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Abstract. Following earlier models, we lift standard deterministic and
nondeterministic semantics of imperative programs to probabilistic se-
mantics. This semantics allows for random external inputs of known or
unknown probability and random number generators.
We then propose a method of analysis of programs according to this
semantics, in the general framework of abstract interpretation. This
method lifts an “ordinary” abstract lattice, for non-probabilistic pro-
grams, to one suitable for probabilistic programs.
Our construction is highly generic. We discuss the influence of certain
parameters on the precision of the analysis, basing ourselves on experi-
mental results.

1 Introduction

In this paper, we give both a theoretical framework for abstract semantics of
probabilistic computer programs and practical methods of analysis. Our analyses
are set in the general field of abstract interpretation.

1.1 Abstract Interpretation

A well-known fact of computer science is that properties of the denotational
semantics of programs in Turing-complete languages cannot be decided mechan-
ically. Automatic methods of analysis thus have to forget completeness, while
still yielding interesting results on realistic programs.

The basic idea behind abstract interpretation [1,2] is to replace computations
on sets that are non recursive or too complex to handle by computations on
supersets of them (or subsets; what is important is we know whether we are
handling a superset or a subset). For instance, instead of handling sets of integers,
one might want to upper-approximate them using an interval. If all computations
are done monotonically, the result interval is necessarily a superset of the exact
set of possible values at the end of execution.

Intervals are just one of many possible abstract domains. For tuples of nu-
merical values, polyhedra can be used [3]. Tuples of integers can be abstracted
using congruences, interval congruences [13] or systems of linear congruential
equations [6]. Appropriate domains can be used to discover data structure con-
figurations [4].
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1.2 Probabilistic Semantics

One of the drawbacks of such analysis methods is that they do not distinguish
between what is possible (even with extremely low probability) and what is likely
(possible with a non-negligible probability). This is especially important in the
analysis of reactive systems.

Let us take a real-life example: the monitoring program of a copy machine
system is a reactive program taking inputs for sensors and giving orders to servo-
motors. Each sensor has a probability of failure, from mechanical or electric
wearing, scraps of papers etc... Sensors are redundant, with the idea that if a
moderate amount of sensors are failing, the system will diagnosis the sensor
failure instead of getting a false idea of what is going on in the machine. It is
possible that failure of several sensors can make the system err. The reliability
of the system can be improved by increasing the number of sensors, which is
not always economically and mechanically possible. It is interesting, given a
description of the system, to get upper bounds on the probability of failure.

Another field of possible use of analysis is randomized algorithms. Random-
ized algorithms have enjoyed considerable interest [9]. While it is of course im-
possible to derive automatically the most advanced properties of some of these
algorithms, it is still interesting to be able to deal with such programs in a more
precise way than just considering them as nondeterministic.

It is required that the analysis method should not constrain the analyzed
programs in a class of well-studied algorithms. Also, we must allow all usual
flow-control constructs, including tests and loops.

1.3 Comparison to Other Works

The concrete semantics we consider is essentially equivalent to the one proposed
by Kozen [10,11, second semantic]; we do not consider structures as complex
as those proposed by Jones [9]. We extend this semantics to nondeterministic
probabilistic cases [12,8].

Contrary to some other works [8,12,14,15], our goal is not to propose rules to
reason on à la Dijkstra weakest precondition semantics and prove refinements.
These methods are adequate for computer-aided program design and verification,
but of course cannot deal automatically with loop invariants. We rather propose
a natural extension of abstract interpretation [1,2] to probabilistic semantics.
The analyses described here are meant to be fully automatic, even though some
heuristics need some tuning guided by experience.

Some automatic program analysis techniques with a view on improving op-
timizing compilers have been developed [17]. These techniques are essentially ad
hoc and imprecise; only the control flow is considered, the probability of tests
being taken or not being estimated from crude syntactic criteria (such as: a
branch whose condition is a conjunction is less likely to be taken than a branch
whose condition is atomic, tests checking for null pointers are not likely to be
taken...). While such techniques are interesting in heuristics for compilers, they
are not suitable to get any precise result on programs.



1.4 Notations

P(X) shall be the set of parts of X . Y C shall be the complement of X if there
is no ambiguity as to the superset.

2 Probabilistic Concrete Semantics

Throughout this paper, we shall define compositionally several semantics and
expose relationships between them. We shall use as an example some simple
Pascal-like imperative language, but we do not mean that our analysis methods
are restricted to such languages.

2.1 Summary of Non-probabilistic Concrete Semantics

We shall here consider denotational semantics for programs. (equivalent opera-
tional semantics could be easily defined, but we shall mostly deal with denota-
tional ones for the sake of brevity).

The language is defined as follows: the compound program instructions are

instruction ::= elementary
instruction ; instruction
if boolean expr then instruction else instruction endif

while boolean expr do instruction done

and the boolean expressions are defined as

boolean expr ::= boolean atomic
boolean expr and boolean expr
boolean expr or boolean expr
not boolean expr

elementary instructions are deterministic, terminating basic program blocks like
assignments and simple expression evaluations. boolean atomic boolean expres-
sions, such as comparisons, have semantics as sets of “acceptable” environments.
For instance, a boolean atomic expression can be x < y + 4; its semantics is the
set of execution environments where variables x and y verify the above com-
parison. If we restrict ourselves to a finite number n of integer variables, an
environment is just a n-tuple of integers.

The denotational semantics of a code fragment c is a mapping from the set
X of possible execution environments before the instruction into the set Y of
possible environments after the instruction. Let us take an example. If we take
environments as elements of Z3, representing the values of three integer variables
x, y and z, then [[x:=y+z]] is the function 〈x, y, z〉 7→ 〈y + z, y, z〉. Semantics of
basic constructs (assignments, arithmetic operators) can be easily dealt with this
way; we shall now see how to deal with flow control.



