
Final Technical Report February 28, 1992

A REAL-TIME INTRUSION-DETECTION EXPERT SYSTEM (IDES)

Prepared by:

Teresa F. Lunt, Ann Tamaru, Fred Gilham,
R. Jagannathan, Caveh Jalali, Peter G. Neumann
Computer Science Laboratory

Harold S. Javitz, Information Management and Technology Center
Alfonso Valdes, Applied Electromagnetics and Optics Laboratory
Thomas D. Garvey, Artificial Intelligence Center

SRI Project 6784

Prepared for:

Mr. Robert Kolacki, Code 3421
SPAWAR
Washington, DC 20363-5100

Contract No. N0003S89-C-0050

Abstract

SRI International has designed and developed a real-time intrusion-detection expert
system (IDES). IDES is a stand-alone system that observes user behavior on one or more
monitored computer systems and flags suspicious events. IDES monitors the activities of
individual users, groups, remote hosts and entire systems, and detects suspected security
violations, by both insiders and outsiders, as they occur. IDES adaptively learns users�
behavior patterns over time and detects behavior that deviates from these patterns. IDES
also has a rule-based component that can be used to encode information about known
system vulnerabilities and intrusion scenarios. Integrating the two approaches makes
IDES a comprehensive system for detecting intrusions as well as misuse by authorized
users. IDES has been enhanced to run under GLU, a platform supporting distributed,
parallel computation; GLU enhances configuration flexibility and system fault tolerance.

This final report is a deliverable item for work supported by the U.S. Navy, SPAWAR,
which funded SRI through U.S. Government Contract No. N00039-89-C-0050.

Contents

1 Introduction
1.1 Earlier Work. .
1.2 IDES Overview .
1.3 Progress .

2 The IDES Design Model

1
2
3
4

9

3 The Audit Data
3.1 Types of Audit Data .
3.2 Generation of Audit Data on Sun UNIX
3.3 Sun Source Code Bug Fixes .

4 The Realm Interface
4.1 IDES Audit Record Generator (agen) .
4.2 Audit Record Pool (arpool) .
4.3 IDES Audit Record Design .
4.4 Implementation .

4.4.1 Communication between Agen and Arpool
4.4.2 IDES Audit Record Format .

4.5 Linking to IDES Processing Units .
4.5.1 Preferred Calls .
4.5.2 Older Versions of Arpool Stub Routines

5 The Statistical Anomaly Detector
5.1 Statistical Algorithms .

5.1.1 The IDES Score Value .
5.1.2 How T2 Is Formed from Individual Measures
5.1.3 Types of Individual Measures .
5.1.4 Heuristic Description of the Relationship of S to Q
5.1.5 Algorithm for Computing S from Q
5.1.6 Computing the Frequency Distribution for Q
5.1.7 Computing the Q Statistic for the Activity Intensity Measures . .

15
15
16
17

19
19
20
21
22
22
23
28
28
29

31
32
32
33
34
36
37
38
39

5.1.8 Computing the Q Statistic for the Audit Record Distribution Measure 40

i

ii

5.1.9 Computing the Q Statistic for Categorical Measures 43
5.1.10 Computing the Q Statistic for Ordinal Measure 44

5.2 Design and Implementation . 45
5.2.1 Functional Architecture . 45
5.2.2 Implementation Details . 48
5.2.3 Future Work . 49

5.3 Intrusion-Detection Measures . 50
5.3.1 User Measures . 51
5.3.2 Target System . 53
5.3.3 Remote Host . 54

6 The IDES Expert System 57

7 The IDES User Interface 63
7.1 Design Concepts . 63

7.1.1 IDES User Environment . 64
7.1.2 Display Objects . 65

7.2 User Interface Components . 68
7.2.1 Security Officer�s User Interface 68
7.2.2 Data Analyst Information . 72
7.2.3 System Administration Data . 76

7.3 IDES User Interface Library (libiui) . 78

8 G L U 81
8.1 System Requirements . 81
8.2 The Multiprocessing Approach . 82
8.3 GLU: A Software Platform for Multiprocessing 82

8.3.1 GLU Programming Model . 83
8.3.2 GLU Execution Model . 85
8.3.3 Recovery from Partial Faults . 87

8.4 Implementation of IDES using GLU . 89
8.5 Evaluation . 91

9 Remaining and Proposed Work 93
9.1 Scalability and Resistance to Attack - The GLU Platform 97
9.2 The Resolver . 98

9.2.1 Resolver Models and Other Data Sources 99
9.2.2 Resolver Operation . 100
9.2.3 Evidential Reasoning . 101
9.2.4 Benefits of Model-Based Reasoning 102

9.3 Monitoring Network Traffic . 103
9.4 A Neural Net Component for IDES . 104

9.4.1 Neural Networks . 104

iii

9.4.2 Uses of Neural Networks in IDES 105
9.5 Large Network Architecture . 106
9.6 Improved Detection Capability . 107
9.7 IDES Experimentation . 109
9.8 Summary . 109

A PBEST - A Production-Based Expert System Tool 111
A. 1 Introduction . 111
A.2 Getting Started . 112
A.3 BasicSyntax . 115
A.4 MoreSyntax. 119
A.5 Communicating with the Outside World 125
A.6 Other Programming Considerations . 128
A.7 The PBEST Interactive Window System 129
A.8 Certainties and Justifications . 143
A.9 A Sample Makefile . 143
A.10 PBEST Syntax Diagrams . 145
A.11 Invoking pbcc . 153

iv

List of Figures

2.1
2.2
2.3
2.4

5.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3

A.1
A.2
A.3
A.4
A.5
A.6
A.7
A.8
A.9

IDES Design Model . 9
IDES Domain and Realm Interface . 11
IDES Realm Interface and Processing Environment 12
IDES General Functional Diagram . 13

Statistical Anomaly Detection Process Unit 46

SOUI Main Window . 70
SOUI Anomaly Graph Window . 71
Peek Selection Window . 73
Scdist Display Window . 74
Statconfig Program (measure modifications) 75
Statconfig program (parameter modifications) 76
Statconfig Program (command classes) 77

IDES Expert System in GLU . 86
Data Parallelism in an Expert System. 88
IDES in GLU . 90

The PBEST Interactive Window . 130
The Result of Clicking on the Step Button 131
The Result of Selecting a Rule from the Rules List 132
The Effect of Clicking on the Set Breakpoint Button 133
The Effect of Selecting a Fact in the Facts List 134
The Result of Clicking on the Trace Button 135
The Result of Clicking on the -> Ptypes Menu Button 136
Selecting the count Ptype . , 137
The Effect of Clicking on the Assert Fact Button 138

A.10 Fact is Asserted . 139
A.11 Selecting a Fact to Negate . 140
A.12 The Effect of Clicking on the Negate Button 141

vi

Sun workstation, SunViews, and the combination of Sun with a numeric suffix are trade-
marks of Sun Microsystems, INC.

DEC-2065 and TOPS-20 are trademarks of Digital Equipment Corporation.

ORACLE is a trademark of the Oracle Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

Chapter I

Introduction

Existing security mechanisms protect computers and networks from unauthorized use
through access controls, such as passwords. However, if these access controls �are com-
promised or can be bypassed, an abuser may gain unauthorized access and thus can cause
great damage and disruption to system operation.

Although a computer system�s primary defense is its access controls, it is clear from
numerous newspaper accounts of break-ins, viruses, and computerized thefts that we
cannot rely on access control mechanisms in every case to safeguard against a penetration.
or insider attack. Even the most secure systems are vulnerable to abuse by insiders who
misuse their privileges, and audit trails may be the only means of detecting authorized
but abusive user activity.

Other modes of protection can be devised, however. An intruder is likely to exhibit
a behavior pattern that differs markedly from that of a legitimate user. An intruder
masquerading as a legitimate user can be detected through observation of this statistically
unusual behavior. This idea is the basis for enhancing system security by monitoring
system activity and detecting atypical behavior. Such a monitoring system will be capable
of detecting intrusions that could not be detected by any other means, for example,
intrusions that exploit unknown vulnerabilities. In addition, any computer system or
network has known vulnerabilities that can be exploited by an intruder. However, it is
more efficient to detect intrusions that exploit these known vulnerabilities through the
use of explicit expert-system rules than through statistical anomaly detection.

While many computer systems collect audit data, most do not have any capability for
automated analysis of that data. Moreover, those systems that do collect audit data
generally collect large volumes of data that are not necessarily security relevant. Thus,
for security analysis, a security officer (SO) must wade through stacks of printed output
of audit data. Besides the pure tedium of this task, the sheer volume of the data makes
it impossible for the security officer to detect suspicious activity that does not conform

1

2 Introduction

to a handful of obvious intrusion scenarios. Thus, the capability for automated security
analysis of audit trails is needed.

The Intrusion-Detection Expert System (IDES) is theresult of research that started in
the Computer Science Laboratory at SRI International in the early 1980s and that led
to a series of IDES prototypes. The current prototype, described in this final report, is
designed to operate in real time to detect intrusions as they occur. IDES is a compre-
hensive system that uses innovative statistical algorithms for anomaly detection, as well
as an expert system that encodes known intrusion scenarios [l, 2, 3, 4, 5, 6, 7, 8, 9]. One
version of the prototype is running at SRI and monitoring a network of Sun workstations.
Another version is running at the FBI and is monitoring an IBM mainframe.

We have also conducted an SRI IR&D project to investigate the application of model-
based reasoning to intrusion detection [10].

1 . 1 E a r l i e r W o r k

One of the earliest works on intrusion detection was a study by Jim Anderson [11], who
suggested ways of analyzing computer system audit data. His methods use data that are
collected for other reasons (e.g., performance analysis) and were designed for �batch�
mode processing; that is, a day�s worth of audit data would be analyzed at the end of
the day.

Subsequent to Anderson�s study, early work focused on developing procedures and al-
gorithms for automating the offline security analysis of audit trails. The aim of such
algorithms and procedures was to provide automated tools to help the security officer in
his or her daily assessment of the previous day�s computer system activity. One of these
projects, conducted at SRI, used existing audit trails and studied possible approaches
for building automated tools for audit trail security analysis [12]. This work involved
performing an extensive statistical analysis on audit data from IBM systems running
MVS and VM. The intent of the study was to develop analytical statistical techniques
for screening computer system accounting data to detect user behavior indicative of in-
trusions. One result of this work was the development of a high-speed algorithm that
could accurately discriminate among users, based on their behavior profiles.

Another such project, led by Teresa Lunt at Sytek [13], considered building special se-
curity audit trails and studied possible approaches for their automated analysis. These
projects provided the first experimental evidence that users could be distinguished from
one another through their patterns of use of the computer system [12], and that user be-
havior characteristics could be found that could be used to discriminate between normal
user behavior and a variety of simulated intrusions [14, 15, 16, 17, 18, 19].

In addition, the Sytek work sought to provide a feasibility demonstration for a tool that

Introduction 3

would rank the detected unusual activity by its suspiciousness [13]. Sytek�s work was
guided by concepts from pattern recognition theory. Each user session was recognized
as normal or intrusive, based on patterns formed by the individual records on the audit
trail for that session. The Sytek study defined several audit record features as functions
of the audit record fields. For each user, expected values for the features were determined
through a process called training (that is, for each feature, the set or range of values was
determined from the audit data). The study then tested the features for their ability to
discriminate between normal sessions and sessions containing staged intrusions. Features
that successfully detected the staged intrusions were combined to create for each user a
user profile - the set of normal values for each feature.

