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ABSTRACT 

 
Virtual environments (VEs) provide an appealing vehicle for training complex skills, particularly for domains where 
real-world practice incurs significant time, expense, or risk. Two impediments currently block widespread use of 
intelligent training tools for VEs. The first impediment is that techniques for assessing performance focus on 
algorithmic skills that force learners to follow rigid solution paths. The second impediment is the high cost of 
authoring the models that drive intelligent training capabilities.  

This paper presents an approach to training in VEs that directly addresses these challenges and summarizes its 
application to a weapons maintenance task. With our approach, a learner’s actions are recorded as he completes 
training exercises in a semantically instrumented VE. An example-tracing methodology, in which the learner’s 
actions are compared to a predefined solution model, is used to generate assessment information with contextually 
relevant feedback. Novel graph-matching technology, grounded in edit-distance optimization, aligns student actions 
with solution models while tolerating significant deviation. With this robustness to learner mistakes, assessment can 
support exploratory learning processes rather than forcing learners down fixed solution paths. 

Our approach to content creation leverages predefined ontologies, enabling authoring by domain experts rather than 
technology experts. A semantic mark-up framework supports authors in overlaying ontologies onto VE elements and 
in specifying actions with their effects. Drawing on these semantics, exercises and their solutions are created 
through end-user programming techniques: a domain expert demonstrates one or more solutions to a task and then 
annotates those solutions to define a generalized solution model. A concept validation study shows that users are 
comfortable with this approach and can apply it to create quality solution models.  
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INTRODUCTION 
 
Proficiency in complex skills improves with practice. Virtual environments (VEs) provide an appealing vehicle for 
training complex skills, particularly for domains where real-world practice incurs significant time, expense, or risk. 
Currently, two impediments block widespread use of intelligent training tools for virtual environments. The first is 
that most current techniques for assessing performance force learners to follow rigid solution paths. These 
techniques limit the applicability of the technology to domains with ‘algorithmic’ solutions, whereas many real-
world training domains have a more open-ended nature. The second is the high cost of authoring the models that 
drive intelligent training capabilities. In particular, authoring must be done by highly trained experts who have deep 
familiarity with the representation and reasoning mechanisms within the assessment capabilities.  
 
This paper presents an approach to training in VEs that directly addresses these challenges. With our approach, a 
learner’s actions are recorded as he completes training exercises in a semantically instrumented VE. An example-
tracing methodology, in which the learner’s actions are compared to a predefined solution model, is used to generate 
assessment information with contextually relevant feedback. Novel graph-matching technology, grounded in edit-
distance optimization, aligns student actions with solution models while tolerating significant deviation. With this 
robustness to learner mistakes, assessment can support exploratory learning processes rather than forcing learners 
down fixed solution paths. 
 
Our approach to content creation leverages predefined ontologies, represented in a standards-compatible language. 
A semantic mark-up capability supports authors in specifying semantic overlays based on these ontologies to define 
types and attributes of VE components along with relationships among them. These overlays, coupled with semantic 
instrumentation of user actions, enable understanding of student activity in a VE in terms of semantic concepts that 
are aligned with pedagogical constructs. 
 
Drawing on these semantics, exercises and their solutions are created through end-user programming techniques. In 
particular, a domain expert demonstrates one or more solutions to a task, and then annotates those solutions to 
define a generalized solution model. These tools are specifically designed to enable content authoring by subject 
matter experts (SMEs) rather than technology experts. A concept validation study shows that users are comfortable 
with this approach and can apply it to create quality solution models.  
 
We have developed a prototype system called Semantically-enabled Assessment in Virtual Environments (SAVE) 
that combines these capabilities into a flexible training framework that can provide assessment feedback for 
complex training tasks. SAVE has been applied to training tasks related to weapons maintenance (specifically that of 
an M4 series rifle carbine), drawing on requirements derived from a U.S. Army soldier training publication (U.S. 
Department of the Army, 2012). The assessment piece of SAVE has also been applied to support training the use of 
Command Post of the Future (CPOF), a collaborative geospatial visualization environment and planning tool used 
extensively by the U.S. Army (Myers et al., 2013).  
 
