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properties. It takes a fair amount of e�ort and ingenuity to ome up with suitableinvariant strengthenings and progress measures.Methods like model heking [CGP99℄ that are based on state-spae explo-ration have the advantage that they are largely automati and seldom requirethe �ne-grain interation seen with dedutive methods. Sine these methods typ-ially explore the reahable state spae (i.e., the strongest invariant), there is noneed for invariant strengthening. Progress measures are also irrelevant sine thesize of the whole state spae is bounded. However, model heking methods ap-ply only to a limited lass of systems that possess small, essentially �nite statespaes.Theorem proving or model heking are not by themselves adequate for e�e-tive veri�ation. It is neessary to ombine the expressiveness of the dedutivemethods with the automation given by model heking. This way, small, �nite-state systems an be diretly veri�ed using model heking. For larger, possi-bly in�nite-state systems, theorem proving an be used to onstrut property-preserving abstrations over a smaller state spae. Suh abstrations onvertdata-spei� harateristis of a omputation into ontrol-spei� ones. The�nite-state model onstruted by means of abstration an be analyzed usingmodel heking. It is easy to atually ompute the properties of a system from a�nite-state approximation and map these properties bak to the original system.We give an overview of an ongoing e�ort aimed at onstruting a generalframework for the integration of theorem proving, model heking, and programanalysis. We use the term symboli analysis to refer to the integration of theseanalysis tehniques sine they all employ representations based on symboli logito arry out a symboli interpretation of program behavior. The framework alsoemphasizes analysis , i.e., the extration of a large number of useful properties,over orretness whih is the demonstration of a small number of importantproperties. The framework is alled the Symboli Analysis Laboratory (SAL).We motivate the need for symboli analysis and desribe the arhiteture andintermediate language of SAL.1 A Motivating ExampleWe use a very simple and arti�ial example to illustrate how symboli analysisan bring about a synergisti ombination of theorem proving, model heking,and program analysis. The example onsists of a transition system with a stateontain a (ontrol) variable PC ranging over the salar type fin; deg, and twointeger variables B and C. Initially, ontrol is in state in and the variables Band C are set to zero. There are three transition rules shown below as guardedommands:1. When PC = in, then B is inremented by two, C is set to zero, and ontrolis transferred to state de.PC = in �! B0 = B + 2;C 0 = 0;PC 0 = de;2



B:=0;
B:=B+2; C:= 0;

B>0 -> B:= B-2; B>0 -> B:= B-2;

C:=0;

C:=C+1; C:=C+1;

inc dec

Fig. 1. A Simple Transition System: Twos2. When PC = de, B is deremented by two, and C is inremented by one,and ontrol is transferred to state del .PC = de ^ B > 0 �! B0 = B � 2;C 0 = C + 1;PC 0 = in;3. Same as transition rule 2, but ontrol stays in de.PC = de ^ B > 0 �! B0 = B � 2;C 0 = C + 1;There is also an impliit stuttering transition from state de to itself when noneof the guards of the other transitions holds, i.e., when B � 0. Sine the in statehas a transition with a guard that is always true, there is no need for a stutteringtransition on in. The transition system is shown diagrammatially in Figure 1.The transition system Twos satis�es a number of interesting invariants.1. B is always an even number.2. B and C are always non-negative.3. B is always either 0 or 2.4. B is always 0 in state in.5. C is always either 0 or 1.6. In state de, B = 2 i� C = 0.The purpose of symboli analysis is to �nd and validate suh properties witha high degree of automation and minimal human guidane and intervention.While eÆient automation is essential for analyzing large transition systems,the intended outome of symboli analysis is human insight. The analysis shouldtherefore not rule out human interation.2 Some Symboli Analysis TehniquesWe enumerate some symboli analysis tehniques and assess their utility on theTwos example. For this purpose, we fous on the invariant (1) below.B = 0 _ B = 2 (1)3