The evidence of the early Sytek and SRI studies was the basis for SRI�s real-time
intrusion-detection system, that is, a system that can continuously monitor user be-
havior and detect suspicious behavior as it occurs. This system, IDES, is based on two
approaches: (1) intrusions, whether successful or attempted, can be detected by flag-
ging departures from historically established norms of behavior for individual users, and
(2) known intrusion scenarios, known system vulnerabilities, and other violations of a
system�s intended security policy (i.e., a priori definition of what is to be considered
suspicious) are best detected through use of an expert-system rule base.

Largely as a result of the pioneering work at SRI, several other intrusion-detection
projects are under way at other institutions. For a survey of these, see [20].

1.2 IDES Overview

IDES runs independently on its own hardware (Sun workstations) and processes audit
data received from one or more target systems via a network. IDES is intended to
provide a system-independent mechanism for real-time detection of security violations,
whether they are initiated by outsiders who attempt to break into a system or by insiders
who attempt to misuse their privileges. IDES is based on the intrusion-detection model
developed at SRI [21, 22]. This model is independent of any particular target system,
application environment, level of audit data (e.g., user level or network level), system
vulnerability, or type of intrusion, thereby providing a framework for a general-purpose
intrusion-detection system using real-time analysis of audit data.

The IDES prototype determines whether user behavior as reported in the audit data is
normal with respect to past or acceptable behavior as represented by a user�s histori-
cal profile of activity. The IDES prototype continually updates the historical profiles
over time, using the reported audit data to learn the expected behavior of users of the
target systems. IDES raises an alarm when a user�s current observed activity deviates
significantly from the user�s historical profile. The prototype provides mechanisms for
summarizing and reporting security violations as well as for detecting intrusions that

4 Introduction

cannot be detected by the access controls (e.g., because they circumvent the controls or
exploit a deficiency in the system or its security mechanisms).

IDES employs several approaches toward detecting suspicious behavior. IDES attempts
to detect masqueraders by observing departures from established patterns of use for
individuals. It does this by keeping statistical profiles of past user behavior. IDES also
includes expert-system rules that characterize certain types of intrusions. IDES raises an
alarm if observed activity matches any of its encoded intrusion scenarios.

IDES also monitors certain system-wide parameters, such as CPU usage and failed login
attempts, and compares these with what has been historically established as �usual�
or normal for that facility. The IDES security officer interface maintains a continuous
display of various indicators of user behavior on the monitored system. When IDES
detects an anomaly, it sends to the screen a message indicating the cause of the anomaly.

Each target system must install a facility to collect the relevant audit data and put them
into IDES�s generic audit record format. We have developed a flexible format for the
audit records that IDES expects to receive from the target system and a protocol for the
transmission of audit records from the target system. The IDES protocol and its audit
record format are system independent; our intent is that IDES can be used to monitor
different systems without fundamental alteration.

IDES monitors target system activity as it is recorded in audit records generated by
the target system. IDES maintains profiles for subjects. A profile is a description of
a subject�s normal (i.e., expected) behavior with respect to a set of intrusion-detection
measures. The subjects profiled by IDES are users, remote hosts, and target systems.
Profiling remote hosts allows IDES to detect unusual activity originating from a partic-
ular outside system, whether or not the user activity seems abnormal. Profiling a target
system enables IDES to detect system-wide deviations in behavior. Again, such devia-
tions may not be attributable to a single user. For example, the number of system-wide
login attempts may be indicative of an intrusion attempt, although they might not all be
attributable to a single user ID. We also plan to profile groups of subjects, which enables
IDES to detect when the behavior of an individual member of a group deviates from the
overall average behavior of the group. For example, IDES can detect when a secretary
is not behaving like a �typical� secretary.

The profiles are updated daily, based on the observed behavior of the users of the target
system. Thus, IDES adaptively learns subjects� behavior patterns; as users alter their
behavior, the profiles change.

IDES also includes an expert-system component. The expert system contains rules that
describe suspicious behavior that is based on knowledge of past intrusions, known system
vulnerabilities, or the installation-specific security policy. The rules describe suspicious
behavior that is independent of whether a user is deviating from past behavior patterns.
Thus, IDES is also sensitive to known or posited intrusion scenarios that may not be

Introduction 5

easily detectable as deviations from past behavior. The rules can be used to encode
information about known system vulnerabilities and reported attack scenarios, as well as
intuition about suspicious behavior. Audit data from the monitored system are matched
against these rules to determine whether the behavior is suspicious. Although it is not
reasonable to expect that all possible intrusion scenarios can be foreseen and encoded
in IDES�s rule base, the combination of the rule-based component and the statistically
based component should have greater detective power than either component by itself.

1.3 Progress

The patterns of use for users of Sun workstations are different from patterns of use for
users of a centralized computing resource using computer terminals. Sun users typically
have several windows open simultaneously, many of which may be running UNIX shells
independent of the other windows. Unlike the TOPS-20 environment that the IDES
prototype monitored previously, there is no concept of user session, because users may
open or close UNIX shells or other windows without logging in or out, and may leave
these windows activated for extended periods (days or weeks) without ever logging out of
the workstation. A user typically has �superuser� privileges on his own workstation, but
usually does not have such privileges on other workstations. Users in a networked Sun
facility have more remote logins, remote procedure calls, and file transfers than users of a
centralized computer. In addition, patterns of abuse may differ significantly because users
typically have to remotely log in to another workstation or use remote procedure calls to
access sensitive resources, which are more likely to be associated with a machine other
than the user�s own. Thus, we have included suitable measures of behavior, for users of
a networked Sun facility, that capture any given user�s distinctive behavior pattern and
that are also useful in discriminating between normal and potentially abusive behavior.
We have made modifications to IDES to enable it to integrate data from numerous sources
for any given user, allowing us to track the activity of a user who is remotely accessing
other workstations or who moves from workstation to workstation.

Based on preliminary experiments and tests using IDES on the TOPS-20 target system,
we found many areas in which IDES�s statistical algorithms could be improved. We
tested an earlier version (Release 1) of our statistical algorithms using data collected
from our now-retired TOPS-20 machine. (Release 1 was the �improved� version that
monitored TOPS-20. It was our second TOPS-20 prototype; the first was a much simpler
version delivered on tape to SPAWAR in 1988.) The Release 1 algorithms made certain
assumptions about the way usage patterns would be reflected in audit data. For example,
in many cases we assumed that the data were multivariate normally distributed after a
suitable transform, and thus we had simple procedures that merely looked for variances
greater than N standard deviations from the mean. After testing these algorithms against
the TOPS-20 data, we found that these assumptions resulted in an unacceptably high

6 Introduction

false alarm rate. As a result, we decided to redo the algorithms to remove some of
these assumptions. In the process, we have completely redesigned and reimplemented
the statistical component of IDES to accommodate the new algorithms and to make this
component easier to modify in the future.

We have completely redesigned IDES, making it highly modular. Previous versions of
IDES were much simpler and involved a programming staff of only one or two people.
The current version of IDES is by comparison quite complex. It includes the capability of
monitoring heterogeneous target machines (e.g., UNIX and IBM mainframe) simultane-
ously, as well as the capability to simultaneously monitor multiple homogeneous targets.
It is also capable of monitoring several sources of audit data from any single machine. It
is intended to be extensible, in that it will be easy to add additional analysis components.
It uses more robust statistical algorithms, an expert- system component, and a more so-
phisticated user interface. To support the development of this new version, the IDES
team has grown to a size of eight people. The original design had evolved by accretion.
We felt that it was time to start over and develop a modular design that would

1. Facilitate communication among team members

2. Isolate a given programmer�s responsibility to a clearly defined system layer or
component

3. Remove low-level dependencies from high-level IDES functionality

4. Provide a framework for the gradual removal of dependence on a database man-
agement system

5. Allow enforcement of proven software engineering practices

We have also put a substantial amount of effort into the IDES security officer interface.
We have developed a library of graphical routines that can be used to facilitate quick
assembly of a graphical user interface. We have moved from the Sun windowing system
(SunViews) to the X Window System, which is emerging as a de facto standard windowing
system.

We have reassessed our use of the ORACLE database management system in IDES. After
reviewing the new design approach and running several benchmark experiments, we have
come to believe that there is a mismatch between the requirements of the online IDES
processor and the capabilities of ORACLE. For this reason we have decided to stop using
ORACLE for the online IDES processor. There is a possibility that ORACLE or another
database system can be used for the purposes of providing query capability, both for the
security officer, using �canned� queries, and for the data analyst, who will be able to
make ad-hoc queries over the audit data.

Introduction 7

Our primary consideration in the decision to abandon ORACLE for the online IDES
processor was that ORACLE did not allow us to retrieve data fast enough. We felt that
there was a lot of mechanism in ORACLE that we did not need, and this was the major
factor in the poor performance. We found that using a UNIX file-based implementation
provided adequate performance.

One concern that we had was the issue of concurrent access to the database. ORACLE
provides a very general mechanism of row-level locking, allowing concurrent access by
both reading and writing processes. We originally planned to make use of this facility,
and when we decided not to use ORACLE, the question arose as to how much effort we
would have to spend implementing our own concurrency mechanism. By analyzing the
patterns of access, we discovered that we would, in the worst case, have only read-write
concurrency, and never write-write concurrency. This worst-case situation would occur
only once a day, at profile update time. We also found that reader-reader concurrency
would be infrequent (occurring only when a security officer or data analyst wanted to
view a subject�s profile on the fly). On this basis we felt that a caching process coupled
with a simple protocol to update the cache as needed could mediate access to user profile
data.

We have also integrated an expert-system tool into IDES and have developed an expert
rule base for IDES. The rule base encodes known intrusion scenarios and known system
vulnerabilities. The tool provides a rule-specification language, a translator that produces
the actual expert-system code, and run-time libraries to support all the capabilities of
the expert system. It also provides the ability to create a debugging version of the expert
system. This tool was developed in house. The rule debugging facility helps the person
who is developing the rule base to test and debug the candidate rules. We envision that
the IDES security officer will be adding and modifying rules in the IDES rule base and
will make extensive use of the rule debugging facility. A rule is analogous to a software
procedure or subroutine, and must be tested and debugged to ensure that it behaves as
expected under a variety of input data conditions.

We have implemented the expert-system portion of IDES, and we are analyzing data
from the FBI, using a rule base we are developing in conjunction with the FBI that is
specific to its application. In addition, we have developed expert-system rules specific to
Sun UNIX.

In the process of moving toward monitoring a network of Sun workstations, we evaluated
the audit data collected by the C2 Sun UNIX system, and we made some changes to
the specific data collected so as to obtain the data we felt were most meaningful while
significantly reducing the amount of data to be analyzed.

We have developed a new core technology, which we call GLU (Granular Lucid), that
will allow IDES to be easily scalable to many processors. From a design standpoint,
GLU allows us to exploit the natural parallelism present in the IDES processing of audit
data, and encourages a highly modular design. GLU also gives IDES increased fault

8 Introduction

tolerance, because it automatically reschedules to another processor tasks that were active
on a processor that failed. We have tested GLU by implementing a portion of the
IDES software on it, and have demonstrated its ability to transparently distribute IDES
processing among several Sun workstations and to redistribute IDES processing when
one of the workstations goes down. We plan to use GLU to allow us to easily migrate to
the Next Generation IDES.

