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Abstract. We give a brief overview of the Symbolic Analysis Laboratory
(SAL) project. SAL is a verification framework that is directed at ana-
lyzing properties of transition systems by combining tools for program
analysis, model checking, and theorem proving. SAL is built around a
small intermediate language that serves as a semantic representation for
transition systems that can be used to drive the various analysis tools.

The transition system model of a program consists of a state type, an ini-
tialization predicate on this state type, and a binary next-state relation. The
execution of a program starts in a state satisfying the initialization predicate so
that each state and its successor state satisfy the next-state relation. Transition
systems are a simple low-level model that have none of the semantic complica-
tions of high-level programming languages. Constructs such as branches, loops,
and procedure calls can be modelled within a transition system through the
use of explicit control variables. The transition system model forms the basis
of several formalisms for several popular formalisms including UNITY [CMS8§],
TLA [Lam94], SPL [MP92], and ASMs [Gur95]. It also underlies verification
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tools such as SMV [McM93], Murphi [Dil96], and STeP [MT96].

If we focus our attention on the verification of properties of transition sys-
tems, we find that even this simple model poses some serious challenges. The
verification of transition systems is performed by showing that the system sat-
isfies an invariance or progress property, or that it refines another transition
system. It is easy to write out proof rules for the verification of such properties
but the actual application of these proof rules requires considerable human in-
genuity. For example, the verification of invariance properties requires that the
invariant be inductive, i.e., preserved by each transition. A valid invariant might
need to be strengthened before it can be shown to be inductive. Fairness con-
straints and progress measures have to be employed for demonstrating progress
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properties. It takes a fair amount of effort and ingenuity to come up with suitable
invariant strengthenings and progress measures.

Methods like model checking [CGP99] that are based on state-space explo-
ration have the advantage that they are largely automatic and seldom require
the fine-grain interaction seen with deductive methods. Since these methods typ-
ically explore the reachable state space (i.e., the strongest invariant), there is no
need for invariant strengthening. Progress measures are also irrelevant since the
size of the whole state space is bounded. However, model checking methods ap-
ply only to a limited class of systems that possess small, essentially finite state
spaces.

Theorem proving or model checking are not by themselves adequate for effec-
tive verification. It is necessary to combine the expressiveness of the deductive
methods with the automation given by model checking. This way, small, finite-
state systems can be directly verified using model checking. For larger, possi-
bly infinite-state systems, theorem proving can be used to construct property-
preserving abstractions over a smaller state space. Such abstractions convert
data-specific characteristics of a computation into control-specific ones. The
finite-state model constructed by means of abstraction can be analyzed using
model checking. It is easy to actually compute the properties of a system from a
finite-state approximation and map these properties back to the original system.

We give an overview of an ongoing effort aimed at constructing a general
framework for the integration of theorem proving, model checking, and program
analysis. We use the term symbolic analysis to refer to the integration of these
analysis techniques since they all employ representations based on symbolic logic
to carry out a symbolic interpretation of program behavior. The framework also
emphasizes analysis, i.e., the extraction of a large number of useful properties,
over correctness which is the demonstration of a small number of important
properties. The framework is called the Symbolic Analysis Laboratory (SAL).
We motivate the need for symbolic analysis and describe the architecture and
intermediate language of SAL.

1 A Motivating Example

We use a very simple and artificial example to illustrate how symbolic analysis
can bring about a synergistic combination of theorem proving, model checking,
and program analysis. The example consists of a transition system with a state
contain a (control) variable PC ranging over the scalar type {inc, dec}, and two
integer variables B and C. Initially, control is in state inc and the variables B
and C are set to zero. There are three transition rules shown below as guarded
commands:

1. When PC = inc, then B is incremented by two, C is set to zero, and control
is transferred to state dec.

PC =inc — B' =B +2;C' =0; PC' = dec;



B:=B+2, C:=0;

B>0->B:=B-2; B>0->B:=B-2;
C:=C+1; C:=C+1;

Fig.1. A Simple Transition System: Twos

2. When PC = dec, B is decremented by two, and C' is incremented by one,
and control is transferred to state decl.

PC=dechNB>0— B'=B—-2,C'=C+1; PC"' = inc;
3. Same as transition rule 2, but control stays in dec.
PC=dechB>0— B =B-2,C'"=C+1;

There is also an implicit stuttering transition from state dec to itself when none
of the guards of the other transitions holds, i.e., when B < 0. Since the inc state
has a transition with a guard that is always true, there is no need for a stuttering
transition on inc. The transition system is shown diagrammatically in Figure 1.