This paper begins with an overview of our approach. We then proceed to describe elements related to the learner 
experience, namely the process by which a training exercise is completed and assessment information is generated.  
Next, we describe our approach to content development, covering the specification of semantic layers for a VE, the 
creation of exercises, and the authoring of exercise solutions. We summarize results from a user study that show that 
subjects who are unfamiliar with the underlying technology are both comfortable with our solution authoring 
approach and capable of applying it to generate quality solution models. We next describe our application of SAVE 
to the M4 specific training problem, discuss related work, and then close with a summary of our contributions. 
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OVERVIEW OF APPROACH 
 
SAVE supports two classes of end users: the learners who perform exercises in the VE and receive assessment 
feedback, and the content authors responsible for developing exercise materials. Figure 1 presents the overall 
architecture of the SAVE training framework, organized around these two user types.  
 

 
Figure 1. Overview of the SAVE framework, which supports learners and content authors. 

 
The exercise user interface (EUI) provides both a visualization of a training problem and the interactive means by 
which the learner can perform actions to solve the problem (L1 in Figure 1). The training problem is presented in 
terms of a task to be completed by the learner and a specification of the initial scene in which the exercise is to take 
place. This scene description is captured in a structure referred to as a semantic scene graph (SSG). The actions 
performed by the learner in the EUI result in updates to the SSG. The actions are also logged in a semantically 
grounded trace (L2). The automated assessment module compares these actions to the solution model for the 
problem (L3), and generates learner feedback (L4) that is displayed in the EUI. 
 
The content that drives exercises is created through a collection of authoring tools, utilized by two different 
types of content developers, working in collaboration. Starting with previously defined 3D models, a semantic 
3D (S3D) model author uses an annotation tool to define overlays (A1 in Figure 1) that link nodes of each model 
with classes in predefined ontologies, thus providing a semantic characterization of the objects and their 
components. These overlays are added to a repository of available S3D assets. 
 
With a content assembly tool, an instructional content author uses these semantically labeled objects to compose a 
specific VE for a training exercise (A2). The author uses a set of complementary authoring tools to define the range 
of allowed solutions to a training exercise. A key element of our approach is that the author first defines the 
procedural structure of the solution by demonstrating how it should be done in the EUI (A3); a companion solution 
editor (A4) then supports the author in specifying annotations that define allowed variations from the demonstration. 
 
LEARNER EXPERIENCE 
 
Exercise Completion 
 
The EUI loads exercise-specific content, displays 3D models (1 in Figure 2) of the objects in the initial configuration 
for the exercise, and provides the learner with affordances such as context menus (2) to interact with these objects. 
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Ontologies and rules are used to form a semantic characterization of an exercise domain, the actions that are possible 
within that domain, and the preconditions and effects of those actions. Ontological classes are mapped to appropriate 
geometric nodes of the 3D model, thus semantically instrumenting the VE. 
 

 
Figure 2. The EUI allows the learner to perform an exercise, such as M4 maintenance, in a virtual 

environment and receive assessment feedback. 
 
A query mechanism supports communication between the frontend graphical representation of the scene and its 
corresponding backend semantic representation. The EUI is aware of what virtual objects can be instanced and how 
each should be displayed, while the ontology characterizes these objects and the actions that can be performed on 
them. The concerns of rendering and semantic definition remain separate; the EUI does not need to track knowledge 
about components, and conversely, the ontology does not need to be aware of the 3D scene display.  
 
The activity monitor collects the learner’s direct interactions with the EUI (e.g., in terms of mouse clicks and 
keyboard input) and converts them into an action trace—a semantic characterization of the learner’s activities that is 
grounded in the ontology. These action traces serve two purposes within SAVE, depending on whether the user is a 
learner or an instructional content author. For a learner, the action trace is the basis for the automated assessment of 
their performance for that exercise. For an author developing a new exercise, the action trace provides the 
procedural basis that serves as a starting point for the exercise solution model. 
 
Automated Assessment 
 
The automated assessment module in SAVE builds substantially on technology from SRI’s Drill Evaluation for 
Training (DEFT) system (Myers et al., 2013). DEFT was developed as part of a pilot project on automated 
assessment of skills for soldiers learning to use CPOF—a collaborative geospatial visualization and planning 
environment used extensively by the U.S. Army for planning military operations. Below, we describe the technical 
foundations for the automated assessment capability, followed by a discussion of our approach to presenting 
assessment information to a learner. 
 
