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Abstract. Decision procedures are increasingly being employed for de-
ciding or simplifying propositional combinations of ground equalities in-
volving uninterpreted function symbols, linear arithmetic, arrays, and
other theories. Two approaches for constructing decision procedures for
combinations of ground theories were pioneered in the late seventies. In
the approach of Nelson and Oppen, decision procedures for two disjoint
theories are combined by introducing variables to name subterms and
iteratively propagating any deduced equalities between variables from
one theory to another. Shostak employs a different approach that works
far more efficiently in practice. He uses an optimized implementation of
the congruence closure procedure for ground equality over uninterpreted
function symbols to combine theories that are canonizable and alge-
braically solvable. Many useful theories have these properties. Shostak’s
algorithm is subtle and complex and his description of this procedure
is lacking in rigor. We present, for the first time, a careful development
and clarification of Shostak’s procedure that corrects several mistakes
in Shostak’s original presentation. Our analysis serves as a useful basis
for the implementation, extension, and further optimization of Shostak’s
decision procedure.

1 Motivation

Consider the valid ground formula:

z =y N f(f(f(2) = f(z) D F(F(fF(F(F)) = f(2)

where the variables are assumed to be implicitly universally quantified and f is
an uninterpreted function symbol. Formulas of this sort often arise as subgoals
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in theorem proving applied to program verification, particularly in systems such
as Ehdm [2], Eves [4], Ngthm [1], Ontic [9], PVS [14], SDVS [3], and the
Stanford Pascal Verifier [8]. In the mid-to-late seventies, Downey, Sethi, and
Tarjan [6], Kozen [7], Nelson and Oppen [11], and Shostak [17] gave efficient
algorithms for deciding such formulas by computing the congruence closure re-
lation on the graph representing the terms in the formula.

Although necessary, it is not sufficient to have decision procedures for unin-
terpreted equality, since many subgoal formulas in typical proofs involve both
uninterpreted function symbols (like f above) and interpreted function symbols
such as addition, multiplication, recursive datatype operations, array operations,
etc. As an example, consider the formula:

f(fi=35)) =i ni=2xj D f(f(f(f(select(update(a, 2 * j, j),%))))) = J,

where update(a, j,0) updates array a at index j to have the value 0, and
select(a, 1) selects the array element from a at index i. Given decision proce-
dures for the component theories (such as linear arithmetic and arrays), Nelson
and Oppen [10] gave a technique for combining such decision procedures to
decide the combination of these theories by simply propagating equalities be-
tween the different decision procedures. The Nelson-Oppen procedure is used in
Eves [4], the Stanford Pascal Verifier [8], and SDVS [3].

Shostak [18] used a different approach that merges the simplifiers for indi-
vidual theories into a single procedure based on congruence closure. Shostak’s
decision procedure is at the core of systems such as Ehdm [2] and PVS [13].
In practice, Shostak’s procedure is more efficient than that of Nelson and Op-
pen (see Crocker [5]). Despite its significance, a rigorous analysis of Shostak’s
procedure has been lacking. Further, all published accounts of Shostak’s method
are flawed: the most often-cited paper [18] contains two important flaws in
the description of the algorithm, while other sources, such as technical reports,
contain the same as well as other flaws. In no published work we are aware of
has an accurate description been given of Shostak’s algorithm, and no accurate
account exists of the limitations of Shostak’s approach. The complex reasoning
supporting the correctness of Shostak’s procedure has also never been published.

This paper attempts to remedy the situation by providing the first correct
description of Shostak’s algorithm, along with the key invariants, lemmas, and
theorems that demonstrate the correctness of Shostak’s approach. We also accu-
rately describe the limitations of Shostak’s method. We start with a naive con-
gruence closure procedure and show how this can be systematically optimized
and augmented to yield a corrected version of Shostak’s procedure.

The primary contribution of this paper is a rigorous understanding of
Shostak’s decision procedure where the flaws in his original description have been
eliminated. Additionally, we sketch correctness arguments that can be used to
construct proof objects from successful runs of the decision procedure. We hope
that our analysis will make it easier for others to implement, adapt, and extend
Shostak’s ideas.



