, whereas interstagesthat detect errors pass them on as E.Notice also that receiving processors do not includethe value received directly from the transmitter intheir majority vote; instead, they use the value \re-
ected back" to them by their own interstage. Thisseems odd, since the interstage could be faulty andso a good value obtained directly from the transmit-ter will be replaced by a bad value from the faultyinterstage. In fact, the chosen arrangement does notreduce fault-tolerance and is actually crucial to correctoperation under multiple-fault scenarios.55Consider a quadruplex FTP with one manifest-faulty inter-stage and a Byzantine-faulty transmitter that sends di�erentvalues to every receiver and to its interstage; if the processorwith the faulty interstage used the value received directly fromthe transmitter, it would end up with a di�erent set of valuesthan the other nonfaulty processors and, since there will be nooverall majority, it could select a di�erent value in the majorityvote. We do not know whether or not Draper's original algo-rithm includes values received directly from the transmitter ineach receiver's majority vote.

3.1.5 Informal Proofs of OMH-FTPAn FTP-n architecture running OMH-FTP has thesame fault-tolerance as an n+1-plex running OMH(1).Let a be the number of arbitrary-faulty processors andinterstages, s the number that are symmetric-faulty,and m the number that are manifest-faulty.Lemma 1 For any a, s, m, Algorithm OMH-FTPsatis�es the Validity requirement if n > 2(a+ s) +m.Proof: Validity only speci�es what must happen ifthe transmitter is not Byzantine-faulty. If the trans-mitter is nonfaulty or symmetric-faulty, then all non-faulty receivers obtain the value actually sent by thetransmitter (call this �) in step (1). Those nonfaultyreceivers with interstages will forward that value totheir interstages in step (2), and it will then be for-warded by all nonfaulty interstages to all processorsin step (3). Intuitively, the worst case arises whenonly one member of each processor-interstage pair isfaulty. The full analysis requires a more careful count-ing argument. Therefore let m0i be the actual numberof manifest-faulty interstages, and let m0p be the actualnumber of manifest-faulty receivers with nonfaulty in-terstages. Then a nonfaulty receiver receives at leastn� (a+ s+m0i +m0p) values equal to �, and at leastm0i + m0p equal to E.6 Thus, at most n � (m0i + m0p)non-E values are received, and � will be selected in theH-majority vote provided2(n� (a + s +m0i +m0p)) > n� (m0i +m0p);that is, providedn > 2(a+ s) + (m0i +m0p):Clearly, m � m0i +m0p and the result follows.Next, we consider the case where the transmitter ismanifest-faulty. In step (1), all the nonfaulty receiversnote the value received as RE. We now perform case-analysis depending on whether or not the transmitterhas an interstage, and whether or not it is faulty.If the transmitter has no interstage, the analysis isthe same as the previous case: a nonfaulty receiverobtains at least n� (a+ s+m0i +m0p) values equal toRE, and at least m0i + m0p equal to E. (Remember,the E values received by receivers directly from thetransmitter are transformed into RE before being senton to their interstages.)6There are subcases here, depending on whether or not thetransmitter has an interstage, and whether or not the transmit-ter is nonfaulty or symmetric-faulty; however, the stated boundsare correct for all cases.8



as were our early attempts to correct it|and partlybecause the argument is intrinsically more compli-cated, due to the extended case analysis needed forthe additional fault modes tolerated by the hybrid al-gorithm OMH(m) [16].With satisfactory treatments of the Oral MessagesAlgorithm for the FTP architecture (OM-FTP) andfor the hybrid fault model (OMH(m)) available sep-arately, we combined them to yield the OMH-FTPalgorithm and its formal veri�cation described in theremainder of this section.3.1 Informal Treatment of OMH-FTPA fault model, requirements, algorithm, and ar-gument for the algorithm's correctness are presentedinformally in the following subsections. The formaltreatment is described a later section. In the follow-ing, the transmitter and the receivers always refer toprocessors, not interstages.3.1.1 Fault ModelAs noted earlier, our fault model is the same as that ofThambidurai and Park, but with the cases renamed.The fault modes we distinguish are arbitrary-faulty ,symmetric-faulty , and manifest-faulty . Of course, wealso need a class of nonfaulty (sometimes called good)processors. We specify these fault modes semiformallyas follows (the formal characterizations are presentedlater).When a transmitter or interstage p sends somevalue t to its receivers, the value obtained by a non-faulty receiver q is:� t, if p is nonfaulty� E, if p is manifest-faulty4� Unknown, if p is symmetric-faulty, but all non-faulty receivers obtain the same value,� Completely unconstrained, if p is arbitrary-faulty.Similarly, when a processor sends the value t to itsinterstage, the value received (if the interstage isnonfaulty) is t or E if the processor is nonfaultyor manifest-faulty, respectively, and unconstrained if4Some preprocessing of timeouts, parity and \reasonable-ness" checks, etc. may be necessary to identify manifestly faultyvalues. The intended interpretation is that the receiver detectsthe incoming value as missing or bad, and then replaces it bythe distinguished value E.

