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t. We give a brief overview of the Symboli
 Analysis Laboratory(SAL) proje
t. SAL is a veri�
ation framework that is dire
ted at ana-lyzing properties of transition systems by 
ombining tools for programanalysis, model 
he
king, and theorem proving. SAL is built around asmall intermediate language that serves as a semanti
 representation fortransition systems that 
an be used to drive the various analysis tools.The transition system model of a program 
onsists of a state type, an ini-tialization predi
ate on this state type, and a binary next-state relation. Theexe
ution of a program starts in a state satisfying the initialization predi
ate sothat ea
h state and its su

essor state satisfy the next-state relation. Transitionsystems are a simple low-level model that have none of the semanti
 
ompli
a-tions of high-level programming languages. Constru
ts su
h as bran
hes, loops,and pro
edure 
alls 
an be modelled within a transition system through theuse of expli
it 
ontrol variables. The transition system model forms the basisof several formalisms for several popular formalisms in
luding UNITY [CM88℄,TLA [Lam94℄, SPL [MP92℄, and ASMs [Gur95℄. It also underlies veri�
ationtools su
h as SMV [M
M93℄, Murphi [Dil96℄, and STeP [MT96℄.If we fo
us our attention on the veri�
ation of properties of transition sys-tems, we �nd that even this simple model poses some serious 
hallenges. Theveri�
ation of transition systems is performed by showing that the system sat-is�es an invarian
e or progress property, or that it re�nes another transitionsystem. It is easy to write out proof rules for the veri�
ation of su
h propertiesbut the a
tual appli
ation of these proof rules requires 
onsiderable human in-genuity. For example, the veri�
ation of invarian
e properties requires that theinvariant be indu
tive, i.e., preserved by ea
h transition. A valid invariant mightneed to be strengthened before it 
an be shown to be indu
tive. Fairness 
on-straints and progress measures have to be employed for demonstrating progress? This work was funded by the Defen
e Advan
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y underContra
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properties. It takes a fair amount of e�ort and ingenuity to 
ome up with suitableinvariant strengthenings and progress measures.Methods like model 
he
king [CGP99℄ that are based on state-spa
e explo-ration have the advantage that they are largely automati
 and seldom requirethe �ne-grain intera
tion seen with dedu
tive methods. Sin
e these methods typ-i
ally explore the rea
hable state spa
e (i.e., the strongest invariant), there is noneed for invariant strengthening. Progress measures are also irrelevant sin
e thesize of the whole state spa
e is bounded. However, model 
he
king methods ap-ply only to a limited 
lass of systems that possess small, essentially �nite statespa
es.Theorem proving or model 
he
king are not by themselves adequate for e�e
-tive veri�
ation. It is ne
essary to 
ombine the expressiveness of the dedu
tivemethods with the automation given by model 
he
king. This way, small, �nite-state systems 
an be dire
tly veri�ed using model 
he
king. For larger, possi-bly in�nite-state systems, theorem proving 
an be used to 
onstru
t property-preserving abstra
tions over a smaller state spa
e. Su
h abstra
tions 
onvertdata-spe
i�
 
hara
teristi
s of a 
omputation into 
ontrol-spe
i�
 ones. The�nite-state model 
onstru
ted by means of abstra
tion 
an be analyzed usingmodel 
he
king. It is easy to a
tually 
ompute the properties of a system from a�nite-state approximation and map these properties ba
k to the original system.We give an overview of an ongoing e�ort aimed at 
onstru
ting a generalframework for the integration of theorem proving, model 
he
king, and programanalysis. We use the term symboli
 analysis to refer to the integration of theseanalysis te
hniques sin
e they all employ representations based on symboli
 logi
to 
arry out a symboli
 interpretation of program behavior. The framework alsoemphasizes analysis , i.e., the extra
tion of a large number of useful properties,over 
orre
tness whi
h is the demonstration of a small number of importantproperties. The framework is 
alled the Symboli
 Analysis Laboratory (SAL).We motivate the need for symboli
 analysis and des
ribe the ar
hite
ture andintermediate language of SAL.1 A Motivating ExampleWe use a very simple and arti�
ial example to illustrate how symboli
 analysis
an bring about a synergisti
 