2 Congruence Closure

This section contains background material. The only new material here is the
proof-theoretic justification for congruence closure based on a cut-elimination
argument.

The use of congruence closure for deciding quantifier-free or ground equa-
tional theories plays a central role in Shostak’s combined decision procedure. As
an example, consider the theory T given by the equations {w = g(f(a)), f(a) =
a}. To show that w = g(a) follows in theory T', we can construct a congruence
closure graph whose nodes correspond to the terms and subterms of the term
set {w, g(f(a)),g(a),a} such that the node corresponding to g(f(a)) has label g
and the successor node corresponding to f(a). The congruence closure relation
relates (by merging into the same equivalence class) those nodes corresponding
to the given equations so that w and g(f(a)) are merged, as are a and f(a).
Furthermore, any two nodes with identical labels whose corresponding successor
nodes are in the same equivalence class are merged. The merging of a and f(a)
thus induces the merging of g(a) and g(f(a)). As a result, w and g(a) are in the
same equivalence class.

More formally, let T be a collection of equations between terms formed from
variables z; and n-ary function symbols f. A model M = (D,|.|) consists of
a domain D, a mapping |.|, from terms to D such that |z;|, = p(z;) € D,
and |f'| € D™ — D. Let |fl*(a1,...,ay)| abbreviate | fI*|(Ja1], ..., |an]). M is a
model for T if for each a; = b; in T, |a;|, = |bil,-

A complete set of proof rules for equivalence can be given by the rules of
reflexivity, symmetry, and transitivity. A complete set of proof rules for ground
equational logic can be obtained by adding the Leibniz rule or substitutivity:
derive f*(a1,...,a,) = f*(b1,...,by) from a1 = bq,..., ap, = b,. We say that T
deduces a = b or T F a = b if there is a proof from the equations in T using the
rules of reflexivity, symmetry, transitivity, and substitutivity.

Following the terminology of Nelson and Oppen [11], let G = (V, E) be
a labelled directed graph where A(v) and §(v) give the label and out-degree,
respectively, of vertex v in V. Let v[i] (the i’th successor of v) be the vertex
u such that (v,u) is the ith edge with source v. If a is a set of vertices, let
use(a) be the set {v € V|(Ji:v[i] € a)}. Given a binary relation R on V, the
equivalence closure of R (represented by R*) is the reflexive, symmetric, and
transitive closure of R. The congruence closure R of a binary relation R is the
least extension of R* such that for any u,v where A(u) = A(v), §(u) = d(v), and
for each i, 1 < i < &(u), ufi] R v[i], we have uRv.

Now, let S be a set of terms that is closed under subterms. We can represent
S by a graph G = (V, E) such that each term z; is a leaf node (i.e., has no
successors), and each term f*(a1,...,a,) is represented by a node v such that
A(v) = fi, 6(v) = n, and the nodes v[1],...,v[n| represent the terms ay,...,an,
respectively. If G is a graph representing S, and a is a term in S, let v(a) be
the vertex in G representing a. If T is a ground equational theory of the form



a; = by,...,a, = b,, such that each a; and each b; is in S, then let Rt be
the binary relation on S containing the pairs (v(a;),v(b;)) and closed under
reflexivity, symmetry, and transitivity.

Theorem 1. Let T be a ground equational theory, S be a set of terms closed
under subterms and containing the terms in T', and let G = (V, E) represent S.
Then for terms a,b in S, we have T |= a = b iff v(a) Ry v(b).

Proof. The ‘only-if’ direction is easy since the collection of equivalence classes
given by the equivalence relation Ry forms a model satisfying T and hence a = b.
For the ‘if’ direction, if T' [~ a = b then there is some model satisfying T' but
not a = b. Equality in this model induces a congruence-closed relation on the
terms in S, which by minimality must contain Rr. Thus, it must be the case
that v(a) Rr v(b) also does not hold. ]

Since we are interested, at least in principle, in constructing proof objects
corresponding to successful proofs, we would like to also give a proof-theoretic ar-
gument for soundness and completeness. This proof-theoretic argument requires
the following cut-elimination result which we state without proof.