it is symmetric- or arbitrary-faulty. Note that asymmetric-faulty transmitter may send a di�erentvalue to its interstage than to the receivers, but thatit must send the same value to all receivers. Note alsothat manifest faults must be symmetric, in the sensethat if a processor were to \crash" during this proto-col (or if some of its outgoing links are broken, or if itis early or late transmitting on some links), it wouldhave to be counted as arbitrary-faulty, since di�erentnonfaulty receivers may obtain di�erent values|eventhough the values sent are either correct or identi�-ably bad. Investigating whether this restriction canbe relaxed is an interesting area for future research.3.1.2 Other AssumptionsNonfaulty processors are assumed to execute correctlythe algorithm given below; faulty processors and inter-stages need not. It is because the values sent by faultyprocessors and interstages may be unrelated to thosereceived that the values received by faulty processorswere left unspeci�ed in the previous subsection.A nonfaulty transmitter must be able to transmitdirectly to all the nonfaulty processors that are pairedwith interstages; each nonfaulty processor paired witha nonfaulty interstage must be able to transmit to thatinterstage; each nonfaulty interstage must be able totransmit to every nonfaulty processor but receives onlyfrom the processor with which it is paired.3.1.3 RequirementsThe Agreement property is standard, but speci�cationof the Validity property has to be extended to accountfor symmetric and manifest faults.Agreement: All nonfaulty receivers agree on thevalue ascribed to the transmitter.Validity: If receiver q is nonfaulty, the value it as-cribes to the transmitter is� The correct value if the transmitter is non-faulty.� The value actually sent to all receivers if thetransmitter is symmetric-faulty.� The distinguished value E if the transmitteris manifest-faulty.7



2.3.1 Interactive Consistency for FTPOM-FTP, the interactive consistency algorithm de-veloped at Draper Laboratory for the FTP archi-tecture [12, page 340] is the following variation onthe traditional single-round Oral Messages algorithmOM(1) [15]. The transmitter sends its value directlyto all the receiving processors, which then forward thevalue to their own interstages (the transmitter alsosends its value to its interstage). Each interstage thensends the value it has received to every processor (in-cluding its own). Finally, each processor performs amajority vote on the values receives from the inter-stages.Published papers describing FTP [10, 12] do notpresent a detailed analysis of the fault toleranceachieved by this algorithm, although Lala [12, page342] states that a quadruplex FTP can tolerate \cer-tain combinations of two processor and two interstagefailures."Our contributions, described in the sections thatfollow, are the development of an extension to the in-teractive consistency algorithm for FTP so that not allprocessors need have interstages, the extension of thatalgorithm to better account for additional fault modesunder a hybrid fault model, and formal speci�cationand veri�cation of both algorithms.3 The OMH-FTP Algorithm and itsFormal Speci�cation and Veri�ca-tionOur development and formal veri�cation of an algo-rithm for interactive consistency in FTP under a hy-brid fault model built on several earlier veri�cationsof related algorithms.For our �rst step, we developed a formal speci�-cation and veri�cation of the classical Oral Messagesalgorithm OM(m) for a symmetric architecture usingthe Ehdm veri�cation system [23]. The key insighthere (due originally to Bevier and Young [2]) is thatalthough the Oral Messages algorithm is conceived asa distributed algorithm to be executed on loosely syn-chronized processors using message-based communi-cations, its correctness and fault-masking capabilitiescan be explored and veri�ed in a model that repre-sents the algorithm as a recursive function in classi-cal logic, with the fault model captured in a functionsend (t; p; q) that represents the value received by non-faulty processor q when processor p attempts to sendit the value t (if p is nonfaulty, then the received value