ombination of theorem proving, model 
he
king,and program analysis. The example 
onsists of a transition system with a state
ontain a (
ontrol) variable PC ranging over the s
alar type fin
; de
g, and twointeger variables B and C. Initially, 
ontrol is in state in
 and the variables Band C are set to zero. There are three transition rules shown below as guarded
ommands:1. When PC = in
, then B is in
remented by two, C is set to zero, and 
ontrolis transferred to state de
.PC = in
 �! B0 = B + 2;C 0 = 0;PC 0 = de
;2



B:=0;
B:=B+2; C:= 0;

B>0 -> B:= B-2; B>0 -> B:= B-2;

C:=0;

C:=C+1; C:=C+1;

inc dec

Fig. 1. A Simple Transition System: Twos2. When PC = de
, B is de
remented by two, and C is in
remented by one,and 
ontrol is transferred to state de
l .PC = de
 ^ B > 0 �! B0 = B � 2;C 0 = C + 1;PC 0 = in
;3. Same as transition rule 2, but 
ontrol stays in de
.PC = de
 ^ B > 0 �! B0 = B � 2;C 0 = C + 1;There is also an impli
it stuttering transition from state de
 to itself when noneof the guards of the other transitions holds, i.e., when B � 0. Sin
e the in
 statehas a transition with a guard that is always true, there is no need for a stutteringtransition on in
. The transition system is shown diagrammati
ally in Figure 1.The transition system Twos satis�es a number of interesting invariants.1. B is always an even number.2. B and C are always non-negative.3. B is always either 0 or 2.4. B is always 0 in state in
.5. C is always either 0 or 1.6. In state de
, B = 2 i� C = 0.The purpose of symboli
 analysis is to �nd and validate su
h properties witha high degree of automation and minimal human guidan
e and intervention.While eÆ
ient automation is essential for analyzing large transition systems,the intended out
ome of symboli
 analysis is human insight. The analysis shouldtherefore not rule out human intera
tion.2 Some Symboli
 Analysis Te
hniquesWe enumerate some symboli
 analysis te
hniques and assess their utility on theTwos example. For this purpose, we fo
us on the invariant (1) below.B = 0 _ B = 2 (1)3



Note that the transition system Twos is a potentially in�nite state system sin
evariables B and C range over the integers.Some mathemati
al preliminaries are in order. A transition system P is givenby a pair hIP ; NP i 
onsisting of an initialization predi
ate on states IP , and abinary next-state relation on states NP . We 
onstrain the next-state relation Nto be total so that 8s : 9s0 : N(s; s0). The metavariables s, s0 range over states.We treat a set of states as equivalent to its 
hara
teristi
 predi
ate. The boolean
onne
tives ^, _, �, are lifted from the booleans to the level of predi
ates and
orrespond to the set-theoreti
 operations \, [, and �, respe
tively. An assertionis a predi
ate on states. The metavariables �,  range over assertions. A predi-
ate transformer is a map from predi
ates to predi
ates. A monotone predi
atetransformer � preserves the subset or impli
ation ordering on predi
ates so thatif � �  , then �(�) � �( ). The �xed point of a monotone predi
ate transformer� is an assertion � su
h that � � �(�). As a 
onsequen
e of the Tarski{Knastertheorem, every monotone predi
ate transformer has a least �xed point lfp(�)and a greatest �xed point gfp(�) su
h thatlfp(�) = �(lfp(�)) � gfp(�) = �(gfp(�)):Let ? represent the empty set of states, > the set of all states, and ! the setof natural numbers. If the state spa
e is �nite, then the least �xed point lfp(�)
an be 
al
ulated as ?_ �(?) _ �2(?) _ : : : _ �n(?)for some n, and similarly, gfp(�) 
an be 
al
ulated as>^ �(>) ^ �2(>) ^ : : : ^ �n(>);for some n.If � is _-
ontinuous (i.e., �(Wi2! �i) = Wi2! �(�i) for �i su
h that wheneveri < j, �i � �j), then lfp(�) = _i2! � i(?) (2)Similarly, if � is ^-
ontinuous (i.e., �(Vi2! �i) = Vi2! �(�i) for �i su
h thatwhenever i < j, �j � �i), thengfp(�) = î2! � i(>) (3)Equations (2) and (3) provide an iterative way of 
omputing the least and great-est �xed points but these on in�nite-state spa
es, the 
omputations might not
onverge in a bounded number of steps.Typi
al examples of monotone predi
ate transformers in
lude1. Strongest post
ondition of a transition relation N , sp(N), whi
h is de�nedas sp(N)(�) � (9s0 : �(s0) ^N(s0; s)):4