Theorem 2. If there is a proof of a = b from theory T using reflexivity, symme-
try, transitivity, and substitutivity, then there is a proof of a = b from T where
all applications of transitivity are restricted to the case where the cut term is a
left or right-hand side of an equality in T'.

Theorem 3 below is the proof-theoretic analogue of Theorem 1.

Theorem 3. Let T be a ground equational theory, S be a set of terms closed
under subterms and containing the terms in T, and let G = (V, E) represent S.
Then for terms a,b in S, we have T F a =b iff v(a) Rt v(b).

Proof. The ‘if’ direction is an easy induction on the rules used to show that
va Rt vb, since these rule applications correspond directly to proof steps in the
ground equational logic.

The ‘only if’ direction is somewhat harder since we need to show that no
equality proof of terms in S need use cut terms in transitivity steps that fall
outside of S. We can use the cut elimination result of Theorem 2 to restrict our
attention to proofs where the all the cut terms appear as left or right-hand side
equalities in 7" and hence in S. The result then follows by a straightforward
induction on the given proof of a = b from T and the definition of congruence
closure. [

The pseudocode for a naive congruence closure procedure due to Nelson and
Oppen is shown below. The Makuse operation is not defined: it initializes the use
table to reflect the terms in 7. The main loop NO processes a list of equations T’
by applying the procedure Merge which uses Tarjan’s union/find primitives to
maintain equivalence classes so that union merges two equivalence classes and



find returns the canonical representative of an equivalence class. The workhorse
of the procedure is the Merge operation which merges two equivalence classes
and propagates the merging to any parent nodes of these two equivalence classes
that become congruent as a result.

Merge (u, v) =
LET P, = [J{use (v')|find(u') = f
P, = [J{use (v')|find (v') = find(v)}
IN wunion (u, v);
FOR x IN P, DO
FOR y IN P, DO
IF find (x) # find(y) AND Congruent (x, y)
THEN Merge (x, y)
ENDIF

Congruent (u, v) =
( delta(u) = delta(v)
AND (FORALL i: 1 <= i <= delta(w): find (ul[il) = find (v[il)))

No(T) =
Makeuse (T);
CASES T OF
nil : RETURN
[a=b: T1 : NO(T");
IF find(a) = find(b)
THEN RETURN
ELSE Merge (a, b)
ENDIF;
ENDCASES

We state the theorem but omit the proof that NO constructs a congruence
closed collection of equivalence classes of terms (see Nelson-Oppen [10]). Let
findr represent the find operation following NO(T).

Theorem 4. (correctness of NO) Given a theory T, a term universe S that
is closed under subterms and contains all the terms in T, then for any terms

a,b € S, findyp(a) = findr(b) iff v(a) Rr v(b).

It is easy to see that the procedure terminates since the number of equivalence
classes decreases with each call to Merge.

3 Optimized Congruence Closure

Shostak’s version of the congruence closure algorithm optimizes the naive algo-
rithm in three ways. The first two optimizations shown below are not significant
and are fairly standard.



1. The computation of the sets of the terms Pu and Pv in Merge is optimized
by preserving the invariant use(u) C use(find(u)). This is a somewhat triv-
ial optimization but it has the useful consequence that any invocation of
Merge(z,y) in the congruence closure procedure above can be replaced with
Merge(find(z), find(y)). We assume that the above naive procedure has al-
ready been thus optimized.

2. The computation of Congruent is optimized by maintaining a data-structure
sig(u) for each term u that preserves the invariant that sig(f(u1,...,u,)) =
f(find(uy), ..., find(u,)). It is easy to check that the Shostak procedure
shown below preserves this invariant.

3. The last optimization is to eliminate the term universe S and the precom-
putation of the wuse structure. This means that the term universe is not
predetermined and the algorithm can handle equalities in an “on-the-fly”
manner. This optimization is significant. Since the term universe is open-
ended, it is not the case that finds,(u) = findno(u) when both procedures
are run in parallel. To compensate for this lack of foreknowledge regarding
the term universe, Shostak introduced an operation called canon which re-
turns a canonical form of a newly presented term using the canonical forms
of the subterms given by find.