is t otherwise, under the Byzantine fault model, thevalue is unspeci�ed).Our colleague Shankar converted this speci�cationfromEhdm [27] to PVS [21] and recast it in the Byzan-tine Generals (as opposed to Interactive Consistency)formulation. This speci�cation and veri�cation wasused as one of the test cases that guided the develop-ment of PVS and it was also used as one of our stan-dard demonstrations, so that we became very familiarwith the argument.By specializing the formal speci�cation for OM(m)to the case m = 1; n = 3 and adding the interstagesand their communications, we were able to constructa speci�cation of OM-FTP for a triplex FTP archi-tecture quite easily. Then, building on our familiaritywith the correctness argument for OM(m), we wereable to construct mechanically-checked proofs for thecorrectness of OM-FTP in a couple of hours.While documenting an informal version of the cor-rectness argument for the triplex OM-FTP, we realizedthat it was not necessary for every processor in FTPto have a corresponding interstage: as long as thereare at least three processor-interstage pairs, additionalprocessors can be accepted without interstages. Wetherefore extended the triplex FTP speci�cation to en-compass n-plex FTP architectures, where n � 3 is thenumber of processor-interstage pairs, and any numberof additional processors lacking interstages may alsobe present. We modi�ed the previous triplex proofsusing the proof-editing facility of PVS, and in lessthan a day of extra work we had a complete speci�-cation and formal veri�cation of single-fault toleranceof n-plex FTP architectures. The ability to acceptprocessors without interstages is a useful extension: itallows interstages diagnosed as faulty to simply be ex-cluded from the con�guration; this could be valuableif certain sensors are directly observed only by speci�cprocessors. (Previously, we had assumed that a pro-cessor must be dropped from the con�guration if itsinterstage is diagnosed as faulty).3 Our analysis showsthat all processors can still participate as transmitteror receiver without impact on fault tolerance.At this point, we turned fromFTP back to symmet-ric architectures, but for the case of hybrid fault mod-els. Our formal speci�cation and veri�cation for thisversion of the problem built directly on our previoustreatment of OM(m) but was much more di�cult|partly because the published algorithm was incorrect,3We are unsure whether the designers of FTP had alreadyinvented this extension; we suspect they had, since they speakof the ability of a quadruplex FTP to tolerate \certain combi-nations of two processor and two interstage failures" [12, page342], but we have not found a published analysis of this case.6



s = c = 0, so that n > 3m as with the classical OralMessages Algorithm.2.3 The FTP ArchitectureExtending the classical algorithms and their anal-yses from Byzantine to hybrid fault models can beviewed as work aimed at wringing more fault tolerancefrom a given level of replication. A complementary in-vestigation would seek to minimize the quantity andcomplexity of hardware needed to achieve a given levelof fault tolerance. We say \quantity and complexityof hardware" rather than simply \level of replication"or \number of processors" since the �rst suggests abetter measure of real costs. The minimality resultsof Pease, Shostak and Lamport [22] show that at leastfour participants are needed in order to achieve inter-active consistency in the presence of a single arbitraryfault. However, although all participants need to beable to receive and transmit messages, not all of themneed to be able to vote, and only those that are toparticipate in other computational activities need tobe full processors.The e�ects of a single faulty processor on the re-sults of computational activities (e.g., evaluation ofcontrol laws) can be masked by three-way majorityvoting, so only three full processors are required toaccomplish the main activity of the system in a fault-tolerant manner. A fourth processor is needed onlyto ensure single-fault tolerance in the distribution ofsingle-source sensor data (i.e., interactive consistency),and for clock synchronization. The quantity and com-plexity of hardware required for overall single-fault tol-erance could be reduced if the full processor in thefourth processor could be replaced by some minimalcomponent that is just su�cient to discharge the re-sponsibilities of interactive consistency and clock syn-chronization. This, approximately, is the rationale un-derlying Draper Laboratory's FTP architectures [10],except that rather than add a minimal fourth proces-sor, these architectures supplement each of three pro-cessors with an extremely simple component called an\interstage" (see Figure 1).The FTP architectures have undergone a consider-able evolution and simpli�cation over the years [10,12](for example, early versions performed voting in theinterstages and required 50 times as much hardwareas the present design [12, page 343]); the �nal ver-sion, also incorporated to some extent in AIPS [13]and FTPP [9], has either three or four processors,and the same number of interstages. The processorsare fully connected among themselves, and each pro-cessor is connected to every interstage. Interstages