The semantics of a sequence is expressed by simple composition

[[e1; e2]] = [[e2]] ◦ [[e1]]

Tests get expressed easily, using as the semantics [[c]] of a boolean expression
c the set of environments it matches:

[[if c then e1 else e2]](x) = if x ∈ [[c]] then [[e1]](x) else [[e2]](x)

and loops get the usual least-fixpoint semantics (considering the point-wise ex-
tension of the Scott flat ordering on partial functions)

[[while c do f ]] = lfp λφ.λx.if x ∈ [[c]] then φ ◦ [[f ]](x) else x.

Non-termination shall be noted by ⊥.

2.2 Our Framework for Probabilistic Concrete Semantics

We shall express probabilities using measures [16, §1.18]. We shall begin by a
few classical mathematical definitions.

Measures The basic objects we shall operate on are measures.

– A σ-algebra is a set of subsets of a set X that contains ∅ and is stable by
countable union and complementation (and thus contains X and is stable
by countable intersection). For technical reasons, not all sets can be mea-
sured (that is, given a probability) and we have to restrict ourselves to some
sufficiently large σ-algebras, such as the Borel or Lebesgue sets [16].

– A set X with a σ-algebra σX defined on it is called a measurable space
and the elements of the σ-algebra are the measurable subsets. We shall
often mention measurable spaces by their name, omitting the σ-algebra, if
no confusion is possible.

– If X and Y are measurable spaces, f : X → Y is a measurable function
if for all W measurable in Y , f−1(W ) is measurable in X .

– A positive measure is a function µ defined on a σ-algebra σX whose range
is in [0,∞] and which is countably additive. µ is countably additive if, tak-
ing (An)n∈N a disjoint collection of elements of σX , then µ (∪∞n=0An) =∑∞
n=0 µ(An). To avoid trivialities, we assume µ(A) <∞ for at least one A.

The total weight of a measure µ is µ(X). µ is said to be concentrated
on A ⊆ X if for all B, µ(B) = µ(B ∩A). We shall note M+(X) the positive
measures on X .

– A probability measure is a positive measure of total weight 1; a sub-
probability measure has total weight less or equal to 1. We shall note
M≤1(X) the sub-probability measures on X .

– Given two sub-probability measures µ and µ′ (or more generally, two σ-finite
measures) on X andX ′ respectively, we note µ⊗ µ′ the product measure [16,
definition 7.7], defined on the product σ-algebra σX×σX′ . The characterizing
property of this product measure is that µ ⊗ µ′(A × A′) = µ(A).µ′(A′) for
all measurable sets A and A′.

Our semantics shall be expressed as continuous linear operators between
measure spaces, of norm less than 1, using the Banach norm of total variation



on measures. This is necessary to ensure the mathematical well-formedness of
certain definitions, such as the concrete semantics of loops. As the definitions for
these concepts and some mathematical proofs for the definition of the concrete
semantics are quite long and not relevant at all to the analysis, we shall omit
them from this paper and refer the reader to an extended version. As a running
example for the definitions of the semantics, we shall use a program with real
variables x, y and z; the set of possible environments is then R3.

General form Let us consider an elementary program statement c so that
[[c]] : X → Y , X and Y being measurable spaces. We shall also suppose that
[[c]] is measurable. Let us first remark that this condition happens, for instance,
for any continuous function from X and Y if both are topological spaces and
σY is the Borel σ-algebra [16, §1.11]. [[x := y+z]] = 〈x, y, z〉 7→ 〈y + z, y, z〉 is
continuous.

To [[c]] we associate the following linear operator [[c]]p:

[[c]]p :

∣∣∣∣
M≤1(X)→M≤1(Y )
µ 7→λW.µ([[c]]−1(W ))

.

We shall see that all flow control constructs “preserve” measurability; i.e.,
if all sub-blocks of a complex construct have measurable semantics, then the
construct shall have measurable semantics. We shall then extend the framework
to programs containing random-like operators; their semantics will be expressed
as linear operators of norm less than 1 on measure spaces.

Random Inputs or Generators An obvious interest of probabilistic seman-
tics is to give an accurate semantics to assignment such as x:=random();, where
random() is a function that, each time it is invoked, returns a real value equidis-
tributed between 0 and 1, independently of previous calls.1 We therefore have to
give a semantics to constructs such as x:=random();, where random returns a
value in a measured space R whose probability is given by the measure µR and
is independent of all other calls and previous states.

We decompose this operation into two steps:2

Xp
[[ρ:=random()]]

[[x:=random()]]

(X ×R)p
[[x:=ρ]]

Xp

1 Of course, functions such as the POSIX C function drand48() would not fulfill such
requirements, since they are pseudo-random generators whose output depends on an
internal state that changes each time the function is invoked, thus the probability
laws of successive invocations are not independent. However, ideal random generators
are quite an accurate approximation for most analyses.

2 Another equivalent way, used by Kozen [10,11], is to consider random values as
countable streams in the input environment of the program.



The second step is a simple assignment operator, addressed by the above method.
The first step boils down to measure products:

[[ρ:=random()]] :

∣∣∣∣
Xp→ (X ×R)p
µ 7→µ⊗ µR .

Tests and Loops We restrict ourselves to test and loop conditions b so that
[[b]] is measurable. This condition is fulfilled if all the boolean atomic sets are
measurable since the σ-algebra is closed by finite union and intersection. For
instance, [[x < y]] = {〈x, y, z〉 | x < y} is measurable.

The deterministic semantics for tests are:

[[if c then e1 else e2]](x) = if x ∈ [[x]] then [[e1]](x) else [[e2]](x).