The pseudocode for Shostak’s procedure is shown below. The procedure
Sh(T) processes each equality in the given theory T using Merge and builds
up a congruence closure structure in terms of the data structures find, use, and
sig. The procedure applies canon to both sides of an equality to obtain their nor-
mal forms based on the known equalities. In the case of a previously processed
term ¢, canonsig ensures that its normal form is just find(t). This is because a
previously processed term t given as argument to canonsig is either atomic, in
which case find(t) is returned even if ¢ is previously unprocessed, or ¢ is of the
form f(t1,...,t,), and equal to the sig(u) (since each ¢; has been normalized)
for some u in use(t;).2 Merge is then invoked on the resulting normal forms
to merge the equivalence classes of the two terms, and then successively merge
equivalence classes of any congruent parent nodes where the sig table is used
give a fast test for congruence.

Sh(T) =
CASES T OF
nil : RETURN,
[a=b, T'] : SA(T");
Merge ( canon (a), canon (b))
ENDCASES

Merge (a, b) =
UNLESS a = b DO
union (a, b);
FOR u IN use(a) DO
replace a by b in the argument list of sig(u);
FOR v IN use(b) WHEN sig (v) = sig(u) DO

? There is nothing sacred about ¢; and any other t; would work equally well.



Merge (find (u), find(v));
use (b) := use(b) U {u}

canon (t) =
CASES t OF
f(t1,...,tn): canonsig (f(canon(t1),..., canon (tn))),
ELSE: canonstig (t)
ENDCASES

canonsig (t) =
CASES t OF
f(t1,...,tn):
IF (FORSOME u IN use(ti):t = sig(u))
THEN RETURN find (u)
ELSE FOR i FROM 1 to n DO use(t:):= use(t:) U {t}

sig (t) := t;
use () := {};
RETURN t
ENDIF
ELSE: find (t);
ENDCASES;

To illustrate the difference between the naive congruence closure procedure
and that of Shostak, consider a term universe S of the form {z,y, z, f(z), f(v)}
and a list of equations of the form [z = y,z = f(z)]. In both variants, once the
equality z = f(z) has been processed, we have findyo(z) = findsn(z) = f(z).
In the naive version, after £ = y has been processed, findyo(z) = y and
findno(f(z)) = f(y), whereas in Shostak’s version, findg, (f(z)) = f(z) since
f(y) is not explicitly present in any of the equalities processed thus far. In
Shostak’s variant, the canon operation can cope with previously unobserved
terms so that canon(f(z)) = f(y). This does not mean that canon(t) =
findno(t) since when the second equality is processed, canon(z) = findg,(z) =
f(z), whereas findyo(2) = f(y). Conversely, canon(f(z)) = f(f(z)), whereas
findyo(f(2)) = f(z) since f(z) is not in the given term universe. It is how-
ever the case that for terms in the term universe S, canon and findyg
maintain the same equivalence classes, so that findy(a) = findyo(b) iff
canon(a) = canon(b).

We assert the crucial invariants on the main loops of the procedures NO
and Sh that relate these two procedures so that the correctness of Sh follows
from that of NO. Let congruentsy(u,v) be the same as the naive version of
congruent but defined to use findsy, instead of findyo. Let finds, (t), use (t),
canonsigT (t), canon” (t) represent the result of find(t), use(t), canonsig(t),
canon(t), respectively, following Sh(T'), and similarly for find e (t). Recall that
the naive version of congruence closure procedure has already been optimized so
that use(t) C use(find(t)).

Invariant 1 sig(f(t1,...,t)) = f(find(t1),..., find(t,))
Invariant 2 sig(a) = sig(b) D Congruentg(a,b).
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Invariant 3 use(a) C use(find(a)).

Let canonx be the same as canon but without the side-effects of updating the
sig and use data structures.

Invariant 4 canonx is idempotent: canonx(canonx(t)) = canonx(t).

Invariant 5 If f(ai,...,a,) € usel (t) for some t, then
1. canonxT(f(a1,...,an)) = finds,(f(a1,...,as))
2. there is a term f(by,...,b,) in T such that canonx™ (b;) = canonx™ (a;) for
1<i<n.

