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in theorem proving applied to program veri�cation, particularly in systems suchas Ehdm [2], Eves [4], Nqthm [1], Ontic [9], PVS [14], SDVS [3], and theStanford Pascal Veri�er [8]. In the mid-to-late seventies, Downey, Sethi, andTarjan [6], Kozen [7], Nelson and Oppen [11], and Shostak [17] gave e�cientalgorithms for deciding such formulas by computing the congruence closure re-lation on the graph representing the terms in the formula.Although necessary, it is not su�cient to have decision procedures for unin-terpreted equality, since many subgoal formulas in typical proofs involve bothuninterpreted function symbols (like f above) and interpreted function symbolssuch as addition, multiplication, recursive datatype operations, array operations,etc. As an example, consider the formula:f(f(i� j)) = j ^ i = 2 � j � f(f(f(f(select(update(a; 2 � j; j); i))))) = j;where update(a; j; 0) updates array a at index j to have the value 0, andselect(a; i) selects the array element from a at index i. Given decision proce-dures for the component theories (such as linear arithmetic and arrays), Nelsonand Oppen [10] gave a technique for combining such decision procedures todecide the combination of these theories by simply propagating equalities be-tween the di�erent decision procedures. The Nelson-Oppen procedure is used inEves [4], the Stanford Pascal Veri�er [8], and SDVS [3].Shostak [18] used a di�erent approach that merges the simpli�ers for indi-vidual theories into a single procedure based on congruence closure. Shostak'sdecision procedure is at the core of systems such as Ehdm [2] and PVS [13].In practice, Shostak's procedure is more e�cient than that of Nelson and Op-pen (see Crocker [5]). Despite its signi�cance, a rigorous analysis of Shostak'sprocedure has been lacking. Further, all published accounts of Shostak's methodare 
awed: the most often-cited paper [18] contains two important 
aws inthe description of the algorithm, while other sources, such as technical reports,contain the same as well as other 
aws. In no published work we are aware ofhas an accurate description been given of Shostak's algorithm, and no accurateaccount exists of the limitations of Shostak's approach. The complex reasoningsupporting the correctness of Shostak's procedure has also never been published.This paper attempts to remedy the situation by providing the �rst correctdescription of Shostak's algorithm, along with the key invariants, lemmas, andtheorems that demonstrate the correctness of Shostak's approach. We also accu-rately describe the limitations of Shostak's method. We start with a naive con-gruence closure procedure and show how this can be systematically optimizedand augmented to yield a corrected version of Shostak's procedure.The primary contribution of this paper is a rigorous understanding ofShostak's decision procedure where the 
aws in his original description have beeneliminated. Additionally, we sketch correctness arguments that can be used toconstruct proof objects from successful runs of the decision procedure. We hopethat our analysis will make it easier for others to implement, adapt, and extendShostak's ideas. 2



2 Congruence ClosureThis section contains background material. The only new material here is theproof-theoretic justi�cation for congruence closure based on a cut-eliminationargument.The use of congruence closure for deciding quanti�er-free or ground equa-tional theories plays a central role in Shostak's combined decision procedure. Asan example, consider the theory T given by the equations fw = g(f(a)); f(a) =ag. To show that w = g(a) follows in theory T , we can construct a congruenceclosure graph whose nodes correspond to the terms and subterms of the termset fw; g(f(a)); g(a); ag such that the node corresponding to g(f(a)) has label gand the successor node corresponding to f(a). The congruence closure relationrelates (by merging into the same equivalence class) those nodes correspondingto the given equations so that w and g(f(a)) are