Processors
Interstages

Figure 1: Triplex FTP Architecturecan consist of nothing more than message forward-ing hardware. (Basically, they operate like mirrors:each re
ects data from its host processor back to ev-ery processor.) The triplex version of FTP, as shownin Figure 1 has only three processors but six \faultcontainment regions" (three processors and three in-terstages) and can withstand a single Byzantine faultin any of the components. The quadruplex version ofFTP (four processor-interstage pairs) can withstandany two faults in succession, provided it can recon�g-ure to exclude the faulty unit between the arrival ofthe �rst and second faults.A triplex FTP contains six components, but onlythree of them are processors. The three interstages areelementary units requiring so few gates that all threetogether comprise less silicon than a single processor.Thus, the overall hardware complexity, and hence thefault-arrival rate, of a triplex FTP should be less thanthat of a conventional quadruplex, and its cost andreliability should be correspondingly superior. Simi-larly, a quadruplex FTP similarly provides compara-ble fault tolerance to a conventional 5-plex, but withonly four full processors. A minor limitation of theFTP architecture is that it does not appear suitablefor versions of the Oral Messages Algorithm that useseveral rounds of information exchange (i.e., OM(m)with m � 2), and thus cannot be extended to toleratetwo or more arbitrary faults simultaneously. We con-sider this a minor limitation because m � 2 is seldomused in practice.5



processor provide inconsistent data initially, but it canalso relay data inconsistently.The Oral Messages algorithm of Lamport, Shostak,and Pease [15], which we denote OM(m) is a recursivealgorithm that uses m+1 rounds of message exchange.In the base case, OM(0), each receiver accepts what-ever value it obtains from the transmitter; in the gen-eral case, OM(m), each receiver takes the part of thetransmitter in OM(m � 1) to communicate the valueit received from the transmitter to the other recipi-ents, and each receiver settles on the majority valueamong all those obtained (i.e., one directly from thetransmitter and n� 2 via the other receivers, where nis the total number of processors). OM(m) can with-stand up to m arbitrary faults, provided n > 3m. Thebound n > 3m is optimal: Pease, Shostak, and Lam-port proved that no algorithm based on the Oral Mes-sages assumptions (and, implicitly, a symmetric ar-chitecture) can withstand more arbitrary faults thanthis [22]. However, OM(m) is not optimal when spe-cial classes of faults are considered: other algorithmscan withstand greater numbers of simpler faults for agiven number of processors than OM(m). We examinefault models in the next section.2.2 Hybrid Fault ModelsFault-tolerant systems are designed and evaluatedagainst explicit assumptions regarding the kinds andnumbers of faults they are to tolerate. \Fault mod-els" enumerate the assumed behaviors of faulty com-ponents; they range from those that identify manyhighly speci�c modes of failure, to those that com-prise just a few broad classes. The advantage of avery detailed fault model is that the mechanisms offault tolerance can be �nely tuned to deliver maximumresilience from a given level of redundancy; the corre-sponding disadvantages are that an overlooked faultmode may cause unexpected failure in operation, andthe need to counter many fault modes can lead to acomplex design|which may itself be a source of designfaults.Classical Byzantine fault-tolerant algorithms suchas Oral Messages make no assumptions about the be-havior of faulty components. Their advantage is thatthey cannot be defeated by unexpected fault modes;their disadvantage is that all faults are treated as\worst case," so that large levels of redundancy tol-erate relatively few faults.These observations motivate the study of fault-tolerant architectures and algorithms with respect tofault models that include arbitrary faults, together