Let us first compute

[[if c then e1 else e2]]−1(W ) = ([[e1]]−1(W ) ∩ [[c]]) ∪ ([[e2]]−1(W ) ∩ [[c]]
C

).

[[c]] is the set of environments matched by condition c. It is obtained inductively
from the set of environment matched by the atomic tests (e.g. comparisons):

– [[c1 or c2]] = [[c1]] ∪ [[c2]]

– [[c1 and c2]] = [[c1]] ∩ [[c2]]

– [[not c]] = [[c]]
C

Using our above framework to lift deterministic semantics to probabilistic
ones, we get

[[if c then e1 else e2]]p(µ) = X 7→ µ([[if c then e1 else e2]]−1(X))

= X 7→ µ(([[e1]]−1(X) ∩ [[c]]) ∪ ([[e2]]−1(X) ∩ [[c]]C)

= X 7→ µ([[e1]]−1(X) ∩ [[c]]) + µ([[e2]]−1(X) ∩ [[c]]
C

)

= [[e1]]p ◦ φ[[c]](µ) + [[e2]]p ◦ φ[[c]]C (µ) (1)

where φW (µ) = λX.µ(X ∩W ).

We lift in the same fashion the semantics of loops (we note t an union of
pairwise disjoint subsets of a set):

[[while c do e]]
−1

(X)

= (lfp λφ.λx.if x ∈ [[c]] then φ ◦ [[e]](x) else x)−1(X)

=
⊔

n∈N
(λY.[[e]]−1(Y ) ∩ [[c]])n(X ∩ [[c]]C)

(2)



We therefore derive the form of the probabilistic semantics of the while loop:

[[while c do e]]p(µ) = λX.µ

(⊔

n∈N
(λY.[[e]]−1(Y ) ∩ [[c]])n(X ∩ [[c]]C)

)

= λX.
∑

n∈N
µ
(

(λY.[[e]]−1(Y ) ∩ [[c]])n(X ∩ [[c]]
C

)
)

=
∞∑

n=0

φ[[c]]C ◦ ([[e]]p ◦ φ[[c]])
n(µ)

= φ[[c]]C

( ∞∑

n=0

([[e]]p ◦ φ[[c]])
n(µ)

)

= φ[[c]]C

(
lim
n→∞

(λµ′.µ+ [[e]]p ◦ φ[[c]](µ
′))n(λX.0)

)
(3)

Limits and infinite sums are taken according to the set-wise topology. We refer
the reader to an extended version of this paper for the technical explanations on
continuity and convergence.

2.3 Probabilities and Nondeterminism

It has been pointed out [12,8] that we must distinguish deterministic and non-
deterministic probabilistic semantics. Deterministic, non-probabilistic semantics
embed naturally into the above probabilistic semantics: instead of a value x ∈ X ,

we consider the Dirac measure δx ∈M≤1(X) defined by δx(X) =

{
1 if x ∈ X
0 otherwise.

How can we account for nondeterministic non-probabilistic semantics?
We move from deterministic to nondeterministic semantics by lifting to power-

sets. It is possible to consider nondeterministic probabilistic semantics: the result
of a program is then a set of probability measures. Of course, nondeterministic
non-probabilistic semantics get embedded naturally: to A ∈ P(X) we associate
{δa | a ∈ A} ∈ P(M+(X)). We therefore consider four semantics:

determinism nondeterminism
probabilistic nondeterministic probabilistic

The advantage of probabilistic nondeterminism is that we can consider pro-
grams whose inputs are not all distributed according to a distribution, or whose
distribution is not exactly known. Our analysis is based on probabilistic nonde-
terminism and thus handles all cases.

3 Abstract Semantics

We shall first give the vocabulary and notations we use for abstractions in gen-
eral. We shall then proceed by giving an example of an domain that abstracts
probabilistic semantics as defined in the previous section. This domain is para-
metric in multiple ways, most importantly by the use of an abstract domain for
the non-probabilistic semantics of the studied system.



3.1 Summary of Abstraction

Let us consider a preordered set X] and a monotone function γX : X] → P(X).
x] ∈ X] is said to be an abstraction of x[ ⊂ X if x[ ⊆ γX(x]). γX is called the
concretization function. The triple 〈P(X), X ], γX〉 is called an abstraction.
P(X) is the concrete domain and X ] the abstract domain. Such definitions
can be extended to any preordered set X [ besides P(X).

Let us now consider two abstractions 〈P(X), X ], γX〉 and 〈P(Y ), Y ], γY 〉 and
a function f : X → Y . f ] is said to be an abstraction of f if

∀x] ∈ X] ∀x ∈ X x ∈ γX (x])⇒ f(x) ∈ γY (f ](x])) (4)

More generally, if 〈X[, X], γX〉 and 〈Y [, Y ], γY 〉 are abstractions and f [ : X[ →
Y [ is a monotone function, then f ] is said to be an abstraction of f [ if

∀x[ ∈ X[ ∀x] ∈ X] x[ v γX(x])⇒ f [(x[) v γX(f ](x])) (5)

Algorithmically, elements in X ] will have a machine representation. To any
program construct c we shall attach an effectively computable function [[c]]

]
so

that [[c]]
]

is an abstraction of [[c]]. Given a machine description of a superset of
the inputs of the programs, the abstract version yields a superset of the outputs
of the program. If a state is not in this superset, this means that, for sure, the
program cannot reach this state.

Let us take an example, the domain of intervals: if X ] = Y ] = T 3 where
T = {(a, b) ∈ Z ∪ {−∞,+∞} | a ≤ b} ∪ {⊥}, γ(a, b) = {c ∈ Z | a ≤ c ≤ b}
and γ induces a preorder vT over T and, pointwise, over X ], then we can take
[[x:=y+z]]]((ax, bx), (ay, by), (az, bz)) = ((ay + az, by + bz), (ay, by), (az, bz)).