Chapter 2

The IDES Design Mode1

The original version of IDES was designed and developed to support a single target
host. We have redesigned its architecture so that it can be applied to any number of
heterogeneous target systems, as well as provide a platform for experimental intrusion-
detection techniques and various implementation methods.

The design model we use is divided into four parts: the target system domain, the realm
interface, the processing engine, and the user interface. Figure 2.1 is a diagram of the
model.

Figure 2.1: IDES Design Model

In the IDES environment, a realm is a group of similar target machines that are being
monitored; �similar� means that the machines produce audit trails that have the same

9

10 The IDES Design Model

format. For example, in our prototype, the network of Sun workstations that we monitor
consists of one realm type. In addition to providing the target audit trails, each realm
interface may also support some authentication of the audit data to verify the source
from which it came.

The IDES target domain consists of a set of realms that are being monitored for anomalous
activity. Because there may be a number of monitored hosts, there can be more than
one centralized point of audit data collection and collation for a set of target systems as
well as for realms.

The IDES processor is the computing environment that is responsible for the analysis of
the information acquired from the IDES domain. IDES audit records are passed to the
various analytical engines, also known as event subsystems. All IDES event subsystems
process events on a per-audit record basis (or groups thereof). Currently, we have im-
plemented two anomaly-detection event subsystems, one based upon statistical methods
and the other a rule-based system. However, the design model does not limit subsystems
to provide only detection of abnormal behavior (e.g., a subsystem could be designed to
gather statistics for general target-system usage).

The IDES realm interface is the bridge that connects the IDES domain and the IDES
analytical components. This interface has two pieces: the part that resides within the
target system (the realm client) and the other one local to the IDES processor (the realm
server). Because various realm types have their own audit trail formats, a different realm
interface must be developed for each realm type. Together, these two components are
responsible for collecting the target system activities for the IDES analytical engines,
and for filtering out any realm-private data and setting them aside for specific uses as
needed.

For the sake of discussion, we will assume that the realm clients and server exist on
different systems on the same network, although the architecture is not restricted to this
configuration. Currently, each realm client converts audit records into a generic IDES
audit record format. Using a simple data transfer protocol, each realm client establishes
a connection with the realm server whereby the target system�s audit information is
transported across the network. The realm server stores the data, which it makes available
to the event subsystems as they indicate that they are ready for it. Note that there is
no definite distribution of functional responsibility between the realm server and its
corresponding clients, as the implementation may vary according to the features of the
target system. For example, a particular implementation is free to perform the conversion
of audit records into IDES format on the IDES machine itself if this is desirable for
performance reasons.

Two diagrams show how these three parts of the model are related to each other. Figure
2.2 shows a sample IDES domain containing four realms. Similar realm types may share
a single realm server, as indicated in the diagram with realm B using realm A�s server.
Realms C and D are drawn as individual realms, having their own sets of realm server

The IDES Design Model 11

and client processes.

Next, Figure 2.3 shows the corresponding configuration for the IDES processing envi-
ronment. The realm clients pass processed audit information to the event subsystems
simultaneously. The diagram also shows that IDES subsystems may be organized as
�phases.� For example, all anomalies, regardless of severity, may be diagnosed during
one phase, and then filtered at subsequent phases until the degree of abnormality is
significant to the IDES end user (usually a security officer).

IDES target domain

Figure 2.2: IDES Domain and Realm Interface

Note that these diagrams represent a more complex organization of an IDES environment;
our current prototype is a simpler instantiation of this model, using only one realm type.

The IDES user interface component allows the user to view any of the information
created and processed within the IDES system (i.e., the realm interface and the IDES
event subsystems), as well as to observe any component�s status and activity. Note that
the IDES domain does not encompass the IDES user interface; we have elected to keep
realm-specific data independent from the core IDES user interface, as they are generally
not relevant to the basic IDES data processing. Details on the user interface design are
discussed in Chapter 7.

Figure 2.4 puts the pieces of the entire IDES environment together in one diagram. It
shows the data processed by each component. The diagram also depicts where the IDES
user interfaces are incorporated into the system.

The IDES design model naturally lends itself to be engineered as a modular system,
where the implementation of each component can be changed without requiring major

12 The IDES Design Model

from
realm
servers

realm interface
IDES processing

environment

Figure 2.3: IDES Realm Interface and Processing Environment

changes to the overall system. It essentially allows us to separate the infrastructure of
IDES (methods of implementation) from the core functionality of the system (anomaly
detection).

The IDES system is currently composed of the following functional components:

 Realm Interface

 Statistical Anomaly Detector

 Expert System Anomaly Detector

 User Interface

Each of these components is implemented as an individual process, so as to exploit
distributed and parallel processing techniques to provide intrusion detection in as close
to real time as possible. Details on each component are described in subsequent sections
of this report.

The IDES Design Model 13

Figure 2.4: IDES General Functional Diagram

14 The IDES Design Model

Chapter 3

The Audit Data

The audit data described in this chapter are to the �raw� audit information supplied by
the target system. In particular, we discuss the audit data collected for IDES from a Sun
UNIX target system environment.

3.1 Types of Audit Data

Our intent in audit data collection is to gather as much information about a running
system as is practical. Typically, this information falls into four general categories:

 File Access. Includes operations on files and directories such as reads, writes,
creations, deletions, and access list modifications.

 System Access. Includes logins, logouts, invocation/termination of superuser priv-
ileges, and so forth. In general, any activity that requires a password falls into this
category.

 Resource Consumption. Includes CPU, I/O, and memory usage. We are currently
able to collect this information on a per-process basis, although it is available only
after a process has terminated. It is possible to obtain this information at some
arbitrary interval from an executing process; however, this would involve extra
programming effort and can increase the load on the target system, because it
requires polling the processes and scanning various kernel data structures with
every poll. For these reasons, we have not tried to acquire resource consumption
information for executing processes.

 Process Creation/Command Invocation. Indicates the creation of a process. This
information is usually available after invoking a command.

15

16 The Audit Data

IDES analytical units are capable of handling other potential types of data, but currently
we do not monitor for them because substantial Sun source code modification would be
required or because the collection of such data would encumber the target system itself,
resulting in significant degradation of performance. These types of data include

 Electronic Mail Traffic. This would require monitoring the source and destination
address of all incoming and outgoing mail on a user-by-user basis.

 Dynamic Resource Usage. This would require monitoring the resource consumption
(CPU usage) of every process on the system to determine its resource usage pattern
while it is executing. UNIX generally logs this information only when a process
exits.

We are considering the possibility of monitoring the target system for these potential
data for future versions of IDES, and we hope to find a way to collect such data without
significantly affecting the performance of the target system.

3.2 Generation of Audit Data on Sun UNIX

To provide the IDES analytical components with enough information to perform adequate
intrusion-detection analysis, we had to gather audit data from several different sources
on the Sun environment. These sources include

 SunOS 4.0 standard auditing system

 Sun C2 security auditing package1

 UNIX accounting system

The standard SunOS 4.0 system collects all audit information in log files. Each host
writes to exactly one audit file, uniquely defined for that host. These files grow in size as
new audit records are appended to them. Furthermore, at selected intervals (set by the
Sun system administrator), the system closes an audit file and begins writing to a new
one. Previously used audit files remain until they are deleted manually by the system
administrator (or by a privileged automated process).

The audit data for IDES are also obtained from the Sun C2 security package. With
systems running version SunOS 4.0 and later, the target system can be configured with

1 �C2� refers to evaluation class C2 of the Department of Defense Trusted Computer System Evaluation
Criteria [23]

The Audit Data 17

this package, enabling each target machine to record selected system calls into an audit
log file.

However, the information obtained solely from these two auditing systems is not suffi-
cient for IDES intrusion-detection analysis. For example, in order to obtain CPU usage
statistics, we must also poll various UNIX accounting files. At present, only one such file
is being monitored (/var/adm/acct for Sun 3 workstations or /var/adm/pacct for Sun
SPARCstations). In the future, it may be profitable to monitor other files as well. For
example, one such source will provide a detailed record of all mail exchanges for a system
and thus for each of its users.

3.3 Sun Source Code Bug Fixes

While it was our intent to avoid changing source code not under our control, such as
SunOS functions, several instances were encountered where we felt changes had to be
made in order to provide sufficient data for IDES intrusion-detection analysis. In most
cases, these were bug fixes to SunOS that were necessary in order to obtain the informa-
tion specified in Sun�s documentation. This had to be done by CSL because Sun could
not accommodate our needs in time for us to get a working IDES system available for
the project. The following list shows the SunOS source files that were modified and the
bugs that were fixed:

1. bin/login.c. This is the basic login mechanism that prompts the user for an account
name and a password. The bugs corrected were as follows:

 The C2 audit record was filled in with the user name used to invoke /bin/login
instead of the command �login�. This made it impossible to identify the audit
record. The audit record is now filled in with the proper information.

 The name of the physical port reported was incorrect or missing, and was
fixed.

 The user name for an attempted (failed) login was not reported if this name
did not appear in the password file. This name is useful for detecting login
attacks, and hence was added to the code.

2. bin/passwd.c. This is the UNIX password changer for local passwords. The C2
audit record was filled with the user name in the type field instead of the string
�passwd�. This made it impossible to identify the audit record. The audit record
is now filled in with the proper information.

3. bin/su.c. The su command allows users to change their user IDS if they know the
passwords of the user IDS they wish to assume. The C2 audit record was filled

18 The Audit Data

with the name used to invoke /bin/su instead of "su". This made it impossible
to identify the audit record. The audit record is now filled in with the proper
information.

4. usr.etc/rexd/unix_1ogin.c. Rexd is a daemon that allows the remote execution of
commands using the �on� command. The audit flag of the remote process was
incorrectly changed to full auditing, and this was fixed.

5. usr.etc/rpc.mountd.c. Mountd is part of the NFS service and provides the initial
contact for clients to mount directories using NFS. C2 auditing is set to �off� by
default when a process starts at system boot time. We changed this to enable C2
logging by default instead. We also added C2 and syslog auditing of failed mount
requests, as originally such requests were not logged. Now, any failed attempts of
mounting a directory are logged using both the syslog(3) and C2 audit mechanisms.

6. usr.etc/in.ftpd/ftpd.c. Ftpd is the server part of the ftp service and is responsible
for providing access to local files for a remote user. We added the capability of
logging C2 audit records for logins and attempted logins that failed because of a
bad password.

7. usr.etc/rpc.pwdauthd.c. Pwdauthd performs password checking on C2 systems be-
cause the encrypted passwords are hidden on C2 systems. Authd now returns
�success� only if the password check request originated on the local machine; oth-
erwise, �failure� is returned, and a l-second time delay occurs before the next
request is processed. Failure is returned so that the cracker will never know if he
has guessed a password. The l-second delay is intended to prevent outsiders from
loading our CPU by generating a large number of requests. In addition, logging
and C2 auditing were added.

The following problems with C2 auditing that could not be resolved with only minimal
changes to the SunOS source code:

1. Yppasswdd seems to be started before auditing is enabled when a system boots;
thus, it is not audited. This is actually a problem with the audit-uid and audit-
state values. These seem to be set to a �disabled� value at boot time, so daemon
processes are not audited unless they explicitly set these values.