Assessment is based on a comparison of the semantic action trace generated by the instrumented VE to a pre-
specified exercise solution model that defines the range of acceptable solutions for the exercise. This comparison is 
used to create assessment information with contextually relevant feedback for the learner: identifying conceptual 
errors or mistakes, providing guidance in the form of hints to help complete a task, and suggesting links to relevant 
training materials. The feedback is presented to the user in the EUI (3 in Figure 2). 
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Table 1: Annotations for Solution Specification  
 

 
The exercise solution models are defined in terms of one or more generalized action traces, each consisting of (a) a 
sequence of steps, and (b) annotations that specify allowed variations. A step can be a parameterized action, a class 
of actions, or a set of options, each of which is itself a partially ordered set of steps. Annotations can be defined over 
individual steps (e.g., optionality of a step), sets of steps (e.g., step ordering constraints), and step parameters (e.g., a 
parameter must have a specific value or satisfy a property). Annotations support action ordering and grouping 
constraints; parameter type, value, and equality constraints; and state constraints, which capture requirements on the 
application state or on object properties that cannot be determined from actions themselves (see Table 1). These 
abstractions enable compact representations of large solution spaces, rather than having to explicitly enumerate all 
allowed ground solutions.  
 
The automated assessment capability determines a mapping from the student’s response to the exercise solution 
model. This alignment problem is formulated as approximate graph matching, using graph edit distance to rate the 
quality of the mappings. Graph edit distance measures the cumulative cost of graph editing operations needed to 
transform the student response into an instance consistent with the exercise solution model.  
 
To use this graph matching approach, the exercise solution model is encoded as one or more graphs, each 
representing a family of possible solutions. Actions and their parameters are nodes within these graphs, parameter 
roles are links, and required conditions within the solution (e.g., action orderings, parameter values) are constraints. 
The student response is represented similarly as a response graph. Alignment involves finding the lowest-cost 
mapping between the response and a solution graph, with costs incurred for missing mappings and violated 
constraints. The intuition is that the lowest-cost alignment corresponds to the specific solution the student is most 
likely attempting. From this alignment, an assessment is generated that identifies differences between the response 
and the exercise solution model, which translate to specific errors the student has made (e.g., out-of-order, missing, 
or extra actions; incorrect parameter values) and to the corrections needed. Because the exercise solution models and 
learner responses are captured at a semantic level of abstraction, the feedback from the automated assessment 
process is readily understandable by the learner. 
 
The visual display of assessment feedback in the 
original DEFT system presented the full action 
trace to the learner, with overlaid markings that 
identified learner mistakes. Feedback from users 
showed a preference for a summary view of their 
mistakes: they did not want to see everything they 
had done, rather only what they had done 
incorrectly (Myers et al., 2013). For this reason, we 
transitioned from the original trace-based 
presentation of feedback to a summary-based 
approach for SAVE (Figure 3). A further 
advantage of the more compact summary-based 
approach is that it can be presented as text within 
the EUI, thus eliminating the need for a separate 
assessment interface. 

 Annotation Semantics 

Steps Group Group a set of related steps 

In any order Perform a pair or group of steps in any order 

Optional Step is not required as part of the solution 

Parameters Any of Set Use any of an enumerated set of values  
(e.g., strawberries, blueberries, raspberries) 

Any of Type Use any of a given semantic type (e.g., fruit, vegetable) 

Range Use a range of values (e.g., 1-5) 

Same Use the same object in different steps 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Sample summary-based assessment feedback  
for the M4 domain as displayed within the EUI. 
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Our approach to automated assessment is similar to that of example-tracing tutors (Aleven et al., 2009), which 
compare learner actions to a graph representing alternative solution paths. However, example-tracing tutors rely on 
an exhaustive enumeration of all possible solutions, which is feasible for domains with algorithmic solutions but not 
for domains with more open-ended tasks. In contrast to other example-tracing assessment capabilities, our 
assessment method does not restrict a user to a limited set of solution paths. Rather, the flexible matching provides 
tolerance to user mistakes, enabling assessment for domains in which more exploratory styles of task completion are 
an important part of the learning experience.  
 
CONTENT AUTHORING 
 
For intelligent training systems to be widely deployed, course developers must be able to easily construct the 
exercises in their curricula. To this end, we developed a set of tools for both the S3D model author, who 
semantically marks up the individual 3D assets, and the instructional content author, who assembles these assets into 
a complete exercise scene and specifies the exercise solution.  
 
