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Abstract—Digital control systems are increasingly being deployed 
in critical infrastructure such as electric power generation and 
distribution. To protect these process control systems, we present 
a learning-based approach for detecting anomalous network 
traffic patterns. These anomalous patterns may correspond to 
attack activities such as malware propagation or denial of 
service. Misuse detection, the mainstream intrusion detection 
approach used today, typically uses attack signatures to detect 
known, specific attacks, but may not be effective against new or 
variations of known attacks. Our approach, which does not rely 
on attack-specific knowledge, may provide a complementary 
detection capability for protecting digital control systems. 

I. INTRODUCTION 
Intrusion Detection Systems (IDS) using anomaly detection 

(AD) techniques are not widely deployed in enterprise systems, 
because such systems typically exhibit highly variable 
behavior. As such, AD systems, particularly those based on 
learning normal system activity and alerting on abnormal 
activity, often alert on activity that is unusual, but not 
malicious, while failing to alert on malicious activity that 
recurs frequently enough to not appear unusual. 

By contrast to enterprise systems, process control systems 
often exhibit regular and predictable communication patterns, 
which can be leveraged in an AD system. An attack launched 
against a process control network may exhibit communication 
patterns quite different from those observed during normal 
operations. In our earlier work, we have demonstrated that 
these regularities can form the basis of a model-based IDS in 
control systems, where much of the expected behavior of the 
system can be coded into a fairly compact ruleset/model, which 
complements misuse detection rules used for detecting known 
malicious activity. Because developing the models to specify 
the expected system behavior by hand is error-prone and time-
consuming, this paper presents a learning-based 
communication pattern anomaly detection approach for process 
control systems. 

Our approach involves learning network communication 
patterns in process control networks by passively monitoring 
network traffic. Specifically, our IDS employs network flow 
information such as connection endpoints (i.e., source and 
destination IP addresses and port numbers), the rate of packet 
flow between network endpoints, and the set of hosts with 
which a host communicates. The IDS maintains a database of 

recent and historical network flow profiles observed in process 
control networks. A flow record is generated or updated as 
packets are observed. Detected network flow patterns are then 
evaluated against the learned historical norms. An observed 
pattern can either match an existing historical flow profile 
through reinforcement learning, or start a new pattern 
exemplar. The pattern exemplars are effectively different 
modes of observed activity, so our system does not require 
attack-free training data. By default, the system alerts on 
observed flow patterns that are statistical exceptions to the 
learned norms. We are interested in anomalies such as new 
network flows (with estimates of how unlikely it is to observe a 
new flow), significant changes in flow rates, and the absence of 
expected network flows. These anomalies may correspond to 
network probing attacks, propagation of malware, introduction 
of rogue master or slave devices, flooding-based denial-of-
service attacks, or attacks that cause host or service failure. 

The principal contribution of this paper is a demonstration 
that anomaly detection, and specifically methods based on 
adaptive learning, can provide a useful intrusion detection 
capability in process control networks. This is in contrast to the 
efficacy of these methods in enterprise settings, where highly 
variable behavior leads to inadequate sensitivity and high false 
alarm rates. 

The rest of this paper is organized as follows. In the next 
section we describe our techniques to learn normal patterns and 
alert on anomalous patterns. We introduce methods to detect 
suspicious traffic rates, suspicious new flows or the absence of 
expected flows, and changes in node fan-in or fan-out patterns. 
The development is based on statistical learning, which enables 
us to quantify a priori the expected false positive rate for the 
monitoring apparatus. This is followed by a description of our 
test environment, built around a commercially available 
Distributed Control System (DCS) communicating with a 
number of emulated field devices in a virtual machine 
environment. Next we describe characterization of normal and 
abnormal flows for system startup, steady state operation, 
nonmalicious failures of various components, and a variety of 
attacks. The attacks include probes, denials of service, and 
attempts to introduce rogue traffic. We then present 
experimental results to validate the usefulness of the proposed 
techniques. We conclude with a summary and suggestions for 
future work. 