Note that the transition system Twos is a potentially in�nite state system sinevariables B and C range over the integers.Some mathematial preliminaries are in order. A transition system P is givenby a pair hIP ; NP i onsisting of an initialization prediate on states IP , and abinary next-state relation on states NP . We onstrain the next-state relation Nto be total so that 8s : 9s0 : N(s; s0). The metavariables s, s0 range over states.We treat a set of states as equivalent to its harateristi prediate. The booleanonnetives ^, _, �, are lifted from the booleans to the level of prediates andorrespond to the set-theoreti operations \, [, and �, respetively. An assertionis a prediate on states. The metavariables �,  range over assertions. A predi-ate transformer is a map from prediates to prediates. A monotone prediatetransformer � preserves the subset or impliation ordering on prediates so thatif � �  , then �(�) � �( ). The �xed point of a monotone prediate transformer� is an assertion � suh that � � �(�). As a onsequene of the Tarski{Knastertheorem, every monotone prediate transformer has a least �xed point lfp(�)and a greatest �xed point gfp(�) suh thatlfp(�) = �(lfp(�)) � gfp(�) = �(gfp(�)):Let ? represent the empty set of states, > the set of all states, and ! the setof natural numbers. If the state spae is �nite, then the least �xed point lfp(�)an be alulated as ?_ �(?) _ �2(?) _ : : : _ �n(?)for some n, and similarly, gfp(�) an be alulated as>^ �(>) ^ �2(>) ^ : : : ^ �n(>);for some n.If � is _-ontinuous (i.e., �(Wi2! �i) = Wi2! �(�i) for �i suh that wheneveri < j, �i � �j), then lfp(�) = _i2! � i(?) (2)Similarly, if � is ^-ontinuous (i.e., �(Vi2! �i) = Vi2! �(�i) for �i suh thatwhenever i < j, �j � �i), thengfp(�) = î2! � i(>) (3)Equations (2) and (3) provide an iterative way of omputing the least and great-est �xed points but these on in�nite-state spaes, the omputations might notonverge in a bounded number of steps.Typial examples of monotone prediate transformers inlude1. Strongest postondition of a transition relation N , sp(N), whih is de�nedas sp(N)(�) � (9s0 : �(s0) ^N(s0; s)):4



2. Strongest postondition of a transition system P , sp(P ) is de�ned assp(P )(�) � IP _ sp(NP )(�):3. Weakest preondition of a transition relation N , wp(N) is de�ned aswp(N)(�) � (8s0 : N(s; s0) � �(s)):2.1 Invariant ProvingThe invariane rule is the most heavily used proof rule in any programlogi [Hoa69,Pnu77℄. Given a transition system P as a pair hIP ; NP i, onsistingof an initialization IP and a next-state relation NP , the invariane rule usuallyhas the form: `  (s) � �(s)` IP (s) �  (s)`  (s0) ^NP (s0; s1) �  (s1)P j= invariant �In this rule, the assertion  is a strengthening of the assertion �. Suh astrengthening is needed sine the assertion � may not be indutive, i.e., satisfythe premises ` IP (s) � �(s) and ` �(s0) ^NP (s0; s1) � �(s1).In the Twos example, the invariant (1) is not indutive. It fails beause it isnot preserved by transition 1 sine we annot establish` (PC = in ^ (B = 0 _ B = 2))^ (PC = in ^ B0 = B + 2 ^ C 0 = 0 ^ PC 0 = de)� (B0 = 0 _ B0 = 2):The invariant has to be strengthened with the observation that when PC = in,B is always 0 so that it now readsB = 0 _ (PC 6= in ^B = 2): (4)The strengthened invariant (4) is indutive. The need for invariant strength-ening in program proofs is the key disadvantage of the dedutive methods withrespet to model heking. Quite a lot of e�ort is needed to turn a putativeinvariant into an indutive one. One an invariant has been strengthened in thismanner, it an ontain a large number of onjunts that generate a ase explosionin the proof. Muh of the fous of symboli analysis is on supplementing dedu-tive veri�ation with the means of automatially obtaining useful invariants andinvariant strengthenings.2.2 Enumerative Model ChekingThe early approahes to model heking were based on the feasibility of om-puting �xed point properties for �nite-state systems. The reahable states of a5