Exercise Content 
 
3D models are geometric representations of objects that can be rendered in a virtual environment. The S3D model 
author uses an annotation tool (Figure 4) to create semantic overlays for these underlying 3D models. The tool is a 
graphical interface that enables authors to associate predefined ontological classes with corresponding geometric 
nodes of a 3D model without having to write code. These associations create links between the graphic 
representations of an object’s components, such as the parts of a machine, and conceptual models describing 
semantic properties of these components. 
 

 
Figure 4. The S3D annotation tool is used to map semantic classes to specific nodes of a 3D model. 

 
The overlays assign each element a semantic identity and associated properties that can be reasoned about by the 
automated assessment module. Properties may include information about relationships between various elements, 
such as hierarchical grouping. For example, an M4 is separable into two halves, known as an upper and a lower, 
which in turn are each made up of various subcomponents. The ontologies also hold information about what actions 
may be executed upon each component by the user as well as the effects of such actions. Our design and utility of 
semantic models for use in virtual environments is further described in (Elenius et al., 2016). 
 
As discussed earlier, a key feature of our approach to semantic instrumentation is that the knowledge base about the 
virtual objects exists separately from their 3D model representations. Thus the ontology can be extended or modified 
independently without the need to edit the 3D model file. As another benefit, the same ontology can also be mapped 
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to different versions of the 3D model, e.g., one of higher or lower fidelity, or used in a different set of exercises. 
Indeed, there is no reason that the semantic classes could not be mapped to alternate object representation 
modalities, whether 2D graphics, immersive audio environments, or even text-based worlds. 
 
From the semantically annotated 3D models, the instructional content author constructs an exercise scene for an 
interactive training exercise using a content assembly tool (Figure 4). The author selects annotated models from the 
S3D repository and spatially arranges them in the VE to create an exercise scene. Additional objects that may be 
instantiated in the scene by the user during the exercise, such as tools stored on a shelf, are also declared. The scene 
represents the environment as it will be presented in the EUI when the exercise starts.  
 
Exercise Solution  
 
Within SAVE, solutions are defined as generalized demonstration traces that consist of (a) a sequence of steps to be 
performed, and (b) annotations that show allowed variability from those steps. Authoring exercise solution models 
by a content developer involves first demonstrating a specific solution to a training exercise and then specifying 
annotations that generalize from that demonstration to the full range of allowed solutions. The first step is performed 
within the EUI; the second step is performed within the exercise solution editor (ESE). The output of this process is 
a collection of constraints, referred to as the exercise solution model, which is stored in an XML-based 
representation. This approach is in line with recommendations made by others that models should be created from 
data and interactions to the extent possible rather than handcrafted (Brawner et al., 2012). 
 
The ESE supports content developers in both viewing action traces from demonstrations performed in the EUI, and 
in adding annotations to traces to capture allowed generalizations. The design of the ESE was heavily influenced by 
a user study described in the next section. This study validated our general approach, showing that users can both 
understand traces and generalize them with appropriate annotations. The study also showed that users expect actions 
in a solution to be performed in the same order as in the demonstration trace, unless expressly indicated otherwise. 
For this reason, the ESE automatically generates ordering constraints in the exercise solution model based on the 
assumption that steps must follow the demonstration order unless expressly marked otherwise.  
  

 
Figure 5. The ESE allows an author to generalize an exercise solution by editing and annotating it. 
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The user interface of the ESE (Figure 5) provides the visualization of the action trace as a sequence of steps in the 
left-hand pane, and a panel of available annotation operations in the right-hand pane. Each step in the action trace 
shows a textual description of the action as well as the action’s parameters. Steps can be organized into groups and 
assigned meaningful names at the discretion of the content developer (e.g., the “Prepare weapon” group in the 
figure). The UI allows authors to perform most annotation-related operations by either selecting from actions in the 
panel or by clicking directly on an item (step or parameter) in the action trace to display a context-sensitive list of 
options. This multi-access support reflects findings from the user study, which showed differing preferences for the 
two interaction styles.  
  
Icons on individual steps show the status for grouping and optionality. An author can toggle an annotation on/off by 
selecting the appropriate menu item or clicking directly on the associated icon on the step. Similarly, generalizations 
of parameters can be made through the appropriate menu item or by clicking on the parameter to access a context-
sensitive set of generalization options. The use of color in icons and for parameter highlighting makes it easy for an 
author to see the scope of annotations defined within a given solution.  
 