3.2 Probabilistic Abstraction

The concrete probabilistic domains given in 2.2 can be abstracted as in the
previous definition. Interesting properties of such an abstraction would be, for
instance, to give an upper bound on the probability of some subsets of possible
environments at the end of a computation.

3.3 Turning Fixpoints of Affine Operators into Fixpoints of
Monotone Set Operators

Equation 3 shows that the semantics of loops are given as infinite sums or,
equivalently, as fixpoints of some affine operators. In non-probabilistic semantics,
the semantics of loops is usually the fixpoint of some monotone operator on the
concrete lattice, which get immediately abstracted as fixpoints on the abstract
lattice. The approximation is not so evident in the case of this sum; we shall
nevertheless see how to deal with it using fixpoints on the abstract lattice.

Defining µn recursively, as follows: µ0 = λX.0 and µn+1 = ψµn, with
ψ(ν) = µ + [[e]]p ◦ φ[[c]](ν), we can rewrite equation 3 as [[while c do e]]p(µ) =
φ[[c]]C (limn→∞ µn). We wish to approximate this limit in the measure space by
an abstract element.

We shall use the following method: to get an approximation of the limit of a
sequence (un)n∈N defined recursively by un+1 = f(un), we can find a closed set



S stable by f so that uN ∈ S for some N ; then limn→∞ un ∈ S. Let us note than
finding such a set does not prove that the limit exists; we have to suppose that
f is such that this limit exists. In our case, this condition is necessarily fulfilled.

Let us take µ] and µ]0 respective abstractions of µ. Let us call ψ](ν]) =

µ]+][[e]]p
]◦φ][[c]](ν]). Let us take a certainN ∈ N and call L] = lfp λν].ψ]

N
(µ0

])t
ψ](ν]); then by induction, for all n ≥ N , µn ∈ γ(L]). As γ(L]) is topologically
closed, limn→∞ ∈ γ(L]). Therefore L] is an approximation of the requested
limit.

Let us suppose that we have an “approximate least fixpoint” operation lfp] :

(X] monotonic−−−−−−→ X]) → X]. By “approximate least fixpoint” we mean that if

f ] : X] → X] is monotonic, then, noting x]0 = lfp](f), f ](x]0) v x]0. The
justification of our appellation, and the interest of such a function, lies in the
following well-known result:

Lemma 1. If f ] : X] → X] is an abstraction of f [ : P(X) → P(X) and

f ](x]0) v x]0, then lfp f [ ⊆ γX(x]0).

Of course, building such an operation is not easy. Trying the successive iter-
ations of f ]

n
until reaching a fixpoint does not necessarily terminate. One has

to use special tricks and widening operators to build such a function (see 5.3).
Provided we have such an operation, abstraction follows directly:

[[while c do e]]
]
(W ]) = φ][[c]]C (lfp]X] 7→W ] t [[e]]

]
(φ][[c]](X))).

As usual in abstract interpretation, it might be wise to do some semantics-
preserving transformations on the program, such as unrolling the first few turns
of the loop, before applying this abstraction. This is likely to yield better results.

4 A Probabilistic Abstract Domain

As considerable effort has been put into the design and implementation of non-
probabilistic abstract domains (see §1.1 for examples), it would be interesting to
be able to create probabilistic abstract domains from these. In the this section,
we shall give such a generic construction.

4.1 The Intuition Behind the Method

A finite sequence Ai of disjoint measurable subsets of X and corresponding
coefficients αi ∈ R+, represent the set of measures µ so that:

– µ is concentrated on
⋃
Ai

– for all i, µ(Ai) ≤ αi.

For practical purposes, the Ai are concretizations of abstract elements, polyhedra
for instance (Fig. 1).

This abstraction is intuitive, but lifting operations to it proves difficult: the
constraint that sets must be disjoint is difficult to handle in the presence of non
injective semantics [[c]]. This is the reason why we rather consider the following
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Fig. 1. An abstract value representing measures µ so that µ(A) ≤ 0.5, µ(B) ≤
0.4 and µ(C) ≤ 0.4.
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Fig. 2. The abstract value of Fig. 1 after going into the first branch of a if

y<=6-x... test.



definition: a finite sequence Ai of (non-necessarily disjoint) measurable subsets
of X and corresponding coefficients αi ∈ R+ represent the set of measures µ so
that there exist measures µi so that:

– µ =
∑
µi;

– for all i, µi is concentrated on Ai;
– for all i, µ(Ai) ≤ αi.

We shall see how to formalize this definition and how program constructs act on
such abstract objects.

4.2 Theoretical Construction

Let us take an indexing set Λ, an abstraction (see §3.1) ΓX = 〈σX , X], γX〉 and
an abstraction ΓW = 〈P([0, 1]Λ),W ], γW 〉. We define an abstraction ΓΛ,ΓX ,ΓW =
〈C(Xp), SΛ,ΓX ,ΓW , γΛ,ΓX ,ΓW 〉. C(Xp) is the set of closed sets of the topological
space Xp for the set-wise topology [5, §III.10] — this is a technical requirement
that is easy to fulfill. We wish to define compositionally abstract semantics for
our language (defined in §2.1). We shall omit the Λ, ΓX , ΓW subscript if there is
no ambiguity.

Domain Let SΛ,ΓX ,ΓW = X]Λ ×W ] be our abstract domain. We then define
γΛ,ΓX ,ΓW : SΛ,ΓX ,ΓW → P(Xp) so that ((Zλ)λ∈Λ, w) maps to the set of measures
µ ∈M≤1(X) so that there exist measures (µλ)λ∈Λ so that

– for each λ ∈ Λ, µλ is concentrated on γX(Zλ);
– the family (∫ dµλ)λ∈Λ of total weights of those measures is in γW (w).