2. During audit file switching, /usr/etc/security/audit_data seems to be updated be-
fore the new audit file is created and after the trailer mark has been placed in the
old audit file. This created an annoying problem for applications that must read
these files as a continuous stream of audit records over time.

Chapter 4

The Realm Interface

The IDES realm interface defines the interface between IDES and the target systems to
be monitored. It is assumed that each target system is somehow capable of providing
�raw� audit data to IDES. The realm interface is responsible for accepting the raw data,
converting them to a standard IDES audit record format, and temporarily storing them (if
necessary) until the IDES analytical components can process them. The realm interface
consists of two main components: a target system component (called agen) and an IDES
component (called arpool). The general functionality of these components is described
in the first few sections, followed by implementation details.

4.1 IDES Audit Record Generator (agen)

Agen is a utility that resides on the target machine (the one being monitored). It collects
raw audit data from several sources on the target machine (see Section 3.2) and translates
the system�s native audit record format into a canonical format that IDES can process.
For example, IDES has a notion of a user logging into a machine, and needs to know
that such an event has occurred. It is up to agen to decide what constitutes a login on a
particular target machine. In the UNIX environment, every time a (username, password)
pair is entered, a login has occurred. This could be through either a login from a terminal,
a remote login (rlogin) over the network, or perhaps by means of an FTP session.

Currently, each audit file is polled by agen at discrete intervals to see if the target system
has added audit data to it since the last poll. Each time new records are discovered, agen
reads batches of unprocessed audit records from the file, preprocesses them into IDES
format, and sends them to arpool. If no new records have been added, agen �sleeps� for
a short time before polling the files again.

This scheme provides several benefits. First, the target system automatically provides

19

20 The Realm Interface

the buffering of unprocessed audit records. Second, natural grouping (batching) of audit
records can take place. If IDES should fall behind in processing audit records, then
many new audit records can accumulate by the time the log files are polled again. The
software recognizes this situation and compensates by reading a group of audit records
the next time the log files are polled. In doing so, the average overhead of processing
each audit record is reduced, thus allowing IDES to work more efficiently in times of high
demand, while still providing good response times when very few audit records need to
be processed.

Some effort is also made to sort audit records by time. Due to the unpredictability
of UNIX scheduling, it is conceivable that one source of audit records may grow more
quickly and appear to be �ahead� of another source in that it contains audit records
that are newer than those in other files. By merge-sorting audit records from different
sources, we can greatly limit this phenomenon.

Agen can be considered the system-dependent part of the realm interface. It is sufficient
to rewrite only the agen component to be able to monitor a new type of target system.
There is considerable flexibility in its implementation. For example, under UNIX, it is
desirable and practical to monitor and report audit records in real time, and hence agen
should be implemented so that IDES audit records are passed to the IDES processing
environment as events occur on the target system. However, it is also possible to pass
audit records in batch mode, where previously collected audit data are processed by agen
and passed on to the IDES side of the realm interface. The latter is suitable for replaying
audit data for backtracking analysis, or for IDES experimentation.

4.2 Audit Record Pool (arpool)

The interface component of IDES to which monitored machines send their audit records
is the arpool process (also known as the envelope). It is the clearing house for IDES
audit records. Arpool resides on the server side of the realm interface, that is, its purpose
is to accept IDES-formatted audit records from multiple target machines and serialize
them into a single stream. It then does a little further processing of the data, such as
timestamping each IDES audit record and assigning a unique sequence number to each
one. Only one arpool process is required for a single IDES system.

The purpose for creating a single stream of IDES audit records is to allow IDES to
repartition the input stream in any way it chooses to achieve the best parallelism in
processing the records. In particular, GLU is capable of parallelizing the processing of
this input stream (see Chapter 8). Furthermore, in a networked target environment, a
user may be active on several machines, and thus it is likely for IDES to receive audit
records for the same user from different target machines. To relate all the activities to
that one user, it is necessary to merge audit records from multiple sources into a single

The Realm Interface 21

stream.

Arpool also functions as a temporary store (cache) of audit records waiting to be processed
by IDES. Since the collection and preprocessing of audit data is much faster than the
speed with which the analytical components can process the data, arpool can regulate
the audit data traffic. This feature also provides some degree of data integrity, as it can
store a substantial amount of IDES audit information in case one or more of the IDES
analytical components is temporarily down and unable to process the incoming records.

4.3 IDES Audit Record Design

The IDES audit record format is subject to several design considerations. First, it must
be general enough to be able to represent all possible kinds of events for the system(s)
being monitored. Second, it should be in a machine�s most efficient data representation
to allow processing with a minimal amount of representation overhead. For example, if
IDES needs to do numerical operations on integers, these values should be represented as
integers and not as ASCII strings. Likewise, the byte conversion issue should be resolved
before the audit record is sent to IDES. In other words, if the target machine uses a
native representation different from that used by the IDES processor, then the target
machine should do the data conversion. Third, the format should be standardized so
that IDES can accept input from a variety of machine types without performing any
data conversion. Ideally, audit records should be formatted only once. Since the IDES
audit record is always crafted from a system�s native audit record format, it makes sense
to generate the IDES audit record at the source (target system), so that no further data
conversions are necessary once the audit record has been accepted by the IDES processing
environment.

IDES audit records are classified by action types. There are about 30 different action
types, such as file reads, file writes, and logins. These actions enumerate the types of
events that IDES has been designed to monitor. They are predetermined and cannot be
changed without modifying IDES itself. However, in order to accommodate the possibly
limited auditing capabilities of different target systems, there is considerable flexibility
in qualifying each IDES action.

Each IDES audit record consists of an action type with several fields parameterizing
that action. Some of these fields are always defined, such as the timestamp of the audit
record, a subject ID, and target hostname. This mandatory collection of data forms
the fixed part of the IDES audit record. There is also a variable part of the IDES audit
record that contains information such as file names, directory names, or other appropriate
information, depending on the action type.

The functionality of IDES is only as good as the information it receives. Thus, it is desir-

22 The Realm Interface

able to supply as much information as possible with each audit record. IDES recognizes
the fact that not all target systems can provide all the information that IDES would
ideally like to receive, so it is reasonable for IDES to ignore some fields in the IDES audit
record if the information is not generated by the target system.

As a rule of thumb, all fields in the IDES audit record that can be filled with some
relevant information should be filled. If no data are available for some fields to be filled,
then these fields should be set to some distinct default value (either 0 or a null string,
as the case may be). For example, UNIX is not capable of generating the CPU-time
used by a system call; thus, the CPU utilization field in the audit records is set to 0,
whereas other target systems that do maintain such information would set this field to
the appropriate value.

On the other hand, not all detectable events need be reported to IDES. For example,
under SunOS with C2 enabled, we have chosen to not report stat(2) system calls to
IDES for two reasons. First, these system calls occur very frequently and are usually
redundant, and are thus not especially useful for intrusion detection. Second, the volume
of stat(2) calls is so large that considerable performance benefits are realized by ignoring
them.

4.4 Implementation

The following subsections discuss the implementation details of the realm interface.

4.4.1 Communication between Agen and Arpool

Arpool accepts audit records using SUNRPC. Our use of SUNRPC expands on the simple
RPC paradigm by allowing the RPC server to accept multiple remote procedures before
replying to any of them. This enables us to easily implement flow control in arpool.

Agen and arpool communicate with each other using SUN�s RPC mechanism. This allows
the implementation of a client/server model for communication between arpool and agen
with arpool as the server. We have chosen this protocol for transferring audit records to
IDES for its generality of implementation. Using RPC, many of the implementation de-
tails of data transfer have been hidden, leaving us with a relatively high-level abstraction
for data transfer. SUN�s RPC mechanism supports XDR (external data representation),
which attempts to solve problems that might otherwise have been introduced by com-
munication between heterogeneous machines.

However, the full XDR capabilities of SUNRPC have not been exploited because of certain
limitations of the RPC language. In particular, some of the C language constructs used
by IDES cannot be parsed by rpcgen, the RPC/XDR compiler. It was necessary to

The Realm Interface 23

create a separate header file defining the IDES audit record in a way that rpcgen could
understand. Since this would mean that the same data structures must be defined in two
places without any way to verify their consistency, we are not currently doing this. At
present, we support the Sun 3 (mc680x0) and Sun 4 (SPARC) architectures.

We have enhanced the standard RPC mechanism by allowing the RPC server process
(arpool in this case) to block a client (agen) while continuing to service other requests,
then unblock a previously blocked client. This all happens transparently to the client;
the client may merely notice that the RPC took a long time. Arpool uses this scheme for
flow control. When an agen process produces audit records much faster than IDES can
process them, that agen process is blocked until IDES�s analytical components can catch
up. The blocking takes place by delaying the reply phase of the RPC, and thus from
the client�s point of view, the RPC merely took a little longer than its usual transaction
time. The advantage of this scheme is that �producers� can be blocked, while the IDES
�consumers� (analytical units) can continue to be served.

Arpool is capable of noticing the termination of its clients. All communication is per-
formed using RPC over a TCP/IP channel. Failure of notification is obtained from the
state of this TCP channel. If the channel closes unexpectedly, then arpool assumes that
the remote process has terminated because of the death of that process or a machine
crash. The actual reason for the channel failure is not particularly important as long as
arpool can detect that the client has gone down.

Arpool does very little special processing upon the death of a client; however, a pseudo
audit record is created to indicate the abnormal termination of an agen process. Typically,
arpool removes any internal references that it might have had to that client so that all
further processing can continue as if that client had never existed. When a previously
failed client reconnects to arpool, it is treated as a new client since no relation is assumed
with any of its previous incarnations.

It is conceivable and possibly even tempting to have arpool restart any of its clients that
have terminated unexpectedly. However, it is probably the case that if a client fails once,
it will fail repeatedly until the actual problem has been resolved. When the problem has
been resolved, one can manually restart the failed client. If a machine crashes, clients
such as an agen process should be started automatically as part of the boot process, thus
ensuring that audit records are always reported to IDES.

4.4.2 IDES Audit Record Format

Action Types

We have defined the following action types for IDES intrusion-detection analysis:

24 The Realm Interface

 IA_VOID. This is a no-op.

 IA_ACCESS. The specified file was referenced (without reading/writing it).

 IA_WRITE. The file was opened for writing or was written.

 IA_READ. The file was opened for reading or was read.

 IA_DELETE. The specified file was deleted.

 IA_CREATE. The specified file was created.

 IA_RMDIR. The specified directory was deleted.

 IA_XHMOD. The access modes of the specified file have been changed.

 IA_EXEC. The specified command has been invoked.

 IA_XHOWN. The ownership of the specified object (file) has been changed.

 IA_LINK. A link has been created to the specified file.

 IA_CHDIR. The working directory has been changed.

 IA_RENAME. A file has been renamed.

 IA_MKDIR. A directory was created.

 IA_LOGIN. The specified user logged in.

 IA_BAD_LOGIN. The specified user tried unsuccessfully to log in.

 IA_SU. Superuser privileges were invoked.

 IA_BAD_SU. An attempt was made to invoke superuser privileges.

 IA_RESOURCE. Resources (memory, IO, CPU time) have been consumed.

 IA_LOGOUT. The specified user has logged out.

 IA_UNCAT. All other unspecified actions.