The transition system Twos satisfies a number of interesting invariants.

. B is always an even number.

. B and C are always non-negative.
B is always either 0 or 2.

. B is always 0 in state inc.

. C is always either 0 or 1.

. In state dec, B =2 iff C = 0.

The purpose of symbolic analysis is to find and validate such properties with
a high degree of automation and minimal human guidance and intervention.
While efficient automation is essential for analyzing large transition systems,
the intended outcome of symbolic analysis is human insight. The analysis should
therefore not rule out human interaction.

2 Some Symbolic Analysis Techniques

We enumerate some symbolic analysis techniques and assess their utility on the
Twos example. For this purpose, we focus on the invariant (1) below.

B=0vVB=2 (1)



Note that the transition system Twos is a potentially infinite state system since
variables B and C range over the integers.

Some mathematical preliminaries are in order. A transition system P is given
by a pair (Ip, Np) consisting of an initialization predicate on states Ip, and a
binary next-state relation on states Np. We constrain the next-state relation NV
to be total so that Vs : 3s' : N(s,s'). The metavariables s, s’ range over states.
We treat a set of states as equivalent to its characteristic predicate. The boolean
connectives A, V, D, are lifted from the booleans to the level of predicates and
correspond to the set-theoretic operations N, U, and C, respectively. An assertion
is a predicate on states. The metavariables ¢, ¢ range over assertions. A predi-
cate transformer is a map from predicates to predicates. A monotone predicate
transformer 7 preserves the subset or implication ordering on predicates so that
if ¢ D 1, then 7(¢) D 7(¢). The fixed point of a monotone predicate transformer
T is an assertion ¢ such that ¢ = 7(¢). As a consequence of the Tarski-Knaster
theorem, every monotone predicate transformer has a least fixed point [ fp(7)
and a greatest fixed point g fp(7) such that

Lfp(r) = 7(lfp(7)) D gfp(r) = 7(9fp(7)).

Let L represent the empty set of states, T the set of all states, and w the set
of natural numbers. If the state space is finite, then the least fixed point I fp(7)
can be calculated as

Lvr(L)VvrA(L) V... vr(L)
for some n, and similarly, g fp(7) can be calculated as
TAT(T)ATH(T)A ... AT™(T),

for some n.
If 7 is V-continuous (i.e., 7(V;c,, #i) = V;c,, 7(¢i) for ¢; such that whenever
i < j: ¢l D ¢j)/ then
Lp(r) =\ 7'(1) (2)
i€w
Similarly, if 7 is A-continuous (i.e., 7(A,c, i) = Ajc,, 7(¢:) for ¢; such that
whenever i < j, ¢; D ¢;), then

gfp(r) = \ 7(T) (3)

iEw

Equations (2) and (3) provide an iterative way of computing the least and great-
est fixed points but these on infinite-state spaces, the computations might not
converge in a bounded number of steps.

Typical examples of monotone predicate transformers include

1. Strongest postcondition of a transition relation N, sp(NN), which is defined
as

sp(N) (@) = (35" : 6(5') A N(s', 8)).



2. Strongest postcondition of a transition system P, sp(P) is defined as

sp(P)(¢) = Ip V sp(Np)(¢).

3. Weakest precondition of a transition relation N, wp(N) is defined as

wp(N)(6) = (V' : N(s, ) D o(s)).

2.1 Invariant Proving

The invariance rule is the most heavily used proof rule in any program
logic [Hoa69,Pnu77]. Given a transition system P as a pair (Ip, Np), consisting
of an initialization Ip and a next-state relation Np, the invariance rule usually

has the form:
F1p(s) D é(s)
F1Ip(s) D p(s)
= ’I/J(SO) A NP(S(), S1) D ’I/J(Sl)

P |= invariant ¢

In this rule, the assertion 1) is a strengthening of the assertion ¢. Such a
strengthening is needed since the assertion ¢ may not be inductive, i.e., satisfy
the premises F Ip(s) D ¢(s) and F ¢(so) A Np(so,$1) D ¢(s1)-

In the Twos example, the invariant (1) is not inductive. It fails because it is
not preserved by transition 1 since we cannot establish

F (PC=incAN(B=0V B=2))
A(PC=incAB'=B+2AC"=0A PC' = dec)
D(B'"=0VvB =2).