�nite-states an be omputed by starting from the set of initial states and explor-ing the states reahable in n onseutive transitions. Any property that holds onall the reahable states is a valid invariant. There are many variations on this ba-si theme. Many modern enumerative model hekers suh as Murphi [Dil96℄ andSPIN [Hol91℄ arry out a depth-�rst searh exploration of the transition graphwhile maintaing a hash-table to reord states that have already been visited. InSPIN, the LTL model heking problem is transformed into one of emptiness for!-automata, i.e., automata that reognize in�nite strings [VW86,GPVW95℄.In enumerative model heking, properties written in a branhing-time tem-poral logi CTL an be veri�ed in time proportional to N � F where N isthe size of the transition graph and F the size of the temporal formula. Modelheking linear-time temporal logi formulas is more expensive and takes timeproportional to N�2F where N is the size of the model and F is of the formula.The Twos example suumbs rather fortuitously to enumerative model hek-ing. Even though the potential state spae of Twos is unbounded, only a boundedpart of the state spae is reahable sine B is either 0 or 2, and C is either 0or 1. The suess of enumerative model heking is somewhat anomalous sinethis method is unlikely to terminate on typial in�nite-state systems. Even on�nite-state systems, an enumerative hek is unlikely to sueed beause the sizeof the searhable state spae an be exponential in the size of the program state.Still, enumerative model heking is an e�etive debugging tehnique that anoften detet and display simple ounterexamples when a property fails.2.3 Symboli Model ChekingThe use of symboli representation for the state sets was proposed in or-der to ombat the state explosion problem in enumerative model hek-ing [BCM+92,MM93℄. A symboli representation for boolean funtions basedon binary deision diagrams (BDDs) [Bry86℄ has proved partiularly suessful.A �nite state an be represented as a bit-vetor. Then sets of bit-vetors arejust boolean funtions and an be represented as BDDs. In partiular, the initialset, a given invariant laim, the transition relation, and the reahable state set,an all be represented as BDDs. The BDD operations an be used to omputeimages of state sets with respet to the transition relation. This allows predi-ate transformers suh as strongest postondition and weakest preondition tobe applied to the BDD representation of a state set. The reahable state setan be omputed by means of a �xed point iteration of the strongest postondi-tion omputation starting from the initial state set. Every intermediate iterationof the reahable state set is also represented as a BDD. There are several ad-vantages to the use of BDDs. Sometimes even sets of large ardinality mighthave ompat symboli representations. BDDs are a anonial representationfor boolean funtions so that equivalene tests are heap. BDDs are espeiallygood at handling the boolean quanti�ation that is needed in the image ompu-tations. Automata-theoreti methods an also be represented in symboli form.Some symboli model hekers inlude SMV [MM93℄6



Suh symboli representations do require the state to be expliitly �nite. Thismeans that the Twos example annot be oded diretly in a form that an bediretly understood by a symboli model heker. Some work has to be done inorder to redue the problem to �nite-state form so that it an be handled by asymboli model heker.2.4 Invariant GenerationAutomati invariant generation tehniques have been studied sine the1970s [CH78,GW75,KM76,SI77℄, and more reently in the work ofBj�rner, Browne, and Manna [BBM97℄, and Bensalem, Lakhneh, andSa��di [BLS96,Sa��96,BL99℄.As in model heking, the basi operation in invariant generation is thatof taking the strongest postondition or weakest preondition of a state set Xwith respet to the transition relation N . Some of the tehniques for omputinginvariants are desribed briey below.Least Fixed Point of the Strongest Postondition. The invariant omputed hereorresponds to the reahability state set. It is omputed by starting with aninitial symboli representation of the initial state set given by the program. Thisset is suessively enlarged by taking its image under the strongest postonditionoperation until a �xed point is reahed, i.e., no new elements are added to the set.We term this method LFP-SP. It yields a symboli representation of the set ofreahable states whih is the strongest invariant. However, LFP-SP omputationoften does not terminate sine the omputation might not onverge to a �xedpoint in a �nite number of steps. Take, for example, a program that suessivelyinrements by one, a variable x that is initially zero. This program has a least�xed point, i.e., x is in the set of natural numbers, but the iterative omputationdoes not onverge.For the Twos example, the LFP-SP omputation does terminate with thedesired invariant as seen in the alulation below.Inv0 = (PC = in ^B = 0 ^ C = 0)Inv1 = Inv0 _ (PC = de ^ B = 2 ^ C = 0)Inv2 = Inv1 _ (B = 0 ^ C = 1)Inv3 = (B = 0 ^ C = 1) _ (PC = de ^ B = 2 ^ C = 0)= Inv2The resulting invariant easily implies the strengthened indutive invari-ant (4). The LFP-SP omputation terminates preisely beause the reahablestate set is bounded. In more typial examples, approximation tehniques basedon widening will be needed to aelerate the onvergene of the least �xed pointomputation. 7



