A PVS Specification of OMH-FTP

omhftp[T : TYPE, error: T, num: above[2], R, UnR: [T — T]]: THEORY
BEGIN
ASSUMING R_ax : ASSUMPTION (V (¢: T): R(t) # error)
UnR_ax: AssUMPTION (V (t: T): UnR(R(¢)) = t)

ENDASSUMING

processor : TYPE = below[num)] interstage : TYPE = below[num)]
G, p,q: VAR processor 1: VAR iInterstage

t: VAR T iv, Iv2: VAR [interstage — T

IMPORTING finite_cardinality[interstage, num, (X (z : below[num]): )],
finite_cardinality[processor, num, (X (z : below[num)]): )],
filters[below[num]],
card_set[interstage, num, (X (z : below[num]): )],
card_set[processor, num, (A (z : below[num)): )]

proc(i : interstage) : processor = 1

statuses : TYPE = {good, arbitrary, manifest, symmetric}

pstatus : [processor — statuses] istatus : [interstage — statuses|

gp(p) : bool = good(pstatus(p)) gi(1) : bool = good(istatus(i))

ap(p) : bool = arbitrary(pstatus(p)) ai(1) : bool = arbitrary(istatus(i))

mp(p) : bool = manifest(pstatus(p)) mi(1) : bool = manifest(istatus(s))

sp(p) : bool = symmetric(pstatus(p)) si(t) : bool = symmetric(istatus(i))

gpair(i) : bool = gi(i) A gp(proc(t)) bpair(z) : bool = ai(i) V si(1) V ap(proc(i)) V sp(proc(i))

sendpti: [T, processor, interstage — T
senditp : [T, interstage, processor — T]|
sendgtp : [T, processor, processor — T]|

sendgtp_axl: AXIoM gp(p) D sendgtp(t,p,q) = t
sendpti_ax1 : AXIOM gp(p) D sendpti(t,p,1) = t
senditp_ax1: AXIOM gi(1) D senditp(t,i,p) = t
sendgtp_ax2: AXIOM mp(p) D sendgtp(t,p,q) = error
sendpti_ax2 : AXIOM mp(p) D sendpti(t,p,i) = error

senditp_ax2: AXIOM mi(i) D senditp(t,i,p) = error

sendgtp_ax3 : AXIOM sp(G) D sendgtp(t,G,p) = sendgtp(t, G, q)
senditp_ax3 : AXIOM si(i) D senditp(t,i,p) = senditp(t,i,q)
sendgtp_ax4 : LEMMA — ap(G) D sendgtp(t,d,p) = sendgtp(t, G, q)
senditp_ax4 : LEMMA — ai(1) D senditp(t,i,p) = senditp(t,1,q)

H_Majority(iv) : T

Magjority_ax1: AXIOM
|gpair| > |bpair| A (Vi: gpair(i) D iv(i) = t) At # error
A (Vi: mi(i) D iv(i) = error) A (Vi: gi(f) A mp(proc(i)) D iv(i) = error)
D Majority(iv) = t

Majority_ax2 : axioM(V ¢: iv(z) = iv2(s)) D H_Majority(iv) = H_Majority(iv2)
OMH_FTP(G,t)(p): T = UnR(H_Majority(X 1 : senditp(sendpti( R(sendgtp(t, G, proc(i))), proc(),i),1,p)))
Validity_Final : THEOREM
gp(p) A —ap(G) A num > 2 X (lap| + |ai| + |sp| + |si]) + |mi] + [mp]|
D OMH_FTP(G,t)(p) = sendgtp(t,d,p)
Agreement_Final : THEOREM
gp(p) N gp(g) A lapl+Jail < 1 A num > 2 x (|ap|+ |ai] + [sp| + [si]) + |mi] + |mp]|
> OMH_FTP(G,)(p) = OMH.FTP(G,1)(q)

END ombhftp
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This demonstration adds to the collection of for-
mally specified and verified system components in
NASA Langley’s “reliable computing platform” for
ultra-critical applications [4]. The most recent addi-
tions to this set, including Hybrid Interactive Con-
sistency [16], Hybrid Clock Synchronization [25], and
the algorithm examined here, demonstrate the practi-
cal feasibility of formal verification for intricate prob-
lems where human reasoning and peer review has been
found somewhat unreliable.

These examples also demonstrate the value of for-
mal specifications and verifications in supporting reuse
and enhancements of existing designs and algorithms:
the primary benefit we have found in formal methods
is not in the verification of an individual algorithm,
but in the opportunity such a verification creates for
the reliable exploration of alternative assumptions, re-
quirements and designs.
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whole proofs, when working on variations of problems
we have studied previously.

The proof of the Validity property was constructed
with more difficulty, mostly because one part of it
depends on reasoning about the hybrid fault model,
and another part on the asymmetric FTP architec-
ture. Consequently, proof fragments were copied from
our earlier proofs of Validity for the n-plex OM-FTP,
and from older proofs of OMH [17]. The main dif-
ficulty then lay in choosing where to put the correct
fragments, and we made some poor choices initially,
which led to our reconstructing large parts of the proof
from scratch.

After developing this formal specification and ver-
ification, we explored a few alternate statements of
lemmas and axioms, but did not attempt the gen-
eralization developed for n-plex OM-FTP to include
processors without interstages. We chose not to do
this because with the hybrid fault model one can sim-
ply consider any missing interstage as manifest-faulty.
We intend to continue exploring minor changes in
formulation as well as more fundamental changes to
the algorithm, architecture, and fault model using the
same copy-and-edit paradigm for the creation of for-
mal specifications and formal proofs.

3.4 Discussion

In our formal investigation of the FTP architecture,
we have found previous claims of its advantages to be
verifiably correct, but too modest. That is, the state-
ments are true, but usefully stronger statements are
true as well. For example, we found that the archi-
tecture performs adequately even when some proces-
sors have no associated interstage. Furthermore, algo-
rithms such as OMH-FTP can use the architecture to
resist larger numbers of faults than previously claimed
for OM-FTP.