with a limited number of additional common faultmodes. Inclusion of the arbitrary fault mode elimi-nates the fear that some unforeseen fault may defeatthe fault-tolerance mechanisms provided, while inclu-sion of other fault modes allows greater resilience to beachieved for faults of those kinds than with a classicalByzantine fault-tolerant architecture.Thambidurai and Park [29], Meyer and Prad-han [19], and Garay and Perry [7] have considered In-teractive Consistency algorithms that resist multiplefault classes. We adopt a hybrid fault model identicalto Thambidurai and Park's \Uni�ed" model but withthe cases renamed (to avoid their anthropomorphicdistinction between \malicious" and \nonmalicious"faults). We divide faults into three classes: mani-fest, symmetric, and arbitrary. A manifest fault isone that produces a value that all nonfaulty receiverscan detect as bad. Timing, omission and crash faultsare in this category. Symmetric and arbitrary faultsyield values that are not detectably bad (i.e., they arewrong, rather than missing, or manifestly corruptedvalues). A symmetric fault delivers the same wrongvalue to all nonfaulty receivers. As before, an arbitraryfault is completely unconstrained and, in particular,may deliver di�erent wrong (or missing or detectablybad) values to di�erent nonfaulty receivers. (The faultmodels of Meyer and Pradhan and of Garay and Perryare similar to this but neglect the symmetric case.)Thambidurai and Park [29] presented a variation onthe Oral Messages Algorithm that solves the Byzan-tine Generals Problem under the hybrid fault model.Unfortunately, this algorithm (though not its imple-mentation in MAFT) is 
awed. With the support ofthe PVS veri�cation system [21], we were able to de-tect this 
aw and to develop a correct version of thisalgorithm [18] that is able to withstand a arbitrary, ssymmetric, and c manifest faults simultaneously, usingm rounds, provided there are more than 2a+2s+c+mprocessors and a � m. We also constructed a formal,mechanically-checked proof of the correctness of thisalgorithm [16]. The essence of this enhanced algo-rithm, which we call OMH(m), is that it recognizesmanifest faulty values and excludes them from themajority votes (the 
aw in Thambidurai and Park'salgorithm, which is repaired in our version, is that itis necessary to treat manifest faulty values speciallywhen communicating them in the recursive instancesof the algorithm).Thambidurai, Park, and Trivedi [30] present reli-ability analyses that show that this increased fault-tolerance does provide signi�cantly superior reliabil-ity under plausible assumptions. Notice that whenonly arbitrary faults are present, we have a = m and4



comes from the C. S. Draper Laboratories [12], and thehybrid fault model was developed at the AerospaceTechnology Center of Allied Signal for their MAFT(\Multicomputer Architecture for Fault Tolerance")architecture [11]. Prototypes were constructed forboth architectures, and they and their successors arebeing considered, evaluated, or used for safety andcontrol applications in nuclear plants, aircraft, heli-copters, submarines, and rockets.Although the architecture, algorithm, and faultmodel investigated here are interesting and useful intheir own right, we are equally interested in the gen-eral use of mechanically-checked formal methods asa systematic and rigorous means to analyze criticalalgorithms, to identify all the assumptions on whichthey depend, to detect and help correct errors in theirformulation, and to provide compelling arguments fortheir correctness. From this point of view, algorithmsfor fault tolerance, especially those analyzed underhybrid fault models, are particularly interesting be-cause of their criticality, subtlety, and the extendedcase analysis required in their study. However thesecomplex combinations of fault-tolerant architectures,algorithms, and fault models are well within the scopeof practical machine-checked formal veri�cation as weshow below.2 Interactive Consistency,Hybrid Fault Models,and the FTP ArchitectureIn this section we review the problems of InteractiveConsistency and Byzantine Agreement, and describethe Oral Messages algorithm. We then introduce hy-brid fault models and the FTP architecture. Noneof this material is new and the whole section can beskipped by those familiar with these topics.2.1 Interactive ConsistencyIn this paper, we focus on algorithms for reliablydistributing single-source data to multiple processorsin the presence of faults. This problem, known as\Interactive Consistency" (although sometimes called\source congruence" or \consensus"), was �rst posedand solved for the case where faulty processors can ex-hibit arbitrary behavior by Pease, Shostak, and Lam-port [22] in 1980. Interactive Consistency is a sym-metric problem: it is assumed that each processor hasa \private value" (e.g., a set of sensor samples) and