 

II. COMMUNICATION PATTERN ANOMALY DETECTION IN 
PCS 

Process Control Systems (PCS) are often characterized by 
fairly regular communication patterns between master and 
slave units, and a fairly static address space. This can be 
exploited in the form of a compact ruleset that alerts to 
violations of expected communication patterns, presented in 
our earlier work [1]. Here we extend the concept to effectively 
learn normal flows and alert on statistical exceptions to the 
learned norms. This paper describes two anomaly detection 
techniques: pattern-based anomaly detection for monitoring the 
patterns of hosts with which each host communicates, and 
flow-based anomaly detection for monitoring the traffic 
patterns for individual network flows. 

 

III. PATTERN-BASED ANOMALY DETECTION 
 
We analyzed data traces for normal, anomalous, and attack 
conditions using an adaptation of the pattern anomaly 
detection technique of [4]. This method examines patterns in a 
stream of observations via a version of competitive learning 
[2,3]. A pattern is a vector of feature values relevant to a 
particular implementation; here we applied the technique to 
patterns formed from source and destination IP addresses and 
destination port. We considered that source port would 
typically be ephemeral (that is, system assigned) and therefore 
not useful, but destination port is often bound to a particular 
service. 

 
Patterns are evaluated against an initially empty pattern 
library. If a pattern matches an existing pattern, according to 
some similarity function returning a value above a specified 
similarity threshold, then the best-matching library pattern 
“wins”. In the (typical) case that the match is not exact, the 
winning library pattern is slightly adapted in the direction of 
the new pattern, where the degree of adaptation is based on 
how many previous instances of the pattern have been 
observed. The historical, aged number of instances also 
provides an estimate of the probability with which this pattern 
is observed. 
 

€ 

Algorithm to pick winner :
Find K s.t. 
Sim X,EK( ) ≥ Sim X,Ek( )∀k
X = observed pattern
Ek = kth pattern exemplar in library
If Sim X,EK( ) ≥Tmatch ,EK  is the winner
Else insert X into the library of pattern 
exemplars
Tmatch = Minimum match threshold

 

 
Adaptive modification of the winning pattern: 

€ 

EK ←
1

nK +1
nKEK + X( )

nK =  Historical (possibly aged) count 
of observances of EK

 

An anomaly is generated when the tail probability (the 
historical probability of the winning pattern plus that of all 
patterns in the library with equal or lower probability) is below 
a specified anomaly threshold.  

 

€ 

Pr EK( ) = Historical probability of 
pattern K

=
nK
nk

k
∑

Tail _ Pr EK( ) = Historical tail probability of 
pattern K

= Pr E j( )
Pr Ek( )≥Pr E j( )
∑

If Tail _ Pr EK( ) ≤Talert ,  generate alert
Talert = alert threshold

 

 
A periodic library update procedure consolidates similar 
patterns and prunes rare patterns and feature values. In 
practice, the heuristics used in update prevent state space 
explosion in numerous applications of the approach. 
 
An attractive characteristic of this method is that it can 
adaptively learn multiple patterns of normal and abnormal 
activity (we refer to these as modes), whereas many other 
anomaly detection techniques use a two-class learning 
approach. In particular, the system does not require attack-free 
training data. Also, the use of empirical probability as the 
anomaly threshold allows reasonable a priori expectations on 
the false positive rate. 
 
 

IV. FLOW-BASED ANOMALY DETECTION 
We maintain a database of active and historical flow 

records observed in the PCS. A flow record is generated or 
incremented as packets are observed. As flow records are 
“touched” by packet traffic, they are evaluated against learned 
historical norms. In addition, there is a periodic global update 
where the flow records since the last global update are folded 
into historical statistical profiles. We are interested in 
anomalies such as observation of a new flow (with some 
estimate of how unlikely it is to observe a new flow), 
significant change in the rate (packet inter-arrival time or data 
volume) of a flow, and absence of an expected flow. For 
indexing purposes, the historical and current flow tables can be 
indexed by any suitably efficient scheme (for example, by 
some hash of source and destination). 



The derivation is provided in the context of PCS, where the 
number of inter-communicating nodes and their addresses is 
relatively static, and the number of system services relatively 
small.  The concepts can be extended to general network flows, 
and offer potential for monitoring quality of service (QOS) and 
detecting flooding-based attacks. 