We believe that our insights and more exact analy-
sis are the direct result of the process of formal speci-
fication and verification. Without formal specification
and verification, it 1s extremely difficult to compre-
hend the consequences of simultaneous variations in
an architecture, algorithm, and fault model. It is hu-
man nature to gloss over details when performing a
re-analysis under some subtly different set of assump-
tions, and thus it 18 human nature to make mistakes
in this process. It requires superhuman attention to
the smallest detail of every case to perform these tasks
correctly.

Fortunately, computers are exceedingly proficient
at recording and checking such details. In a prop-
erly engineered interactive verification system such as
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PVS, a user is able to replay earlier proofs under dif-
ferent sets of assumptions and can quickly understand
where the argument goes awry. The ability to deal
quickly with routine parts of a verification, so that
human insight can be concentrated on the more chal-
lenging aspects, is one of the requirements for moving
formal methods beyond toy problems to the practical
analysis of real systems design challenges.

Combining the (irreplaceable) high-level under-
standing of a human with the tirelessly meticulous
low-level checking of a computer yields an extremely
effective team, in our experience. The products
of these human-computer collaborations include not
only machine-checked proofs, but more importantly a
deeper understanding of the problem.

4 Conclusion

We have described a high-level system architecture
that combines the reduced hardware cost and com-
plexity of Draper Laboratory’s FTP architecture with
the improved reliability (due to the tolerance of larger
numbers of simple faults) of algorithms developed for
hybrid fault models. We have formally specified and
verified a traditional triplex FTP architecture under
a standard Byzantine fault model, and extended this
specification and verification using PVS’s proof de-
velopment tools to the n-plex case under a hybrid
fault model. This system architecture and algorithm
provide the best overall tradeoff we are aware of in
Byzantine-fault-tolerant architectures.

In the future, we hope to examine related fault
models, including link faults: a fault mode where re-
celvers may receive either the correct value or a man-
ifestly bad value. This class of faults has been suc-
cessfully analyzed with respect to clock synchroniza-
tion [25]. Adding authentication to OMH(m) does in-
crease resilience against this type of fault, but it is
not easy to characterize the fault tolerance achieved.
In addition, our OMH-FTP algorithm does not make
use of all the opportunities for single-round infor-
mation exchange that are present in FTP (e.g., ex-
changes among the processors, or incorporating mes-
sages received directly from the transmitter in the
majority vote). It may be possible to extend OM-
FTP and OMH-FTP to tolerate multiple arbitrary
faults by exploiting additional opportunities for infor-
mation exchange. Exploring these alternatives could
be rather tedious, and we plan to investigate use of
state-exploration techniques for this purpose.



from interstages, and computes the UnR of the result.
Note that the A-abstraction appearing as the argument
to H_Majority denotes the set of values obtained as ¢
ranges over all interstages. This concise formulation is
possible because PVS is a higher-order logic.

Specification of the H_Majority function is another
key element reused from earlier efforts. Rather than
specifying an algorithm for performing this operation,
we simply axiomatize the two properties of the func-
tion required for this application (see Majority_axl
and Majority_ax2 in the Appendix). The two axioms
are stated in terms of the fault-status of system com-
ponents, a choice that simplifies their application here,
but slightly complicates the provision of a model. We
have separately verified that an implementation based
on the efficient Boyer-Moore MJRTY algorithm [3]
satisfies these axioms [17].

We now turn our attention to the main properties
we would like to verify: Validity and Agreement. The
following specification corresponds to the property Va-
lidity stated informally earlier.

Validity_Final : THEOREM
gp(p) N —ap(G)
A num > 2 % (ap| + Jail + [spl + Isi) + |mi] + [mp|
D OMH_FTP(G,t)(p) = sendgtp(t,d,p)

Notations such as |sp| represent the number of
symmetric-faulty processors. The constant num is the
number of processor-interstage pairs.

In English, one might read this specification as
follows. If a processor p is nonfaulty, and trans-
mitter G is not arbitrary-faulty, and there are more
processor-interstage pairs than twice the number of
arbitrary- and symmetric-faulty components plus the
number of manifest-faulty components, then the al-
gorithm achieves the same result as a simple message
send from G to p. In the case that (G is nonfaulty, then
this is the correct value (¢); if G is symmetric-faulty,
this value 1s unknown, but is the same for all receivers.

The Agreement property is formalized as follows.

Agreement_Final : THEOREM
gp(p) A gp(g) A lap|+lail < 1
A num > 2 % (|ap|+ |ail + [spl + i) + |mi] + [mp]
D OMH_FTP(G,t)(p) = OMH_FTP(G,t)(q)

In English, one might read this as follows. If p
and ¢ are nonfaulty processors, and there is at most
one arbitrary-faulty component in the system, and
there are more processor-interstage pairs than twice
the number of arbitrary- and symmetric-faulty compo-
nents plus the number of manifest-faulty components,
then after running the algorithm both p and ¢ end up
with the same value.
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3.3 Formal Verification of OMH-FTP

Given the specification sketched above, which was
quickly assembled from several previous sources, we
set about formally verifying it. In some ways, the
most interesting aspect of this project was the reuse
of the formal proofs.

Using the PVS proof-editing facility, proof scripts
from existing verifications of OM-FTP and OMH were
combined as rough drafts for proofs of properties of
OMH-FTP. This happened to be most successful for
the Agreement property, but reuse of existing proof
fragments was also instrumental in the rapid construc-
tion of a proof for the Validity property.

As an example, in developing the proof of the
Agreement property, we began by copying verbatim
an earlier proof script of the same property for the n-
plex OM-FTP algorithm. We ran that proof, and en-
countered an immediate difficulty: the OM-FTP proof
uses the proof command (CASE "gp(G!1)") to do a
case split on whether the transmitter is nonfaulty. In
case the transmitter 1s not nonfaulty, then in the orig-
inal proof it must be arbitrary-faulty (because of the
“Byzantine-only” fault model of the previous verifi-
cation), and since there is at most one faulty com-
ponent, no interstages can be faulty. This reasoning
fails in the hybrid fault model, so we altered the com-
mand to split explicitly on whether the transmitter is
arbitrary-faulty or not with the command (CASE '"not
ap(G!1)"). For the case the transmitter is arbitrary-
faulty, the reused proof failed again for a similar rea-
son: there is a deeper case split on whether a partic-
ular interstage 1s nonfaulty or not. The same repair
and one other minor change was required to complete
this branch of the proof. For the case the transmit-
ter is not arbitrary-faulty, the original proof assumed
the transmitter was nonfaulty, and thus sent consistent
values. In the new proof we appeal instead to a lemma,
proved separately, which states that non-arbitrary-
faulty components always send consistent (although
perhaps incorrect) values.