The invariant has to be strengthened with the observation that when PC = inc,
B is always 0 so that it now reads

B =0V (PC # inc ANB = 2). (4)

The strengthened invariant (4) is inductive. The need for invariant strength-
ening in program proofs is the key disadvantage of the deductive methods with
respect to model checking. Quite a lot of effort is needed to turn a putative
invariant into an inductive one. Once an invariant has been strengthened in this
manner, it can contain a large number of conjuncts that generate a case explosion
in the proof. Much of the focus of symbolic analysis is on supplementing deduc-
tive verification with the means of automatically obtaining useful invariants and
invariant strengthenings.

2.2 Enumerative Model Checking

The early approaches to model checking were based on the feasibility of com-
puting fixed point properties for finite-state systems. The reachable states of a



finite-states can be computed by starting from the set of initial states and explor-
ing the states reachable in n consecutive transitions. Any property that holds on
all the reachable states is a valid invariant. There are many variations on this ba-
sic theme. Many modern enumerative model checkers such as Murphi [Dil96] and
SPIN [Hol91] carry out a depth-first search exploration of the transition graph
while maintaing a hash-table to record states that have already been visited. In
SPIN, the LTL model checking problem is transformed into one of emptiness for
w-automata, i.e., automata that recognize infinite strings [VW86,GPVW95].

In enumerative model checking, properties written in a branching-time tem-
poral logic CTL can be verified in time proportional to N x F' where N is
the size of the transition graph and F the size of the temporal formula. Model
checking linear-time temporal logic formulas is more expensive and takes time
proportional to N x 2F where N is the size of the model and F is of the formula.

The Twos example succumbs rather fortuitously to enumerative model check-
ing. Even though the potential state space of Twos is unbounded, only a bounded
part of the state space is reachable since B is either 0 or 2, and C is either 0
or 1. The success of enumerative model checking is somewhat anomalous since
this method is unlikely to terminate on typical infinite-state systems. Even on
finite-state systems, an enumerative check is unlikely to succeed because the size
of the searchable state space can be exponential in the size of the program state.
Still, enumerative model checking is an effective debugging technique that can
often detect and display simple counterexamples when a property fails.

2.3 Symbolic Model Checking

The use of symbolic representation for the state sets was proposed in or-
der to combat the state explosion problem in enumerative model check-
ing [BCM192,McM93]. A symbolic representation for boolean functions based
on binary decision diagrams (BDDs) [Bry86] has proved particularly successful.
A finite state can be represented as a bit-vector. Then sets of bit-vectors are
just boolean functions and can be represented as BDDs. In particular, the initial
set, a given invariant claim, the transition relation, and the reachable state set,
can all be represented as BDDs. The BDD operations can be used to compute
images of state sets with respect to the transition relation. This allows predi-
cate transformers such as strongest postcondition and weakest precondition to
be applied to the BDD representation of a state set. The reachable state set
can be computed by means of a fixed point iteration of the strongest postcondi-
tion computation starting from the initial state set. Every intermediate iteration
of the reachable state set is also represented as a BDD. There are several ad-
vantages to the use of BDDs. Sometimes even sets of large cardinality might
have compact symbolic representations. BDDs are a canonical representation
for boolean functions so that equivalence tests are cheap. BDDs are especially
good at handling the boolean quantification that is needed in the image compu-
tations. Automata-theoretic methods can also be represented in symbolic form.
Some symbolic model checkers include SMV [McM93]



Such symbolic representations do require the state to be explicitly finite. This
means that the Twos example cannot be coded directly in a form that can be
directly understood by a symbolic model checker. Some work has to be done in
order to reduce the problem to finite-state form so that it can be handled by a
symbolic model checker.

2.4 Invariant Generation

Automatic invariant generation techniques have been studied since the
1970s [CH78,GWT75KM76,S177], and more recently in the work of
Bjorner, Browne, and Manna [BBM97], and Bensalem, Lakhnech, and
Saidi [BLS96,Sa196,BL99).

As in model checking, the basic operation in invariant generation is that
of taking the strongest postcondition or weakest precondition of a state set X
with respect to the transition relation N. Some of the techniques for computing
invariants are described briefly below.

Least Fized Point of the Strongest Postcondition. The invariant computed here
corresponds to the reachability state set. It is computed by starting with an
initial symbolic representation of the initial state set given by the program. This
set is successively enlarged by taking its image under the strongest postcondition
operation until a fixed point is reached, i.e., no new elements are added to the set.
We term this method LFP-SP. It yields a symbolic representation of the set of
reachable states which is the strongest invariant. However, LFP-SP computation
often does not terminate since the computation might not converge to a fixed
point in a finite number of steps. Take, for example, a program that successively
increments by one, a variable x that is initially zero. This program has a least
fixed point, i.e., z is in the set of natural numbers, but the iterative computation
does not converge.