merged, as are a and f(a).Furthermore, any two nodes with identical labels whose corresponding successornodes are in the same equivalence class are merged. The merging of a and f(a)thus induces the merging of g(a) and g(f(a)). As a result, w and g(a) are in thesame equivalence class.More formally, let T be a collection of equations between terms formed fromvariables xi and n-ary function symbols fni . A model M = hD; j:ji consists ofa domain D, a mapping j:j� from terms to D such that jxij� = �(xi) 2 D,and jfni j 2 Dn ! D. Let jfni (a1; : : : ; an)j abbreviate jfni j(ja1j; : : : ; janj). M is amodel for T if for each ai = bi in T , jaij� = jbij�.A complete set of proof rules for equivalence can be given by the rules ofre
exivity, symmetry, and transitivity. A complete set of proof rules for groundequational logic can be obtained by adding the Leibniz rule or substitutivity:derive fni (a1; : : : ; an) = fni (b1; : : : ; bn) from a1 = b1,: : : , an = bn. We say that Tdeduces a = b or T ` a = b if there is a proof from the equations in T using therules of re
exivity, symmetry, transitivity, and substitutivity.Following the terminology of Nelson and Oppen [11], let G = (V;E) bea labelled directed graph where �(v) and �(v) give the label and out-degree,respectively, of vertex v in V . Let v[i] (the i'th successor of v) be the vertexu such that (v; u) is the ith edge with source v. If � is a set of vertices, letuse(�) be the set fv 2 V j(9i: v[i] 2 �)g. Given a binary relation R on V , theequivalence closure of R (represented by R�) is the re
exive, symmetric, andtransitive closure of R. The congruence closure R̂ of a binary relation R is theleast extension of R� such that for any u; v where �(u) = �(v), �(u) = �(v), andfor each i, 1 � i � �(u), u[i] R̂ v[i], we have uR̂v.Now, let S be a set of terms that is closed under subterms. We can representS by a graph G = (V;E) such that each term xi is a leaf node (i.e., has nosuccessors), and each term fni (a1; : : : ; an) is represented by a node v such that�(v) = fi, �(v) = n, and the nodes v[1]; : : : ; v[n] represent the terms a1; : : : ; an,respectively. If G is a graph representing S, and a is a term in S, let �(a) bethe vertex in G representing a. If T is a ground equational theory of the form3



a1 = b1; : : : ; an = bn, such that each ai and each bi is in S, then let RT bethe binary relation on S containing the pairs (�(ai); �(bi)) and closed underre
exivity, symmetry, and transitivity.Theorem 1. Let T be a ground equational theory, S be a set of terms closedunder subterms and containing the terms in T , and let G = (V;E) represent S.Then for terms a; b in S, we have T j= a = b i� �(a) R̂T �(b).Proof. The `only-if' direction is easy since the collection of equivalence classesgiven by the equivalence relation R̂T forms a model satisfying T and hence a = b.For the `if' direction, if T 6j= a = b then there is some model satisfying T butnot a = b. Equality in this model induces a congruence-closed relation on theterms in S, which by minimality must contain R̂T . Thus, it must be the casethat �(a) R̂T �(b) also does not hold.Since we are interested, at least in principle, in constructing proof objectscorresponding to successful proofs, we would like to also give a proof-theoretic ar-gument for soundness and completeness. This proof-theoretic argument requiresthe following cut-elimination result which we state without proof.Theorem 2. If there is a proof of a = b from theory T using re