Regular constructs Given two such constructions ΓΛ,ΓX ,ΓW and ΓΛ,ΓY ,ΓW and
measurable function f : X → Y so that f ] is an abstraction of f (see formula 4),
we define

fp
] :

∣∣∣∣
SΛ,ΓX ,ΓW →SΛ,ΓY ,ΓW
((Zλ)λ∈Λ, w) 7→ ((f ](Zλ))λ∈Λ, w).

Theorem 1. fp
] is an abstraction of fp.

Random Inputs or Generators To accommodate calls to random-like in-
structions, we must be able to abstract a product of two independent random
variables knowing an abstraction for each of the variables. More precisely, let us
suppose we have two abstractions SΛ,ΓX ,ΓW and SΛ′,ΓX′ ,ΓW ′ . Let us also sup-

pose we have an abstraction ΓWp = 〈P([0, 1]Λ×Λ
′
),Wp, γWp〉 and an abstraction

p] : W ×W ′ →Wp of

p :

∣∣∣∣
[0, 1]Λ × [0, 1]Λ

′ → [0, 1]Λ×Λ
′

((wλ)λ∈Λ, (wλ′ )λ′∈Λ′) 7→ (wλ.wλ′)(λ,λ′)∈Λ×Λ′ .



Let us also suppose we have an abstraction ΓΠ = 〈P(X × X ′), Π], γΠ〉 and

an abstraction ×] : X] × X ′] → Xp of × : P(X) × P(X ′) → P(X × X ′) (see
formula 5). Let us take abstract elements A = ((Zλ)λ∈Λ, w) ∈ SΛ,ΓX ,ΓW and
A′ = ((Z ′λ)λ′∈Λ′ , w′) ∈ SΛ′,ΓX′ ,ΓW ′ then we define

A⊗] A′ =
(
(Zλ ×] Z ′λ′)(λ,λ′)∈Λ×Λ′ , p

](W,W ′)
)

Theorem 2. (A], A′]) 7→ A] ⊗] A′] is an abstraction of (µ, µ′) 7→ µ⊗ µ′. That

is, if µ ∈ γλ,ΓX ,ΓW (A]) and µ′ ∈ γλ,ΓX′ ,ΓW ′ (A′
]
) then µ⊗ µ′ ∈ γp(A] ⊗] A′]).

Tests Lifting equation 1 to powersets yields the concrete semantics:

[[if c then e1 else e2]]p
[
(W ) = [[e1]]p

[ ◦ φ[[[c]](W )+[[[e2]]p
[ ◦ φ[[[c]]C (W )

which can be abstracted right away by replacing [’s by ]’s. All that is therefore
needed are suitable φ][[c]](W ) and +].

We define

((Zλ)λ∈Λ, w)+]((Z ′λ)λ′∈Λ′ , w
′) = ((Zλ)λ∈ΛqΛ′ , w⊕]w′)

where ⊕] is an abstraction of the canonical bijection between [0, 1]Λ × [0, 1]Λ
′

and [0, 1]ΛqΛ
′

where Λ q Λ′ is the disjoint union of Λ and Λ′. It is easy to see
that such a +] is an abstraction of +[.

Let us suppose we have a suitable abstraction I ][[c]] : X] → X] of the inter-

section function W [ 7→W [ ∩ [[c]]. We also require that ∀x] ∈ X] I][[c]](x
]) v x].3

Then we can define

φ][[c]]((Zλ)λ∈Λ, w) = ((I][[c]](Zλ))λ∈Λ, d
](w))

Theorem 3. φ][[c]] is an abstraction of φ[[[c]].

Loops Using the φ][[c]] functions defined in the preceding paragraph and the
framework of §3.3, it is easy to build an abstract semantics for loops provided
we have suitable widening operators. The heuristic design of such operators will
be discussed in §5.3.

4.3 Multiplicity of Representations and Coalescing

The reader might have been surprised we consider a preorder on the abstract
values, not an order. The reason is that we want to talk of algorithmic rep-
resentations, and a same concrete set can be represented in several ways. For

3 One possible construction for this function is W ] 7→ W ]∩][[c]]] using an approxima-
tion [[c]]] of the set of environments matched by c and an approximation ∩] of the
greatest lower bound. This does not in general yield optimal results, and it is better
to compute I][[c]](W

]) by induction on the structure of c if c is a boolean expression.
An example of suboptimality is the domain of integer intervals on one variable, with
W = [0,+∞[ and boolean expression (x > 2) ∨ (x < −2). The abstraction of the
domain matched by the expression is >, which gives us the approximate intersection
[0,+∞[ while recursive evaluation yields [2,+∞[. Further precision can be achieved
by local iterations [7].



instance, rational languages can be represented by an infinity of finite automata.
Of course, an interesting property is that there is a minimal automaton and thus
a canonical form. Yet we point out that this minimal automaton is defined up
to state renaming, thus it has several representations.

We propose two coalescing operations to simplify representations without
loss of precision:

1. If there is a certain Z0 so that several λ are so that Zλ = Z0, and our nu-
merical lattice enables us to represent exactly a sum, then one could replace
all the entries for all these λ’s by a single one.

2. Similarly, if Zλ1 and Zλ2 are so that there exists W so that γX(Zλ1) ∪
γX(Zλ2) = γX(W ), then one can coalesce Zλ1 and Zλ2 into W , with proba-
bility min(wλ1 + wλ2 , 1).

5 Practical Constructions

In the previous section, we have given a very parametric construction, depending
on parameters and assuming the existence of some operators. In this section we
shall give examples of instances of suitable parameters and experimental results
on a simple example.

5.1 Abstract Domain

We shall first define a narrower class of abstract domains for probabilistic appli-
cations, for which we shall give algorithms for some operations.