This proof-development process involved running
the rough drafts of proof scripts several times, making
small changes to the script each time. On failure of a
proof branch, PVS puts the user in the proof-context
of the failed branch; the user can interactively con-
struct the rest proof from there, or can go back to the
proof-editor to make more global changes to the proof
script. Of course, we could have built the proof of
OMH-FTP from scratch, using our intuition from the
informal proof to give direction, but we have found
it much more efficient to re-use proof fragments or



OMH_FTP(G,t)(p) : T = UnR(H_-Majority(X i : senditp(sendpti(R(sendgtp(t, G, proc(i))), proc(i),i),i,p)))

Figure 2: PVS Specification of the Algorithm OMH-FTP

If the transmitter has a nonfaulty interstage, then
the transmitter is counted among the mj,. A nonfaulty
receiver therefore receives at least n—1— (a+s+m}+
(my, — 1)) values equal to RE, and at least m{ + mj,
equal to E. If the transmitter has a faulty interstage,
then the transmitter is not counted among the m;,
but 1ts interstage is among those counted in a, s, or
m;. A nonfaulty processor therefore receives at least
n—1—((a+s+mi—1)+m;) values equal to RF,
and at least m{ 4+ m,, equal to E.

In each case, the bound stated in the Lemma is suf-
ficient to ensure that the value RE is returned in the
H-magority vote in step (4). O

Theorem 1 For any a, s, m, algorithm OMH-FTP
satisfies the Agreement property if n > 2(a + s) + m
and a < 1.

Proof: We first consider the case in which the trans-
mitter is not arbitrary-faulty. Then Validity is ensured
by Lemma 1, and we have agreement on the value
actually sent or on E, depending whether or not the
transmitter 1s manifest-faulty.

Now consider the case where the transmitter is
arbitrary-faulty. There is at most one arbitrary-faulty
component, so none of the receivers or interstages can
be arbitrary-faulty. Thus, whatever each interstage
does, whether 1t is faulty or not, it sends the same
values to every processor. Each processor therefore
receives the same set of values from the interstages,
and will therefore obtain the same H-majority value
in step (4) (remember, this value is functionally deter-
mined), thereby ensuring Agreement. O

3.2 Formal Specification of OMH-FTP

The formal specification of OMH-FTP was derived
from those developed previously for OM-FTP and
OMH(m). In this section we outline the specification
and discuss some interesting aspects; the full specifi-
cation appears in Appendix A.”

As noted earlier, the key to all these specifications
is the use of functions to model distributed behav-
iors, with the fault model encoded in a send function

"The PVS system and its documentation can be obtained by
anonymous ftp from ftp.csl.sri.com/pub/pvs, or via WWW
from http://www.csl.sri.com/sri-csl-pvs.html.

that models message transmission. Similar approaches
have been used in several recent published formal ver-
ifications, but it has been noted that in some cases the
use of functions to model message transmission actu-
ally introduces an extra (hidden) assumption of con-
sistency on the behavior of Byzantine components in
the later rounds of message passing (see [23] for more
discussion of this point). In the present case the use
of these functions introduces no such hidden assump-
tion, since we only analyze the single-round case, and
use separate send functions for each class of message
transfers.

In particular, the specification of the algorithm
OMH-FTP appears as the simple nonrecursive (but
higher-order) function shown in Figure 2, where
sendgtp, sendpti, and senditp model the transmission
of messages from the transmitter (called the General
in the formal specification) to the other processors (re-
ceivers), from processors to their interstages, and from
interstages to the processors, respectively. (Both pro-
cessors and interstages are represented by the inte-
gers 0, ...,num — 1; this range is specified in PVS as
below[num].)

The fault model is specified in eight axioms about
these functions—such as the following, which captures
the behavior of a symmetric-faulty transmitter.

sendgtp_ax3 : AXIOM
sp(G) D sendgtp(t,G,p) = sendgtp(t, G, q)

Here, sp is a predicate that is true if its argument
i1s a symmetric-faulty processor. We also use gp, ap,
and mp for nonfaulty (“good”), arbitrary-faulty, and
manifest-faulty processors, respectively, and si, gi, ai,
and mi for the corresponding classes of interstages.

The other functions appearing in the specification
of OMH_FTP are R, UnR, H_Majority: these model
the translation of £ into RE and vice-versa, and the
calculation of the H-magjority (majority with F values
excluded), respectively.

The function OMH_FTP is read most easily from
inside to out: the transmitter GG sends a value ¢ to the
processor associated with interstage ¢. This proces-
sor, proc(i), then records the R of the value received
and sends the result to its associated interstage . In-
terstage ¢ then sends the value received to all proces-
sors, which take the H-majority of all values received



3.1.4 The Algorithm

We use the Byzantine Generals formulation, in which
there is a distinguished transmitter. In addition to the
special value F that denotes the value received from
a manifestly-faulty processor or interstage, we also in-
troduce a special value RE that is used for “Reported
Errors.”

OMH-FTP

1. The transmitter sends its value to every
receiver. If the transmitter has an in-
terstage, it also sends 1ts value to that
interstage.

2. Each receiver with an interstage sends
the value received to its interstage, ez-
cept that if E was received, RFE is sent
to the interstage.

3. Each interstage relays the value it re-
ceives (if any) to every processor.

4. For each processor ¢, let wy(i) be
the value received from interstage
1. Processor ¢ uses the value H-
majority(vg(1),...,vg(n)), which de-
notes the absolute majority in the set
{vg(D)|1 < i < n,uy(i) # E} if it exists,
otherwise some arbitrary, but function-
ally determined value. If the result is
RE, it is replaced by E.