 IA_RSH. Remote shell invocation.

 IA_BAD_RSH. Denied remote shell.

 IA_PASSWD. Password change.

 IA_RMOUNT. Remote file system mount request (Network File Server).

 IA_BAD_RMOUNT. Denied mount request.

The Realm Interface 25

 IA_PASSWD_AUTH. Password confirmed.

 IA_BAD_PASSWD_AUTH. Password confirmation denied.

 IA_DISCON. Agen disconnected from arpool (pseudo-record).

IDES Audit Record Structure

Below is the C structure that represents an IDES audit record. As mentioned in Sec-
tion 4.3, the record has a fixed section and a variable section. ides_audit_block contains
the fields that are mandatory for each audit record, and ides_audit_header contains the
variable data.

struct ides_audit_header (
unsigned long
char
char
char
char
char
char
enum ides_audit_action
time_t

/* this section is unix specific */
long syscall;

event;
errno;
rval;
pid;

unsigned long
long
long
long

/* unix: these fields are 0 in most (but not all) cases */
struct resource_info resource;

tseq;
hostname[32];
remotehost[32];
ttyname[16];
cmd[l8];
_pad1[21;
jobname[l6];
action;
time;

enum ides_audit_type act_type;
long subjtype;
char uname[IDES,UNAME,LEN];
char auname[IDES,UNAME,LEN];
char ouname[IDES,UIVAME,LEIV];
long arglen;

};

26 The Realm Interface

A description of each of the above variables in the ides_audit_header structure are defined
as follows:

 tseq. Target sequence number, which uniquely identifies this audit record within
the set of audit records received from the same target. It is set by agen.

 hostname. Hostname of target machine.

 remotehost. If a remote host was involved, this field represents its name.

 ttynume. The terminal port/line used.

 cmd. The command invoked to cause this audit record.

 jobname. Batch job name (used for TOPS-20, FOIMS).

 action. The action that caused this audit record.

 time. The target timestamp. Obtained from raw audit data source or set by agen
if raw audit data has no timestamp.

 syscall. The syscall number causing audit record.

 event. The C2 audit event mask (SunOS specific)

 errno. System error code.

 rval. System return code.

 pid. Process ID responsible for this audit record.

 resource.mem. Amount of memory used by this action.

 resource.io. I/O (disk) utilization of this action.

 resource.cpu. CPU time used by this action.

 act_type. Indicates whether audit record was generated by a batch job or interactive
process. UNIX is always interactive.

 subjtype. Currently not used.

 uname. Name of user (subject) performing action.

 auname. User (subject) name being audited (e.g., this does not change when uname
changes due to a superuser command).

 ouname. Other user name (e.g., new user ID set when changing from one user to
another).

The Realm Interface 27

 arglen. Length of variable part of record (placed in ides_audit_block.arg_un)

The structure definition of ides_audit_block is

typedef struct {
long
aud_type

unsigned long
time_t

ides-audit-header

ab_size;

ab_type;

rseq;
rectime;

ah;

union ab_args {
char maxbuf[AUP_USER];
ides_path_desc _ipd[2];

#define ab_pathO _ipd[O].path
#define ab_path1 _ipd[l].path

} arg_un;
} ides_audit_block;

The above variables in the ides_audit_block structure are defined as follows:

 ab_size. Actual byte length of ides-audit-block, suitable for malloc()ing or bcopy() ing
such a structure.

 ab_type. Audit record type. Obsolete, and no longer used.

 rseq. Audit record realm sequence number. This number is assigned by arpool, and
uniquely identifies an audit record across all target systems.

 rectime. Timestamp generated by arpool indicating the time when the audit record
was accepted by IDES.

 ah. See description of ides_audit_header.

 ab_path0. File name (if applicable).

 ab_pathl. Second file name (if applicable).

28 The Realm Interface

4.5 Linking to IDES Processing Units

The IDES processing units are considered clients of arpool. Communication between
these clients is RPC-based. Each IDES client can request audit records from arpool
using RPC. Typically, a client would ask for audit records, process them, and then delete
the processed records from arpool.

Audit records can be requested from arpool one at a time or in batches. For efficiency, it
is best to request audit records in batches. Each request for audit records can be qualified
with a bit-mask to select only certain categories of audit records. At present, there are
three categories of audit records: user, system, and remote host.

Once an audit record has been requested by a client, arpool maintains a copy of that
audit record until it is explicitly deleted by that same client.

The procedural interface to arpool is declared in ides/arpool_stubs.h with correspond-
ing data structures being defined in ides/arpoolrpc.h. The procedures documented
in the following subsections are simple stub routines that utilize the RPC stub routines
automatically generated by rpcgen(1) from ides/arpool_rpc.x.

4.5.1 Preferred Calls

Using the latest version of the arpool stub routines, listed below, is the preferred method
of obtaining IDES audit records because of its flexibility and performance, although older
met hods are still compatible with the current version of IDES.

extern void call-arpool_sethostname (char *hostname)

This function sets up the host from which the IDES client will obtain audit records.
hostname is the remote host to connect to.

extern int call_arpool_nr (int nrec, ides_audit_block *buf, int size)

This routine sends a collection of one or more audit records to arpool. Nrec is the
number of records being sent, and buf is a pointer to the block of audit records that
is the concatenation of one or more audit records. Size represents the total byte
length of block(s) being passed. The return value for this function is 0 if successful,
-1 otherwise.

extern arpool_gb_res *call_arpool_get_block (long count, long mask)

This function requests up to count audit records. The selection of audit records is
qualified by the selection mask mask. Note that each audit record and the buflist
array in the returned structure must be deallocated using free(3). The return value
for this function is a set of audit records.

The Realm Interface 29

extern int call_arpool_get_block_cb (long count,, long mask,
void (*cb)(const ides_audit_block *), long *loseq, long *hiseq)

Requests up to count audit records. The selection of audit records is qualified by the
selection mask mask. For each obtained audit record, function *cb is invoked, with
the audit record as its parameter. Loseq and hiseq are updated with the lowest and
highest sequence number, respectively. This is the simplest interface for obtaining
audit records. However, it is clearly not as flexible as call_arpool_get_block(). This
function returns 0 if successful, -1 otherwise.

extern int call_arpool_rm_range (long loseq, long hiseq)

The specified audit records are deleted. Loseq is the starting sequence number, and
hiseq is the ending sequence number. The range given is inclusive. The function
returns 0 if successful, -1 otherwise.

extern arpool_status_res *call_arpool_status()

This call returns a structure describing the status of arpool.

4.5.2 Older Versions of Arpool Stub Routines

This subsection lists older versions of the functions defined in subsection 4.5.1. IDES
still supports the older versions, and these functions are still used in some of the IDES
processing components.

extern arpool_de_count_res *call_arpool_de_count (long user, long pos, long count)

The specified audit records are requested, as well as count of its successors. User is
the user ID of the audit records being requested, and Pos is the timestamp of the
audit records requested. The function returns a set of audit records.

extern int call_arpool_rm_count (long user, long pos, long count)

The specified audit records are deleted, as well as count of its successors. User is
the user ID of the audit records being requested, and Pos is the timestamp of the
audit records requested. The function returns a set of audit records.

extern int call_arpool_gd_count (long icount, long *user, long *pos, long *count)

Returns the (user, pos) dimension of the next available audit record, as well as
the count of how many more audit records are available. Icount is the maximum
number of audit records to return, and count contains the number of audit records
that are actually being returned. The function returns 0 if successful, -1 otherwise.

30 The Realm Interface

extern arpool_de_res *call_arpool_de (long user, long pos)

This routine requests the specified audit record. The audit record is specified by
the (user, pos) dimension. The specified audit record identified by the (user, pos)
dimension space is deleted. The function returns 0 if successful, -1 otherwise.

extern int call_arpool_gd (long *user, long *pos)

The (user, pos) dimension of the next audit record is returned, as well as the count
of how many additional audit records have been received. This call blocks if no
audit records are available.

extern int call_arpool_pd (long *user, long *pos)

The (user, pos) dimension of the next audit record is returned, as well as the count
of how many additional audit records have been received. This call does not block,
but returns a count of 0 if no audit records are available.

Chapter 5

The Statistical Anomaly Detector

The SRI IDES statistical anomaly detector observes behavior on a monitored computer
system and adaptively learns what is normal for subjects. The defined subject types
are individual users, groups, remote hosts and the overall system. Observed behavior is
flagged as a potential intrusion if it deviates significantly from expected behavior for that
subject.

The IDES statistical anomaly detector maintains a statistical subject knowledge base
consisting of profiles. A profile is a description of a subject�s normal (i.e., expected)
behavior with respect to a set of intrusion-detection measures. Profiles are designed to
require a minimum amount of storage for historical data and yet record sufficient infor-
mation that can readily be decoded and interpreted during anomaly detection. Rather
than storing all historical audit data, the profiles keep only statistics such as frequency
tables, means, and covariances.

The deductive process used by IDES in determining whether behavior is anomalous is
based on statistics, controlled by dynamically adjustable parameters, many of which are
specific to each subject. Audited activity is described by a vector of intrusion-detection
variables, corresponding to the measures recorded in the profiles. Measures can be turned
�on� or �off� (i.e., included in the statistical tests), depending on whether they are
deemed to be useful for that target system. As each audit record arrives, the relevant
profiles are retrieved from the knowledge base and compared with the vector of intrusion-
detection variables. If the point in N-space defined by the vector of intrusion-detection
variables is sufficiently far from the point defined by the expected values stored in the
profiles, then the record is considered anomalous. Thus, IDES evaluates the total usage
pattern, not just how the subject behaves with respect to each measure considered singly.

The statistical knowledge base is updated daily using the most recent day�s observed
behavior of the subjects. Before incorporating the new audit data. into the profiles,
the frequency tables, means, and covariances stored in each profile are first aged by

31

32 The Statistical Anomaly Detector

multiplying them by an exponential decay factor. Although this factor can be set by
the security officer, we believe that a value that reduces the contribution of knowledge
by a factor of 2 for every 30 days is appropriate (this is the daily profile half-life). This
method of aging has the effect of creating a moving time window for the profile data,
so that the expected behavior is influenced most strongly by the most recently observed
behavior. Thus, IDES adaptively learns subjects� behavior patterns; as subjects alter
their behavior, their corresponding profiles change.

In this chapter, we discuss in detail the specific algorithms used to perform the anomaly
detection analysis. We also describe the functional design of the statistical analysis
component from an implementation standpoint, and we list the measures used as part of
the running system.

5.1 Statistical Algorithms

Details of the IDES statistical algorithms are discussed in this section.

5.1.1 The IDES Score Value

For each audit record generated by a user, the IDES system generates a single test statistic
value (the IDES score value, denoted T2) that summarizes the degree of abnormality in
the user�s behavior in the near past. Consequently, if the user generates 1000 audit records
in a day, there will be 1000 assessments of the abnormality of the user�s behavior. Because
each assessment is based on the user�s behavior in the near past, these assessments are
not independent.