exivity, symme-try, transitivity, and substitutivity, then there is a proof of a = b from T whereall applications of transitivity are restricted to the case where the cut term is aleft or right-hand side of an equality in T .Theorem 3 below is the proof-theoretic analogue of Theorem 1.Theorem 3. Let T be a ground equational theory, S be a set of terms closedunder subterms and containing the terms in T , and let G = (V;E) represent S.Then for terms a; b in S, we have T ` a = b i� �(a) R̂T �(b).Proof. The `if' direction is an easy induction on the rules used to show that�a R̂T �b, since these rule applications correspond directly to proof steps in theground equational logic.The `only if' direction is somewhat harder since we need to show that noequality proof of terms in S need use cut terms in transitivity steps that falloutside of S. We can use the cut elimination result of Theorem 2 to restrict ourattention to proofs where the all the cut terms appear as left or right-hand sideequalities in T and hence in S. The result then follows by a straightforwardinduction on the given proof of a = b from T and the de�nition of congruenceclosure.The pseudocode for a naive congruence closure procedure due to Nelson andOppen is shown below. TheMakuse operation is not de�ned: it initializes the usetable to re
ect the terms in T . The main loop NO processes a list of equations Tby applying the procedure Merge which uses Tarjan's union/�nd primitives tomaintain equivalence classes so that union merges two equivalence classes and4



�nd returns the canonical representative of an equivalence class. The workhorseof the procedure is the Merge operation which merges two equivalence classesand propagates the merging to any parent nodes of these two equivalence classesthat become congruent as a result.Merge (u, v) =LET Pu = Sfuse (u0)jfind (u0) = find (u)g;Pv = Sfuse (v0)jfind (v0) = find (v)gIN union (u, v);FOR x IN Pu DOFOR y IN Pv DOIF find (x) 6= find (y) AND Congruent (x, y)THEN Merge (x, y)ENDIFCongruent (u, v) =( delta(u) = delta(v)AND (FORALL i: 1 <= i <= delta(u): find (u[i]) = find (v[i])))NO (T) =Makeuse (T);CASES T OFnil : RETURN[a = b : T'] : NO (T');IF find (a) = find (b)THEN RETURNELSE Merge (a, b)ENDIF;ENDCASESWe state the theorem but omit the proof that NO constructs a congruenceclosed collection of equivalence classes of terms (see Nelson-Oppen [10]). LetfindT represent the find operation following NO(T ).Theorem 4. (correctness of NO) Given a theory T , a term universe S thatis closed under subterms and contains all the terms in T , then for any termsa; b 2 S, findT (a) = findT (b) i� �(a) R̂T �(b).It is easy to see that the procedure terminates since the number of equivalenceclasses decreases with each call to Merge.3 Optimized Congruence ClosureShostak's version of the congruence closure algorithm optimizes the naive algo-rithm in three ways. The �rst two optimizations shown below are not signi�cantand are fairly standard. 5



1. The computation of the sets of the terms Pu and Pv in Merge is optimizedby preserving the invariant use(u) � use(find(u)). This is a somewhat triv-ial optimization but it has the useful consequence that any invocation ofMerge(x; y) in the congruence closure procedure above can be replaced withMerge(find(x); find(y)). We assume that the above naive procedure has al-ready been thus optimized.2. The computation of Congruent is optimized by maintaining a data-structuresig(u) for each term u that preserves the invariant that sig(f(u1; : : : ; un)) =f(find(u1); : : : ; find(un)). It is easy to check that the Shostak procedureshown below preserves this invariant.3. The last optimization is to eliminate the term universe S and the precom-putation of the use structure. This means that the term universe is notpredetermined and the algorithm can handle equalities in an \on-the-
y"manner. This optimization is signi�cant. Since the term universe is open-ended, it is not the case that findSh(u) = findNO(u) when both proceduresare run in parallel. To compensate for this lack of foreknowledge regardingthe term universe, Shostak introduced an operation called canon which re-turns a canonical form of a newly presented term using the canonical formsof the subterms given by �nd .The pseudocode for Shostak's procedure is shown below. The procedureSh(T ) processes each equality in the given theory T using Merge and buildsup a congruence closure structure in terms of the data structures �nd , use, andsig . The procedure applies canon to both sides of an equality to obtain their nor-mal forms based on the known equalities. In the case of a previously