Invariant 6

canonx” (f(t1,...,tn)) = canonx™ (f(canonx™ (t1), ..., canonx™ (t,)))

Invariant 7 For any terms a,b in the term universe S of NO, canonxT (a) =
canonx™ (b) iff findao(a) = findko(b).

Proof. The proof is by induction on the length of T'. In the base case when T
is empty, canonx(a) = a = findnyo(a) and canonx(b) = b = findno(b).

If the induction hypothesis holds of 7' then for any terms a,b in S,
canonxT (a) = canonxT (b) iff find%,(a) = findk o (D).

We show that when the new equation u = v is processed, that any Merge in
Sh corresponds to a Merge in NO. For the ‘if’ direction, we can then show by
induction on the size of a that whenever Merge n o (find yo(a), find o (b)) is in-
voked, canonxT (a) = canonxT (b). This certainly holds for atomic a since this is
only possible in the initial call to Mergey. When a is of the form f(aq,...,an),
either this is the initial call to Mergey, in which case the conclusion fol-
lows easily, or b must be of the form f(bq,...,b,). Since Congruentyo(a,b),
by the induction hypothesis and Invariant 6 above applied to a and b, we have
canonx(a) = canonx(b).

In the ‘only if’ direction, whenever Mergeg;, (canonx(a), canonx(b)) holds,
we need to show that findye(a) = findk(b). The argument is similar to the
‘if’ case but is not as straightforward since the analogue of assertion (6) for
findyo may not hold even for terms in the universe S since f(t1,...,tn) can
be in S but f(findyo(t1),..., findyo(t,)) might not be in S. However, by
Invariant 5.2, we can restrict our attention to a and b occurring in 7T'. The case
of the initial call to Mergeg, is direct. For the other (recursive) calls, we have
by the induction hypothesis that since canonx(a;) = canonx(b;) for 1 < i < n,
that Congruent yo(a,b) holds. The conclusion findyo(a) = findyo(b) follows
from the invariant of NO that for a,b in S

Congruentae(a,b) D findao(a) = findaeo(b).



4 Combinations of Theories

The Nelson-Oppen approach to combining two decision procedures is to have
each theory rename any uninterpreted subterms by variables, and to iteratively
propagate any newly deduced equalities between variables across theories [10].
The main efficiency drawback to Nelson-Oppen’s approach is that each theory
has much of the same notion of equality resulting in duplicated effort.

Shostak [18] takes a different approach by restricting his attention to can-
onizable and algebraically solvable theories. A theory is canonizable if there is
a canonizer o such that for any pure equality a = b is provable in the theory
(i.e., - a =b) if and only if o(a) = o(b). A theory is algebraically solvable if any
equality a = b can be rewritten in an equivalent solved form A, z; = t;, where
each z; occurs in a = b but in none of the ¢;. Shostak shows how real and integer
linear arithmetic, the convex theory of lists, and monadic set theory are some
examples of canonizable and algebraically solvable theories.

Shostak [18] also shows how the canonizers and solvers for several pair-
wise disjoint theories can be combined into a single canonizer and solver for the
combined theory. In contrast, the Nelson-Oppen procedure yields a method for
combining arbitrary decision procedures for disjoint equational theories whereas
Shostak’s procedure can merely decide the combination of disjoint canonizable
and algebraically solvable equational theories by combining solvers and canon-
izers. This paper does not discuss the details of this combination but with the
decision procedure given that such canonizers and solvers can be constructed.

Shostak’s method centralizes equality reasoning in one procedure: the congru-
ence closure algorithm described in Section 3. The interpreted theories commu-
nicate through a semantic canonizer and a solver. For the purpose of illustration,
we will restrict our attention to the combination of the theories of equality over
uninterpreted functions symbols and linear arithmetic equations over the reals.

Shostak’s procedure operates over o-theories, namely those theories for which
there is a computable canonizer function o from terms to terms such that the
following conditions hold®.

. An equation ¢ = u in the theory is valid iff o(t) = o(u)

. If t is a term not in the theory then o(t) =t

- o(o(t) = o(t)

. Ifo(t) = f(t1,...,t,) for aterm, ¢, in the theory then o(¢;) = t; for 1 <i <n
o(t) does not contain any variables that are not already in ¢.