Large values for T2 are indicative of abnormal behavior, and values close to zero are
indicative of normal behavior (e.g., behavior consistent with previously observed behav-
ior). For the T2 statistic, we select one or more �critical� values that are associated with
appropriate levels of concern and inform the security officer when these levels are reached
or exceeded. For example, T2 values between 0 and 22.0 might be associated with no
concern, values between 22.0 and 28.0 might be associated with a �yellow� alert, and
values in excess of 28.0 might be associated with �red� alerts. The critical values are
selected so that they have a probabilistic interpretation; for example, we might expect
false red alerts only once every 100 days (excluding events such as a change in job status
that might trigger a red alert). However, the security officer has the freedom to raise
or lower the critical values for each system user, in case there is a need to monitor a
particular user�s behavior more closely or in case the standard critical values result in
too many false alerts for a particular user.

Because the T2 statistic summarizes behavior over the near past, and sequential values

The Statistical Anomaly Detector 33

of T2 are dependent, the T2 values will slowly trend upward or downward. Once the T2

statistic is in the red alert zone, it will take a number of audit records before it can return
to the yellow or green zone. To avoid inundating the security officer with notification
of continued red alerts, we notify the security officer only when a change occurs in the
alert status, or when the user has remained in a yellow or red zone for a specific time.
In addition, the security officer is able to generate a time plot of the T2 values for a user
and thus assess whether or not the user�s T2 statistic indicates a return to more normal
behavior.

5.12 How T2 Is Formed from Individual Measures

The T2 statistic is itself a summary judgment of the abnormality of many measures.
Suppose that there are n such constituent measures, and let us denote these individual
measures by Si, 1 i n. Let the correlation between Si and Sk be denoted by C ik,
where C ii = 1.0. In the previous version of IDES (as described in the May 1990 Interim
Report [6]), the T2 statistic was defined as

where C-1 is the inverse of the correlation matrix of the vector (Si, S2, . . . , Sn and
(S1, S2 Sn)

t is the transpose of that vector. When the Si measures were not corre-
lated, then T2 simplified to + + + the sum of the squares of the measures.
When the correlations were non-zero, then T2 was a more complicated function that
takes into account covariation in the Si.

In working with previous versions of IDES, we identified three difficulties with the func-
tional form of T2:

 It was very difficult to determine the contribution of the individual Si to T2. The
statistic T 2 is a complicated quadratic form in the and the S iS j with both
positive and negative coefficients.

 The security officer could not specify which of the Si are most important. The
weighting coefficients in the quadratic form are completely determined by the cor-
relation matrix C.

 The T2 statistic was not as well-behaved as we would like it to be when two mea-
sures, say Si and Sj, are negatively correlated at magnitudes of -0.8 to -1.0. This
appears to be a consequence of the fact that the Si follow a half-normal rather than
a standard normal distribution.

34 The Statistical Anomaly Detector

As an interim measure to handle these difficulties, in the current version of IDES we have
set the off-diagonal elements in the correlation matrix C to zero. This reduces the T2

statistic to the sum of the squares of the Si. This may be considered to be a simplified
form of the following statistic, which addresses all of the problems mentioned above:

where the ai are positive coefficients that are specified by the security officer. With this
definition for T2 (which is currently being implemented, and is considered to be part of
the current version of IDES) it is quite obvious how much each Si contributes to T2, the
security officer can increase the importance of a measure Si by increasing the value of the
corresponding ai, and the statistic T2 is well-behaved even when there are large negative
correlations between the Si.

Unfortunately, when the T2 statistic is a weighted sum of the squares of the Si, T
2 is no

longer sensitive to correlations among the Si. In the Next Generation IDES we intend to
reintroduce this covariation by defining T2 as follows:

where the aij are positive coefficients specified by the security officer and h(Si, Sj, Cij)
is a well behaved function of Si, Sj, and their correlation Cij, which takes large values
when Si and Sj are not behaving in accordance with their historical correlations. Thus,
the new T2 statistic will accommodate pairwise covariation in the Si while addressing
the problems noted previously.

5.1.3 Types of Individual Measures

The individual S measures each represent, some aspect of behavior. For example, an
S measure might represent file accesses, CPU time used, or terminals used to log on.
Two S measures might also represent only slightly different ways of examining the same
aspect of behavior. For example, both Si and Sj might represent slightly different, ways
of examining file access.

We have found it useful to classify the different types of individual measures in the IDES
statistical system into the following four categories:

Activity Intensity Measures. These measures (currently three) track the number of
audit records that occur in different time intervals, on the order of 1 minute to 1

The Statistical Anomaly Detector 35

hour. These measures can detect bursts of activity or prolonged activity that are
abnormal.

Audit Record Distribution Measure. This single measure tracks all activity types that
have been generated in the recent past, with the last few hundred audit records
having the most influence on the distribution of activity types. For example, we
might find that the last 100 audit records contained 25 audit records that indicated
that files were accessed, 50 audit records that indicated that CPU time was incre-
mented, 30 audit records that indicated that I/O activity occurred, 10 audit records
that indicated activity from a remote host, and so forth. These data are compared
to a profile of previous activity (generated over the last few months) to determine
whether the distribution of activity types generated in the recent past (e.g., the
last few hundred audit records) is unusual or not. (Note that even though we call
this measure �audit record distribution� we are not computing a distribution of
the types of audit records themselves, but rather we are computing the probability
that an audit record will indicate that a particular type of activity is occurring.)

Categorical Measures. These are activity-specific measures for which the outcomes are
categories. For example, categorical measures might include the names of files
accessed, the ID of the terminals used for logon, and the names of the remote
hosts used. The categories that were used in the last 100 to 200 audit records
that affected that activity are compared to a historical profile of category usage to
determine if recent usage is abnormal.

Ordinal Measures. These are activity-specific measures for which the outcomes are
counts. For example, ordinal measures might include CPU time (which counts the
number of milliseconds of CPU used) or the amount of I/O. Behavior over the
last 100 to 200 audit records that affected that activity is compared to a historical
profile of behavior to determine if recent usage is abnormal.

These different categories of measures serve different purposes. The activity intensity
measures assure that the volume of activity generated is normal. The audit record
distribution measure assures that over the last few hundred audit records generated, the
types of actions being generated are normal. The categorical and ordinal measures assure
that within a type of activity (for example, an action that involves accessing a file, or
an action that involves incrementing CPU time), the behavior over the past few hundred
audit records that affect that action is normal.

The activity intensity measures and the audit record distribution measures are relatively
recent additions to IDES. They were not available in the previous version of IDES (as
described in the interim report [6]). The categorical and ordinal measures were available
and continue to be available in all three generations of IDES. However, as described later
in this section, there have been changes made in the details of the implementation of
the categorical and ordinal measures between the previous and current versions of IDES,

36 The Statistical Anomaly Detector

and it was these changes that prompted the addition of the activity intensity and audit
record distribution measures.

5.1.4 Heuristic Description of the Relationship of S to Q

Each S measure is derived from a corresponding statistic that we will call Q. In fact,
each S measure is a transformation of the Q statistic that indicates whether the Q value
associated with the current audit record and its near past is unlikely or not.

The transformation of Q to S requires knowledge of the historical distribution of Q. For
example, consider an S measure that represents CPU time used. The corresponding Q
statistic would also measure CPU time used in the near past. By observing the values
of Q over many audit records, and by selecting appropriate intervals for categorizing Q
values, we could build a frequency distribution for Q. For example, we might find the
following:

 1% of the Q values are in the interval 0 to 1 (milliseconds)

 7% are in the interval 1 to 2

 35% are in the interval 2 to 4

 18% are in the interval 4 to 8

 28% are in the interval 8 to 16

 11% are in the interval 16 to 32

In the previous and current versions of IDES, the S statistic would be a large positive
value whenever the Q statistic was in the interval 0 to 1 (because this is a relatively
unusual value for Q) or whenever Q was larger than 32 (because this value has not
historically occurred). The S statistic would be close to zero whenever Q was in the
interval 2 to 4, because these are relatively frequently seen values for Q. The selection
of appropriate intervals for categorizing Q is important, and it is better to err on the
side of too many intervals than too few. We are currently using 32 intervals for each Q
measure, with interval spacing being either linear or geometric. The last interval does
not have an upper bound, so that all values of Q belong to some interval.

As explained later in this report, in the Next Generation IDES, the definition of Q will
change (for all measures except the activity intensity measures) in such a way that small
values of Q are indicative of a recent past that is similar to historical behavior and large
values of Q are indicative of a recent past that is not similar to historical behavior. This
induces a modification in the transformation of Q to S, so that S is small whenever Q is

The Statistical Anomaly Detector 37

small, and S is large whenever Q is large. Hence, S can be viewed as a type of rescaling
of the magnitude of Q. In the Next Generation IDES, a Q value of 0 to 1 in our example
would correspond to a small value for S.

5.1.5 Algorithm for Computing S from Q

Assume for the moment that we have defined a method for updating the Q value each
time a new audit record is received, and that we have defined intervals that we have
used to develop a historical frequency distribution for Q. The algorithm for converting
individual Q values to S values in the previous and the current version of IDES is as
follows:

1. Let Pm denote the relative frequency with which Q belongs to the m th interval.
In our example the first interval is 0 to 1 and the corresponding P value (say P0)
equals 1%. There are 32 values for Pm, with 0 m 31.

2. For the m th interval, let TPROBm denote the sum of Pm and all other P values
that are smaller than or equal to Pm in magnitude. In our previous example,
TPROB for the interval of 4 Q 8 is equal to 18% + 11% + 7% + 1% = 37%.

3. For the m th interval, let sm be the value such that the probability that a normally
distributed variable with mean 0 and variance 1 is larger than sm, in absolute value
equals TPROBm. The value of sm satisfies the equation P (|N(0,l)| sm) =
T P R O Bm, or sm = where is the cumulative distribution
function of an N(0, 1) variable. For example, if TPROBm is 5%, then we set sm

equal to 1.96, and if TPROB m is equal to 100% then we set sm equal to 0. We do
not allow sm to be larger than 4.0.

4. Suppose that after processing an audit record we find that the Q value is in the
mth interval. Then S is set equal to sm, the s value corresponding to TPROBm.

In the Next Generation IDES, the transformation of Q to S is slightly simplified by
letting T P R O Bm = P m + P m + 1 + + P3l. In our previous example, the TPROB value
of the interval 4 Q 8 is equal to 18% + 28% + 11% = 57%. Thus, in the next
generation of IDES, S is a simple mapping of the percentiles of the distribution of Q
onto the percentiles of a half-normal distribution.

In practice these algorithms are easy to implement, and the calculations of the si values
are done only once at update time (usually close to midnight). Each interval for Q is
associated with a single s value, and when Q is in that interval, S takes the corresponding
s value.

38 The Statistical Anomaly Detector

5.1.6 Computing the Frequency Distribution for Q

This subsection describes how we compute the frequency distribution for Q, which is nec-
essary for transforming Q to S. All procedures for computing the frequency distribution
for Q are identical in the previous, current, and Next Generation IDES.

The first step in calculating the historical probability distribution for Q is to define bins
into which Q can be classified. We always use 32 bins (numbered 0 to 31) for a measure
Q. Let Qmax be the maximum value that we ever expect to see for Q. This maximum
value depends on the particular types of measures being considered. Default values are
provided in the IDES system for these maximum values and they should be reset by the
security officer if Q is in the highest bin more than 1% of the time. The cut points for the
32 bins are defined on either a linear or geometric scale. For example, when a geometric

scale is used, bin zero extends from 0 to 1, bin one extends from 1 to bin two

extends from to and bin 31 extends from to infinity.