For the Twos example, the LFP-SP computation does terminate with the
desired invariant as seen in the calculation below.

Inv® = (PC =inc AB=0AC =0)

Inv' = Inw® vV (PC = decAB=2AC =0)

Inv> =Inv' V(B=0AC =1)

Inv® = (B=0AC=1)V(PC =decANB=2AC =0)

= Inv?

The resulting invariant easily implies the strengthened inductive invari-
ant (4). The LFP-SP computation terminates precisely because the reachable
state set is bounded. In more typical examples, approximation techniques based
on widening will be needed to accelerate the convergence of the least fixed point
computation.



Greatest Fized Point of the Strongest Postcondition. The greatest fixed point
iteration starts with the entire state space and strengthens it in each iteration
by excluding states that are definitely unreachable. This approach, which we call
GFP-SP, yields a weaker invariant than the least fixed point computation. The
GFP-SP computation also need not terminate. Even when it does terminate, the
resulting invariant might not be strong enough. In the case of the program with
single integer variable = that is initially zero and incremented by one in each
transition, the GFP-SP computation returns the trivial invariant true. However
the GFP-SP method has the advantage that it can be made to converge more
easily than the LFP-SP method, and any intermediate step in the computation
already yields a valid invariant.

The greatest fixed point invariant computation for Twos (ignoring the vari-
able C) can be carried out as follows. Here Inv'(pc) represents the i iteration of
the invariant for control state pe.

Inv®(inc) = (B=0VB > -1)= (B> —1)

Inv” (sub) = true

Inv' (inc) = (B > —1)
Inv*(sub) = (B>1VB>-1)= (B> 1)

Inv®(inc) = (B > —1)
Inv?(sub) = (B > —1)

The invariant B > —1 is not all that useful since this information contributes
nothing to the invariants that we wish to establish. Still, the GFP-SP method
is not without value. It is especially useful for propagating known invariants.
For example, if we start the iteration with invariant (1), then we can use the
GFP-SP method to deduce that the strengthened invariant (4).

Greatest Fized Point of the Weakest Precondition. Both LFP-SP and GFP-
SP compute inductive invariants that are valid, whereas the method GFP-WP
takes a putative invariant and strengthens it in order to make it inductive. The
computation starts with a putative invariant S, and successively applies the
weakest precondition operation wp(P)(S) to it. If this computation terminates,
then either the resulting assertion is a strengthening of the original invariant
that is also inductive, or the given invariant is shown to be invalid.

With the Twos example, the weakest precondition with respect to the puta-
tive invariant (1) yields the strengthened invariant (4).

2.5 Abstract Interpretation.

Many of the invariant generation techniques are already examples of abstract
interpretation which is a general framework for lifting program execution from



the concrete domain of values to a more abstract domain of properties. Examples
of abstract interpretation include sign analysis (positive, negative, or zero) of
variables, interval analysis (computing bounds on the range of values a variable
can take), live variable analysis (the value of a variable at a control point might
be used in the computation to follow), among many others.

We can apply an interval analysis to the Twos example. Initially, the interval
for B is [0, 0] for PC' = inc. This yields an interval of [2, 2] for B when PC = dec.
In the next step, we have an approximation of [0, 2] for B when PC = dec, and
[0,0] when PC = inc. The next round, we get an approximation of [—1,0] for
the range of B when PC = inc, and [0, 2] for the range of B when PC = dec.
At this point the computation converges, but the results of the analysis are still
too approximate and do not discharge the invariant (1).

2.6 Property Preserving Abstractions

Since model checking is unable to cope with systems with infinite or large
state spaces, abstraction has been studied as a technique for reducing the state
space [CGL94,LGST95,5G97]. In data abstraction, a variable over an infinite or
large type is reduced to one over a smaller type. The smaller type is essentially
a quotient with respect to some equivalence relation of the larger type. For ex-
ample, a variable ranging over the integers can be reduced to boolean form by
considering only the parity (odd or even) of the numbers. Predicate abstraction
is an extension of data abstraction that introduces boolean variables for predi-
cates over a set of variables. For example, if 2 and y are two integer variables in
a program, it is possible to abstract the program with respect to the predicates
such as z < y, © = y. These variables are then replaced by boolean variables p
and ¢ such that p corresponds to the < y and ¢ corresponds to x = y. Even
though predicate abstraction introduces only boolean variables, it is possible to
simulate a data abstraction of a variable to one of finite type by using a binary
encoding of the finite type.