Packets in PCS are typically generated in a polling fashion 
where a master polls a number of slaves for data. Under some 
conditions, slaves may initiate flows to notify the master of an 
exception. The global database update interval should be long 
relative to the PCS polling interval. Notionally, we expect a 
reasonable tradeoff between stable statistics in a global update 
interval, and ability to alert in a timely fashion is probably 
obtained with a global update interval on the order of 100 to 
1000 times the interval of the most frequent expected flow (for 
example, the MODBUS polling interval). 

The algorithm is presented as a detector of anomalous 
flows, but can be easily adapted to specific flows (for example, 
specific to particular MODBUS function codes). 

A flow record (FR) has the following elements: 

FR = {Source, Dest, Tlast, Packets, Avg(NumBytes), 
Var(NumBytes), Avg(DT), Var(DT), Score} 

• Source: source IP and port of the flow 

• Dest: destination IP and port of the flow 

• Tlast: time of the last packet for this flow 

• Packets: number of packets in this flow since the last 
database update 

• Avg(NumBytes): average number of bytes per packet 
in this flow since the last database update 

• Var(NumBytes): variance of bytes per packet 

• Avg(DT): mean packet inter-arrival time (DT) since 
last global update 

• Var(DT): variance of DT 

• Score: anomaly score for this record 

The historical record (HR) corresponding to the same flow 
has the following elements:  

HR = {Source, Dest, UpdateTime, HPackets, 
HAvg(NumBytes), HVar(NumBytes), HAvg(DT), HVar(DT)} 

• Source and Dest are defined as in FR 

• UpdateTime: time of last global update 

• HPackets: historical aged packet count 

• HAvg(NumBytes): historical average bytes per packet  

• HVar(NumBytes): variance of bytes per packet 

• HAvg(DT): historical average inter-arrival time 

• HVar(DT): historical variance of inter-arrival time 

 

We may relax the definition of flow to not require the same 
source port, as this is likely to be system assigned and 
ephemeral. The destination port is more likely bound to a 
specific system service. 

A. Updating and Scoring Flow Records 
We discuss the update and score procedure when we 

observe a packet for which there is a historical flow. In the case 
that there is no active flow, we allocate a new FR, set the 
Packets field equal to 1 and NumBytes equal to the observed 
packet size, TLast equal to the time of the packet, and skip the 
scoring. The variance calculations require at least two packets 
for the flow. 

If there is no HR corresponding to the flow, the FR is 
updated normally as packets are observed, but the scoring 
procedure is skipped since scoring requires historical data. At 
the time of the next global database update, the HR is 
populated with the contents of the accumulated FR. 

New Flow Alert: We would probably alert in the case of a 
flow with no corresponding HR, or alert if we see a new flow 
after some configurable number of global updates, or when we 
have observed so many flows that we consider a new flow 
unlikely (say, when the count of HR flows has not changed or 
is over some number). 

Otherwise, when a packet is observed for a source-
destination pair, the corresponding flow record is updated as 
follows: 

Packets = Packets+1; 

DT = current time – Tlast; 

Means and variances for DT and bytes per packet in the 
flow records should be computed using online algorithms 
(http://en.wikipedia.org/wiki/Algorithms_for_calculating_varia
nce#III._On-line_algorithm n.d.) 

Note that this implies that the flow record must be 
expanded to include intermediate sums of squares for bytes and 
inter-arrival time. Also note that variances are defined only for 
FR records with a packet count of two or more. 

The bytes per packet and inter-arrival time measures are 
then scored relative to the corresponding historical quantities. 
At present, this is based on a T test. 

When the historical packet count is large (or has reached its 
asymptotic value), the T statistic is defined as follows (where X 
is replaced by packet length or DT): 

 

€ 

TX =
Avg(X) −HAvg(X)
Var(X)

Packets

; 

After the scoring step, Tlast is updated to the time of the 
current packet. 

If we treat the bytes per packet and DT as independent, we 
can obtain a combined score as follows: 

€ 

Score =
2TNumBytes +

2TDT ; 



This has the advantage of giving one score per flow as it is 
touched by a packet, but loses the sense of whether the score 
was extremely high or low. It may be that in any case extremes 
on the low side are better detected at the global update interval 
(for example, we observe that the above will never allocate or 
score an expected flow that is not observed in some global 
update interval).  