the goal is to ensure that every nonfaulty processorachieves an accurate record of the private value ofevery other nonfaulty processor. In 1982, Lamport,Shostak, and Pease [15] presented an asymmetric ver-sion of Interactive Consistency, which they called the\Byzantine Generals Problem"; here, the goal is tocommunicate a single value from a designated proces-sor called the \Commanding General" to all the otherprocessors, which are known as \Lieutenant Gener-als." The problem of real practical interest is Interac-tive Consistency, but the metaphor of the ByzantineGenerals has proved so memorable that this formu-lation is better known; it can also be easier to de-scribe algorithms informally using the Byzantine Gen-erals formulation, although the balance of advantagecan be reversed in truly formal presentations. An al-gorithm for the Byzantine Generals problem can beconverted to one for Interactive Consistency by sim-ply iterating it over all processors (each processor inturn taking the role of the Commander), so there isno disadvantage to considering the Byzantine Gener-als formulation. See [23] for more extended discussionof this topic.In its Byzantine Generals formulation, the problemis to communicate a value from a \transmitter" pro-cessor to several other \receiver" processors in such away that the following two properties are satis�ed.Agreement: All nonfaulty receivers agree on thevalue obtained from the transmitter.Validity: If the transmitter is nonfaulty, then everynonfaulty receiver obtains the correct value.Note that here and henceforth, we use the terms trans-mitter and receivers for the metaphorical \Command-ing General" and \Lieutenant Generals."The principal di�culty to be overcome in Byzan-tine Generals and Interactive Consistency algorithmsis the possibility of asymmetric behavior on the partof faulty transmitters: such a processor may provideone value to one receiver, but a di�erent value to an-other, thereby making it di�cult for the recipients toagree on a common value. This di�culty can be over-come using several rounds of message exchange dur-ing which processor p tells processor q what value itreceived from processor r and so on. The precise formof the algorithm depends on assumptions about whata faulty processor may do when relaying such a mes-sage; under the \Oral Messages" assumption, there isno guarantee that a faulty processor will relay mes-sages correctly. This corresponds to totally arbitrarybehavior by faulty processors: not only can a faulty3



� Apart from clock synchronization and interactiveconsistency, fault tolerance in SIFT-like architec-tures is achieved by simple majority voting, sothat only 2m+ 1 processors are required to with-stand m faults [24]. The additional processorsrequired for clock synchronization and interactiveconsistency not only increase cost and complex-ity, they also increase the fault arrival rate (sincethis may be expected to grow in proportion tothe amount of hardware employed) and therebypossibly reduce overall reliability.� Although Byzantine-resilient algorithms make noassumptions about the behavior of faulty com-ponents, and are therefore maximally e�ectivewith respect to the kinds (or modes) of faultsthey tolerate, they are not maximally e�ectivewith respect to the number of faults they cantolerate: other algorithms (e.g., simple majorityvoting) can withstand more faults of particularkinds (e.g., crash-faults) for a given level of re-dundancy than traditional Byzantine-resilient al-gorithms. However, these alternative algorithmsmay fail when confronted by faults beyond thekinds they are designed to handle.Two recent developments mitigate these disadvan-tages.Asymmetric Architectures. SIFT was a symmet-rical design: all its processors were identical.Pease, Shostak and Lamport [22] proved that foursuch symmetric processors are required to with-stand a single (arbitrary) fault. The C. S. DraperLaboratory's Fault Tolerant Processor (FTP) isan asymmetrical design consisting of conventionalprocessors and much simpler interstages [12]. Theinterstages merely relay messages; they have nocomputational capability and do not participatein the voting steps that provide fault-tolerance inFTP. Arbitrary single-fault tolerance is achievedwith only three processors and three interstages,so the FTP architecture ought to be cheaper andmore reliable than a symmetrical quadruplex sys-tem providing the same fault tolerance. SinceFTP contains only three processors capable ofvoting, it appears to violate Pease, Shostak andLamport's minimality result [22] and the intuitionthat \four voters are required to resist one Byzan-tine fault." Consequently, very careful justi�ca-tion is required for its correctness and fault toler-ance.Hybrid Fault Models. All faults were treated asByzantine in SIFT; for simple classes of faults,

this treatment fails to extract the maximumfault-tolerance from a given level of redundancy. Forexample, a �ve-processor Byzantine-resilient sys-tem using a traditional interactive consistency al-gorithm can withstand a single arbitrary fault(without recon�guration), but may fail if twofaults arrive simultaneously, even if those faultsare of a simple character that could be maskedby ordinary majority voting. Thambidurai andPark [29], Meyer and Pradhan [19], and Garayand Perry [7] have developed fault models that in-clude certain common and simple kinds of faultsin addition to arbitrary faults. Algorithms devel-oped for these fault models can tolerate as manyarbitrary faults as a Byzantine fault-tolerant al-gorithm, but can also tolerate more simple faultsand combinations of faults.The subtlety and criticality of the algorithms andimplementation strategies employed in fault-tolerantsystems argue for the use of formal methods as ameans of design assurance. A research program ledby NASA Langley Research Center [4] has preciselythis goal. So far the classical Byzantine fault toler-ant clock synchronization algorithms [26,28], the OralMessages Algorithm for Interactive Consistency [2,23],fault masking and transient recovery by majority vot-ing [6, 24], extensions of clock synchronization to hy-brid fault models [25] and transient recovery [20], ex-tensions of the Oral Messages algorithm to the hybridfault model [16,18], and several levels in the implemen-tations of these algorithms [5] have been subjected tomechanically-checked formal speci�cation and veri�-cation.In this paper, we describe the formal veri�cationof an \Oral Messages" algorithm for achieving Inter-active Consistency in the asymmetric FTP architec-ture under a hybrid fault model. This combinationof architecture, algorithm, and fault model is the bestcompromise that we know between economy and faulttolerance for this problem: other combinations eithertolerate fewer faults or less severe kinds of faults for agiven level of redundancy, or they require more hard-ware to tolerate the same number and kinds of faults.2Both novel elements of this work have industrial,rather than academic, origins: the FTP architecture2Algorithms based on \signed messages" [22] can toleratemore faults than those based on oral messages (such as the al-gorithm considered here). To do so, however, they require more\rounds" of information exchange, and rest on strong assump-tions concerning the authentication methods used. We haverecently investigated algorithms that use authentication to en-hance the fault tolerance of oral messages algorithms, withoutmaking assumptions about the e�ectiveness of authenticationwhen within the competence of the basic algorithm.2