As before, let Pm denote the relative frequency with which Q is in the m th interval (i.e.,
bin). Each Q statistic is evaluated after each audit record is generated (whether or not
the value of Q has changed), and therefore Pm is the percentage of all audit records for
which Q is in the m th interval.

The formula for calculating Pm on the k th day after initiating IDES monitoring of a
subject is:

where

 k is the number of days that have occurred since the user was first monitored

b is the decay rate for Pm, which determines the half-life of the data used to estimate
Pm. We currently recommend a 30-day half-life, corresponding to a b value of

 = 0.0333.

 Wm,j is the number of audit records on the j th day for which Q was in the m th
interval

 Nk is the exponentially weighted total number of audit records that have occurred
since the user was first monitored.

The Statistical Anomaly Detector

The formula for Nk is:

39

where Wj is the number of audit records occurring on the jth day.

The formula for Pm appears to involve keeping an infinite sum, but the computations are
simplified by using the following recursion formulas:

In the IDES system we update Pm,k and N k once per day and keep running totals for
W m,k and W k during the day.

5.1.7 Computing the Q Statistic for the Activity Intensity
Measures

When a subject is first audited, that subject has no history. Consequently, we choose
some convenient value to begin the Q statistic history. For example, we might let each
Q statistic be zero, or some value close to the mean value for other subjects that are
probably similar.

Each Q statistic for activity intensities is updated each time a new audit record is gen-
erated. Let us now consider how to update Q. Let Qn be the value for Q after the n th
audit record, and Qn+1 be the value for Q after the (n + 1)st audit record. In both the
current and Next Generation IDES, the formula for updating Q is:

Q n + l
= 1 + 2- r tQ n

where

l The variable t represents the time (say in minutes or fractions thereof) that has
elapsed between the nth and (n + 1)st audit records.

40 The Statistical Anomaly Detector

 The decay rate r determines the half-life of the measure Q. Large values of r imply
that the value of Q will be primarily influenced by the most recent audit records.
Small values of the decay rate r imply that Q will be more heavily influenced
by audit records in the more distant past. For example, a half-life of 10 minutes
corresponds to an r value of 0.10 = log2 The security officer may set the half-life
of the activity intensity measures at any values that he or she feels are appropriate.
We are currently running three activity intensity measures with half-lives of 10, 30,
and 60 minutes, respectively.

Q is the sum of audit record activity over the entire past usage, exponentially weighted
so that the more current usage has a greater impact on the sum. Q is more a measure
of near past behavior than of distant past behavior, even though behavior in the distant
past also has some influence on Q. The Q statistic has the important property that it is
not necessary to keep extensive information about the past to update Q.

5.1.8 Computing the Q Statistic for the Audit Record Distri-
bution Measure

Each audit record that is generated indicates one or more types of activity that have
occurred for a subject. For example, a single audit record may indicate that a file has
been accessed, that I/O has occurred, and that these activities occurred from a remote
host. The Q statistic for the audit record distribution measure is used to evaluate the
degree to which the type of actions in the recent past agree with the distribution of action
types in a longer-term profile.

In both the current and Next Generation IDES, the calculation of the audit record
measure begins by specifying the types of actions that will be examined. We currently
recommend that each categorical and ordinal measure (with some exceptions as noted
below) constitute an activity type. For example, if name of file accessed is a categorical
measure, then the corresponding activity type would be that any file was accessed. Sim-
ilarly, if the amount of I/O used is an ordinal measure, then the corresponding activity
type would be that any I/O was used. That is, if an audit record would cause a categor-
ical or ordinal measure to be recalculated, then a corresponding activity type should be
defined. The exception would be a categorical or ordinal measure that would be affected
by any audit record. For example, if an hour of audit record generation is a categorical
measure, then every audit record causes this categorical measure to be updated and no
purpose is served in defining a corresponding activity type.

In addition to defining activity types based on the categorical and ordinal measures
used, it may be useful to define additional activity types. For example, the security
officer may want to evaluate the percentage of audit records generated that indicate that
the user is logged onto a remote host. If the security officer is not interested in which

The Statistical Anomaly Detector 41

remote host is being used, then he or she may accomplish this goal in one of two ways.
The first way is to establish a categorical measure with two categories: �remote host
indicated� and �remote host not indicated.� If this approach is used, then there should
be no corresponding activity type defined because every audit record is relevant to the
calculation of the categorical measure. The second way is to define an activity type of
�remote host indicated� to be used by the audit record distribution measure and not
to define a categorical measure. These two approaches yield similar (though not totally
equivalent) results, but the second approach is computationally less intensive.

Suppose that we have established M activity types. For each action we must calculate
a long-term historical relative frequency of occurrence, denoted fm, for that activity
type. For example, suppose that over the last three months, 7% of all audit records have
involved file accesses. Then, fm for the file access activity type would be 0.07. Note
that each fm is between 0 and 1.0 inclusive. The sum of the fm may be greater than 1.0
because a single audit record may indicate that multiple activity types have occurred.

The algorithm used to compute fm is essentially the same as that used to calculate Pm

and uses the same decay rate. That is, we may write that the value of fm on the k th day
is equal to

1

where N k, and b are defined as before and W m,j is the number of audit records on the
jth day, which indicate that the m th activity type has occurred.

The Q Statistic for Audit Record Distribution in the Current IDES

The current and Next Generation IDES systems use different algorithms for defining the
Q statistic for the audit record distribution measure. In the current IDES, Q is defined
as

where

 Qn+1 is the value of the Q statistic after the (n+l)st audit record has been received.

 M is the number of defined activity types.

42 The Statistical Anomaly Detector

 I(n + 1,m) = 1.0 if the (n + 1)st audit record indicated that the m th activity type
occurred and 0.0 otherwise.

 r is the decay rate for Q, which determines the half-life of the Q measure. For
example, a half-life of 100 audit records corresponds to an r value of - log2 =
0.01.

We note that when recent audit records indicate that historically less likely types of
activity are now occurring, the Q statistic will increase in magnitude.

The Q Statistic for Audit Record Distribution in the Next Generation IDES

In the Next Generation IDES, we have changed the definition of Q so that we pay
attention not only to whether more or less likely types of actions are now occurring, but
also to which types of actions are now occurring. The revised definition of Q is

 gm,n is the relative frequency with which the m th activity type has occurred in the
recent past (which ends at the n th audit record).

 Vm is the approximate variance of the gm,n.

That is, Qn is larger whenever the distribution of activity types in the recent past differs
substantially from the historical distribution of activity types, where �substantially� is
measured in terms of the statistical variability introduced because the near past contains
relatively small (effective) sample size. The value of gm,n is given by the formula

or by the recursion formula

where

The Statistical Anomaly Detector 43

 j is an index denoting audit record sequence.

 I(j,m) is 1.0 if the j th audit record indicates activity type m has occurred and 0.0
otherwise.

 r is the decay rate for Q that determines the half-life for the Q measure. We have
set the half-life to approximately 100 to 200 audit records.

 Nr is the effective sample size for the Q statistic, which is set at its asymptotic
value of

The value of Vm is given by the formula

except that Vm is not allowed to be smaller than

5.1.9 Computing the Q Statistic for Categorical Measures

Categorical measures are those that involve the names of particular resources being used
(such as the names of files being accessed, or the location from which logons are at-
tempted) or involve other categorical characteristics of audit records, such as the hour of
the day on which the audit record was generated.

In both the current and Next Generation IDES, the method used for computing Q for
categorical measures is essentially the same as that previously described for computing Q
for the audit record distribution measure. In fact, we may view the activity type measure
as a categorical measure. The only difference in the definition for Q is that every audit
record results in the recalculation of the audit record distribution measure, whereas for all
other categorical measures, Q is updated only when the audit record contains information
relevant to the particular measure. For example, the file name accessed measure would
be updated only when the audit record concerns a file access. A half-life for the file name
accessed measure of 100 audit records would refer to 100 audit records relevant to file
names accessed, rather than to the last 100 audit records.

In the previous version of IDES, the form for the Q statistic was very similar to that used
in the current version of IDES except that the exponential decay factor for Q depended
on the time between appropriate audit records. That is, the formula for Q was

44 The Statistical Anomaly Detector

where Qn+1, M, and I(n + 1, m) are defined as in the current version of IDES, but

 r is the decay rate for Q, which determines the half-life of the Q measure in seconds.

 tn+1 is the number of seconds that have expired between the (n + 1)st and n th audit
records.

The addition of the factor t in the exponent caused the Q statistic to be sensitive to
the volume of activity. When activity volumes per unit time were higher, the Q statistic
tended to grow. When activity volume was lower (such as overnight, or directly after
lunch), the Q statistic tended to be smaller. We decided that this dependence on activity
volume confounded the amount of activity with the normality of the type of activity and
that it would be better to separate these aspects of behavior into separate measures.
Consequently, we removed the factor t from the exponent and converted the decay rate
r to refer to the exponential decay per audit record. In the current version of IDES, this
modification allows the Q statistic for categorical measures to examine the normality
of a specific type of behavior (such as file accesses) over the last few hundred audit
records that contain information about that behavior, regardless of when that activity
occurred. The information on activity volume and type was transferred to two new types
of measures: the activity intensity measures, which track the number of audit records per
unit of time, and the audit record distribution measure, which tracks the type of actions
being generated.

5.1.10 Computing the Q Statistic for Ordinal Measure

Ordinal measures are those that involve counts of particular resources used (such as
CPU time in milliseconds or I/O counts) or some other counting measure (such as the
interarrival time in milliseconds of consecutive audit records).

In the current and Next Generation IDES systems, ordinal measures are transformed to
categorical measures. For example, consider the ordinal measure of CPU time: Indi-
vidual audit records arrive that indicate that a non-zero amount of CPU time has been
incrementally expended since the last reporting of CPU usage. We might expect that this
delta-CPU value would be between 0 and a maximum of 100,000 milliseconds. We define
32 geometrically scaled intervals between 0 and 100,000 milliseconds employing the same
procedure as we used for defining intervals for the historical profile for Q (including the
convention that the last interval actually extends to infinity). When a delta-CPU value
arrives and is classified into interval m, we state that a categorical event m has occurred.
We treat the Q measure for CPU time as a categorical measure, where a category is ac-
tivated whenever an audit record arrives with a delta-CPU value in that category. Thus,
the Q measure for CPU time does not directly measure total CPU usage in the near
past; rather, it measures whether the distribution of delta-CPU values in the near past

The Statistical Anomaly Detector 45

is similar to the historical distribution of delta-CPU values. Once the ordinal measure is
redefined as a categorical measure as discussed above, the Q statistic is calculated in the
same fashion as any other categorical measure.

In the previous version of IDES, ordinal measures were not converted to categorical
measures. Bather, the definition for Q was

where Dn+1 is the difference in the ordinal count between the n th and (n + 1)st audit
record. For example, if the measure were CPU time, then Dn+1 would be the amount of
CPU time that was expended between the nth and (n + l)st audit record. As with the
categorical measures in the previous version of IDES, the ordinal measures were heavily
influenced by volume of activity. More importantly, Q tended to be a measure of mean
behavior per unit of time (e.g., mean CPU usage per unit time). We decided that we
would be more likely to detect abnormal usage if we looked for unusual increments of
behavior (for example, individual audit records that demonstrate an unusual amount
of CPU). As a result, we both removed tn+1 from the decay factor and categorized the
increments Dn+l, yielding the ordinal measures as represented in the current version of
IDES.