Anomalous Flow Alert: The above score exceeds some 
threshold. 

Note that a packet updates only one flow record. The global 
update procedure modifies all flows. 

B. Global Update 
Global update is defined for all flows for which there is 

either an FR (new flow observed in the most recent global 
update interval), an HR (a flow was historically observed but 
was not observed in the most recent global update interval), or 
both (ideally the most common condition). 

New flow alert: This is issued in the case of an FR with no 
corresponding HR, and was discussed in the previous section. 

Missing flow alert: This is issued in the case of an HR with 
no corresponding FR, or an FR with 0 packets. We can either 
issue the alert unconditionally or score the flow as having 0 
bytes and DT equal to the global update time interval. The 
latter approach is less likely to alert on flows that are valid but 
rare, since the distribution for DT would consider long inter-
arrival times more normal. 

Aging: We may age the HR database by multiplying with 
some constant AGE ≤ 1.0 (using 1.0 turns off aging). Aging 
allows the algorithm to adapt to changing environments. 

The pseudo-code for the update equations is given below 
(once again, substitute NumBytes and DT for X): 

€ 

// Aging packet count
HPackets = HPackets * AGE;
// Update averages and variances

HAvg(X) =
HPackets *HAvg(X) + Packets * Avg(X)

HPackets+ Packets
;

HVar(X) =
HPackets *HVar(X) + Packets *Var(X)

HPackets+ Packets
;

 

€ 

// Reinitialize FR records for the next interval
// Note that we do not reset TLast,   so DT could
// span several global updates,   which might be
// true for every rare flows

Packets = 0;
Avg(NumBytes) = 0;
Var(NumBytes) = 0;
Avg(DT ) = 0;
Var(DT ) = 0;

 

 

V. TEST ENVIRONMENT 
The test environment is based on a Distributed Control 

System (DCS) from Invensys Process Systems, IA series 
(http://www.ips.invensys.com/en/products/autocontrols/Pages/
DistributedControl-IASeries-P018.aspx). The key elements of 
this system are 

• An application workstation (AW) for configuration, 
visualization, and control. This is dual homed with a 
connection to a control LAN as well as an external 
interface. 

• A control LAN based on a redundant pair of Enterasys 
switches (optical Ethernet).  

• An Invensys Field Control Processor (FCP) module. 

• A field bus that connects the FCP to (presently) two 
Ethernet Field Bus Modules (FBM). 

• A field LAN connecting the FBM, simulated 
MODBUS devices (MODBUS simulators from 
modbustools.com and Calta) running in virtual 
machines. 

• The monitoring system connects to the control LAN 
(AW, switches, and FCP) and separately to the field 
LAN (FBM and devices). 

• Interfaces between the monitoring system and the 
ArcSight Security Information and Event Management 
(SIEM) platform. 

The test environment system is shown in Figure 1. The 
protocol on the control LAN, between the AW and the FCP, is 
proprietary. The protocol on the field LAN, between the FBM 
and field devices, can be any of a number of common industrial 
protocols. For the present analysis, we have chosen MODBUS. 



VI. NORMAL, ANOMALOUS, AND ATTACK FLOWS 
We establish a baseline of normal flows by operating the 

system under various normal and anomalous (but not 
malicious) operating conditions. These conditions are 
representative of startup, steady-state operation, visualization 
of process variables, and change of process variables.  

On the Invensys IA system, at startup the FCP obtains a 
bootp file from the AW. We collected traffic from the control 
LAN under normal startup as well as starting up the FCP with 
the AW powered down, the latter to allow us to obtain a traffic 
trace for the FCP’s efforts to obtain the boot file. 

We characterize normal flows on the field network as 
normal MODBUS traffic between the FBM and the emulated 
MODBUS PLCs. MODBUS is a master-slave protocol wherein 
the master polls for process values from the slaves (read) or 
resets continuous or logical process variables on the slaves. We 
also attempt to observe flows for conditions other than normal 
operation but not necessarily the result of malicious activity. 
For example, we collect data as well in the case of lost 
connectivity to a device or loss of the FBM itself. The latter 
condition effectively disconnects the field devices from the 
DCS, unless redundancy is built in. Process values from the 
field devices are communicated back to the AW through the 
FCP and control network. 