Finite Sequences Let us suppose that X ] has a minimum element ⊥X] . We

then take Λ = N. We note X ](N)
the set of sequences with finite support; that is,

those that are stationary on the value ⊥X] . We shall restrict ourselves to such
abstract sequences.

As for the set of numeric constraints, one can for example use polyhedric
constraints. Such constraints have the following nice property:

Theorem 4. Let us suppose that:

– the numeric constraints are expressed as convex polyhedra, and the inclusion
of two such polyhedra is decidable;

– the intersection test over X] is computable.

Then the preorder test on S(X ]) (i.e. the function that, taking (a, b) ∈ S(X ])
2

as parameter, returns 1 if and only if a vS(X]) b and 0 otherwise) is computable.

Proof. Let a = ((Zi)i<N , w) and b = ((Z ′i)i<N ′ , w
′). Let us call αi = µi(Zi) and

α′i = µi(Z
′
i). Let (Ξi)i<M be the set of all nonempty intersections of elements of

the sequences Z and Zi. Let E be the system of equations of the form αi =
∑
ξj

taking only the ξj so that Ξj ⊆ Zi, E
′ the system of equations of the form



α′i =
∑
ξj taking only the xij so that Ξj ⊆ Zi. F the system of linear inequations

yielded by (αi)i<N ∈ w and F ′ the system of linear inequations yielded by
(α′i)i<N ∈ w′. Given a system of (in)equations σ, we call S(σ) the set of solutions
of σ. We claim that

a vS(X]) b ⇐⇒ S(E ∪ E′ ∪ F ) ⊆ S(E ∪ E ′ ∪ F ′).
The right-hand side of the equivalence is decidable by hypothesis.

Our claim is the consequence of the following lemma:

Lemma 2. If Z is a nonempty measurable set and c ∈ R+, then there exists
µ ∈M+(Z) so that µ(Z) = c.

Proof. Let z0 ∈ Z. Then we define µ(A) to be equal to c if z0 ∈ A and to 0
otherwise.

Simple Constraints We propose a very restricted class of polyhedric con-
straints, given by finite sequences (cn)n∈N ∈ [0, 1](N), so that

(αn)n∈N ∈ γW ((cn)n∈N) ⇐⇒ ∀n ∈ N αn ≤ cn.
An abstract element is thus stored a finite sequence (Zn, cn) of pairs in X]×[0, 1].
Similar convex hulls have already been proposed for rules operating on concrete
semantics [8].

It is very easy in such a framework to get an upper approximation of the
probability of a set W , if we have a function τW : X] → {true, false} so that
τW (X]) = true ⇐⇒ W ∩ γX(X]) 6= ∅: just take

∑
n∈{n∈N|τW (Zn)=true} cn.

5.2 Experiments

Using our framework, we analyzed the following C program:

double x=0.0;

int i;

for (i=0; i<4; i++)

x += drand48()*2.0-1.0;

The drand48() function returns a double number equidistributed in [0, 1[. We
chose such a simple program so as to have an easy exact computation.

As an accurate representation of the double type would be complex and de-
pendent on the particular C implementation, we rather chose to use an idealized
version of this type as the real numbers. Figures 3, 4 and 5 show results of the
experiments with different parameters, comparing abstract samples and exact
computations.

In those tests, drand48() is supposed to return an uniformly distributed real
number in [0, 1]. It is abstracted as ([n/N, (n + 1)/N ], 1/N)0≤n<N where N is
a parameter. The “samples” are segments [α, β]; for each sample segment W ,
both an upper bound and an exact results of µ(W ) are computed, where µ is
the distribution of the final value of x in the above program. The upper bound
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Fig. 3. Experimental results: X1 + X2 + X3 + X4 where the Xi are indepen-
dent random variables equidistributed in [−1, 1]. The approximate simulation
divided [−1, 1] into 10 sub-segments each of maximal probability 0.1. Estimates
on segments of length 0.2.
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Fig. 4. Same computations as Fig. 3. Approximations on segments of length 1
give more accurate results than approximations on smaller segments.
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Fig. 5. Same computation as Fig. 3, but the approximate simulation divided
[−1, 1] into 100 sub-segments each of maximal probability 0.01. The sampled
segments are of length 0.2. As with Fig. 4, precision is improved is sampling
segments are bigger than the segments used in the computation.

is is computed from the abstract result, by the method described in 5.1. The
bars displayed in the figure are the chosen segments [α, β] in x and their exact
and approximate probabilities in y.

Those figures illustrate the following phenomenon: as computations go, the
abstract areas Zn grow bigger. If the samples are not enough bigger than those
areas, the approximation are bad (Fig. 3). Results improve if N is increased
(Fig. 5) or the sample size is increased (Fig. 4). An intuitive vision of this some-
what paradoxical behavior is that our abstract domain represents masses quite
exactly, but loses precision on their exact location. If we ask our analysis to pro-
vide information on the probability of a very small area of the output domain
(small compared to the precision of the input distribution and of the complex-
ity of the transfer function), it tends to overestimate it (Fig. 3) because lots of
masses could be located at that point. If we ask on a wider area, the error on
the locations of the masses compared to the area becomes small and thus the
error on the result becomes acceptable (Fig. 4).

5.3 Widenings

The crucial problem of the abstract domains not satisfying the ascending chain
condition is the “widening” to choose. By widening, we mean some kind of over-
approximation that jumps higher in the abstract domain to allow for convergence
in finite time even if the abstract domain does not enjoy the property that every
ascending sequence is stationary. Let us take a simple example on a nonproba-
bilistic program, with the domain of intervals: if successive abstract values are



[1, 1], [1, 2], [1, 3], [1, 4], the system might try jumping to [1,+∞[ for the next
iteration. As this overestimates the set, it is safe.

