The Path of the Blind Watchmaker

Andy Poggio SRI International UC Berkeley 2011

Outline

- Biology background
- The Last Universal Common Ancestor, LUCA
- Simple evolution model
- Reference species and their genomes
- Sequence evolution
- Population evolution
- Applications and future work

Evolution: the blind watchmaker

Central dogma of molecular biology

- DNA made up of 4 bases: a, t, c, g
- When replicated, occasional errors (mutations)
- Some DNA in genome is genes that code for proteins and regions that regulate them
 - Homologs are genes that evolved from a common ancestor gene
- Coding DNA transcribed to RNA
- RNA translated to protein by ribosome
- Proteins do work of cell

Evolution process

- Variation of characteristics (genetic mutation)
- Propagation of variation: reproduction and inheritance (duplicate of parent's genome in offspring)
- Environment has selective effects on variations (fitness affects longevity and/or fecundity)
- With these three components, evolution must occur

Pathogen evolution

- 3.1 million deaths in 2005 due to HIV virus
- Antibiotic vancomycin "drug of last resort" for bacterial infections
- 20-fold increase in vancomycinresistant bacteria from 1987-1993
- Pathogens evolve treatment resistance
- We need to understand, predict

Future of life

- Evolution shapes us (and all other life)
 - Stochastically
 - Consciously
 determined

?

LUCA

- LUCA is branching point; life exists prior to LUCA
- Consensus:
 - single-celled organism with 500-1000 genes

• Controversy:

- Simple prokaryote or complex, single-cell protoeukaryote exons/ introns "piece" together proteins
- DNA or RNA genome RNA has high mutation rate, rapid evolution
- If protoeukaryote, then reductive evolution produced prokaryotes (e.g. bacteria) prokaryotes "more efficient"

How did we get here from LUCA?

- A simple evolution model:
 - One mutation at a time makes a More Recent Ancestor (MRA)
 - Each MRA proliferates until a next MRA emerges
- Generation ≤ MRA ≤ Speciation

MRA – More Recent Ancestor

- Using mutation rate, growth rate, and sequence length from the literature, calculated 1.1*10⁹ years compared to 3.5*10⁹ years accepted time
- Relevant to actual process but significantly incomplete

Comprehensive model

 Input data: reference species (including LUCA) and their genomes

• What happened? Sequence evolution model

- Ra 1 CCCCAGGGTGGTGGCTGGGGGGCAG Rb 2 CCTCATGGTGGTGGCTGGGGGGCA Rc 3 CCCCATGGTGGCGGCTGGGGGACAG Rd 4 CCCCATGGTGGCGGATGGGGGACAG Re 5 CCTCATGGTGGCGGCTGGGGTCAA Ra 1 CCCCAGGGTGGTGGCTGGGGGGCAG Rb 2 CCTCATGGTGGTGGCTGGGGGGCA Rc 3 CCCCATGGTGGCGGCTGGGGACAG Rd 3 CCCCATGGTGGCGGCTGGGG Re 4' CCCCATGGTGGTGGCTGGGGGACAG Rf 5 CCTCATGGTGGCGGCTGGGGTCAA
- How did it happen and how long did it take? Population evolution model

Reference species

- Chosen for distinctions, not equal time intervals
- LUCA
- LUCAEukaryota -- organelles (e.g. nucleus, mitochondria, chloroplast), multicellular, sexual reproduction, exons/introns
- LUCAMetazoa -- heterotrophic (engulf food), motion, developmental stage due to gene regulation
- LUCAMammalia -- warm-blooded, vertebrate, mothers nourish young, neocortex
- Homo sapiens

Reference species genome reconstruction

- Need actual sequences
- Infer from existing species sequence data:
 - Phylogenetic tree creation
 - Multiple sequence alignment to determine corresponding bases
- Used existing tools together with new tool for reconstruction