To date, our attacks have focused on the field network, 
which is likely to be more exposed and therefore more 
vulnerable in typical operational settings. Generally, we 
observe that attacks of sufficient traffic volume to impede 

normal MODBUS communications are observed at the AW as 
lost connectivity to one or more MODBUS devices. Less 
intense attacks, and attacks involving insertion of rogue devices 
on the field network, are generally visible only by monitoring 
the field network. 

 

 

 

VII. EXPERIMENTAL VALIDATION 
 
We first describe experimental results for evaluating pattern-
based anomaly detection. Then we describe the experimental 
results for evaluating flow-based anomaly detection. 
 

A. Pattern-based Anomaly Detection 
 
We have conducted experiments to examine the usefulness of 
the pattern anomaly detection technique applied to IP-address-
level communication. Specifically, in the experiments, for 
every IP address observed in the field network, we monitored 
the set of IP addresses with which it communicated for every 
time period. At the end of every time period, these 
communication patterns were compared with those in the 
pattern libraries to detect anomalous patterns and to update the 
pattern libraries. 
 

 

Figure 1: Schematic of DCS Testbed Environment 



1) General Experimental Setup 
 
In the experiments, the FBM acts as the MODBUS-TCP client 
that periodically retrieves data from a set of (emulated) 
MODBUS-TCP servers, developed by Witte Software 
(www.modbustools.com). Another host is attached to the field 
network playing the role of the adversary. To generate the 
datasets for our experiments, we collected TCP traffic using 
tcpdump (www.tcpdump.org) on the field network. Moreover, 
we extracted the relevant fields (e.g., timestamps and IP 
addresses) from the packet traces, and used them as inputs for 
the pattern anomaly detection algorithm. 
 

2) Normal Traffic 
 
To evaluate the false alarm rate of the detection algorithm, we 
used three datasets pertaining to normal usage scenarios, and 
the algorithm did not report any anomalies. The scenarios 
include the followings 
 
(1) FBM reads the same amount of data from all MODBUS 

servers at the same frequency (1 second);  
(2) FBM reads the same amount of data from the MODBUS 

servers at different frequencies (0.5, 1, 5, and 10 seconds) 
(3) FBM reads different amounts and types of data from the 

MODBUS servers 
(4) Using two MODBUS clients (including the FBM and an 

(emulated) MODBUS client running on a virtual 
machine) to query the MODBUS servers at different 
frequencies (1 and 5 seconds, respectively) 

 
In analyzing the communication patterns of these scenarios, 
we used the following parameters for the algorithm described 
in Section III. We set Tmatch to 0.6, Talert to 0.7, and period 
length to 30 seconds. These parameters are quite “elastic” in 
that there exists a wide range for their values that gave the 
same outcome, thanks to the regularity of the network traffic 
patterns. For example, setting Tmatch to 0.2 or 0.9 does not 
change the results. Moreover, for every IP address pertaining 
to the MODBUS servers, the FBM, or the additional 
MODBUS client, the number of communication patterns is 
one.  
 
 

3) Anomalous Traffic 
 
To evaluate the ability of the algorithm to detect anomalous 
events, we used several datasets pertaining to potentially 
malicious events, and the algorithm reported anomalies in all 
those instances. These malicious events include 
(1) Performing scans against the FBM or a MODBUS server 

using nmap (www.nmap.org)  
(2) Performing network vulnerability analysis against the 

FBM or a MODBUS server using Nessus 
(www.nessus.org)  

(3) Running a MODBUS client on a host and modifying 
MODBUS data points on a MODBUS server   

 
In these datasets, we ran the experiment to generate about 30 
minutes of normal traffic to let the detection module learn the 
normal traffic patterns before performing the malicious event. 
 

4) Nmap Scans 
 
To better illustrate the experimental setup and results, we 
describe the nmap scanning experiment in more detail.  
 