In general, an abstraction is given by means of a concretization map ~ such
that -y(a) for an abstract variable a returns its concrete counterpart. In the case
of the abstraction where z < y is replaced by p and z = y by ¢, v(a) = (z < y)
and v(b) = (x = y). The more difficult direction is computing an abstraction
a(C) given a concrete predicate C. The construction of « requires the use of
theorem proving as described below.

There are also two ways of using abstractions in symbolic analysis. In one
approach, the abstract reachability set [SG97,DDP99] is constructed by the fol-
lowing iteration

ARG(P)(s) = 1fp(alIp) V a o sp(P) 7).

We can then check if p is an invariant of P by verifying v(ARG(P)) D p.

A second way of using abstraction is by actually constructing the abstracted
version of the program and the property of interest [BLO98,CU98,5599]. This
can be more efficient since the program and property are usually smaller than
the abstract reachability graph.



Fig. 2. Abstract Twos

In the Twos example, the predicate abstraction is suggested by the predicates
B = 0 and B = 2 in the putative invariant. The abstract transition system by
replacing the predicate B = 0 by c and B = 2 by d is shown in Figure 2.

The abstract transition system computed using predicate abstraction can
easily be model checked to confirm that invariant (1) holds. The stronger in-
variant (4) can also be extracted from the reachable state space of the abstract
transition system.

Predicate abstraction affords an effective integration of theorem proving and
model checking where the former is used to construct a finite-state property-
preserving abstraction that can be analyzed using the latter. The abstraction
loses information so that a property can fail to hold in the abstract system
even when its concrete counterpart is valid for the concrete system. In this
case, the abstraction has to be refined by introducing further predicates for
abstraction [BLO98,CGJ*00].

3 SAL: A Symbolic Analysis Laboratory

We have already seen a catalog of symbolic analysis techniques. The idea of a
symbolic analysis laboratory is to allow these techniques to coexist so that the
analysis of a transition system can be carried out by successive applications of a
combination of these techniques [BGLT00]. With such a combination of analysis
techniques, one could envisage a verification methodology where

1. A cone-of-influence reduction is used to discard irrelevant variables.

2. Invariant generation is used to obtain small but useful invariants.

3. These invariants are used to obtain a reasonably accurate abstraction to a
finite-state transition system.

4. Model checking is used to compute useful invariants of the finite-state ab-
straction.

5. The invariants computed by model checking over the abstraction are used
propagated using invariant generation techniques.
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Fig. 3. The Architecture of SAL

6. This cycle can be repeated until no further useful information is forthcoming.

SAL provides a blackboard architecture for symbolic analysis where a col-
lection of tools interact through a common intermediate language for transition
systems. The individual analyzers (theorem provers, model checkers, static an-
alyzers) are driven from this intermediate language and the analysis results are
fed back to this intermediate level. In order to analyze systems that are written
in a conventional source language, the transition system model of the source pro-
gram has to be extracted and cast in the SAL intermediate language.! The model
extracted in the SAL intermediate language essentially captures the transition
system semantics of the original source program.

The SAL architecture is shown in Figure 3 The SAL architecture is con-
strained so that the different analysis tools do not communicate directly with
each other, but do so through the SAL intermediate language. The interaction
between the tools must therefore be at a coarse level of granularity, namely in
terms of transition systems, their properties, and property-preserving transfor-
mations between transition systems. Allowing the tools to communicate directly
to each other would require a quadratic number of different maps (for a given
number of tools) between these analysis tools.

3.1 The SAL Intermediate Language

The intermediate language for SAL? serves as

! We are currently working on a translator from a subset of Verilog to SAL, and
another from a subset of Java to SAL.

2 The SAL intermediate language was designed in collaboration with Prof. David Dill
of Stanford, Prof. Tom Henzinger at UC Berkeley, and several colleagues at SRI,
Stanford, and UC Berkeley.
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1. The target of translations from source languages.
2. The source for translations to the input formats of different analysis tools.
3. A medium for communication between different analysis tools.

The SAL intermediate language is based on languages and models such
as SMV [McM93], Murphi [Dil96], Reactive Modules [AH99], ASM [Gur95]

3 3 3

UNITY [CM88], and TLA [Lam94], among others. The unit of specification
in SAL is a context which contains declarations of types, constants, transition
system modules, and assertions. A SAL module is a transition system unit. A
basic SAL module is a state transition system where the state consists of input,

output, local, and global variables, where

— An input variable to a module can be read but not written by the module.