Reference species genes

	Nonhomologous	Homologous	Total
LUCA	33		33
LUCAEukaryota	43	33	76
LUCAMetazoa	43	76	119
LUCAMammalia	44	119	163
Homo sapiens	39	163	202

- Nearly 600 genes total
- LUCA deoxyribonuclease, involved in DNA manipulation and repair

atggaatacaaacccatgccttatccaatgattgattctcactgtcatcttgatattccagaatttgatc atgacagagatgaagccattcagaaagccaaaaaaacaggtgttgtcgtaatggtggcaattccggaatt tgccttgaaagaaattgaaaaagtcttgaaaattttcgaggaaaattacgagaatgttctttcagcactg ggttttcatcccgatatcggtgaaaaagatatcaactaaaatgaattggataaaagttaagcaatagctg gaaaggcggtagctatcggagaagtcggcctagattattattactgcaaaacagacgaggaaaaggaaaaa acagagagctttatttgaaaagctgatcgagcttgccaaagaactggaaatgcctgtggttgtgcatgcc agaatggctgaaagagaagccattaatattctccaagagcttgacggggacatagtcaccgtaattttc actcctataccggctctgttgaaaccgcaaaggaaatagtggaagcaggctactttatctcaatggctgg aattgtgaccttctgtcattccgaacattagcaaaagttgcagaaaagtgcccctcgaaaacctgctg ctcgaaacagattctccttttctggcccctataagacaccggggtcagaaatgagccatggattgttaat attatccctgaagagattgccagaattaaggaaatggcacttgaagaagtgctgaaataacaactgaaa acgcacgcaaattttttcctaagctggctcggttgctcaagatataa

Mutations

- 14 mutation types
- Essential mutations for model:
 - substitutions | ||

aacg

- Inversions atcg pgcta cgat (reverse+complement)
- Others common bulk adds or subtracts
- Made survey of empirical mutation rates; arithmetic means of relevant species used

Sequence evolution model

- Sequence evolution is set of mutations that occurred as one sequence evolved to another
- Determined through pairwise sequence alignment of each reference species gene with predecessor reference species homolog or other gene
- Homologs aligned with homolog in previous reference species
- Nonhomologs aligned with unrelated genes in previous reference species and with random sequences

Sequence alignment

а

t

g

С

g

- Global, end-to-end alignment
- Alignment scores based on mutation rates
 - indel and inversion scores are a function of length
- Multiple paths/alignment
 - more paths for longer sequences
- Most probable paths near diagonal
- Nearly 50,000 alignment paths produced

Finding inversions

- Distinct from global alignment algorithm inversions can start/end anywhere; want probable ones
- Inversion must end when no longer probable
- Inversions must be aligned as may contain mutations

Homologous/nonhomologous distance comparison

Reference species mutation comparison

Inversions

- Microinversions length 4 detected under special circumstances
- Minimum length 12
- All alignments performed with and without inversions
- Conclusion: Inversions reduce alignment distance (increase alignment probability), confidence >99%

Nonhomologous gene evolution

- Must come from unrelated gene sequence or random sequence
- Modest confidence (>80%) coding sequence more likely for most reference species
- Likely due to protein secondary and tertiary structures that are functional in many contexts

Universal source sequence

- Gene sequence better than random sequence for creating nonhomologous genes – some genes better than others?
- 4 LUCAMammalia genes aligned with 39 nonhomologous Homo sapiens genes
- Small sample size provided modest evidence for universal source sequence
- Best source gene was 21530LUCAMammalia
 - Homologs back to LUCA
 - No consensus function in LUCA
 - Speculation: function is to act as universal source sequence

How to make a Homo sapiens

- Start with a LUCA genome
- Insert 26,000,000 bases
- Delete 25,700,000 bases
- Substitute 177,000,000 bases
- Invert 107,000,000 bases

- Enjoy your new species with its consciousness, intelligence, creativity, and empathy
- Key question: how long did it take? Need population model for answer