Notice that there is a subtlety in the treatment of E
and RE. A receiver that detects a missing or bad value
passes it to its interstage as RE, whereas interstages
that detect errors pass them on as E.

Notice also that receiving processors do not include
the value received directly from the transmitter in
their majority vote; instead, they use the value “re-
flected back” to them by their own interstage. This
seems odd, since the interstage could be faulty and
so a good value obtained directly from the transmit-
ter will be replaced by a bad value from the faulty
interstage. In fact, the chosen arrangement does not
reduce fault-tolerance and is actually crucial to correct
operation under multiple-fault scenarios.®

5Consider a quadruplex FTP with one manifest-faulty inter-
stage and a Byzantine-faulty transmitter that sends different
values to every receiver and to its interstage; if the processor
with the faulty interstage used the value received directly from
the transmitter, it would end up with a different set of values
than the other nonfaulty processors and, since there will be no
overall majority, it could select a different value in the majority
vote. We do not know whether or not Draper’s original algo-
rithm includes values received directly from the transmitter in
each receiver’s majority vote.

3.1.5 Informal Proofs of OMH-FTP

An FTP-n architecture running OMH-FTP has the
same fault-tolerance as an n+ 1-plex running OMH(1).
Let a be the number of arbitrary-faulty processors and
interstages, s the number that are symmetric-faulty,
and m the number that are manifest-faulty.

Lemma 1 For any a, s, m, Algorithm OMH-FTP
satisfies the Validity requirement if n > 2(a + s) + m.

Proof: Validity only specifies what must happen if
the transmitter is not Byzantine-faulty. If the trans-
mitter is nonfaulty or symmetric-faulty, then all non-
faulty receivers obtain the value actually sent by the
transmitter (call this v) in step (1). Those nonfaulty
receivers with interstages will forward that value to
their interstages in step (2), and it will then be for-
warded by all nonfaulty interstages to all processors
in step (3). Intuitively, the worst case arises when
only one member of each processor-interstage pair is
faulty. The full analysis requires a more careful count-
ing argument. Therefore let m! be the actual number
of manifest-faulty interstages, and let m;, be the actual
number of manifest-faulty receivers with nonfaulty in-
terstages. Then a nonfaulty receiver receives at least
n— (a+s+m}+m;) values equal to v, and at least
m} + m;, equal to E.° Thus, at most n — (m} + m,)
non-E values are received, and v will be selected in the
H-majority vote provided

2(n—(a—|—5—|—m§—|—m;)) >n—(m;—|—m;),
that is, provided
n > 2(a+s)+ (m; +my,).

Clearly, m > m} + my, and the result follows.

Next, we consider the case where the transmitter is
manifest-faulty. In step (1), all the nonfaulty receivers
note the value received as RE. We now perform case-
analysis depending on whether or not the transmitter
has an interstage, and whether or not it is faulty.

If the transmitter has no interstage, the analysis is
the same as the previous case: a nonfaulty receiver
obtains at least n — (a + s 4+ mj + my,) values equal to
RE, and at least m; + m;, equal to E. (Remember,
the E values received by receivers directly from the
transmitter are transformed into RE before being sent
on to their interstages.)

6There are subcases here, depending on whether or not the
transmitter has an interstage, and whether or not the transmit-
ter is nonfaulty or symmetric-faulty; however, the stated bounds
are correct for all cases.



as were our early attempts to correct it—and partly
because the argument is intrinsically more compli-
cated, due to the extended case analysis needed for
the additional fault modes tolerated by the hybrid al-
gorithm OMH(m) [16].

With satisfactory treatments of the Oral Messages
Algorithm for the FTP architecture (OM-FTP) and
for the hybrid fault model (OMH(m)) available sep-
arately, we combined them to yield the OMH-FTP
algorithm and its formal verification described in the
remainder of this section.

3.1 Informal Treatment of OMH-FTP

A fault model, requirements, algorithm, and ar-
gument for the algorithm’s correctness are presented
informally in the following subsections. The formal
treatment is described a later section. In the follow-
ing, the transmitter and the receivers always refer to
processors, not interstages.

3.1.1 Fault Model

As noted earlier, our fault model is the same as that of
Thambidurai and Park, but with the cases renamed.
The fault modes we distinguish are arbitrary-faulty,
symmetric-faulty, and manifest-faulty. Of course, we
also need a class of nonfaulty (sometimes called good)
processors. We specify these fault modes semiformally
as follows (the formal characterizations are presented
later).

When a transmitter or interstage p sends some
value t to its receivers, the value obtained by a non-
faulty receiver ¢ 1s:

e ¢t if p is nonfaulty
e I, if p is manifest-faulty*

e Unknown, if p 1s symmetric-faulty, but all non-
faulty receivers obtain the same value,

e Completely unconstrained, if p is arbitrary-faulty.

Similarly, when a processor sends the value ¢ to its
interstage, the value received (if the interstage is
nonfaulty) is ¢t or F if the processor is nonfaulty
or manifest-faulty, respectively, and unconstrained if

4Some preprocessing of timeouts, parity and “reasonable-
ness” checks, etc. may be necessary to identify manifestly faulty
values. The intended interpretation is that the receiver detects
the incoming value as missing or bad, and then replaces it by
the distinguished value F.

it 1s symmetric- or arbitrary-faulty. Note that a
symmetric-faulty transmitter may send a different
value to its interstage than to the receivers, but that
it must send the same value to all receivers. Note also
that manifest faults must be symmetric, in the sense
that if a processor were to “crash” during this proto-
col (or if some of its outgoing links are broken, or if it
is early or late transmitting on some links), it would
have to be counted as arbitrary-faulty, since different
nonfaulty receivers may obtain different values—even
though the values sent are either correct or identifi-
ably bad. Investigating whether this restriction can
be relaxed is an interesting area for future research.

3.1.2 Other Assumptions

Nonfaulty processors are assumed to execute correctly
the algorithm given below; faulty processors and inter-
stages need not. It is because the values sent by faulty
processors and interstages may be unrelated to those
received that the values received by faulty processors
were left unspecified in the previous subsection.