USER STUDY ON SOLUTION AUTHORING  
 
We conducted a concept validation study, summarized in (Myers and Gervasio, 2016), to provide an empirical basis 
for the design of our solution-authoring module. This study had two objectives: (a) to determine whether SMEs, 
rather than experts in intelligent training systems, can successfully apply our general approach to solution authoring, 
and (b) to elicit feedback on the design of a tool that would support their authoring needs. We conducted a two-on-
one (facilitator + note-taker vs. subject) paper prototype study requiring approximately two hours for each subject. 
Because content authors will be experts in their training area, we required a study domain for which subjects would 
have expert-level knowledge. We chose cooking for the study tasks because people feel expert in how they like to 
prepare their food, even if their preparations may be highly personalized.  
 
The subjects were asked to demonstrate the preparation of two simple dishes and to document how their 
demonstrations could be generalized while remaining valid for those dishes. After the subject completed the two 
tasks, the facilitator led an open-ended discussion with the subject about what was easy or hard about the tasks, and 
about preferences for features to be incorporated into our design for a solution-authoring tool. 
 
The study showed that subjects with no detailed understanding of the underlying technology are both comfortable 
with the approach and capable of applying it to generate quality solution models. However, certain concepts 
presented challenges, calling for special attention in tool design. More specific findings are summarized below. 

• Subjects understood manually created traces of their demonstrated actions. Furthermore, they found it natural 
for the default to be that actions are ordered in the trace as demonstrated. 

• Our proposed annotations covered the types of generalizations that subjects wanted to express, but some of the 
distinctions between the annotations were not well understood. In particular, annotations designating options 
and alternatives were intended for generalizing actions but subjects used them almost exclusively, and also 
interchangeably, to generalize ingredients and implements instead. 

• With minimal instruction, subjects were able to specify annotations to generalize their demonstrations; 
however, their annotations were not always fully comprehensive. Subjects showed good coverage in specifying 
alternatives (ingredients, tools, subtask options), identifying optional steps (or groups of actions), and providing 
acceptable ranges (for quantities).  

• Subjects often missed relaxing ordering constraints but responded appropriately when asked whether a later 
action could be performed before an earlier one. Thus, while subjects were capable of relaxing ordering 
constraints, this suggests the need for some type of assistance to help improve coverage.  

• Subjects wanted an intelligent prompting capability to help them identify missing annotations.  
 
These findings were used to inform the design of the exercise solution editor, described above.  
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APPLICATION: M4 MAINTENANCE  
 
The SAVE framework is domain independent, enabling it to be applied to a broad range of training tasks that 
involve procedural skills. Our initial application of the framework has been to the training of weapon maintenance, 
following the detailed procedures for an M4 series rifle carbine described in Soldier Training Publication 21-1-
SMCT (U.S. Army, 2012). We focused specifically on two maintenance tasks: weapon clearing and disassembly. 
 
An existing high-fidelity 3D model of the M4 was obtained for the prototype. To facilitate rapid development, a 
low-polygon version of the model was created using digital content creation tools to reduce asset load time and to 
improve rendering performance. Additional adjustments were made, such as setting local coordinates for proper 
rotation of individual components and flattening of the scene graph hierarchy for easier component manipulation. 
 
The initial S3D annotation file for the M4 was manually drafted and iterated upon as refinements to the 3D model 
and ontology were made. This XML-encoded file identifies the location of the model and ontology using Uniform 
Resource Identifiers. Individual markup elements link each 3D node (e.g., magazine, bolt, selector lever, etc.) with a 
corresponding semantic class defined by the ontology. The S3D file was later extended to include grouping 
information for dynamic control of 3D geometry objects in defined groups, such as during component disassembly. 
 
The ontologies developed for the M4 domain contain 115 classes, 193 rules, and 18 individuals (e.g., the shooting 
range, the M4, and its various parts). The class hierarchy contains classes for all relevant components of the M4, and 
properties that show how the components fit together. The ontology also models actions that can be performed by a 
user while completing various training exercises for maintenance operations (e.g., remove the magazine, lock the 
bolt open, place the selector lever on safe) as well as actions for the loading and firing of the weapon.  
 
To support reuse across domains, a generic upper ontology was designed that includes common object manipulation 
actions such as push, pull, insert, extract, and turn; this reusable model was adapted from an existing source 
(Vujosevic and Ianni, 1997). A mechanics ontology was created for more specific actions such as “change the 
position of a switch” and “turn a screw,” and their requisite classes “switch” and “screw.” This level of specificity 
sufficed to model all of the actions required for the clearing and disassembly tasks described in (U.S. Army, 2012). 
 