Greatest Fixed Point of the Strongest Postondition. The greatest �xed pointiteration starts with the entire state spae and strengthens it in eah iterationby exluding states that are de�nitely unreahable. This approah, whih we allGFP-SP, yields a weaker invariant than the least �xed point omputation. TheGFP-SP omputation also need not terminate. Even when it does terminate, theresulting invariant might not be strong enough. In the ase of the program withsingle integer variable x that is initially zero and inremented by one in eahtransition, the GFP-SP omputation returns the trivial invariant true. Howeverthe GFP-SP method has the advantage that it an be made to onverge moreeasily than the LFP-SP method, and any intermediate step in the omputationalready yields a valid invariant.The greatest �xed point invariant omputation for Twos (ignoring the vari-able C) an be arried out as follows. Here Inv i(p) represents the i iteration ofthe invariant for ontrol state p.Inv0(in) = (B = 0 _ B � �1) = (B � �1)Inv0(sub) = trueInv1(in) = (B � �1)Inv1(sub) = (B � 1 _ B � �1) = (B � �1)Inv2(in) = (B � �1)Inv2(sub) = (B � �1)The invariant B � �1 is not all that useful sine this information ontributesnothing to the invariants that we wish to establish. Still, the GFP-SP methodis not without value. It is espeially useful for propagating known invariants.For example, if we start the iteration with invariant (1), then we an use theGFP-SP method to dedue that the strengthened invariant (4).Greatest Fixed Point of the Weakest Preondition. Both LFP-SP and GFP-SP ompute indutive invariants that are valid, whereas the method GFP-WPtakes a putative invariant and strengthens it in order to make it indutive. Theomputation starts with a putative invariant S, and suessively applies theweakest preondition operation wp(P)(S) to it. If this omputation terminates,then either the resulting assertion is a strengthening of the original invariantthat is also indutive, or the given invariant is shown to be invalid.With the Twos example, the weakest preondition with respet to the puta-tive invariant (1) yields the strengthened invariant (4).2.5 Abstrat Interpretation.Many of the invariant generation tehniques are already examples of abstratinterpretation whih is a general framework for lifting program exeution from8