2. Strongest post
ondition of a transition system P , sp(P ) is de�ned assp(P )(�) � IP _ sp(NP )(�):3. Weakest pre
ondition of a transition relation N , wp(N) is de�ned aswp(N)(�) � (8s0 : N(s; s0) � �(s)):2.1 Invariant ProvingThe invarian
e rule is the most heavily used proof rule in any programlogi
 [Hoa69,Pnu77℄. Given a transition system P as a pair hIP ; NP i, 
onsistingof an initialization IP and a next-state relation NP , the invarian
e rule usuallyhas the form: `  (s) � �(s)` IP (s) �  (s)`  (s0) ^NP (s0; s1) �  (s1)P j= invariant �In this rule, the assertion  is a strengthening of the assertion �. Su
h astrengthening is needed sin
e the assertion � may not be indu
tive, i.e., satisfythe premises ` IP (s) � �(s) and ` �(s0) ^NP (s0; s1) � �(s1).In the Twos example, the invariant (1) is not indu
tive. It fails be
ause it isnot preserved by transition 1 sin
e we 
annot establish` (PC = in
 ^ (B = 0 _ B = 2))^ (PC = in
 ^ B0 = B + 2 ^ C 0 = 0 ^ PC 0 = de
)� (B0 = 0 _ B0 = 2):The invariant has to be strengthened with the observation that when PC = in
,B is always 0 so that it now readsB = 0 _ (PC 6= in
 ^B = 2): (4)The strengthened invariant (4) is indu
tive. The need for invariant strength-ening in program proofs is the key disadvantage of the dedu
tive methods withrespe
t to model 
he
king. Quite a lot of e�ort is needed to turn a putativeinvariant into an indu
tive one. On
e an invariant has been strengthened in thismanner, it 
an 
ontain a large number of 
onjun
ts that generate a 
ase explosionin the proof. Mu
h of the fo
us of symboli
 analysis is on supplementing dedu
-tive veri�
ation with the means of automati
ally obtaining useful invariants andinvariant strengthenings.2.2 Enumerative Model Che
kingThe early approa
hes to model 
he
king were based on the feasibility of 
om-puting �xed point properties for �nite-state systems. The rea
hable states of a5



�nite-states 
an be 
omputed by starting from the set of initial states and explor-ing the states rea
hable in n 
onse
utive transitions. Any property that holds onall the rea
hable states is a valid invariant. There are many variations on this ba-si
 theme. Many modern enumerative model 
he
kers su
h as Murphi [Dil96℄ andSPIN [Hol91℄ 
arry out a depth-�rst sear
h exploration of the transition graphwhile maintaing a hash-table to re
ord states that have already been visited. InSPIN, the LTL model 
he
king problem is transformed into one of emptiness for!-automata, i.e., automata that re
ognize in�nite strings [VW86,GPVW95℄.In enumerative model 
he
king, properties written in a bran
hing-time tem-poral logi
 CTL 
an be veri�ed in time proportional to N � F where N isthe size of the transition graph and F the size of the temporal formula. Model
he
king linear-time temporal logi
 formulas is more expensive and takes timeproportional to N�2F where N is the size of the model and F is of the formula.The Twos example su