— An output variable to a module can be read and written by the module, and
only read by an external module.

— A local variable to a module can be read and written by the module, but is
not read or written by the module.

— A global variable to a module can be read and written by the module as well
as by an external module

A basic module also specifies the initialization and transition steps. These can
be given by a combination of definitions or guarded commands. A definition is of
the form x = expression or &' = expression, where x' refers to the new value of
variable z in a transition. A definition can also be given as a selection of the form
x' € set which means that the new value of x is nondeterministically selected
from the value of of set. A guarded command is of the form g — S, where g
is a boolean guard and S is a list of definitions of the form z' = expression or
x' € set.

As in synchronous language such as Esterel [BG92] and Lustre [HCRP91],
SAL allows synchronous, i.e., Mealy machine, interaction so that the new value
of a local or output variable can be determined by the new value of a vari-
able. Such interaction introduces the possibility of a causal cycle where each
variable is defined to react synchronously to the other. Such causal cycles are
ruled out by using static analysis to generate proof obligations demonstrating
that such cycles are not reachable. The UNITY and ASM models do not admit
such synchronous interaction since the new values of a variable in a transition
are completely determined by the old values of the variables. SMV allows such
interaction but the semantics is not clearly specified, particularly when causal
cycles are possible. The Reactive Modules [AH99] language uses a static partial
ordering on the variables that breaks causal loops by allowing synchronous in-
teraction in one direction of the ordering but not the other. In TLA [Lam94],
two modules are composed by conjoining their transition relations. TLA allows
synchronous interaction where causal loops can be resolved in any manner that
is compatible with the conjunction of the transition relations is satisfied.

SAL modules can be composed

— Synchronously, so that M || M, is a module that takes My and M, transitions
in lockstep, or

12



— Asynchronously, so that M, [| Ms is a module that takes an interleaving of
M; and M5 transitions.

There are rules that govern the usage of variables within a composition.
Two modules engaged in a composition must not share output variables and nor
should the output variables of one module overlap with the global variables of
another. The modules can can share input and global variables, and the input
variables of one module can be the output or global variables of the other. Two
modules that share a global variable cannot be composed synchronously, since
this might create a conflict when both modules attempt to write the variable
synchronously. The rules governing composition allow systems to be analyzed
modularly so that system properties can be composed from module proper-
ties [AH99].

The N-fold synchronous and asynchronous compositions of modules are also
expressible in SAL. Module operations include those for hiding and renaming
of variables. Any module defined by means of composition and other module
operations can always be written as a single basic module, but with a significant
loss of succinctness.

SAL does not contain features other than the rudimentary ones described
above. There are no constructs for synchronization, synchronous message pass-
ing, or dynamic process creation. These have to explicitly implemented by means
of the transition system mechanisms available in SAL. While these features are
useful, their introduction into the language would place a greater burden on the
analysis tools.

The SAL language is thus similar in spirit to Abstract State Machines [Gur95]
in that both serve as basic conceptual models for transition systems. However,
machines described in SAL are not abstract compared with those in ASM no-
tation since SAL is intended as a front-end to various popular model checking
and program analysis tools.

4 Conclusions

Powerful automated verification technologies have become available in the form
of model checkers for finite, timed, and hybrid systems, decision procedures,
theorem provers, and static analyzers. Individually, these technologies are quite
limited in the range of systems or properties they can handle with a high de-
gree of automation. These technologies are complementary in the sense that one
is powerful where the other is weak. Static analysis can derive properties by
means of a syntactic analysis. Model checking is best suited for control-intensive
systems. Theorem proving is most appropriate for verifying mathematical prop-
erties of the data domain. Symbolic analysis is aimed at achieving a synergistic
integration of these analysis techniques. The unifying ideas are

1. The use of transition systems as a unifying model, and
2. Fixed point computations over symbolic representations as the unifying anal-
ysis scheme.
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3. Abstraction as the key technique for reducing infinite-state systems to finite-
state form.

Implementation work on the SAL framework is currently ongoing. The pre-
liminary version of SAL consists of a parser, typechecker, causality checker, an
invariant generator, translators from SAL to SMV and PVS, and some other
tools. SAL is intended as an experimental framework for studying the ways in
which different symbolic analysis techniques can be combined to achieve greater
automation in the verification of transition systems.
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