the onrete domain of values to a more abstrat domain of properties. Examplesof abstrat interpretation inlude sign analysis (positive, negative, or zero) ofvariables, interval analysis (omputing bounds on the range of values a variablean take), live variable analysis (the value of a variable at a ontrol point mightbe used in the omputation to follow), among many others.We an apply an interval analysis to the Twos example. Initially, the intervalfor B is [0; 0℄ for PC = in. This yields an interval of [2; 2℄ for B when PC = de.In the next step, we have an approximation of [0; 2℄ for B when PC = de, and[0; 0℄ when PC = in. The next round, we get an approximation of [�1; 0℄ forthe range of B when PC = in, and [0; 2℄ for the range of B when PC = de.At this point the omputation onverges, but the results of the analysis are stilltoo approximate and do not disharge the invariant (1).2.6 Property Preserving AbstrationsSine model heking is unable to ope with systems with in�nite or largestate spaes, abstration has been studied as a tehnique for reduing the statespae [CGL94,LGS+95,SG97℄. In data abstration, a variable over an in�nite orlarge type is redued to one over a smaller type. The smaller type is essentiallya quotient with respet to some equivalene relation of the larger type. For ex-ample, a variable ranging over the integers an be redued to boolean form byonsidering only the parity (odd or even) of the numbers. Prediate abstrationis an extension of data abstration that introdues boolean variables for predi-ates over a set of variables. For example, if x and y are two integer variables ina program, it is possible to abstrat the program with respet to the prediatessuh as x < y, x = y. These variables are then replaed by boolean variables pand q suh that p orresponds to the x < y and q orresponds to x = y. Eventhough prediate abstration introdues only boolean variables, it is possible tosimulate a data abstration of a variable to one of �nite type by using a binaryenoding of the �nite type.In general, an abstration is given by means of a onretization map  suhthat (a) for an abstrat variable a returns its onrete ounterpart. In the aseof the abstration where x < y is replaed by p and x = y by q, (a) = (x < y)and (b) = (x = y). The more diÆult diretion is omputing an abstration�(C) given a onrete prediate C. The onstrution of � requires the use oftheorem proving as desribed below.There are also two ways of using abstrations in symboli analysis. In oneapproah, the abstrat reahability set [SG97,DDP99℄ is onstruted by the fol-lowing iteration ARG(P )(s) = lfp(�(IP ) _ � Æ sp(P ) Æ ):We an then hek if p is an invariant of P by verifying (ARG(P )) � p.A seond way of using abstration is by atually onstruting the abstratedversion of the program and the property of interest [BLO98,CU98,SS99℄. Thisan be more eÆient sine the program and property are usually smaller thanthe abstrat reahability graph. 9
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Fig. 2. Abstrat TwosIn the Twos example, the prediate abstration is suggested by the prediatesB = 0 and B = 2 in the putative invariant. The abstrat transition system byreplaing the prediate B = 0 by  and B = 2 by d is shown in Figure 2.The abstrat transition system omputed using prediate abstration aneasily be model heked to on�rm that invariant (1) holds. The stronger in-variant (4) an also be extrated from the reahable state spae of the abstrattransition system.Prediate abstration a�ords an e�etive integration of theorem proving andmodel heking where the former is used to onstrut a �nite-state property-preserving abstration that an be analyzed using the latter. The abstrationloses information so that a property an fail to hold in the abstrat systemeven when its onrete ounterpart is valid for the onrete system. In thisase, the abstration has to be re�ned by introduing further prediates forabstration [BLO98,CGJ+00℄.3 SAL: A Symboli Analysis LaboratoryWe have already seen a atalog of symboli analysis tehniques. The idea of asymboli analysis laboratory is to allow these tehniques to oexist so that theanalysis of a transition system an be arried out by suessive appliations of aombination of these tehniques [BGL+00℄. With suh a ombination of analysistehniques, one ould envisage a veri�ation methodology where1. A one-of-inuene redution is used to disard irrelevant variables.2. Invariant generation is used to obtain small but useful invariants.3. These invariants are used to obtain a reasonably aurate abstration to a�nite-state transition system.4. Model heking is used to ompute useful invariants of the �nite-state ab-stration.5. The invariants omputed by model heking over the abstration are usedpropagated using invariant generation tehniques.10