processedterm t, canonsig ensures that its normal form is just find(t). This is because apreviously processed term t given as argument to canonsig is either atomic, inwhich case find(t) is returned even if t is previously unprocessed, or t is of theform f(t1; : : : ; tn), and equal to the sig(u) (since each ti has been normalized)for some u in use(t1).2 Merge is then invoked on the resulting normal formsto merge the equivalence classes of the two terms, and then successively mergeequivalence classes of any congruent parent nodes where the sig table is usedgive a fast test for congruence.Sh (T) =CASES T OFnil : RETURN,[a = b, T'] : Sh (T');Merge ( canon (a), canon (b))ENDCASESMerge (a, b) =UNLESS a = b DOunion (a, b);FOR u IN use(a) DOreplace a by b in the argument list of sig(u);FOR v IN use (b) WHEN sig (v) = sig (u) DO2 There is nothing sacred about t1 and any other ti would work equally well.6



Merge (find (u), find (v));use (b) := use (b) [ fugcanon (t) =CASES t OFf(t1; : : : ; tn): canonsig (f(canon (t1); : : : ; canon (tn)));ELSE: canonsig (t)ENDCASEScanonsig (t) =CASES t OFf(t1; : : : ; tn):IF (FORSOME u IN use (t1): t = sig(u))THEN RETURN find (u)ELSE FOR i FROM 1 to n DO use (ti): = use(ti) [ ftg;sig (t) := t;use (t) := fg;RETURN tENDIFELSE: find (t);ENDCASES;To illustrate the di�erence between the naive congruence closure procedureand that of Shostak, consider a term universe S of the form fx; y; z; f(x); f(y)gand a list of equations of the form [x = y; z = f(x)]. In both variants, once theequality z = f(x) has been processed, we have findNO(z) = findSh(z) = f(x).In the naive version, after x = y has been processed, �ndNO(x) = y and�ndNO(f(x)) = f(y), whereas in Shostak's version, findSh(f(x)) = f(x) sincef(y) is not explicitly present in any of the equalities processed thus far. InShostak's variant, the canon operation can cope with previously unobservedterms so that canon(f(x)) = f(y). This does not mean that canon(t) =findNO(t) since when the second equality is processed, canon(z) = findSh(z) =f(x), whereas findNO(z) = f(y). Conversely, canon(f(z)) = f(f(x)), whereasfindNO(f(z)) = f(z) since f(z) is not in the given term universe. It is how-ever the case that for terms in the term universe S, canon and findNOmaintain the same equivalence classes, so that findNO(a) = findNO(b) i�canon(a) = canon(b).We assert the crucial invariants on the main loops of the procedures NOand Sh that relate these two procedures so that the correctness of Sh followsfrom that of NO . Let congruentSh(u; v) be the same as the naive version ofcongruent but de�ned to use findSh instead of findNO. Let �ndTSh(t), useT (t),canonsigT (t), canonT (t) represent the result of �nd(t), use(t), canonsig(t),canon(t), respectively, following Sh(T ), and similarly for �ndTNO(t). Recall thatthe naive version of congruence closure procedure has already been optimized sothat use(t) � use(find(t)).Invariant 1 sig(f(t1; : : : ; tn)) = f(find(t1); : : : ; find(tn))Invariant 2 sig(a) = sig(b) � CongruentSh(a; b).7



Invariant 3 use(a) � use(find(a)).Let canon� be the same as canon but without the side-e�ects of updating thesig and use data structures.Invariant 4 canon� is idempotent: canon�(canon�(t)) = canon�(t).Invariant 5 If f(a1; : : : ; an) 2 useT (t) for some t, then1. canon�T (f(a1; : : : ; an)) = findTSh(f(a1; : : : ; an))2. there is a term f(b1; : : : ; bn) in T such that canon�T (bi) = canon�T (ai) for1 � i � n.Invariant 6canon�T (f(t1; : : : ; tn)) = canon�T (f(canon�T (t1); : : : ; canon�T (tn)))Invariant 7 For any terms a; b in the term universe S of NO, canon�T (a) =canon�T (b) i� findTNO(a) = findTNO(b).Proof. The proof is by induction on the length of T . In the base case when Tis empty, canon�(a) = a = findNO(a) and canon�(b) = b = findNO(b).If the induction hypothesis holds of T 0 then for any terms a; b in S,canon�T 0(a) = canon�T 0(b) i� findT 0NO(a) = findT 0NO(b).We show that when the new equation u = v is processed, that any Merge inSh corresponds to a Merge in NO. For the `if' direction, we can then show