Population model

- Population evolution simulation
- Two types of mutations:
 - mutation₊ makes an MRA
 - mutation_ nullifies a mutation,
 - probabilities defined by mutation rates survey and sequence evolution model results
 - P(mutation₊) < P(mutation₋) many ways to nullify a mutation₊
- Confined to LUCAMammalia to Homo sapiens evolution because good estimates for earlier species model parameters not available
- Model sequence length < Homo sapiens effective sequence length
- Standard model length 200, scaled up where needed; other lengths also investigated

Population pools

- Pools numbered from 0 to *n*
- Pool_k contains individuals with k net mutation₊s
- Newborns have mutations based on empirical probabilities
- When pool *n* population \geq 1, model run complete
- Pools whose numbers are close are said to be similar

Population evolution model 0.1

- Reasonable time/mutation,
- Populations problematic

Carrying capacity

- Resources, competition, predation limit species population in an environment
- g = birthRate-deathRate
- dpop/dt = g*pop*(1-(pop/K)), K carrying capacity
- pop approaches K, g approaches 0 and birthRate, deathRate approach each other
- $birthRate \neq 0$
- Used mean of mouse and human estimates ²⁸

Population evolution model 0.2

- Time/mutation₊ too long (model run terminated early)
- Populations reasonable

Sexual reproduction

- Two individuals from pool_k, pool_l have (k*l)/n mutation₊s in common
- They have (k+l)-(2*(k*l)/n) distinct mutation,s
- Offspring inherit all common mutation₊s and a binomial distribution of distinct mutation₊s
- Zygotes placed in broader pool range than parents
 - parents pool₈, pool₉
 - zygotes pool₇ to pool₁₀ inclusive

Population evolution model 0.3

Time/mutation, better but still too long

Fitness

- Mutation₊s may confer some fitness advantage
- Most fit (highest pool) has fitness 1.0
- Less fit genotype *i* has relative fitness 1-s_i where s_i is the selection coefficient against genotype *i* compared to fittest
- Pool_i with less mutation₊s than pool_{fittest} has birth rate reduced by 1-((*fittest-i*)*s) where s is selection coefficient for model

Population evolution model 0.4

- Fitness selection coefficient 10%
- Time/mutation₊ good
- Selection coefficient unrealistically high
- Modest value of 1% more appropriate

Nonrandom mating

- Classic population models, e.g. Hardy-Weinberg, assume random mating – frequently inaccurate
- Speciation
 - many speciation events between LUCAMammalia and Homo sapiens
 - can't mate outside of species
 - model sequence length less than Homo sapiens sequence length – speciation implied at boundaries of model sequence length

- Maximum difference in pool numbers that two mates can have
- With mating radius 2, pool_k members can mate with pool_{k-2} to pool_{k+2}
- Speciation limits mating radius
- Consider mates from pool_k and pool_l
 - Offspring go into pools with binomial distribution having peak at (k+l)/2; offspring go into pools similar to pool_k and pool_l
 - Mammals have small natal dispersal, so mate with individuals from similar pools, hence limited mating radius

Population evolution model 1.0

- Standard model has carrying capacity, sexual reproduction, selection coefficient 1%, mating radius 5
- Time/mutation₊, population both good

Evolution duration estimate

- Estimate for LUCAMammalia to Homo sapiens
- Using standard model with parameter values obtained from literature or otherwise estimated
- Model duration of 186 million years compares well with broadly accepted estimate of just over 200 million years
- Key question: was there enough time? Model demonstrates that there was
- Using other reasonable estimates for parameters, can obtain values from 0.5 million years to greater than age of universe

Insensitive population evolution parameters

- Birth rate or death rate very small change over 4 orders of magnitude
- Mutation rate small change over 4 orders of magnitude

Top 4 population evolution parameters

- Sexual reproduction and mating radius both have exponential effects with small changes in parameter values
 - sexual reproduction used model sequence length smaller than standard
- Prokaryote Horizontal Gene Transfer (HGT, absorbing DNA from environment) served same purpose as sexual reproduction
 - model consistent with recent results showing HGT common
- High mating radius sensitivity