When an exercise begins, the M4 is displayed in the EUI. The user can apply generic actions (push, pull, etc.) 
through context-sensitive menus that show allowed operations for each component when selected. When an action is 
performed, the ontology reasoner determines the effects of that action and updates the world state. The reasoner also 
provides services to the assessment module to support the evaluation of constraints on objects (e.g., that the M4 
selector switch must be set to Safe mode). Once the entire exercise is completed to the satisfaction of the learner, an 
assessment of the performance is conducted and appropriate feedback is provided in the EUI. 
 
RELATED WORK 
 
The Steve system (Rickel and Johnson, 1999) pioneered training assistants for VEs. In this system, a pedagogical 
agent both teaches procedures for operating electro-mechanical devices and provides assistance to learners as they 
complete training tasks. While Steve encompasses both interactive critiquing and assistance, our work focuses on 
post hoc assessment of activities in VEs, with our approach supporting more exploratory forms of assessment rather 
than being tied to specific solution paths. Our work also provides a framework for defining the semantic models 
used in assessment, whereas those models are hard-coded in the Steve system. 
 
In recent years, there have been numerous systems built across a range of domains that explore VE-based training. 
Like Steve, many of these assume predefined semantic models embedded in the VE, although there are exceptions. 
(Maderer et al., 2013) describes a training architecture that holds semantic information about items in a repository 
external to the VE. The assessment logic is limited to matching against single events rather than complex 
procedures, as presented in our work. (Kessing et al., 2012) describes a game framework in which 2D sprite objects 
are semantically classified, with authoring tools accessing class libraries stored in a database. The framework is able 
to reason about basic interactions between objects, including state tracking, however there is no exercise 
specification or learner assessment. 
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The use of end-user programming techniques for authoring content for intelligent tutoring systems originated with 
the work of (Blessing, 1997), who applied it to learn production rules for a cognitive tutoring system. Similarly, 
(Angros et al., 2002) describe programming-by-demonstration techniques to support acquisition of procedural 
knowledge for the Steve system, which were supplemented by queries to the demonstrator to determine effects 
models used for plan generation. While our demonstrations define exercise solutions directly, the usage of 
demonstration in these systems is to create general problem-solving models from which tutoring actions are then 
derived. Programming by demonstration is used in (Koedinger et al., 2004) to develop content for example-tracing 
tutors but requires explicit demonstration of all possible solution paths; in contrast, our assessment module supports 
generalization through author annotations, enabling a much more compact representation of the solution space for 
exercises that have large numbers of related solutions. The work in (Mohammed et al., 2005) on training for satellite 
management is more closely aligned with our approach to solution authoring, consisting of a similar combination of 
demonstration plus annotation. 
 
CONCLUSION 
 
This paper presented the SAVE framework, which supports training for procedural tasks in virtual environments. 
Several aspects of this work are noteworthy. First, the assessment capability is explicitly designed to support 
training of complex tasks with a range of possible solutions. While rooted in an example-tracing methodology, the 
use of flexible graph matching enables assessments in which learner actions can deviate significantly from allowed 
solutions, thus enabling exploratory learning. Second, it treats semantic specification as a first-class activity, 
providing interactive tools for content authors to define semantics for the elements that comprise the virtual training 
environment rather than requiring system developers to hard-code the semantics ahead of time. Third, our novel 
approach to solution specification through a combination of programming by demonstration and annotation enables 
subject matter experts to define solution models, rather than requiring technology experts.  
 
The technology described herein, while applied to the M4 maintenance task in the prototype, is domain independent 
and well suited to a range of training tasks. Virtual environments have broad appeal when real-world practice incurs 
significant time, expense, or risk. The assessment and solution authoring capabilities are best suited to training tasks 
where a range of solutions is possible and where the completion of training exercises might involve exploratory 
actions or variability, rather than adherence to a fixed sequence of actions. 
 
Candidate training targets include the operation of complex artifacts (hardware or software), diagnosis and repair of 
complex devices, or even synthesis tasks (such as construction). In addition to object-centric training, the approach 
could also be adapted to individual and small unit collective training in more expansive environments, supporting 
the learning of tasks such as terrain navigation or movement under direct fire. The semantically enabled tracking and 
assessment capabilities of this framework could be integrated with operational training simulators, whether they are 
virtual, constructive, or game-based, potentially extending the training value of existing systems. 
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