A nonfaulty transmitter must be able to transmit
directly to all the nonfaulty processors that are paired
with interstages; each nonfaulty processor paired with
a nonfaulty interstage must be able to transmit to that
interstage; each nonfaulty interstage must be able to
transmit to every nonfaulty processor but receives only
from the processor with which it is paired.

3.1.3 Requirements

The Agreement property is standard, but specification
of the Validity property has to be extended to account
for symmetric and manifest faults.

Agreement: All nonfaulty receivers agree on the
value ascribed to the transmitter.

Validity: If receiver ¢ is nonfaulty, the value it as-
cribes to the transmitter is

e The correct value if the transmitter is non-
faulty.

e The value actually sent to all receivers if the
transmitter 1s symmetric-faulty.

e The distinguished value F if the transmitter
1s manifest-faulty.



2.3.1 Interactive Consistency for FTP

OM-FTP, the interactive consistency algorithm de-
veloped at Draper Laboratory for the FTP archi-
tecture [12, page 340] is the following variation on
the traditional single-round Oral Messages algorithm
OM(1) [15]. The transmitter sends its value directly
to all the receiving processors, which then forward the
value to their own interstages (the transmitter also
sends its value to its interstage). Each interstage then
sends the value it has received to every processor (in-
cluding its own). Finally, each processor performs a
majority vote on the values receives from the inter-
stages.

Published papers describing FTP [10, 12] do not
present a detailed analysis of the fault tolerance
achieved by this algorithm, although Lala [12, page
342] states that a quadruplex FTP can tolerate “cer-
tain combinations of two processor and two interstage
failures.”

Our contributions, described in the sections that
follow, are the development of an extension to the in-
teractive consistency algorithm for FTP so that not all
processors need have interstages, the extension of that
algorithm to better account for additional fault modes
under a hybrid fault model, and formal specification
and verification of both algorithms.

3 The OMH-FTP Algorithm and its
Formal Specification and Verifica-
tion

Our development and formal verification of an algo-
rithm for interactive consistency in FTP under a hy-
brid fault model built on several earlier verifications
of related algorithms.

For our first step, we developed a formal specifi-
cation and verification of the classical Oral Messages
algorithm OM(m) for a symmetric architecture using
the EHDM verification system [23]. The key insight
here (due originally to Bevier and Young [2]) is that
although the Oral Messages algorithm is conceived as
a distributed algorithm to be executed on loosely syn-
chronized processors using message-based communi-
cations, its correctness and fault-masking capabilities
can be explored and verified in a model that repre-
sents the algorithm as a recursive function in classi-
cal logic, with the fault model captured in a function
send(t,p, q) that represents the value received by non-
faulty processor ¢ when processor p attempts to send
it the value t (if p is nonfaulty, then the received value

is t otherwise, under the Byzantine fault model, the
value is unspecified).

Our colleague Shankar converted this specification
from EHDM [27] to PVS [21] and recast it in the Byzan-
tine Generals (as opposed to Interactive Consistency)
formulation. This specification and verification was
used as one of the test cases that guided the develop-
ment of PVS and it was also used as one of our stan-
dard demonstrations, so that we became very familiar
with the argument.

By specializing the formal specification for OM(m)
to the case m = 1,n = 3 and adding the interstages
and their communications, we were able to construct
a specification of OM-FTP for a triplex FTP archi-
tecture quite easily. Then, building on our familiarity
with the correctness argument for OM(m), we were
able to construct mechanically-checked proofs for the
correctness of OM-FTP in a couple of hours.

While documenting an informal version of the cor-
rectness argument for the triplex OM-FTP, we realized
that it was not necessary for every processor in FTP
to have a corresponding interstage: as long as there
are at least three processor-interstage pairs, additional
processors can be accepted without interstages. We
therefore extended the triplex FTP specification to en-
compass n-plex FTP architectures, where n > 3 is the
number of processor-interstage pairs, and any number
of additional processors lacking interstages may also
be present. We modified the previous triplex proofs
using the proof-editing facility of PVS, and in less
than a day of extra work we had a complete specifi-
cation and formal verification of single-fault tolerance
of n-plex FTP architectures. The ability to accept
processors without interstages is a useful extension: it
allows interstages diagnosed as faulty to simply be ex-
cluded from the configuration; this could be valuable
if certain sensors are directly observed only by specific
processors. (Previously, we had assumed that a pro-
cessor must be dropped from the configuration if its
interstage is diagnosed as faulty).? Our analysis shows
that all processors can still participate as transmitter
or receiver without impact on fault tolerance.

At this point, we turned from FTP back to symmet-
ric architectures, but for the case of hybrid fault mod-
els. Our formal specification and verification for this
version of the problem built directly on our previous
treatment of OM(m) but was much more difficult—
partly because the published algorithm was incorrect,

3We are unsure whether the designers of FTP had already
invented this extension; we suspect they had, since they speak
of the ability of a quadruplex FTP to tolerate “certain combi-
nations of two processor and two interstage failures” [12, page
342], but we have not found a published analysis of this case.



s = ¢ =0, so that n > 3m as with the classical Oral
Messages Algorithm.

2.3 The FTP Architecture

Extending the classical algorithms and their anal-
yses from Byzantine to hybrid fault models can be
viewed as work aimed at wringing more fault tolerance
from a given level of replication. A complementary in-
vestigation would seek to minimize the quantity and
complexity of hardware needed to achieve a given level
of fault tolerance. We say “quantity and complexity
of hardware” rather than simply “level of replication”
or “number of processors” since the first suggests a
better measure of real costs. The minimality results
of Pease, Shostak and Lamport [22] show that at least
four participants are needed in order to achieve inter-
active consistency in the presence of a single arbitrary
fault. However, although all participants need to be
able to receive and transmit messages, not all of them
need to be able to vote, and only those that are to
participate in other computational activities need to
be full processors.