In this experiment, we generated the background network 
traffic by having the FBM retrieve data from the four 
MODBUS servers at 1 second frequency (i.e., the same pattern 
as the normal traffic profile (1) described earlier). 
 
After about 30 minutes, we used a network scanning tool, 
called nmap, to perform port scans against all TCP ports of the 
FBM and a MODBUS server respectively. Specifically, we 
ran nmap with the intense scan, all TCP ports profile, using 
the command 
 nmap –PE –v –p1-65535 –PA21,23,80,3389 –A –v –T4 
against the IP address of the FBM or of a MODBUS server. 
 
Using the similarity threshold of 0.6, anomaly threshold of 
0.7, and time period of 30 seconds, the pattern anomaly 
detection technique detected the nmap with an anomaly score 
of 0.968 at the end of the first period when nmap was started. 
Moreover, for the nmap run against the FBM, two patterns 
were reported for the FBM, one pertaining to the normal 
traffic pattern, and one for the pattern in which there was 
substantial traffic between the nmap host and the FBM. In 
other words, the system learned distinct patterns for the 
normal and attack traffic, which permits labeling the latter 
pattern as malicious even if an adversary tries to train the 
system to consider the pattern normal from a threshold 
probability standpoint (concept drift). 
 
The pattern set pertaining to the FBM (a MODBUS client) is 
as follows: 
 
Pattern 1 (normal polling of MODBUS Servers): 
MODBUS server 1: Prob 0.250 
MODBUS server 2: Prob 0.250 
MODBUS server 3: Prob 0.250 
MODBUS server 4: Prob 0.250 
 
Pattern 2 (attack pattern): 
MODBUS server 1: Prob 0.001 
MODBUS server 2: Prob 0.002 
MODBUS server 3: Prob 0.001 
MODBUS server 4: Prob 0.001 
Nmap host: Prob 0.994 
 
The numbers shown in the patterns correspond to the 
probability distribution for the number of packets exchanged 
between the FBM and the hosts whose names appear next to 
the numbers. In other words, Pattern 1 corresponds to the 



pattern that the number of packets exchanged between the 
FBM and the four MODBUS servers is essentially the same. 
Moreover, Pattern 2 corresponds to the pattern that the 
network traffic pertaining to the FBM is dominated by the 
nmap network scan traffic. 
 
For the nmap experiment pertaining to a MODBUS server, we 
obtained a similar result, with the anomaly score of 0.968 and 
two traffic patterns corresponding to the MODBUS server, 
one for normal traffic involving the FBM and the MODBUS 
server, and one corresponding to the nmap traffic and the 
normal traffic. 
 
We have experimented with different values, ranging from 0.1 
to 0.9, for the similarity threshold and the anomaly threshold, 
and obtained essentially the same result. We plan to 
experiment with more stealthy scanning techniques in the 
future. 
 

B. Flow-based Anomaly Detection 
 

To evaluate the usefulness of the flow-based anomaly 
detection technique of Section IV, we developed a software 
module for performing offline flow-based anomaly detection. 
The implementation defines a flow in terms of its source IP 
address, destination IP address, and destination port. 
Moreover, flows are unidirectional. In other words, an 
established TCP connection consists of two flows, one in each 
direction. The detection module can detect new flows and 
missing flows by comparing the flow records for the latest 
period and those in the historical flow database. To detect 
anomalous flows based on packet length and inter-packet 
arrival time, we use a simple heuristic to determine if the 
historical flow records may give a good approximation for the 
population means for packet length and inter-packet arrival 
time—using flow records in the historical database for 
anomalous flow detection only after we have observed the 
flow for more than a specified number of periods (e.g., 30). 
Moreover, we selected the probability threshold for detecting 
anomalies as 0.001. In other words, the probability that a 
normal flow is flagged as anomalous is less than 0.1%. 
 