byinduction on the size of a that whenever MergeNO(�ndNO(a);�ndNO(b)) is in-voked, canon�T (a) = canon�T (b). This certainly holds for atomic a since this isonly possible in the initial call toMergeNO. When a is of the form f(a1; : : : ; an),either this is the initial call to MergeNO, in which case the conclusion fol-lows easily, or b must be of the form f(b1; : : : ; bn). Since CongruentNO(a; b),by the induction hypothesis and Invariant 6 above applied to a and b, we havecanon�(a) = canon�(b).In the `only if' direction, whenever MergeSh(canon�(a); canon�(b)) holds,we need to show that findTNO(a) = findTNO(b). The argument is similar to the`if' case but is not as straightforward since the analogue of assertion (6) forfindNO may not hold even for terms in the universe S since f(t1; : : : ; tn) canbe in S but f(findNO(t1); : : : ; findNO(tn)) might not be in S. However, byInvariant 5.2, we can restrict our attention to a and b occurring in T . The caseof the initial call to MergeSh is direct. For the other (recursive) calls, we haveby the induction hypothesis that since canon�(ai) = canon�(bi) for 1 � i � n,that CongruentNO(a; b) holds. The conclusion findNO(a) = findNO(b) followsfrom the invariant of NO that for a; b in SCongruentTNO(a; b) � findTNO(a) = findTNO(b):8



4 Combinations of TheoriesThe Nelson-Oppen approach to combining two decision procedures is to haveeach theory rename any uninterpreted subterms by variables, and to iterativelypropagate any newly deduced equalities between variables across theories [10].The main e�ciency drawback to Nelson-Oppen's approach is that each theoryhas much of the same notion of equality resulting in duplicated e�ort.Shostak [18] takes a di�erent approach by restricting his attention to can-onizable and algebraically solvable theories. A theory is canonizable if there isa canonizer � such that for any pure equality a = b is provable in the theory(i.e., ` a = b) if and only if �(a) = �(b). A theory is algebraically solvable if anyequality a = b can be rewritten in an equivalent solved form Vi xi = ti, whereeach xi occurs in a = b but in none of the tj . Shostak shows how real and integerlinear arithmetic, the convex theory of lists, and monadic set theory are someexamples of canonizable and algebraically solvable theories.Shostak [18] also shows how the canonizers and solvers for several pair-wise disjoint theories can be combined into a single canonizer and solver for thecombined theory. In contrast, the Nelson-Oppen procedure yields a method forcombining arbitrary decision procedures for disjoint equational theories whereasShostak's procedure can merely decide the combination of disjoint canonizableand algebraically solvable equational theories by combining solvers and canon-izers. This paper does not discuss the details of this combination but with thedecision procedure given that such canonizers and solvers can be constructed.Shostak's method centralizes equality reasoning in one procedure: the congru-ence closure algorithm described in Section 3. The interpreted theories commu-nicate through a semantic canonizer and a solver. For the purpose of illustration,we will restrict our attention to the combination of the theories of equality overuninterpreted functions symbols and linear arithmetic equations over the reals.Shostak's procedure operates over �-theories, namely those theories for whichthere is a computable canonizer function � from terms to terms such that thefollowing conditions hold3.1. An equation t = u in the theory is valid i� �(t) = �(u)2. If t is a term not in the theory then �(t) = t3. �(�(t)) = �(t)4. If �(t) = f(t1; : : : ; tn) for a term, t, in the theory then �(ti) = ti for 1 � i � n5. �(t) does not contain any variables that are not already in t.The role that � has in the interpreted procedure is as the semantic or inter-preted analog to find in the uninterpreted congruence closure algorithm. Thatis, in the purely uninterpreted case find returns the canonical representativeof a term given the uninterpreted equalites already processed. In the purelyinterpreted case � returns the canonical representative of a term in the terms3 Much of the theory and notation in this section comes from [18]9