umbs rather fortuitously to enumerative model 
he
k-ing. Even though the potential state spa
e of Twos is unbounded, only a boundedpart of the state spa
e is rea
hable sin
e B is either 0 or 2, and C is either 0or 1. The su

ess of enumerative model 
he
king is somewhat anomalous sin
ethis method is unlikely to terminate on typi
al in�nite-state systems. Even on�nite-state systems, an enumerative 
he
k is unlikely to su

eed be
ause the sizeof the sear
hable state spa
e 
an be exponential in the size of the program state.Still, enumerative model 
he
king is an e�e
tive debugging te
hnique that 
anoften dete
t and display simple 
ounterexamples when a property fails.2.3 Symboli
 Model Che
kingThe use of symboli
 representation for the state sets was proposed in or-der to 
ombat the state explosion problem in enumerative model 
he
k-ing [BCM+92,M
M93℄. A symboli
 representation for boolean fun
tions basedon binary de
ision diagrams (BDDs) [Bry86℄ has proved parti
ularly su

essful.A �nite state 
an be represented as a bit-ve
tor. Then sets of bit-ve
tors arejust boolean fun
tions and 
an be represented as BDDs. In parti
ular, the initialset, a given invariant 
laim, the transition relation, and the rea
hable state set,
an all be represented as BDDs. The BDD operations 
an be used to 
omputeimages of state sets with respe
t to the transition relation. This allows predi-
ate transformers su
h as strongest post
ondition and weakest pre
ondition tobe applied to the BDD representation of a state set. The rea
hable state set
an be 
omputed by means of a �xed point iteration of the strongest post
ondi-tion 
omputation starting from the initial state set. Every intermediate iterationof the rea
hable state set is also represented as a BDD. There are several ad-vantages to the use of BDDs. Sometimes even sets of large 
ardinality mighthave 
ompa
t symboli
 representations. BDDs are a 
anoni
al representationfor boolean fun
tions so that equivalen
e tests are 
heap. BDDs are espe
iallygood at handling the boolean quanti�
ation that is needed in the image 
ompu-tations. Automata-theoreti
 methods 
an also be represented in symboli
 form.Some symboli
 model 
he
kers in
lude SMV [M
M93℄6



Su
h symboli
 representations do require the state to be expli
itly �nite. Thismeans that the Twos example 
annot be 
oded dire
tly in a form that 
an bedire
tly understood by a symboli
 model 
he
ker. Some work has to be done inorder to redu
e the problem to �nite-state form so that it 
an be handled by asymboli
 model 
he
ker.2.4 Invariant GenerationAutomati
 invariant generation te
hniques have been studied sin
e the1970s [CH78,GW75,KM76,SI77℄, and more re
ently in the work ofBj�rner, Browne, and Manna [BBM97℄, and Bensalem, Lakhne
h, andSa��di [BLS96,Sa��96,BL99℄.As in model 
he
king, the basi
 operation in invariant generation is thatof taking the strongest post
ondition or weakest pre
ondition of a state set Xwith respe
t to the transition relation N . Some of the te
hniques for 
omputinginvariants are des
ribed brie
y below.Least Fixed Point of the Strongest Post
ondition. The invariant 
omputed here
orresponds to the rea
hability state set. It is 
omputed by starting with aninitial symboli
 representation of the initial state set given by the program. Thisset is su

essively enlarged by taking its image under the strongest post
onditionoperation until a �xed point is rea
hed, i.e., no new elements are added to the set.We term this method LFP-SP. It yields a symboli
 representation of the set ofrea
hable states whi
h is the strongest invariant. However, LFP-SP 
omputationoften does not terminate sin
e the 
omputation might not 
onverge to a �xedpoint in a �nite number of steps. Take, for example, a program that su