The design of widenings is experimental in order to find a satisfying balance
between cost and precision. While it is always possible to give a widening in all
abstract domains with a maximum element (just jump to >), it is quite difficult
to design widenings giving interesting results. Here, we shall propose a few ideas:

– Let us suppose we have a widening operator in X ]. When successive abstract
values in an iteration are (Zn, cn)n≤N so that both Zn and cn increase, then
try the next iteration with (Z, cN ) where Z is the result of the widening in
X].

– We can also apply widenings on the numerical coefficients cn. For instance,
if we have an increasing sequence (Z, cn)n≤N , we can jump to (Z, c) where
c is slightly above cN , possibly 1.

Both approaches can be combined.
Another important area is simplification. Each call to random-like functions

yields a product of measures and multiplies the number of length of the sequence
making up the abstract environment by the length of the sequence approximating
the measure of the function. This of course can mean fast explosion. While
coalescing (see 4.3) can help, we might have to consider more energic steps. A
possibility is to coalesce several abstract sets that have high probability (let us
say, > 0.8) and are “close enough”, such as [0, 2] and [1, 3].

We are currently working on designing on implementing such strategies and
testing them on realistic examples.

6 Conclusions and Prospects

We have given simple probabilistic semantics to a deterministic language supple-
menting the usual constructions by functions returning random values of known
distributions. We have a generic construct to lift usual (that is, non-probabilistic)
abstract analyses to probabilistic analyses. The analysis we propose can be used
to get upper bounds on the probability of certain events at certain points of a
program. We tested it on some simple examples where an exact computation
of the probabilities was possible, so as to have early experimental results of the
influence of certain parameters over the quality of approximation.

We have proposed heuristics for some operators needed to handle large pro-
grams or loops. We expect to be able soon to propose results as to efficient
heuristics on certain classes of problems.
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A Proofs of Convergence and Norm of the Concrete
Semantics

This appendix is meant only for the purpose of refereeing. It contains technical
proofs necessary for the construction of the concrete semantics. They are not
relevant to the main topic of the paper, which is the analysis of this semantics.

A.1 Normal and random basic operations

Let us first remark that if H is a continuous operator on measures, using the
norm of total variation, then ‖H‖ = sup{‖H.µ‖ | ‖µ‖ ≤ 1} can be computed
on finite positive measures only: let ‖H‖+ = sup{‖H.µ‖ | µ ≥ 0 ∧ ‖µ‖ ≤
1} : if µ = µ+ − µ−, ‖H.µ‖ = ‖H.µ+ − H.µ−‖ ≤ ‖H.µ+‖︸ ︷︷ ︸

≤‖H‖+.‖µ+‖

+ ‖H.µ−‖︸ ︷︷ ︸
≤‖H‖+.‖µ−‖

≤

‖H‖+. (|µ+‖+ |µ−‖)︸ ︷︷ ︸
‖µ‖

, so ‖H‖ ≤ ‖H‖+. But finite positive measures are signed

measures, so ‖H‖ ≥ ‖H‖+ and thus ‖H‖ = ‖H‖+.
If f : X → Y is an application, then ‖fp.µ‖ = ‖µ‖: on positive measures,

‖fp.µ‖ = (fp.µ)(Y ) = µ(f−1(Y )) = µ(X) = ‖µ‖ and the result extends to signed
measures.

If µR is a probability measure, then for any µ, ‖µ⊗µR‖ = ‖µ‖. This, combined

with the norm of assignment, implies that
∥∥∥[[x:=random]]p

∥∥∥ = 1.

A.2 Flow control

Let us first remark that if W is measurable, then for all µ, ‖φW .µ‖+‖φWC .µ‖ =
‖µ‖.

Equation 1 defines linear operator H = [[if c then e1 else e2]]p as [[e1]]p ◦
φ[[c]] + [[e2]]p ◦ φ[[c]]C . Let us suppose that

∥∥∥[[e1]]p

∥∥∥ ≤ 1 and
∥∥∥[[e2]]p

∥∥∥ ≤ 1. Then

‖H.µ‖ ≤
∥∥∥[[e1]]p

∥∥∥
︸ ︷︷ ︸
≤1

.
∥∥φ[[c]].µ

∥∥+
∥∥∥[[e2]]p

∥∥∥
︸ ︷︷ ︸
≤1

.
∥∥∥φ[[c]]C .µ

∥∥∥

≤
∥∥φ[[c]].µ

∥∥+
∥∥∥φ[[c]]C .µ

∥∥∥ = ‖µ‖,
thus ‖H‖ ≤ 1.

In equation 3, we define a measure as the limit of a sequence of measures:

[[while c do e]]p.µ =
∞∑

n=0

φ[[c]]C ◦ ([[f ]]p ◦ φ[[c]])
n(µ) (6)

This limit is taken set-wise: ie, we mean that for any measurable setX , ([[while c do e]]p.µ)(X) =∑∞
n=0(φ[[c]]C ◦([[e]]p◦φ[[c]])

n.µ)(X). If µ is a positive measure, sum 6 indeed defines
a positive measure: the partial sums are measures and the set-wise limit of an
increasing sequence of positive measures is a positive measure [5, §III.10]. The
result extends to signed measures by splitting the measure into its positive and



negative parts. It is also quite evident that equation 6 defines a linear operator
H , so we have shown that this linear operator maps measures onto measures.

Let us define the partial sums Hn =
∑n
k=0 φ[[c]]C ◦ ([[f ]]p ◦ φ[[c]])

k. Hn can be
equivalently defined by the following recurrence:{

H0 = φ[[c]]C

Hn+1 = φ[[c]]C +Hn.[[e]].φ[[c]].