interpreted theory. Shostak's procedure is a method for combining these twocanonical forms.For example, a canonizer for linear arithmetic could be constructed by trans-forming such expressions (using associativity, commutativity, distributivity) intothe form a1x1+ : : :+anxn+ c where each ai is a nonzero constant and the sum-mands are arranged in some canonical order. In the presence of uninterpretedfunction symbols, each arithmetic term obtained by replacing uninterpreted sub-terms (i.e., subterms where the topmost function symbol is uninterpreted) byvariables, must be in canonical form.To construct a decision procedure for equality in a �-theory Shostak requiresthat a �-theory have the additional property of algebraic solvability. A �-theoryis algebraically solvable if there exists a computable function solve, that takesan equation e and returns either true, false, or a conjunction of equations andhas the following properties: (In the following let solve(e) = E.)1. E and e are equivalent, i.e., any �-model satisfying E satis�es e, and any�-model of e can be extended to one satisfying E (since E can contain newvariables not appearing in e).2. E 2ftrue, falseg or E = Vi xi = ti3. If e contains no variables then E 2ftrue, falseg.4. If E = Vi(xi = ti) then the following hold:(a) xi occurs in e,(b) for all i; j, xi does not occur in tj ,(c) for all i 6= j: xi 6= xj and(d) �(ti) = ti.For example, a solver for real linear arithmetic takes an equation of theform a1 � x1 + : : : + an � xn + c = b1 � x1 + : : : bn � xn + d and returns x1 =((b2 � a2)=(a1 � b1)) � x2 + : : :+ ((bn � an)=(a1 � b1)) � xn + (d� c).The purpose of solve is two-fold. First it detects unsatis�ability in a �-theoryby returning false. Second, it makes it possible to propagate equalities by aug-menting the canon operation in Section 3 so that � is used on any interpretedsubterms and (as before) a canonical (interpreted or uninterpreted) representa-tive of the equivalence class is used for uninterpreted subterms. For example, ifwe want to deduce f(x� y) = f(f(z)) from y = f(z) and x� 2 � y = 0, then thesolver when invoked on the latter two equations returns y = f(z) and x = 2 � yso that canon(x�y) = �(2�f(z)�f(z)) = f(z), and canon(f(x�y)) = f(f(z)).The set of equations will have a model i� solve never returns false for aprocessed equation. Thus whenever an equation is equivalent to false solve mustreport the contradiction.We now give pseudocode for Shostak's procedure for combining decision pro-cedures [18] with the 
aws corrected. The main di�erences with the procedurein Section 3 are that: 10



1. In Sh, Process1 is used to apply Merge to a list of pairs of terms returnedby solve.2. In Process1 , equalities are solved using solve before Merge is invoked. Theextra canonsig applied to the arguments of Merge is in order to updatethe use/sig structures following the solve, and to apply �nd to return thecurrent canonical form. Indeed, canonsig(a) in Process1 could be replacedby find(a) since such an a is always either a variable or an already canonizeduninterpreted term.3. InMerge(a; b), the uninterpreted case is the same as before except that solveis applied to find(u) = find(v) before Merge is recursively invoked (sincefind(u) for uninterpreted u can be interpreted).When u in use(a) is interpreted and find(u) = u (i.e., u was canonicalprior to the current Merge), then it is merged with the new canonical termcanonsig(�(u0)). The main reason for merging representative interpretedterms with their canonical forms is to propagate the merging to any unin-terpreted superterms (to preserve Invariant 5 for uninterpreted terms). Themerging of interpreted terms also preserves the invariant that uninterpretedterms u in use(t) appear in use(find(t)). We can thus observe that congru-ence closure is preserved for uninterpreted terms so that for any two unin-terpreted terms a; b occurring