essivelyin
rements by one, a variable x that is initially zero. This program has a least�xed point, i.e., x is in the set of natural numbers, but the iterative 
omputationdoes not 
onverge.For the Twos example, the LFP-SP 
omputation does terminate with thedesired invariant as seen in the 
al
ulation below.Inv0 = (PC = in
 ^B = 0 ^ C = 0)Inv1 = Inv0 _ (PC = de
 ^ B = 2 ^ C = 0)Inv2 = Inv1 _ (B = 0 ^ C = 1)Inv3 = (B = 0 ^ C = 1) _ (PC = de
 ^ B = 2 ^ C = 0)= Inv2The resulting invariant easily implies the strengthened indu
tive invari-ant (4). The LFP-SP 
omputation terminates pre
isely be
ause the rea
hablestate set is bounded. In more typi
al examples, approximation te
hniques basedon widening will be needed to a

elerate the 
onvergen
e of the least �xed point
omputation. 7



Greatest Fixed Point of the Strongest Post
ondition. The greatest �xed pointiteration starts with the entire state spa
e and strengthens it in ea
h iterationby ex
luding states that are de�nitely unrea
hable. This approa
h, whi
h we 
allGFP-SP, yields a weaker invariant than the least �xed point 
omputation. TheGFP-SP 
omputation also need not terminate. Even when it does terminate, theresulting invariant might not be strong enough. In the 
ase of the program withsingle integer variable x that is initially zero and in
remented by one in ea
htransition, the GFP-SP 
omputation returns the trivial invariant true. Howeverthe GFP-SP method has the advantage that it 
an be made to 
onverge moreeasily than the LFP-SP method, and any intermediate step in the 
omputationalready yields a valid invariant.The greatest �xed point invariant 
omputation for Twos (ignoring the vari-able C) 
an be 
arried out as follows. Here Inv i(p
) represents the i iteration ofthe invariant for 
ontrol state p
.Inv0(in
) = (B = 0 _ B � �1) = (B � �1)Inv0(sub) = trueInv1(in
) = (B � �1)Inv1(sub) = (B � 1 _ B � �1) = (B � �1)Inv2(in
) = (B � �1)Inv2(sub) = (B � �1)The invariant B � �1 is not all that useful sin
e this information 
ontributesnothing to the invariants that we wish to establish. Still, the GFP-SP methodis not without value. It is espe
ially useful for propagating known invariants.For example, if we start the iteration with invariant (1), then we 
an use theGFP-SP method to dedu
e that the strengthened invariant (4).Greatest Fixed Point of the Weakest Pre
ondition. Both LFP-SP and GFP-SP 
ompute indu
tive invariants that are valid, whereas the method GFP-WPtakes a putative invariant and strengthens it in order to make it indu
tive. The
omputation starts with a putative invariant S, and su

essively applies theweakest pre
ondition operation wp(P)(S) to it. If this 
omputation terminates,then either the resulting assertion is a strengthening of the original invariantthat is also indu
tive, or the given invariant is shown to be invalid.With the Twos example, the weakest pre
ondition with respe
t to the puta-tive invariant (1) yields the strengthened invariant (4).2.5 Abstra
t Interpretation.Many of the invariant generation te
hniques are already examples of abstra
tinterpretation whi
h is a general framework for lifting program exe
ution from8