O W N =

The role that o has in the interpreted procedure is as the semantic or inter-
preted analog to find in the uninterpreted congruence closure algorithm. That
is, in the purely uninterpreted case find returns the canonical representative
of a term given the uninterpreted equalites already processed. In the purely
interpreted case o returns the canonical representative of a term in the terms

% Much of the theory and notation in this section comes from [18]



interpreted theory. Shostak’s procedure is a method for combining these two
canonical forms.

For example, a canonizer for linear arithmetic could be constructed by trans-
forming such expressions (using associativity, commutativity, distributivity) into
the form a1z; + ...+ a,z, + ¢ where each a; is a nonzero constant and the sum-
mands are arranged in some canonical order. In the presence of uninterpreted
function symbols, each arithmetic term obtained by replacing uninterpreted sub-
terms (i.e., subterms where the topmost function symbol is uninterpreted) by
variables, must be in canonical form.

To construct a decision procedure for equality in a o-theory Shostak requires
that a o-theory have the additional property of algebraic solvability. A o-theory
is algebraically solvable if there exists a computable function solve, that takes
an equation e and returns either true, false, or a conjunction of equations and
has the following properties: (In the following let solve(e) = E.)

1. E and e are equivalent, i.e., any o-model satisfying E satisfies e, and any
o-model of e can be extended to one satisfying F (since E can contain new
variables not appearing in e).

2. E {true, false} or E =\, z; = ¢;

. If e contains no variables then E €{true, false}.

4. If E = \,(z; = t;) then the following hold:

(a) z; occurs in e,

(b) for all 4, j, z; does not occur in t;,
(c) for all 4 ;é J: zi # z; and

() olts) =

w

For example, a solver for real linear arithmetic takes an equation of the
forma; *xz1 +...+ap *zy, +¢c =by xzy +...b, *z,, +d and returns z; =

((ba —az2)/(a1 — b1)) xz2 + ... 4+ ((bn — an) /(a1 — b1)) xzpn + (d — ¢).

The purpose of solve is two-fold. First it detects unsatisfiability in a o-theory
by returning false. Second, it makes it possible to propagate equalities by aug-
menting the canon operation in Section 3 so that o is used on any interpreted
subterms and (as before) a canonical (interpreted or uninterpreted) representa-
tive of the equivalence class is used for uninterpreted subterms. For example, if
we want to deduce f(z —y) = f(f(z)) from y = f(z) and z — 2%y = 0, then the
solver when invoked on the latter two equations returns y = f(z) and z = 2x*y

so that canon(z—y) = (2% f(2) — f(2)) = f(2), and canon(f(z—y)) = f(f(2)).

The set of equations will have a model iff solve never returns false for a
processed equation. Thus whenever an equation is equivalent to false solve must
report the contradiction.

We now give pseudocode for Shostak’s procedure for combining decision pro-
cedures [18] with the flaws corrected. The main differences with the procedure
in Section 3 are that:

10



1.

2.

In Sh, Process1 is used to apply Merge to a list of pairs of terms returned
by solve.

In Processl, equalities are solved using solve before Merge is invoked. The
extra canonsig applied to the arguments of Merge is in order to update
the use/sig structures following the solve, and to apply find to return the
current canonical form. Indeed, canonsig(a) in Process1 could be replaced
by find(a) since such an a is always either a variable or an already canonized
uninterpreted term.

In Merge(a,b), the uninterpreted case is the same as before except that solve
is applied to find(u) = find(v) before Merge is recursively invoked (since
find(u) for uninterpreted u can be interpreted).

When u in use(a) is interpreted and find(u) = u (i.e., u was canonical
prior to the current Merge), then it is merged with the new canonical term
canonsig(o(u')). The main reason for merging representative interpreted
terms with their canonical forms is to propagate the merging to any unin-
terpreted superterms (to preserve Invariant 5 for uninterpreted terms). The
merging of interpreted terms also preserves the invariant that uninterpreted
terms u in use(t) appear in use(find(t)). We can thus observe that congru-
ence closure is preserved for uninterpreted terms so that for any two unin-
terpreted terms a,b occurring in the use structure that are equal from the
equations processed so far, find(a) = find(b) holds. This fact is significant
since canon uses find on terms in the use structure to return the canoni-
cal representative of uninterpreted terms. Note that interpreted terms w in
use(a) are not added to the use(b) since it is sufficient for use(b) to contain
only the canonical term canonsig(o(u')) and this is ensured by canonsig.
The definition of canon is modified to apply o to the input to canonsig.