in the use structure that are equal from theequations processed so far, find(a) = find(b) holds. This fact is signi�cantsince canon uses find on terms in the use structure to return the canoni-cal representative of uninterpreted terms. Note that interpreted terms u inuse(a) are not added to the use(b) since it is su�cient for use(b) to containonly the canonical term canonsig(�(u0)) and this is ensured by canonsig.4. The de�nition of canon is modi�ed to apply � to the input to canonsig .5. The de�nition of canonsig is modi�ed to recursively apply canonsig to thearguments when an interpreted term is given as input. This is because such aterm could have been newly created by � and the sig and use data structuresmust be updated to re
ect this new term. In the end, the combination ofcanon, signature, and canonsig returns the canonical representative of agiven term where the largest uninterpreted subterms t have been replacedby find(t) and interpreted subterms t (in the original term or in replacementof uninterpreted s by find(s)) have been replaced by �(t), and the sig anduse structures have been properly initialized. The use of the solved form forinterpreted equalities thus makes it possible to unambiguously apply findfor interpreted terms and � for interpreted terms.Sh (T) =CASES T OFnil : RETURN,[a = b, T'] :Sh (T');Process1 (solve (canon (a) = canon (b)))ENDCASES 11



Process1 (S) =FOR e in S DOCASES e OFfalse: RETURN unsatisfiable,a = b: Merge (canonsig (a), canonsig (b))ENDCASESMerge (a, b) =UNLESS a = b DOunion(a, b);FOR u IN use (a) DOIF u is uninterpretedTHEN replace a with b in the argument list of sig (u);FOR v IN use (b) WHEN sig (v) = sig (u) DOProcess1 (solve (find (u) = find (v)));use (b) := use (b) [ fugELSIF find (u) = u THENu' := u with b for a in its argument list ;Merge (u, canonsig (�(u')));ENDIFcanon (t) = canonsig (signature (t))canonsig (w) =IF w is atomicTHEN RETURN find(w);ELSELET f(w1; : : : ; wn) = w INIF w is interpreted, replace each wiwith canonsig (wi);IF w = sig (u) for some u 2 use (w1)THEN RETURN find (u)ELSEFOR i FROM 1 TO n DO add w to use (wi);sig (w) := w;use (w) := fg;RETURN wENDIFENDIFsignature (t) =IF t is a constantTHEN RETURN tELSE RETURN �(f(canon (t1); : : : ; canon (tn)))where t = f(t1; : : : ; tn)ENDIFTo illustrate how the procedure works, let us consider a list of equations:f(x) = 4; f(2 � y � x) = 3; x = f(2 � x � y); 4 � x = 2 � x + 2 � y. We �rstprocess 4 � x = 2 � x + 2 � y, and since both sides are already in canonical12



form, we solve to obtain x = y and these two terms are therefore merged. Thismerging is (needlessly) propagated to the terms 2 �x and 4 �x. We then processx = f(2�x�y), which following canonization is y = f(y). This is left unchangedby solve and hence y and f(y) are merged. (Note that it is okay for the variabley to occur as a proper subterm of an uninterpreted term such as f(y) on theright-hand side.) Now when f(2 � y � x) = 3 is processed, the canonical formon the left is f(f(y)) which is merged with 3. When f(x) = 4 is processed, thecanonical form of the left-hand side is 3 because canon(x) is f(y), sig(f(f(y)))is f(f(y)) so canon(f(x)) is 3 so that solve(3 = 4) returns false.For soundness, we need to show the following invariant.Invariant 8 (soundness) canon�T (a) = canon�T (b) � T ` a = b:Proof. The proof is by induction on the list of equations in T . The base casewhen T is empty is easy. Let T be of the form [a = b; T 0]. First note that by theinduction hypothesis, canon (and hence canon�) preserves equality in T 0. Theinitial invocation ofMerge is on the solved form of the given equation a = b, andwe have restricted solve to return equations that are conservative with respectto the input equation. Since Merge is the only operation that a�ects canon�, weshow that the soundness property is preserved whenever Merge is recursivelyinvoked. We note the invariant that for uninterpreted a; b, it is the case thatsig(a) = sig(b) implies Congruent(a; b), and hence by the induction hypothesis,T ` a = b.WhenMerge is invoked on