the 
on
rete domain of values to a more abstra
t domain of properties. Examplesof abstra
t interpretation in
lude sign analysis (positive, negative, or zero) ofvariables, interval analysis (
omputing bounds on the range of values a variable
an take), live variable analysis (the value of a variable at a 
ontrol point mightbe used in the 
omputation to follow), among many others.We 
an apply an interval analysis to the Twos example. Initially, the intervalfor B is [0; 0℄ for PC = in
. This yields an interval of [2; 2℄ for B when PC = de
.In the next step, we have an approximation of [0; 2℄ for B when PC = de
, and[0; 0℄ when PC = in
. The next round, we get an approximation of [�1; 0℄ forthe range of B when PC = in
, and [0; 2℄ for the range of B when PC = de
.At this point the 
omputation 
onverges, but the results of the analysis are stilltoo approximate and do not dis
harge the invariant (1).2.6 Property Preserving Abstra
tionsSin
e model 
he
king is unable to 
ope with systems with in�nite or largestate spa
es, abstra
tion has been studied as a te
hnique for redu
ing the statespa
e [CGL94,LGS+95,SG97℄. In data abstra
tion, a variable over an in�nite orlarge type is redu
ed to one over a smaller type. The smaller type is essentiallya quotient with respe
t to some equivalen
e relation of the larger type. For ex-ample, a variable ranging over the integers 
an be redu
ed to boolean form by
onsidering only the parity (odd or even) of the numbers. Predi
ate abstra
tionis an extension of data abstra
tion that introdu
es boolean variables for predi-
ates over a set of variables. For example, if x and y are two integer variables ina program, it is possible to abstra
t the program with respe
t to the predi
atessu
h as x < y, x = y. These variables are then repla
ed by boolean variables pand q su
h that p 
orresponds to the x < y and q 
orresponds to x = y. Eventhough predi
ate abstra
tion introdu
es only boolean variables, it is possible tosimulate a data abstra
tion of a variable to one of �nite type by using a binaryen
oding of the �nite type.In general, an abstra
tion is given by means of a 
on
retization map 
 su
hthat 
(a) for an abstra
t variable a returns its 
on
rete 
ounterpart. In the 
aseof the abstra
tion where x < y is repla
ed by p and x = y by q, 
(a) = (x < y)and 
(b) = (x = y). The more diÆ
ult dire
tion is 
omputing an abstra
tion�(C) given a 
on
rete predi
ate C. The 
onstru
tion of � requires the use oftheorem proving as des
ribed below.There are also two ways of using abstra
tions in symboli
 analysis. In oneapproa
h, the abstra
t rea
hability set [SG97,DDP99℄ is 
onstru
ted by the fol-lowing iteration ARG(P )(s) = lfp(�(IP ) _ � Æ sp(P ) Æ 
):We 
an then 
he
k if p is an invariant of P by verifying 
(ARG(P )) � p.A se
ond way of using abstra
tion is by a
tually 
onstru
ting the abstra
tedversion of the program and the property of interest [BLO98,CU98,SS99℄. This
an be more eÆ
ient sin
e the program and property are usually smaller thanthe abstra
t rea
hability graph. 9



inc dec

dec

c, -d

c, -d

-c, d

Fig. 2. Abstra
t TwosIn the Twos example, the predi
ate abstra
tion is suggested by the predi
atesB = 0 and B = 2 in the putative invariant. The abstra
t transition system byrepla
ing the predi
ate B = 0 by 
 and B = 2 by d is shown in Figure 2.The abstra
t transition system 
omputed using predi
ate abstra
tion 
aneasily be model 
he
ked to 
on�rm that invariant (1) holds. The stronger in-variant (4) 
an also be extra
ted from the rea
hable state spa
e of the abstra
ttransition system.Predi
ate abstra
tion a�ords an e�e
tive integration of theorem proving andmodel 
he
king where the former is used to 
onstru
t a �nite-state property-preserving abstra
tion that 
an be analyzed using the latter. The abstra
tionloses information so that a property 
an fail to hold in the abstra
t systemeven when its 
on
rete 
ounterpart is valid for the 
on
rete system. In this
ase, the abstra
tion has to be re�ned by introdu
ing further predi
ates forabstra
tion [BLO98,CGJ+00℄.3 SAL: A Symboli
 Analysis LaboratoryWe have already seen a 
atalog of symboli
 analysis te
hniques. The idea of asymboli
 analysis laboratory is to allow these te
hniques to 
oexist so that theanalysis of a transition system 
an be 
arried out by su

essive appli
ations of a
ombination of these te
hniques [BGL+00℄. With su
h a 
ombination of analysiste
hniques, one 
ould envisage a veri�
ation methodology where1. A 
one-of-in
uen
e redu
tion is used to dis
ard irrelevant variables.2. Invariant generation is used to obtain small but useful invariants.3. These invariants are used to obtain a reasonably a