SAL

Programs

Properties
Abstractions

Verification
conditions

JAVA

ASM

Esterel

SMV

PVS

Mocha

Murphi

SVC

Fig. 3. The Arhiteture of SAL6. This yle an be repeated until no further useful information is forthoming.SAL provides a blakboard arhiteture for symboli analysis where a ol-letion of tools interat through a ommon intermediate language for transitionsystems. The individual analyzers (theorem provers, model hekers, stati an-alyzers) are driven from this intermediate language and the analysis results arefed bak to this intermediate level. In order to analyze systems that are writtenin a onventional soure language, the transition system model of the soure pro-gram has to be extrated and ast in the SAL intermediate language.1 The modelextrated in the SAL intermediate language essentially aptures the transitionsystem semantis of the original soure program.The SAL arhiteture is shown in Figure 3 The SAL arhiteture is on-strained so that the di�erent analysis tools do not ommuniate diretly witheah other, but do so through the SAL intermediate language. The interationbetween the tools must therefore be at a oarse level of granularity, namely interms of transition systems, their properties, and property-preserving transfor-mations between transition systems. Allowing the tools to ommuniate diretlyto eah other would require a quadrati number of di�erent maps (for a givennumber of tools) between these analysis tools.3.1 The SAL Intermediate LanguageThe intermediate language for SAL2 serves as1 We are urrently working on a translator from a subset of Verilog to SAL, andanother from a subset of Java to SAL.2 The SAL intermediate language was designed in ollaboration with Prof. David Dillof Stanford, Prof. Tom Henzinger at UC Berkeley, and several olleagues at SRI,Stanford, and UC Berkeley. 11



1. The target of translations from soure languages.2. The soure for translations to the input formats of di�erent analysis tools.3. A medium for ommuniation between di�erent analysis tools.The SAL intermediate language is based on languages and models suhas SMV [MM93℄, Murphi [Dil96℄, Reative Modules [AH99℄, ASM [Gur95℄,UNITY [CM88℄, and TLA [Lam94℄, among others. The unit of spei�ationin SAL is a ontext whih ontains delarations of types, onstants, transitionsystem modules, and assertions. A SAL module is a transition system unit. Abasi SAL module is a state transition system where the state onsists of input ,output , loal , and global variables, where{ An input variable to a module an be read but not written by the module.{ An output variable to a module an be read and written by the module, andonly read by an external module.{ A loal variable to a module an be read and written by the module, but isnot read or written by the module.{ A global variable to a module an be read and written by the module as wellas by an external moduleA basi module also spei�es the initialization and transition steps. These anbe given by a ombination of de�nitions or guarded ommands. A de�nition is ofthe form x = expression or x0 = expression , where x0 refers to the new value ofvariable x in a transition. A de�nition an also be given as a seletion of the formx0 2 set whih means that the new value of x is nondeterministially seletedfrom the value of of set . A guarded ommand is of the form g �! S, where gis a boolean guard and S is a list of de�nitions of the form x0 = expression orx0 2 set .As in synhronous language suh as Esterel [BG92℄ and Lustre [HCRP91℄,SAL allows synhronous , i.e., Mealy mahine, interation so that the new valueof a loal or output variable an be determined by the new value of a vari-able. Suh interation introdues the possibility of a ausal yle where eahvariable is de�ned to reat synhronously to the other. Suh ausal yles areruled out by using stati analysis to generate proof obligations demonstratingthat suh yles are not reahable. The UNITY and ASM models do not admitsuh synhronous interation sine the new values of a variable in a transitionare ompletely determined by the old values of the variables. SMV allows suhinteration but the semantis is not learly spei�ed, partiularly when ausalyles are possible. The Reative Modules [AH99℄ language uses a stati partialordering on the variables that breaks ausal loops by allowing synhronous in-teration in one diretion of the ordering but not the other. In TLA [Lam94℄,two modules are omposed by onjoining their transition relations. TLA allowssynhronous interation where ausal loops an be resolved in any manner thatis ompatible with the onjuntion of the transition relations is satis�ed.SAL modules an be omposed{ Synhronously , so thatM1kM2 is a module that takesM1 andM2 transitionsin lokstep, or 12
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3. Abstration as the key tehnique for reduing in�nite-state systems to �nite-state form.Implementation work on the SAL framework is urrently ongoing. The pre-liminary version of SAL onsists of a parser, typeheker, ausality heker, aninvariant generator, translators from SAL to SMV and PVS, and some othertools. SAL is intended as an experimental framework for studying the ways inwhih di�erent symboli analysis tehniques an be ombined to ahieve greaterautomation in the veri�ation of transition systems.Aknowledgments. Many ollaborators and olleagues have ontributed ideasand ode to the SAL language and framework, inluding Saddek Bensalem,David Dill, Tom Henzinger, Lua de Alfaro, Vijay Ganesh, Yassine Lakhneh,Cesar Mu~noz, Sam Owre, Harald Rue�, John Rushby, Vlad Rusu, Hassen Sa��di,Eli Singerman, Mandayam Srivas, Jens Skakkeb�k, and Ashish Tiwari.Referenes[AH96℄ Rajeev Alur and Thomas A. Henzinger, editors. Computer-Aided Veri�-ation, CAV '96, volume 1102 of Leture Notes in Computer Siene, NewBrunswik, NJ, July/August 1996. Springer-Verlag.[AH99℄ R. Alur and T.A. Henzinger. Reative modules. Formal Methods in SystemDesign, 15(1):7{48, 1999.[BBM97℄ Nikolaj Bj�rner, I. Ana Browne, and Zohar Manna. Automati generationof invariants and intermediate assertions. Theoretial Computer Siene,173(1):49{87, 1997.[BCM+92℄ J. R. Burh, E. M. Clarke, K. L. MMillan, D. L. Dill, and L. J. Hwang.Symboli model heking: 1020 states and beyond. Information and Com-putation, 98(2):142{170, June 1992.[BG92℄ G. Berry and G. Gonthier. The Esterel synhronous programming lan-guage: Design, semantis, and implementation. Siene of Computer Pro-gramming, 19(2):87{152, 1992.[BGL+00℄ Saddek Bensalem, Vijay Ganesh, Yassine Lakhneh, C�esar Mu~noz, SamOwre, Harald Rue�, John Rushby, Vlad Rusu, Hassen Sa��di, N. Shankar,Eli Singerman, and Ashish Tiwari. An overview of SAL. In C. Mihael Hol-loway, editor, LFM 2000: Fifth NASA Langley Formal Methods Workshop,Hampton, VA, June 2000. NASA Langley Researh Center. To appear.[BL99℄ Saddek Bensalem and Yassine Lakhneh. Automati generation of invari-ants. Formal Methods in Systems Design, 15(1):75{92, July 1999.[BLO98℄ Saddek Bensalem, Yassine Lakhneh, and Sam Owre. Computing abstra-tions of in�nite state systems ompositionally and automatially. In Huand Vardi [HV98℄, pages 319{331.[BLS96℄ Saddek Bensalem, Yassine Lakhneh, and Hassen Sa��di. Powerful teh-niques for the automati generation of invariants. In Alur and Henzinger[AH96℄, pages 323{335.[Bry86℄ R. E. Bryant. Graph-based algorithms for Boolean funtion manipulation.IEEE Transations on Computers, C-35(8):677{691, August 1986.14