The effects of a single faulty processor on the re-
sults of computational activities (e.g., evaluation of
control laws) can be masked by three-way majority
voting, so only three full processors are required to
accomplish the main activity of the system in a fault-
tolerant manner. A fourth processor is needed only
to ensure single-fault tolerance in the distribution of
single-source sensor data (i.e., interactive consistency),
and for clock synchronization. The quantity and com-
plexity of hardware required for overall single-fault tol-
erance could be reduced if the full processor in the
fourth processor could be replaced by some minimal
component that is just sufficient to discharge the re-
sponsibilities of interactive consistency and clock syn-
chronization. This, approximately, is the rationale un-
derlying Draper Laboratory’s FTP architectures [10],
except that rather than add a minimal fourth proces-
sor, these architectures supplement each of three pro-
cessors with an extremely simple component called an
“interstage” (see Figure 1).

The FTP architectures have undergone a consider-
able evolution and simplification over the years [10,12]
(for example, early versions performed voting in the
interstages and required 50 times as much hardware
as the present design [12, page 343]); the final ver-
sion, also incorporated to some extent in AIPS [13]
and FTPP [9], has either three or four processors,
and the same number of interstages. The processors
are fully connected among themselves, and each pro-
cessor is connected to every interstage. Interstages

Interstages

@ () ()

Processors

Figure 1: Triplex FTP Architecture

can consist of nothing more than message forward-
ing hardware. (Basically, they operate like mirrors:
each reflects data from its host processor back to ev-
ery processor.) The triplex version of FTP, as shown
in Figure 1 has only three processors but six “fault
containment regions” (three processors and three in-
terstages) and can withstand a single Byzantine fault
in any of the components. The quadruplex version of
FTP (four processor-interstage pairs) can withstand
any two faults in succession, provided it can reconfig-
ure to exclude the faulty unit between the arrival of
the first and second faults.

A triplex FTP contains six components, but only
three of them are processors. The three interstages are
elementary units requiring so few gates that all three
together comprise less silicon than a single processor.
Thus, the overall hardware complexity, and hence the
fault-arrival rate, of a triplex FTP should be less than
that of a conventional quadruplex, and its cost and
reliability should be correspondingly superior. Simi-
larly, a quadruplex FTP similarly provides compara-
ble fault tolerance to a conventional 5-plex, but with
only four full processors. A minor limitation of the
FTP architecture is that it does not appear suitable
for versions of the Oral Messages Algorithm that use
several rounds of information exchange (i.e., OM(m)
with m > 2), and thus cannot be extended to tolerate
two or more arbitrary faults simultaneously. We con-
sider this a minor limitation because m > 2 1s seldom
used in practice.



processor provide inconsistent data initially, but it can
also relay data inconsistently.

The Oral Messages algorithm of Lamport, Shostak,
and Pease [15], which we denote OM(m) is a recursive
algorithm that uses m+1 rounds of message exchange.
In the base case, OM(0), each receiver accepts what-
ever value it obtains from the transmitter; in the gen-
eral case, OM(m), each receiver takes the part of the
transmitter in OM(m — 1) to communicate the value
it received from the transmitter to the other recipi-
ents, and each receiver settles on the majority value
among all those obtained (i.e., one directly from the
transmitter and n — 2 via the other receivers, where n
is the total number of processors). OM(m) can with-
stand up to m arbitrary faults, provided n > 3m. The
bound n > 3m is optimal: Pease, Shostak, and Lam-
port proved that no algorithm based on the Oral Mes-
sages assumptions (and, implicitly, a symmetric ar-
chitecture) can withstand more arbitrary faults than
this [22]. However, OM(m) is not optimal when spe-
cial classes of faults are considered: other algorithms
can withstand greater numbers of simpler faults for a
given number of processors than OM(m). We examine
fault models in the next section.

2.2 Hybrid Fault Models

Fault-tolerant systems are designed and evaluated
against explicit assumptions regarding the kinds and
numbers of faults they are to tolerate. “Fault mod-
els” enumerate the assumed behaviors of faulty com-
ponents; they range from those that identify many
highly specific modes of failure, to those that com-
prise just a few broad classes. The advantage of a
very detailed fault model is that the mechanisms of
fault tolerance can be finely tuned to deliver maximum
resilience from a given level of redundancy; the corre-
sponding disadvantages are that an overlooked fault
mode may cause unexpected failure in operation, and
the need to counter many fault modes can lead to a
complex design—which may itself be a source of design
faults.

Classical Byzantine fault-tolerant algorithms such
as Oral Messages make no assumptions about the be-
havior of faulty components. Their advantage 1s that
they cannot be defeated by unexpected fault modes;
their disadvantage is that all faults are treated as
“worst case,” so that large levels of redundancy tol-
erate relatively few faults.

These observations motivate the study of fault-
tolerant architectures and algorithms with respect to
fault models that include arbitrary faults, together

with a limited number of additional common fault
modes. Inclusion of the arbitrary fault mode elimi-
nates the fear that some unforeseen fault may defeat
the fault-tolerance mechanisms provided, while inclu-
sion of other fault modes allows greater resilience to be
achieved for faults of those kinds than with a classical
Byzantine fault-tolerant architecture.

Thambidurai and Park [29], Meyer and Prad-
han [19], and Garay and Perry [7] have considered In-
teractive Consistency algorithms that resist multiple
fault classes. We adopt a hybrid fault model identical
to Thambidurai and Park’s “Unified” model but with
the cases renamed (to avoid their anthropomorphic
distinction between “malicious” and “nonmalicious”
faults). We divide faults into three classes: mani-
fest, symmetric, and arbitrary. A manifest fault is
one that produces a value that all nonfaulty receivers
can detect as bad. Timing, omission and crash faults
are in this category. Symmetric and arbitrary faults
yield values that are not detectably bad (i.e., they are
wrong, rather than missing, or manifestly corrupted
values). A symmetric fault delivers the same wrong
value to all nonfaulty receivers. As before, an arbitrary
fault is completely unconstrained and, in particular,
may deliver different wrong (or missing or detectably
bad) values to different nonfaulty receivers. (The fault
models of Meyer and Pradhan and of Garay and Perry
are similar to this but neglect the symmetric case.)