urate abstra
tion to a�nite-state transition system.4. Model 
he
king is used to 
ompute useful invariants of the �nite-state ab-stra
tion.5. The invariants 
omputed by model 
he
king over the abstra
tion are usedpropagated using invariant generation te
hniques.10
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Fig. 3. The Ar
hite
ture of SAL6. This 
y
le 
an be repeated until no further useful information is forth
oming.SAL provides a bla
kboard ar
hite
ture for symboli
 analysis where a 
ol-le
tion of tools intera
t through a 
ommon intermediate language for transitionsystems. The individual analyzers (theorem provers, model 
he
kers, stati
 an-alyzers) are driven from this intermediate language and the analysis results arefed ba
k to this intermediate level. In order to analyze systems that are writtenin a 
onventional sour
e language, the transition system model of the sour
e pro-gram has to be extra
ted and 
ast in the SAL intermediate language.1 The modelextra
ted in the SAL intermediate language essentially 
aptures the transitionsystem semanti
s of the original sour
e program.The SAL ar
hite
ture is shown in Figure 3 The SAL ar
hite
ture is 
on-strained so that the di�erent analysis tools do not 
ommuni
ate dire
tly withea
h other, but do so through the SAL intermediate language. The intera
tionbetween the tools must therefore be at a 
oarse level of granularity, namely interms of transition systems, their properties, and property-preserving transfor-mations between transition systems. Allowing the tools to 
ommuni
ate dire
tlyto ea
h other would require a quadrati
 number of di�erent maps (for a givennumber of tools) between these analysis tools.3.1 The SAL Intermediate LanguageThe intermediate language for SAL2 serves as1 We are 
urrently working on a translator from a subset of Verilog to SAL, andanother from a subset of Java to SAL.2 The SAL intermediate language was designed in 
ollaboration with Prof. David Dillof Stanford, Prof. Tom Henzinger at UC Berkeley, and several 
olleagues at SRI,Stanford, and UC Berkeley. 11



1. The target of translations from sour
e languages.2. The sour
e for translations to the input formats of di�erent analysis tools.3. A medium for 
ommuni
ation between di�erent analysis tools.The SAL intermediate language is based on languages and models su
has SMV [M
M93℄, Murphi [Dil96℄, Rea
tive Modules [AH99℄, ASM [Gur95℄,UNITY [CM88℄, and TLA [Lam94℄, among others. The unit of spe
i�
ationin SAL is a 
ontext whi
h 
ontains de
larations of types, 
onstants, transitionsystem modules, and assertions. A SAL module is a transition system unit. Abasi
 SAL module is a state transition system where the state 
onsists of input ,output , lo
al , and global variables, where{ An input variable to a module 
an be read but not written by the module.{ An output variable to a module 
an be read and written by the module, andonly read by an external module.{ A lo
al variable to a module 
an be read and written by the module, but isnot read or written by the module.{ A global variable to a module 
an be read and written by the module as wellas by an external moduleA basi
 module also spe
i�es the initialization and transition steps. These 
anbe given by a 
ombination of de�nitions or guarded 
ommands. A de�nition is ofthe form x = expression or x0 = expression , where x0 refers to the new value ofvariable x in a transition. A de�nition 
an also be given as a sele
tion of the formx0 2 set whi
h means that the new value of x is nondeterministi
ally sele
tedfrom the value of of set . A guarded 
ommand is of the form g �! S, where gis a boolean guard and S is a list of de�nitions of the form x0 = expression orx0 2 set .As in syn
hronous language su
h as Esterel [BG92℄ and Lustre [HCRP91℄,SAL allows syn
hronous , i.e., Mealy ma
hine, intera
tion so that the new valueof a lo
al or output variable 
an be determined by the new value of a vari-able. Su
h intera
tion introdu
es the possibility of a 
ausal 
y
le where ea
hvariable is de�ned to rea
t syn
hronously to the other. Su
h 
ausal 
y
les areruled out by using stati
 analysis to generate proof obligations demonstratingthat su
h 
y
les are not rea
hable. The UNITY and ASM models do not admitsu
h syn
hronous intera
tion sin
e the new values of a variable in a transitionare 
ompletely determined by the old values of the variables. SMV allows su
hintera
tion but the semanti
s is not 
learly spe
i�ed, parti
ularly when 
ausal
y
les are possible. The Rea
tive Modules [AH99℄ language uses a stati
 partialordering on the variables that breaks 
ausal loops by allowing syn
hronous in-tera
tion in one dire
tion of the ordering but not the other. In TLA [Lam94℄,two modules are 
omposed by 
onjoining their transition relations. TLA allowssyn
hronous intera
tion where 
ausal loops 
an be resolved in any manner thatis 
ompatible with the 
onjun
tion of the transition relations is satis�ed.SAL modules 
an be 
omposed{ Syn
hronously , so thatM1kM2 is a module that takesM1 andM2 transitionsin lo
kstep, or 12