. The definition of canonsig is modified to recursively apply canonsig to the

arguments when an interpreted term is given as input. This is because such a
term could have been newly created by o and the sig and use data structures
must be updated to reflect this new term. In the end, the combination of
canon, signature, and canonsig returns the canonical representative of a
given term where the largest uninterpreted subterms ¢ have been replaced
by find(t) and interpreted subterms ¢ (in the original term or in replacement
of uninterpreted s by find(s)) have been replaced by o(t), and the sig and
use structures have been properly initialized. The use of the solved form for
interpreted equalities thus makes it possible to unambiguously apply find
for interpreted terms and o for interpreted terms.

Sh(T) =

CASES T OF
nil : RETURN,
[a="1b, T]
Sh(T");
Process1 (solve (canon (a) = canon(b)))
ENDCASES

11



Process1(S) =
FOR e in S DO
CASES e OF
false: RETURN unsatisfiable,

a = b: Merge (canonsig (a), canonsig (b))
ENDCASES

Merge (a, b) =
UNLESS a = b DO
union(a, b);
FOR u IN use(a) DO
IF u <s uninterpreted
THEN replace a with b in the argument list of sig(u);
FOR v IN use(b) WHEN sig(v) = sig(u) DO
Process1 (solve (find (u) = find(v)));
use (b) := use(b) U {u}
ELSIF find (u) = u THEN
u’ :=u with b for a in its argument list;
Merge (u, canonsig (o(u’)));
ENDIF

canon (t) = canonsig (signature (t))

canonsig (w) =
IF w 25 atomic
THEN RETURN find(w);
ELSE
LET £(wi,...,Ws) =w IN
IF w is interpreted, replace each wiwithcanonsig (wi);
IF w = sig(u) for some u € use(wi)
THEN RETURN find (u)
ELSE
FOR i FROM 1 TO n DO add w to use(w;)
sig (w) := w;
use (w) := {};
RETURN w
ENDIF
ENDIF

signature (t) =
IF t is a constant
THEN RETURN t
ELSE RETURN o (f(canon(ti),..., canon(ta)))
where t = £(t1,...,%s)
ENDIF

To illustrate how the procedure works, let us consider a list of equations:

flz) =4, f2*y—z) =3,z = f2xz —y),d%xz = 2%z + 2 xy. We first
process 4 x x = 2 x x + 2 x y, and since both sides are already in canonical
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form, we solve to obtain z = y and these two terms are therefore merged. This
merging is (needlessly) propagated to the terms 2 % z and 4 x x. We then process
z = f(2xx —y), which following canonization is y = f(y). This is left unchanged
by solve and hence y and f(y) are merged. (Note that it is okay for the variable
y to occur as a proper subterm of an uninterpreted term such as f(y) on the
right-hand side.) Now when f(2 %y — z) = 3 is processed, the canonical form
on the left is f(f(y)) which is merged with 3. When f(z) = 4 is processed, the
canonical form of the left-hand side is 3 because canon(z) is f(y), sig(f(f(v)))
is f(f(y)) so canon(f(z)) is 3 so that solve(3 = 4) returns false.

For soundness, we need to show the following invariant.
Invariant 8 (soundness) canons” (a) = canonxT(b) D T+ a = b.

Proof. The proof is by induction on the list of equations in T'. The base case
when T is empty is easy. Let T be of the form [a = b, T"]. First note that by the
induction hypothesis, canon (and hence canonx) preserves equality in 7". The
initial invocation of Merge is on the solved form of the given equation a = b, and
we have restricted solve to return equations that are conservative with respect
to the input equation. Since Merge is the only operation that affects canonx, we
show that the soundness property is preserved whenever Merge is recursively
invoked. We note the invariant that for uninterpreted a,b, it is the case that
sig(a) = sig(b) implies Congruent(a,b), and hence by the induction hypothesis,
TtFa=h0.