Thambidurai and Park [29] presented a variation on
the Oral Messages Algorithm that solves the Byzan-
tine Generals Problem under the hybrid fault model.
Unfortunately, this algorithm (though not its imple-
mentation in MAFT) is flawed. With the support of
the PVS verification system [21], we were able to de-
tect this flaw and to develop a correct version of this
algorithm [18] that is able to withstand a arbitrary, s
symmetric, and ¢ manifest faults simultaneously, using
m rounds, provided there are more than 2a+42s+c+m
processors and a < m. We also constructed a formal,
mechanically-checked proof of the correctness of this
algorithm [16]. The essence of this enhanced algo-
rithm, which we call OMH(m), is that it recognizes
manifest faulty values and excludes them from the
majority votes (the flaw in Thambidurai and Park’s
algorithm, which is repaired in our version, is that it
1s necessary to treat manifest faulty values specially
when communicating them in the recursive instances
of the algorithm).

Thambidurai, Park, and Trivedi [30] present reli-
ability analyses that show that this increased fault-
tolerance does provide significantly superior reliabil-
ity under plausible assumptions. Notice that when
only arbitrary faults are present, we have a = m and



comes from the C. S. Draper Laboratories [12], and the
hybrid fault model was developed at the Aerospace
Technology Center of Allied Signal for their MAFT
(“Multicomputer Architecture for Fault Tolerance”)
architecture [11]. Prototypes were constructed for
both architectures, and they and their successors are
being considered, evaluated, or used for safety and
control applications in nuclear plants, aircraft, heli-
copters, submarines, and rockets.

Although the architecture, algorithm, and fault
model investigated here are interesting and useful in
their own right, we are equally interested in the gen-
eral use of mechanically-checked formal methods as
a systematic and rigorous means to analyze critical
algorithms, to identify all the assumptions on which
they depend, to detect and help correct errors in their
formulation, and to provide compelling arguments for
their correctness. From this point of view, algorithms
for fault tolerance, especially those analyzed under
hybrid fault models, are particularly interesting be-
cause of their criticality, subtlety, and the extended
case analysis required in their study. However these
complex combinations of fault-tolerant architectures,
algorithms, and fault models are well within the scope
of practical machine-checked formal verification as we
show below.

2 Interactive Consistency,
Hybrid Fault Models,
and the FTP Architecture

In this section we review the problems of Interactive
Consistency and Byzantine Agreement, and describe
the Oral Messages algorithm. We then introduce hy-
brid fault models and the FTP architecture. None
of this material is new and the whole section can be
skipped by those familiar with these topics.

2.1 Interactive Consistency

In this paper, we focus on algorithms for reliably
distributing single-source data to multiple processors
in the presence of faults. This problem, known as
“Interactive Consistency” (although sometimes called
“source congruence” or “consensus”), was first posed
and solved for the case where faulty processors can ex-
hibit arbitrary behavior by Pease, Shostak, and Lam-
port [22] in 1980. Interactive Consistency is a sym-
metric problem: it is assumed that each processor has
a “private value” (e.g., a set of sensor samples) and

the goal is to ensure that every nonfaulty processor
achieves an accurate record of the private value of
every other nonfaulty processor. In 1982, Lamport,
Shostak, and Pease [15] presented an asymmetric ver-
sion of Interactive Consistency, which they called the
“Byzantine Generals Problem”; here, the goal is to
communicate a single value from a designated proces-
sor called the “Commanding General” to all the other
processors, which are known as “Lieutenant Gener-
als.” The problem of real practical interest is Interac-
tive Consistency, but the metaphor of the Byzantine
Generals has proved so memorable that this formu-
lation is better known; it can also be easier to de-
scribe algorithms informally using the Byzantine Gen-
erals formulation, although the balance of advantage
can be reversed in truly formal presentations. An al-
gorithm for the Byzantine Generals problem can be
converted to one for Interactive Consistency by sim-
ply iterating it over all processors (each processor in
turn taking the role of the Commander), so there is
no disadvantage to considering the Byzantine Gener-
als formulation. See [23] for more extended discussion
of this topic.

In its Byzantine Generals formulation, the problem
1s to communicate a value from a “transmitter” pro-
cessor to several other “receiver” processors in such a
way that the following two properties are satisfied.

Agreement: All nonfaulty receivers agree on the
value obtained from the transmitter.

Validity: If the transmitter is nonfaulty, then every
nonfaulty receiver obtains the correct value.

Note that here and henceforth, we use the terms trans-
mitter and receivers for the metaphorical “Command-
ing General” and “Lieutenant Generals.”

The principal difficulty to be overcome in Byzan-
tine Generals and Interactive Consistency algorithms
is the possibility of asymmetric behavior on the part
of faulty transmitters: such a processor may provide
one value to one receiver, but a different value to an-
other, thereby making it difficult for the recipients to
agree on a common value. This difficulty can be over-
come using several rounds of message exchange dur-
ing which processor p tells processor ¢ what value it
received from processor r and so on. The precise form
of the algorithm depends on assumptions about what
a faulty processor may do when relaying such a mes-
sage; under the “Oral Messages” assumption, there is
no guarantee that a faulty processor will relay mes-
sages correctly. This corresponds to totally arbitrary
behavior by faulty processors: not only can a faulty



e Apart from clock synchronization and interactive
consistency, fault tolerance in SIFT-like architec-
tures i1s achieved by simple majority voting, so
that only 2m + 1 processors are required to with-
stand m faults [24]. The additional processors
required for clock synchronization and interactive
consistency not only increase cost and complex-
ity, they also increase the fault arrival rate (since
this may be expected to grow in proportion to
the amount of hardware employed) and thereby
possibly reduce overall reliability.

e Although Byzantine-resilient algorithms make no
assumptions about the behavior of faulty com-
ponents, and are therefore maximally effective
with respect to the kinds (or modes) of faults
they tolerate, they are not maximally effective
with respect to the number of faults they can
tolerate: other algorithms (e.g., simple majority
voting) can withstand more faults of particular
kinds (e.g., crash-faults) for a given level of re-
dundancy than traditional Byzantine-resilient al-
gorithms. However, these alternative algorithms
may fail when confronted by faults beyond the
kinds they are designed to handle.

Two recent developments mitigate these disadvan-
tages.