{ Asyn
hronously, so that M1 [℄M2 is a module that takes an interleaving ofM1 and M2 transitions.There are rules that govern the usage of variables within a 
omposition.Two modules engaged in a 
omposition must not share output variables and norshould the output variables of one module overlap with the global variables ofanother. The modules 
an 
an share input and global variables, and the inputvariables of one module 
an be the output or global variables of the other. Twomodules that share a global variable 
annot be 
omposed syn
hronously , sin
ethis might 
reate a 
on
i
t when both modules attempt to write the variablesyn
hronously. The rules governing 
omposition allow systems to be analyzedmodularly so that system properties 
an be 
omposed from module proper-ties [AH99℄.The N-fold syn
hronous and asyn
hronous 
ompositions of modules are alsoexpressible in SAL. Module operations in
lude those for hiding and renamingof variables. Any module de�ned by means of 
omposition and other moduleoperations 
an always be written as a single basi
 module, but with a signi�
antloss of su

in
tness.SAL does not 
ontain features other than the rudimentary ones des
ribedabove. There are no 
onstru
ts for syn
hronization, syn
hronous message pass-ing, or dynami
 pro
ess 
reation. These have to expli
itly implemented by meansof the transition system me
hanisms available in SAL. While these features areuseful, their introdu
tion into the language would pla
e a greater burden on theanalysis tools.The SAL language is thus similar in spirit to Abstra
t State Ma
hines [Gur95℄in that both serve as basi
 
on
eptual models for transition systems. However,ma
hines des
ribed in SAL are not abstra
t 
ompared with those in ASM no-tation sin
e SAL is intended as a front-end to various popular model 
he
kingand program analysis tools.4 Con
lusionsPowerful automated veri�
ation te
hnologies have be
ome available in the formof model 
he
kers for �nite, timed, and hybrid systems, de
ision pro
edures,theorem provers, and stati
 analyzers. Individually, these te
hnologies are quitelimited in the range of systems or properties they 
an handle with a high de-gree of automation. These te
hnologies are 
omplementary in the sense that oneis powerful where the other is weak. Stati
 analysis 
an derive properties bymeans of a synta
ti
 analysis. Model 
he
king is best suited for 
ontrol-intensivesystems. Theorem proving is most appropriate for verifying mathemati
al prop-erties of the data domain. Symboli
 analysis is aimed at a
hieving a synergisti
integration of these analysis te
hniques. The unifying ideas are1. The use of transition systems as a unifying model, and2. Fixed point 
omputations over symboli
 representations as the unifying anal-ysis s
heme. 13



3. Abstra
tion as the key te
hnique for redu
ing in�nite-state systems to �nite-state form.Implementation work on the SAL framework is 
urrently ongoing. The pre-liminary version of SAL 
onsists of a parser, type
he
ker, 
ausality 
he
ker, aninvariant generator, translators from SAL to SMV and PVS, and some othertools. SAL is intended as an experimental framework for studying the ways inwhi
h di�erent symboli
 analysis te
hniques 
an be 
ombined to a
hieve greaterautomation in the veri�
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