[CGJ+00℄ Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.Counterexample-guided abstration re�nement. In E. A. Emerson and A. P.Sistla, editors, Computer-Aided Veri�ation, Leture Notes in ComputerSiene. Springer-Verlag, 2000. To appear.[CGL94℄ Edmund M. Clarke, Orna Grumberg, and David E. Long. Model hek-ing and abstration. ACM Transations on Programming Languages andSystems, 16(5):1512{1542, September 1994.[CGP99℄ E. M. Clarke, Orna Grumberg, and Doron Peled. Model Cheking. MITPress, 1999.[CH78℄ P. Cousot and N. Halbwahs. Automati disovery of linear restraintsamong variables. In 5th ACM Symposium on Priniples of ProgrammingLanguages. Assoiation for Computing Mahinery, January 1978.[CM88℄ K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Founda-tion. Addison-Wesley, Reading, MA, 1988.[CU98℄ M. A. Col on and T. E. Uribe. Generating �nite-state abstrations of re-ative systems using deidion proedures. In Hu and Vardi [HV98℄, pages293{304.[DDP99℄ Satyaki Das, David L. Dill, and Seungjoon Park. Experiene with prediateabstration. In Halbwahs and Peled [HP99℄, pages 160{171.[Dil96℄ David L. Dill. The Mur� veri�ation system. In Alur and Henzinger [AH96℄,pages 390{393.[GPVW95℄ R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-y auto-mati veri�ation of linear temporal logi. In Pro. 15th Work. ProtoolSpei�ation, Testing, and Veri�ation, Warsaw, June 1995. North-Holland.[Gur95℄ Yuri Gurevih. Evolving algebras 1993: Lipari guide. In Egon B�orger, ed-itor, Spei�ation and Validation Methods, International Shools for Com-puter Sientists, pages 9{36. Oxford University Press, Oxford, UK, 1995.[GW75℄ S. M. German and B. Wegbreit. A synthesizer for indutive assertions.IEEE Transations on Software Engineering, 1(1):68{75, Marh 1975.[HCRP91℄ N. Halbwahs, P. Caspi, P. Raymond, and D. Pilaud. The syn-hronous dataow programming language Lustre. Proeedings of the IEEE,79(9):1305{1320, September 1991.[Hoa69℄ C. A. R. Hoare. An axiomati basis of omputer programming. Commu-niations of the ACM, 12(10):576{580, Otober 1969.[Hol91℄ G. J. Holzmann. Design and Validation of Computer Protools. PrentieHall, 1991.[HP99℄ Niolas Halbwahs and Doron Peled, editors. Computer-Aided Veri�ation,CAV '99, volume 1633 of Leture Notes in Computer Siene, Trento, Italy,July 1999. Springer-Verlag.[HV98℄ Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Veri�ation,CAV '98, volume 1427 of Leture Notes in Computer Siene, Vanouver,Canada, June 1998. Springer-Verlag.[KM76℄ S. Katz and Z. Manna. Logial analysis of programs. Communiations ofthe ACM, 19(4):188{206, April 1976.[Lam94℄ Leslie Lamport. The temporal logi of ations. ACM TOPLAS, 16(3):872{923, May 1994.[LGS+95℄ C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Propertypreserving abstrations for the veri�ation of onurrent systems. FormalMethods in System Design, 6:11{44, 1995.[MM93℄ Kenneth L. MMillan. Symboli Model Cheking. Kluwer Aademi Pub-lishers, Boston, MA, 1993. 15