When Merge is invoked on a, b where a is interpreted, b is simply a canonized
form of a so that T+ a = b follows easily from the induction hypothesis. [

Invariant 9 (completeness) If T + a = b, then either Sh(T) = unsatisfiable
or canonx(a) = canonx(b).

Proof. Given a set of equations T, the algorithm simultaneously constructs
the solve and congruence closure T of T by ensuring that if 7' contains u = v
for interpreted u, then it also includes solve(u = v). Since canonx returns a
canonical representative of the equivalence class in 7', thus for any equality
u = v in T, it is the case that canon*T (u) = canon* (v). If T does not contain
false, then it can be shown that proofs of T+ a = b can be constructed from T
using reflexivity, symmetry, transitivity, substitutivity, and the axiom scheme:
F o(t) = t. The result then follows easily by induction on the derivation of
T F a = b. To establish the base case for the axiom scheme F o(t) = ¢, note that
o(f(ti,...,tn)) = o(f(o(t1),...,0(t,))), and hence we have canonx™ (o(a)) =
canonx" (a). "

Discrepancies in Shostak’s Original Procedure. There are two actual bugs in the
pseudocode presented in the paper [18]. The most egregious is in the procedure
Merge. The condition find(u) # u should actually be find(u) = u. Shostak’s
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earlier technical report [19] does not contain this bug but has other discrepan-
cies. The second bug is that the output to solve needs to be canonized just in
case solve creates new variables and new terms that need to be introduced into
the use data structure.

Shostak [18] states that the use data structure is maintained so that the
sig’s are unique. This is incorrect and such an “optimization” can result in an
incompleteness. The solver for cons, car, and cdr given by Shostak is also buggy.

Performance Comparisons. Crocker [5] has carried out an empirical compari-
son of Shostak’s algorithm as implemented by Shostak himself against Nelson
and Oppen’s implementation of their procedure. Crocker’s results indicate a
considerable efficiency advantage for Shostak’s approach.

We have performed a preliminary study of the efficiency of Nelson-Oppen
approach and the Shostak approach to cooperating decision procedures, and
found the Shostak approach to be about an order of magnitude faster than
Nelson-Oppen. This holds over a wide class of examples including proposi-
tional, arithmetic, and equality reasoning. These results match those obtained
by Crocker [2,5,8].

5 Conclusion

The addition of decision procedures to automatic and semi-automatic theorem
provers and proof checkers has clear advantages. Most of the major proof check-
ing systems available today contain implementations of decision procedures for
propositional logic, equality, and linear arithmetic. Although the efficiency of the
individual procedures is important, the method of combination of procedures is
more crucial to the overall efficiency of a system than the efficiency of any one
component.

Shostak’s approach to the combination of decision procedures is dramati-
cally (10x) more efficient than the earlier Nelson-Oppen method. The order of
magnitude difference stems from a tighter integration of the cooperating deci-
sion procedures and from improved algorithms which save work by considering
smaller term universes. All comparisons we are aware of between Shostak’s and
other approaches have found a dramatic speed advantage for Shostak, but have
been at a loss to explain them.

In future work, we will explore the detailed implementation tradeoffs for in-
dividual theories, and develop a combination of the Shostak and Nelson-Oppen
procedures. The latter combination would use a Nelson-Oppen outermost loop
with an entire Shostak-style combination of procedures as one element. The
advantage of this combination of procedures is that some theories are not al-
gebraically solvable, but are still of computational interest (e.g., the theory of
potentially circular lists). Adding such theories to Nelson-Oppen is simple, but
adding them to Shostak is impossible. Thus we intend to use the tighter Shostak
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approach for all theories which can provide efficient solvers and canonizers, and
use the Nelson-Oppen approach for any remaining theories. We have also devel-
oped a solver for the important case of linear arithmetic inequalities. Shostak’s
original implementation treated these as an external decision procedure (in the
Nelson-Oppen style) and the integration of linear arithmetic inequalities was
therefore not clean. In future work we also hope to describe in some detail the
myriad uses made of our decision procedures in the implementation of the state-
of-the-art proof checker PVS [13].
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