Asymmetric Architectures. SIFT was a symmet-
rical design: all its processors were identical.
Pease, Shostak and Lamport [22] proved that four
such symmetric processors are required to with-
stand a single (arbitrary) fault. The C. S. Draper
Laboratory’s Fault Tolerant Processor (FTP) is
an asymmetrical design consisting of conventional
processors and much simpler interstages [12]. The
interstages merely relay messages; they have no
computational capability and do not participate
in the voting steps that provide fault-tolerance in
FTP. Arbitrary single-fault tolerance is achieved
with only three processors and three interstages,
so the FTP architecture ought to be cheaper and
more reliable than a symmetrical quadruplex sys-
tem providing the same fault tolerance. Since
FTP contains only three processors capable of
voting, it appears to violate Pease, Shostak and
Lamport’s minimality result [22] and the intuition
that “four voters are required to resist one Byzan-
tine fault.” Consequently, very careful justifica-
tion is required for its correctness and fault toler-
ance.

Hybrid Fault Models. All faults were treated as
Byzantine in SIFT; for simple classes of faults,

this treatment fails to extract the maximum fault-
tolerance from a given level of redundancy. For
example, a five-processor Byzantine-resilient sys-
tem using a traditional interactive consistency al-
gorithm can withstand a single arbitrary fault
(without reconfiguration), but may fail if two
faults arrive simultaneously, even if those faults
are of a simple character that could be masked
by ordinary majority voting. Thambidurai and
Park [29], Meyer and Pradhan [19], and Garay
and Perry [7] have developed fault models that in-
clude certain common and simple kinds of faults
in addition to arbitrary faults. Algorithms devel-
oped for these fault models can tolerate as many
arbitrary faults as a Byzantine fault-tolerant al-
gorithm, but can also tolerate more simple faults
and combinations of faults.

The subtlety and criticality of the algorithms and
implementation strategies employed in fault-tolerant
systems argue for the use of formal methods as a
means of design assurance. A research program led
by NASA Langley Research Center [4] has precisely
this goal. So far the classical Byzantine fault toler-
ant clock synchronization algorithms [26, 28], the Oral
Messages Algorithm for Interactive Consistency [2,23],
fault masking and transient recovery by majority vot-
ing [6,24], extensions of clock synchronization to hy-
brid fault models [25] and transient recovery [20], ex-
tensions of the Oral Messages algorithm to the hybrid
fault model [16,18], and several levels in the implemen-
tations of these algorithms [5] have been subjected to
mechanically-checked formal specification and verifi-
cation.

In this paper, we describe the formal verification
of an “Oral Messages” algorithm for achieving Inter-
active Consistency in the asymmetric FTP architec-
ture under a hybrid fault model. This combination
of architecture, algorithm, and fault model is the best
compromise that we know between economy and fault
tolerance for this problem: other combinations either
tolerate fewer faults or less severe kinds of faults for a
given level of redundancy, or they require more hard-
ware to tolerate the same number and kinds of faults.?

Both novel elements of this work have industrial,
rather than academic, origins: the FTP architecture

2 Algorithms based on “signed messages” [22] can tolerate
more faults than those based on oral messages (such as the al-
gorithm considered here). To do so, however, they require more
“rounds” of information exchange, and rest on strong assump-
tions concerning the authentication methods used. We have
recently investigated algorithms that use authentication to en-
hance the fault tolerance of oral messages algorithms, without
making assumptions about the effectiveness of authentication
when within the competence of the basic algorithm.
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Abstract

Fault-tolerant systems for critical applications
should tolerate as many kinds of faults and as large
a number of faults as possible, while using as little
hardware as feasible. And they should be provided
with strong assurances for their correctness.

Byzantine fault-tolerant architectures are attractive
because they tolerate any kind fault, but they are
rather expensive: at least 3m + 1 processors are re-
quired to withstand m arbitrary faults. Two recent
developments mitigate some of the costs: algorithms
that operate under a hybrid fault model tolerate more
faults for a given number of processors than classical
Byzantine fault-tolerant algorithms; and asymmetric
architectures tolerate a given number of faults with
less hardware than conventional architectures. In this
paper we combine these two developments and present
an algorithm for achieving interactive consistency (the
problem of distributing sensor samples consistently in
the presence of faults) under a hybrid fault model on
an asyminetric architecture.

The extended fault model and asymmetric architec-
ture complicate the arguments for the correctness and
the number of faults tolerated by the algorithm. To in-
crease assurance, we have formally verified these prop-
erties and checked the proofs mechanically using the
PVS verification system. We argue that mechanically-
supported formal methods allow for effective reuse
of intellectual resources, such as specifications and
proofs, and that exercises such as this can now be per-
formed very economically.

*This work was supported by the National Aeronautics and
Space Administration, Langley Research Center, under contract
NAS1-18969.

1 Introduction

The general design outline of a “reliable comput-
ing platform” for ultra-critical applications was estab-
lished in the late 1970s and early 1980s by the SIFT
architecture [8,32] and later refined in the FTP [12]
and MAFT [11] architectures: the system workload
i1s executed by several independent processors in ap-
proximate synchrony, and the results are subjected to
exact-match majority voting. Clock synchronization,
and also the distribution of single-source data such as
sensor samples, is performed in a manner that is resis-
tant to arbitrary (or “Byzantine”) faults [14,22]. The
great advantage of a “Byzantine-resilient” design such
as this is that its overall reliability is dependent only
on the fault arrival rate, the degree of replication, and
the correctness of its design and implementation; it
does not depend on identifying and countering all the
individual fault modes that can afflict the underlying
hardware.

However, a disadvantage of this approach is that
it requires a lot of hardware to withstand relatively
few faults: both clock synchronization and interactive
consistency (the problem of distributing sensor sam-
ples consistently in the presence of faults) require at
least 3m+1 processors to withstand m arbitrary faults.
This is unfortunate on at least two grounds.

1Technically, a Byzantine fault is one that is entirely un-
constrained: no assumptions are made about the behavior of
Byzantine-faulty components. We generally prefer to call this
the arbitrary fault mode, since Byzantine faults are popu-
larly interpreted as “malicious” faults that display asymmetric
symptoms (e.g., that communicate different values to different
recipients)—even though this is only one of the possible mani-
festations of an arbitrary fault.