We used several packet traces collected in our DCS testbed 
environment to evaluate the effectiveness of the flow-based 
technique. In the first experiment, we significantly increased 
the flow rate of a MODBUS connection to simulate a surge in 
requests for a MODBUS server, which may be caused, for 
example, by a flooding-based denial-of-service attack. In the 
second experiment, we significantly reduced the flow rate of a 
MODBUS connection, which may indicate a system 
degradation problem at the MODBUS client. In the third 
experiment, we used a MODBUS-TCP scanner developed by 
Mark Bristow (http://code.google.com/p/modscan) against a 
MODBUS server; the tool attempts to discover the unit 
identifiers managed by MODBUS-TCP servers. 
 
 

1) Increasing Flow Rate 
 
In this experiment, we employed two MODBUS clients to 
fetch data from the MODBUS servers in the testbed. The FBM 
queried the four MODBUS servers once per second, and this 
rate stayed constant throughout the experiment. A second 
MODBUS client, which had a different IP address than that of 
the FBM, initially queried a MODBUS server once every 10 
seconds. After 2.5 hours, we changed the MODBUS request 
rate to once per second, and let the experiment run for another 
1.5 hours. 
 
With a period length of 180 seconds, at the end of the first 
period after the change of the request rate, the T statistic score 
for DT of the flow from the second MODBUS client to the 
MODBUS server was -11.13.  For the sample size of 106 (i.e., 
the number of packets in the flow observed in that period), the 
absolute value of the T statistic should be less than 3.39 with 
99.9% probability. As a result, the flow was flagged as 
anomalous. The T statistic for DT of the flow became -232.80 
at the end of the next period, when more anomalous traffic 
was observed, which also triggered the anomaly detection 
algorithm to generate an alert. As time went on, the historical 
record for the flow was updated with data pertaining to the 
higher MODBUS request rate, and the T statistic for DT 
gradually decreased and became -28.63 at the end of the 
experiment. 
 

2) Decreasing Flow Rate 
 
This experiment was similar to the one pertaining to 
increasing flow rate. The main difference was that we decrease 
the MODBUS request rate from once every second to once 
every two seconds, as opposed to increasing the request rate. 
 
With a period length of 60 seconds, at the end of the first 
period after the change of the request rate, the T statistic score 
for DT of the flow from the second MODBUS client to the 
MODBUS server was 3.65.  For the sample size of 54, the 
absolute value of the T statistic should be less than 3.49 with 
99.9% probability. As a result, the flow was detected as 
anomalous. 
 

3) Modscan 
 
In this experiment, the normal traffic profile is similar to that 
of the flow rate experiments, except that we performed a 
MODBUS unit identifier scan from the MODBUS client host 
against the MODBUS server using the modscan tool. The 
scan, lasting for several minutes, involved sending a number 
of MODBUS requests to the MODBUS server with different 
unit identifiers for determining the valid identifiers based on 
the responses. Every MODBUS request used in the scan 
involved establishing a new TCP connection, which affected 
not only the DT statistic, but also the packet length statistic for 
the flow. 
 



With a period length of 60 seconds, at the end of the first 
period after modscan was started, the T statistic score for DT 
of the flow from the MODBUS client host to the MODBUS 
server was -12.98.  For the sample size of 247, the absolute 
value of the T statistic should be less than 3.373 with 99.9% 
probability. Thus, the flow was detected as anomalous. At the 
end of the next period, the T statistic scores for DT and for 
packet length were -75.16 and -8.43, respectively—both 
greater than the threshold needed for anomaly detection.  
 
The results of the flow anomaly detection indicate that the 
technique is able to detect anomalous flows effectively, but it 
is somewhat more subject than the pattern anomaly approach 
to concept drift. 

 

VIII. CONCLUSION AND FUTURE WORK  
We investigated the usefulness of communication pattern 
anomaly detection for process control networks. Specifically, 
we conducted experiments to evaluate two anomaly detection 
techniques, namely, pattern-based detection for 
communication patterns among hosts, and flow-based 
detection for traffic patterns for individual flows. Our initial 
experimental results are encouraging. The absence of anomaly 
reports in the normal traffic supports our hypothesis that 
anomaly-based detection is feasible in process control 
networks at much lower false alarm rates than in general 
enterprise systems. These techniques were able to detect some 
basic attacks launched against the MODBUS servers in our 
DCS testbed. As for future work, we plan to develop real-time 
intrusion detection sensors based on these techniques, and to 
test them in more realistic environments. 
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