Top 4 population evolution parameters

carrying capacity

- Large reductions in carrying capacity increased time by a similar magnitude
- Large increases had modest effect

- A very high fitness (selection coefficient) reduced time substantially
- It reduces the population of early pools, increasing that of later pools (show model runs)
- Fitness is the only one of the four parameters that asymmetrically favors progress

selection coefficient .10

Fundamental population evolution

- Mutation₊s and mutation₋s occurred resulting in offspring in higher or lower pools, respectively
- Sexual reproduction produces zygotes in broader pool range than parents; mating radius limited lower-number pool offspring despite higher population
- Increased fitness (selection coefficient) slowed growth of, and ultimately reduced population of, lower-numbered pools; this resulted in increased population of highernumbered pools
- By limiting how rapidly population pools could grow, carrying capacity slowed evolution to rates we observe in nature

Small population property

- When population << carrying capacity, any sequence produced in time linear to length, independent of other parameters
- This is the case when an individual microbe mutates to have antibiotic resistance
- While conferring advantage, resistance also carries fitness cost, mitigated by subsequent evolution; speculate this is due to small population property

Fitness

- Fitness is only parameter that is not symmetric
 - selection coefficient > 0 benefits higher-numbered pools
- Fitness effect not required for expected evolution duration
 - mean selection coefficient = 0 is sufficient
- Large fitness effect substantially reduces evolution time

- Speciation prevents mutation₊s from regression due to sexual reproduction
- Individuals in new species can't mate with lower-numbered pools as they are different species
- Does not prevent regression due to mutation_s

Mating radius and sexual attraction

- Radius limited by:
 - must be same species
 - low natal dispersion for mammals
- Sexual attraction may serve to limit mating radius
 - not too different (must be same species)
 - not too similar (otherwise subject to inbreeding issues)
 - Mating with an individual from similar pool provides these characteristics
- Speculation: advantage of limited mating radius partial cause of some human biases such as xenophobia

pool

k

pool

k

pool

k+1

pool

k+2

pool

k+3

pool

k-2

pool

k-1

pool

. k-3

Application: Synthetic Biology

- Create synthetic organisms with valuable properties, e.g. produce biofuel
- Stability requirement
- Can predict time to loss of property using sequence and population model
- Initial recommendations for high stability:
 - make valuable property resistant to SNPs
 - preclude horizontal gene transfer

Application: pathogen evolution

- Pathogens evolve resistance to drugs (or vaccines)
- Using protein structural prediction or empirical data, determine what pathogen mutation(s) confer resistance to a drug
- Using sequence and population models, predict expected time to resistance emergence
- Use models to determine means to postpone resistance

Future work

- In vivo: determine carrying capacity, fitness, and mating radius values in nature
- In vitro: measure more mutation values, especially inversion rates and lengths
- In silico:
 - complete LUCA and other reference species genome reconstructions
 - apply sequence evolution model to entire reference species genomes
 - confirm or refute universal source sequence hypothesis
 - implement fully multithreaded population model and run it on long model sequence lengths, simulating long periods between speciation events
 - model complete LUCA to Homo sapiens evolution
 - determine heterozygosity effects during population evolution

Thanks for the support

- <u>Thesis committee</u>:
- Prof. Dave Patterson, advisor
- Prof. Adam Arkin
- Prof. Brent Mishler
- Prof. Christos
 Papadimitriou

- SRI people:
- Steven Eker
- Ashish Gehani
- Merrill Knapp
- Keith Laderoute
- Pat Lincoln
- Ken Nitz
- Carolyn Talcott
- Al Valdes
- And many others who provided advice or processor cycles

- Organizations:
- SRI International
- UC Berkeley
- ONR
- DARPA
- NSF
- NIH
- Sun Microsystems