By induction, we prove that for all n, ‖Hn‖ ≤ 1, similarly as for the if construct.
Let us now consider the sequence of measures Hn.µ. It converges set-wise to

H.µ; also, for all n, ‖Hn.µ‖ ≤ ‖µ‖. For all measurable X , |(Hn.µ)(X)| ≤ ‖µ‖
and thus, using the set-wise limit, |(H.µ)(X)| ≤ ‖µ‖. It follows that ‖H.µ‖ ≤ µ.
This achieves proving ‖H‖ ≤ 1.

Remark 1. In general, Hn does not converge norm-wise to H .

Proof. Let us consider the following C program:

/* x is in ]0, 1] */

while (x<=0.5)

x=x*2;

It is easy to see that ∫ d(H.µ) = ∫ dµ. Let us consider the operator π that
maps the 1-tuple containing x to the 0-tuple and the operators Hn of the loops.
π ◦Hn(µ) is then the probability of termination on input measure µ. If Hn → H
in norm, we would have π ◦Hn → π ◦H in norm too. Nevertheless, if µn is a
measure of weight 1 lying in ]0, 2−n−1], (π ◦Hn).µn = 0 while (π ◦H).µn = 1 so
‖π ◦H − π ◦Hn‖ = 1.

Continuity of the various operators enables us to swap them with infinite
sums, which is important to get some of the results in equation 3.

B Proofs of Abstraction

Theorem 1. S(f) is an abstraction of fp
].

Proof. This amounts to:

∀x ∈ S(X]) ∀µ ∈ S(γX)(x) fp(µ) ∈ S(γY )(S(f)).

Let ((Zλ)λ∈Λ, w) ∈ S(X]) and µ ∈ M+(X). Let us suppose that there exists
a family of measures µλ each respectively in M+(Zλ) so that µ =

∑
λ∈Λ µλ

and (µλ(γX (Zλ)))λ∈Λ ∈ γW (w). We want to prove that there exists a family of
measures µ′λ each respectively in M+(f ](Zλ)) so that

1. fp(µ) =
∑
λ∈Λ µ

′
λ and

2. (µ′λ(γY (f ](Zλ)))λ∈Λ ∈ w.

Let us take candidates µ′λ(U) = µλ(f−1(U)). The first condition is then ob-
viously met. As for the second, µ′λ(f ](Zλ)) = µλ(f−1(γY ◦ f ](Zλ))). As f ]

abstracts f [, f [ ◦ γX(Zλ) ⊆ γY ◦ f ](Zλ); this implies that f−1(f [ ◦ γX(Zλ)) ⊆
f−1(γY ◦ f ](Zλ)). As γX(Zλ) ⊆ f−1(f [ ◦ γX(Zλ)), by transitivity γX(Zλ) ⊆
f−1(γY ◦ f ](Zλ)). This implies that µ′λ(γY ◦ f ](Zλ)) = µλ(f−1(γY ◦ f ](Zλ))) =
µλ(γX(Zλ)), which in turn implies that (µ′λ(γY ◦ f ](Zλ)))λ∈Λ ∈ γW (w).



Theorem 2. (A], A′]) 7→ A] ⊗] A′] is an abstraction of (A[, A′[) 7→ A[ ⊗[ A′[
with respect to γSΛ×Λ′,ΓXp ,ΓWp

. That is, if µ ∈ γX(A]) and µ′ ∈ γX(A′]) then

µ⊗ µ′ ∈ γp(A] ⊗] A′]).

Proof. We have to prove that there exists a family of measures (µ∗(λ,λ′))(λ,λ′)∈Λ×Λ′
defined respectively over (Zλ × Zλ′)(λ,λ′)∈Λ×Λ′ so that

1. µ∗ =
∑

(λ,λ′)∈Λ×Λ′ µ
∗
(λ,λ′) and

2. (µ∗(λ,λ′)(Zλ, Z
′
λ′))(λ,λ′)∈Λ×Λ′ ∈ p](W,W ′).

We take µ∗(λ,λ′) = µλ ⊗ µ′λ′ as a candidate. The first point is trivial since ⊗ is

bilinear. Since ×] is an abstraction of ×, γX (Zλ) × γX′(Z ′λ′) ⊆ γP (Zλ ×] Z ′λ′).
By the definition of the product of measures, since µλ is concentrated on γX(Zλ)
and µ′λ′ on γX′(Z

′
λ′), then µλ ⊗ µ′λ′ is concentrated on γX(Zλ)×γX′(Z ′λ′), which,

using the above inclusion, yields

µ∗(λ,λ′)(γP (Zλ ×] Z ′λ′) = µ∗(λ,λ′)(γX(Zλ)× γX′(Z ′λ′)).
By the definition of the product of measures,

µ∗(λ,λ′)(γX(Zλ)× γX′(Z ′λ′)) = µλ(Zλ).µ′λ′ (Zλ′).

The second point then follows from the fact that p] is an abstraction of p[.

Theorem 3. φ][[c]] is an abstraction of φ[[[c]].

Proof. Let us take ((Zλ)λ∈Λ, w) ∈ S(X]) and µ one of its concretizations: µ =∑
λ∈Λ µλ where µλ is concentrated on Zλ and ∫ dµλ = αλ so that (cλ)λ∈Λ ∈ w.

We have to show that φ[[c]](µ) ∈ γX](φ][[c]]); that is, that there exists a family
(µ∗λ)λ∈Λ so that

1. λ ∈ Λ, µ∗λ is concentrated on γX](I
]
[[c]](Zλ)) and

2. (µ∗λ)λ∈Λ ∈ γW (d](w)).

We take µ∗λ(X) = µλ(X ∩ γX(I][[c]])).

The first condition is trivial. I ][[c]](Zλ) v Zλ so by monotonicity, γX(I][[c]](Zλ) ⊆
γX(Zλ). Therefore ∫ dµ∗λ ≤ αλ, which proves the second point.
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