Formal Veri�cation of an Interactive ConsistencyAlgorithm for the Draper FTP Architecture Under aHybrid Fault Model�Reprinted from COMPASS '94 (Proceedings of the Ninth Annual Conference on Computer Assurance),IEEE, Gaithersburg, June 1994, pp. 107{120Patrick Lincoln and John RushbyComputer Science LaboratorySRI InternationalMenlo Park CA 94025 USAAbstractFault-tolerant systems for critical applicationsshould tolerate as many kinds of faults and as largea number of faults as possible, while using as littlehardware as feasible. And they should be providedwith strong assurances for their correctness.Byzantine fault-tolerant architectures are attractivebecause they tolerate any kind fault, but they arerather expensive: at least 3m + 1 processors are re-quired to withstand m arbitrary faults. Two recentdevelopments mitigate some of the costs: algorithmsthat operate under a hybrid fault model tolerate morefaults for a given number of processors than classicalByzantine fault-tolerant algorithms, and asymmetricarchitectures tolerate a given number of faults withless hardware than conventional architectures. In thispaper we combine these two developments and presentan algorithm for achieving interactive consistency (theproblem of distributing sensor samples consistently inthe presence of faults) under a hybrid fault model onan asymmetric architecture.The extended fault model and asymmetric architec-ture complicate the arguments for the correctness andthe number of faults tolerated by the algorithm. To in-crease assurance, we have formally veri�ed these prop-erties and checked the proofs mechanically using thePVS veri�cation system. We argue that mechanically-supported formal methods allow for e�ective reuseof intellectual resources, such as speci�cations andproofs, and that exercises such as this can now be per-formed very economically.�This work was supported by the National Aeronautics andSpace Administration, Langley ResearchCenter, under contractNAS1-18969.

1 IntroductionThe general design outline of a \reliable comput-ing platform" for ultra-critical applications was estab-lished in the late 1970s and early 1980s by the SIFTarchitecture [8, 32] and later re�ned in the FTP [12]and MAFT [11] architectures: the system workloadis executed by several independent processors in ap-proximate synchrony, and the results are subjected toexact-match majority voting. Clock synchronization,and also the distribution of single-source data such assensor samples, is performed in a manner that is resis-tant to arbitrary (or \Byzantine") faults [14,22].1 Thegreat advantage of a \Byzantine-resilient" design suchas this is that its overall reliability is dependent onlyon the fault arrival rate, the degree of replication, andthe correctness of its design and implementation; itdoes not depend on identifying and countering all theindividual fault modes that can a�ict the underlyinghardware.However, a disadvantage of this approach is thatit requires a lot of hardware to withstand relativelyfew faults: both clock synchronization and interactiveconsistency (the problem of distributing sensor sam-ples consistently in the presence of faults) require atleast 3m+1 processors to withstandm arbitrary faults.This is unfortunate on at least two grounds.1Technically, a Byzantine fault is one that is entirely un-constrained: no assumptions are made about the behavior ofByzantine-faulty components. We generally prefer to call thisthe arbitrary fault mode, since Byzantine faults are popu-larly interpreted as \malicious" faults that display asymmetricsymptoms (e.g., that communicate di�erent values to di�erentrecipients)|even though this is only one of the possible mani-festations of an arbitrary fault.1