a; b where a is interpreted, b is simply a canonizedform of a so that T ` a = b follows easily from the induction hypothesis.Invariant 9 (completeness) If T ` a = b, then either Sh(T ) = unsatisfiableor canon�(a) = canon�(b).Proof. Given a set of equations T , the algorithm simultaneously constructsthe solve and congruence closure T of T by ensuring that if T contains u = vfor interpreted u, then it also includes solve(u = v). Since canon� returns acanonical representative of the equivalence class in T , thus for any equalityu = v in T , it is the case that canon�T (u) = canon�T (v). If T does not containfalse, then it can be shown that proofs of T ` a = b can be constructed from Tusing re
exivity, symmetry, transitivity, substitutivity, and the axiom scheme:` �(t) = t. The result then follows easily by induction on the derivation ofT ` a = b. To establish the base case for the axiom scheme ` �(t) = t, note that�(f(t1; : : : ; tn)) = �(f(�(t1); : : : ; �(tn))), and hence we have canon�T (�(a)) =canon�T (a).Discrepancies in Shostak's Original Procedure. There are two actual bugs in thepseudocode presented in the paper [18]. The most egregious is in the procedureMerge. The condition find(u) 6= u should actually be find(u) = u. Shostak's13



earlier technical report [19] does not contain this bug but has other discrepan-cies. The second bug is that the output to solve needs to be canonized just incase solve creates new variables and new terms that need to be introduced intothe use data structure.Shostak [18] states that the use data structure is maintained so that thesig 's are unique. This is incorrect and such an \optimization" can result in anincompleteness. The solver for cons , car , and cdr given by Shostak is also buggy.Performance Comparisons. Crocker [5] has carried out an empirical compari-son of Shostak's algorithm as implemented by Shostak himself against Nelsonand Oppen's implementation of their procedure. Crocker's results indicate aconsiderable e�ciency advantage for Shostak's approach.We have performed a preliminary study of the e�ciency of Nelson-Oppenapproach and the Shostak approach to cooperating decision procedures, andfound the Shostak approach to be about an order of magnitude faster thanNelson-Oppen. This holds over a wide class of examples including proposi-tional, arithmetic, and equality reasoning. These results match those obtainedby Crocker [2, 5, 8].5 ConclusionThe addition of decision procedures to automatic and semi-automatic theoremprovers and proof checkers has clear advantages. Most of the major proof check-ing systems available today contain implementations of decision procedures forpropositional logic, equality, and linear arithmetic. Although the e�ciency of theindividual procedures is important, the method of combination of procedures ismore crucial to the overall e�ciency of a system than the e�ciency of any onecomponent.Shostak's approach to the combination of decision procedures is dramati-cally (10x) more e�cient than the earlier Nelson-Oppen method. The order ofmagnitude di�erence stems from a tighter integration of the cooperating deci-sion procedures and from improved algorithms which save work by consideringsmaller term universes. All comparisons we are aware of between Shostak's andother approaches have found a dramatic speed advantage for Shostak, but havebeen at a loss to explain them.In future work, we will explore the detailed implementation tradeo�s for in-dividual theories, and develop a combination of the Shostak and Nelson-Oppenprocedures. The latter combination would use a Nelson-Oppen outermost loopwith an entire Shostak-style combination of procedures as one element. Theadvantage of this combination of procedures is that some theories are not al-gebraically solvable, but are still of computational interest (e.g., the theory ofpotentially circular lists). Adding such theories to Nelson-Oppen is simple, butadding them to Shostak is impossible. Thus we intend to use the tighter Shostak14
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