[MP92℄ Zohar Manna and Amir Pnueli. The Temporal Logi of Reative and Con-urrent Systems, Volume 1: Spei�ation. Springer-Verlag, New York, NY,1992.[MT96℄ Zohar Manna and The STeP Group. STeP: Dedutive-algorithmi veri�-ation of reative and real-time systems. In Alur and Henzinger [AH96℄,pages 415{418.[Pnu77℄ A. Pnueli. The temporal logi of programs. In Pro. 18th Symposium onFoundations of Computer Siene, pages 46{57, Providene, RI, November1977. ACM.[Sa��96℄ Hassen Sa��di. A tool for proving invariane properties of onurrent systemsautomatially. In Tools and Algorithms for the Constrution and Analysisof Systems TACAS '96, volume 1055 of Leture Notes in Computer Siene,pages 412{416, Passau, Germany, Marh 1996. Springer-Verlag.[SG97℄ Hassen Sa��di and Susanne Graf. Constrution of abstrat state graphs withPVS. In Orna Grumberg, editor, Computer-Aided Veri�ation, CAV '97,volume 1254 of Leture Notes in Computer Siene, pages 72{83, Haifa,Israel, June 1997. Springer-Verlag.[SI77℄ N. Suzuki and K. Ishihata. Implementation of an array bound heker.In 4th ACM Symposium on Priniples of Programming Languages, pages132{143, January 1977.[SS99℄ Hassen Sa��di and N. Shankar. Abstrat and model hek while you prove.In Halbwahs and Peled [HP99℄, pages 443{454.[VW86℄ Moshe Y. Vardi and Pierre Wolper. An automata-theoreti approah toautomati program veri�ation (preliminary report). In Proeedings 1stAnnual IEEE Symp. on Logi in Computer Siene, pages 332{344. IEEEComputer Soiety Press, 1986.

16