5.2 Design and Implementation

This section describes the design and implementation of the IDES statistical component.

5.2.1 Functional Architecture

Conceptually, the statistical anomaly detection module of IDES is designed to be similar
to that of the first IDES prototype. That is, by using profiles, anomalous behavior is
computed by comparing a subject�s ongoing activity (which we will refer to as a subject�s
�current� profile) with his or her past activity. At the end of each day, the subject�s
accumulated observed behavior for that day is folded into the corresponding historical
profile. This enables IDES to adaptively learn subjects� behavior patterns; as subjects
alter their behavior, the profiles will change accordingly.

The IDES statistical component is driven by the arrival of audit records. By examining
the audit records as they arrive from the target system, IDES is able to determine through
a variety of statistical algorithms whether the observed activity is abnormal with respect
to the profiles. Anomalous behavior is flagged when such behavior deviates from the

46 The Statistical Anomaly Detector

subject�s normal behavior by a predetermined amount. When an anomaly is detected,
an anomaly record is generated and is presented to a security officer and also recorded
for further analysis.

Figure 5.1 shows a diagram of the major parts of the statistical component and their
relationship to one another. In the following subsections, we describe in detail the func-
tionality of each of these modules.

Figure 5.1: Statistical Anomaly Detection Process Unit

Interprocess Manager

This module is the driver of the entire statistical component. All processes (both internal
and external) communicate with this module, and it directs the process flow accordingly.
When the IDES statistical component starts, the interprocess manager first loads in the
appropriate statistical parameters, such as which measures to activate, what values to use
for aging factors, classification of commands, and grouping of subjects. Such information
is stored in a configuration file that can be modified by authorized users either before or
during the execution of the statistical component.

Prior to reading each audit record, the interprocess manager �listens� for messages com-
ing from other IDES processes, such as the expert-system component, the profile updater,

The Statistical Anomaly Detector 47

or one of the user interface programs. Upon receiving one of these messages, the interpro-
cess manager calls the appropriate process to deal with the message, and then continues
on to process the next IDES audit record. Some examples of such messages include a
request to dump a subject�s current profile cache (usually in order to update its profile,
or to display the latest accumulation of statistical data), or a notification from another
process (most likely the profile updater) to reload the anomaly detector�s profile cache
to incorporate more recent data.

In addition, the interprocess manager sends messages to other processes as needed. Cur-
rently, the statistical component sends a statistical score for every audit record to the
security officer�s user interface, as well as an alert message if this score is approaching or
exceeds a given threshold value for that subject.

A c t i v i t y R e c o r d P r o c e s s o r

This module receives IDES audit records from the realm interface and transforms the
data into a data structure called an activity vector. This activity vector is N elements
long, where N is the number of measures (active and inactive), and contains observed
values for each measure affected by an audit record. It should be noted that not all
measures are always touched by each audit record, but this is generally determined by
the construction of the target system�s auditing mechanism. If a measure is inactive, a
zero or null value is inserted into that measure�s location in the activity vector. This
activity vector is passed on to the anomaly detector for statistical computation.

A n o m a l y D e t e c t o r

The anomaly detector is the heart of the statistical engine. This module takes the activity
data produced by the activity record processor and calls the routines that support the
statistical algorithms used for anomaly detection.

The anomaly detector continually updates the subject�s daily accumulation of activity
(represented as probability vectors and matrices) with each incoming audit record, and
compares those values with the historical profile to determine deviation from expected
(normal) behavior. After applying these series of statistical tests (see Section 5.1 for
a detailed discussion of the algorithms used), an anomaly record may be produced if
an observed activity vector indicates unusual behavior according to the given subject�s
historical profile. When this happens, a message is passed to the interprocess manager
to send to the appropriate external processes, such as the security officer�s user interface.

48 The Statistical Anomaly Detector

Profile Updater

The profile updater is generally invoked once a day. It takes the day�s accumulated ac-
tivity information (represented as various probability structures) for a particular subject,
and folds it into its historical profile after applying some arbitrary aging factor (the de-
fault is set to a 30-day half-life). This newly updated profile is subsequently used against
the next day�s activity for that subject.

The profile updater can be run in two modes:

Parallel. The profile updater can be run as an independent process that �wakes up�
at a predetermined time of day (usually midnight) and simultaneously processes
the profiles for that day while the anomaly detector module continues to receive
audit records from the realm interface. Any incoming audit records for a subject
whose profile is currently being updated are temporarily set aside until the update
process has completed for that subject.

Sequential. The updater can also be invoked from the interprocess manager, which
looks at each audit record timestamp to determine whether or not a new day has
occurred. When a new day occurs, the anomaly detector is temporarily suspended
while the profile updater process is called for each active subject.

When running in either of the above modes, the profile updater process maintains a
simple communication protocol with the interprocess manager to keep from corrupting
the subject�s profiles while the anomaly detector is running. Even if the updater is
running in sequential mode, it is important for the anomaly detector to know when a
subject�s profile has been modified because certain profile structures (mainly counters)
must be reset to zero after the day�s activity is incorporated into the subject�s historical
profile. The anomaly detector caches profiles in memory, and hence this cache needs to
be refreshed after a profile update.

The profile updater can also be invoked manually, although this method is rarely used
except in cases in which one of the above modes did not correctly start the updater, or
for testing and experimentation.

5.2.2 Implementation Details

The statistical component is designed so that its pieces can be implemented as software
modules. It is important to provide flexibility within this component so that different
techniques for numerical analysis, data storage, and data presentation can be applied
without any major redesign or reimplementation of the component.

The Statistical Anomaly Detector 49

Earlier in the project, extensive experimentation was done within the data storage layer.
Originally a standard DBMS product (ORACLE) was used as the underlying data man-
agement software, but rigorous tests indicated a performance bottleneck at this level
due to the increased amount of profile data necessary to process and store for the more
complex statistical algorithms. While a sophisticated relational DBMS is beneficial for
complex data manipulation and query management, it appeared to be more than was
needed for the basic data processing used in the statistical analysis. Hence, we opted
for a simpler data storage mechanism for the statistical processing, using UNIX flat files
with indexing. However, the use of a powerful DBMS product may be desirable for
other aspects of IDES, especially where complicated and ad-hoc queries may be required
to retrieve processed information for postanalysis (e.g., playback of events or building
evidence to support a case).

We also discovered that caching of subject profiles greatly enhanced the performance of
data retrieval. By keeping a number� of subjects� profiles in memory during execution,
I/O access to the storage area (relatively expensive with respect to other computations
within the statistical component) was reduced significantly with caching. A simple LRU
(least recently used) caching algorithm is used to determine which profiles should exist
in the cache, along with aging the contents of each cache entry with the reception of each
new audit record.

The usage of named pipes (a UNIX feature) is common throughout the statistical com-
ponent, as it is the means of the interprocess communication between each of the internal
modules and external processes.

5.2.3 Future Work

Available experimental data were limited to a small sample size during this project
period. While the data that we had were sufficient to determine that the algorithms
were behaving as expected, we plan to experiment with a wider quantity and variety of
data in the future. We recently acquired a large amount of audit data from the FBI,
and we have also collected several months worth of UNIX data from our own lab; it is
our desire to thoroughly exercise the statistical component, using these data. The next
phase of the IDES development will put an emphasis on more rigorous testing of the
analytical components, both for anomaly detection accuracy and for system performance
and usability.

The statistical algorithms went through several enhancements during the term of this
project, and it was discovered that in some cases certain methods were suited more
towards a particular type of system or subject activity, or a new type of subject behavior
was discovered that the current version of algorithms did not efficiently deal with. In light
of this, it would be practical to have the system constructed so that different versions of
the statistical component can run simultaneously, using the same set of audit data, to

50 The Statistical Anomaly Detector

evaluate the performance and accuracy of the various detection algorithms.

We also plan to perform second-order intrusion-detection tests (such as detecting how fast
a user�s mean and variance change). These trend tests will help evaluate the effectiveness
of detecting planned attacks in which a subject may intentionally change his or her
behavior gradually to a different normal behavior to do subsequent malicious acts, or to
purposely broaden the spectrum of �normal� behavior to include misuse or abuse of the
system.

Although we have currently implemented a means to allow a user to dynamically recon-
figure various statistical parameters, this feature needs to be considered more carefully
with respect to the consequential effects on the running system. For example, when new
measures have been turned on or off, a certain amount of time is needed to allow the
profiles to adapt to the new configuration or else the anomaly detection component will
very likely produce false alarms because of the new influence by the new measure(s), or a
lack thereof. The whole issue of dynamic reconfiguration of the system cannot be treated
trivially, and thus certain procedures or techniques must be defined and implemented to
avoid the corruption of an ongoing IDES system.

During this project, we primarily focused on the user subject type. While the design of
IDES is by no means limited to one particular type of subject, we plan to experiment with
IDES using other subject types, such as remote hosts, target systems, and local hosts.
This effort will require the definition of appropriate measures for these new subjects,
and some code enhancements to the activity record processor module of the statistical
component.

5.3 Intrusion-Detection Measures

As we discussed previously, IDES determines whether observed behavior as reported in
the audit data is normal with respect to past or acceptable behavior characterized by
specific intrusion-detection measures. A measure is an aspect of a subject�s behavior on
the target system, and is applied to individual subject activity.

This section lists all the measures we are currently using in the IDES statistical compo-
nent. Not all measures will apply to all target system types (for example, the measure
for window commands would be an irrelevant measure for a target system without any
window-management facilities). The statistical anomaly component has a mechanism to
inactivate such measures as needed.

51The Statistical Anomaly Detector

5.3.1 User Measures

As described in Section 5.1, the statistical measures have been classified into four groups:
ordinal, categorical, audit record distribution, and activity intensity. Below we list these
measures, which can be monitored for a user subject type on the target system according
to their classification:

1. Ordinal

 CPU Usage. Indicates the amount of CPU usage by a particular user. The
value recorded is the delta of CPU seconds between the last audit record and
the current one observed for this user.

 I/O Usage. Indicates the amount of I/O usage while the user is on the system.
I/O activity can be either disk accesses or characters typed at the terminal,
depending on the target system and its capabilities to track either one.

2. Categorical

Physical Location of Use. Records the relative number of times a user connects
to the target system from different locations - host name, modem number, or
network address.

Mailer Usage. Records the relative number of times various mailers are used
by the user.

Editor Usage. Records the relative number of times various editors are used
by the user.

Compiler Usage. Records the relative number of times various compilers are
used by the user.

Shell Usage. Indicates the relative number of times various shells and pro-
gramming environments are invoked by the user.

Window Command Usage. Indicates the relative number of times different
window commands (such as opening a window, closing a window) are invoked
by the user. This measure applies only to target systems that support win-
dowing environments.

General Program Usage. Indicates the relative number of times each program
is used by the user. These programs include those that are in the special
command measures (e.g., mailers, compilers). The measure is categorized by
program names, and it is important that the actual program name, rather
than any aliases, is specified by the security officer.

General System Call Usage. Indicates the relative number of times a system
call is invoked by the user, categorized by system call names. System calls are
lower-level functions that are generally invoked by higher-level programs (i.e.,
not directly by the user).

52 The Statistical Anomaly Detector

Directory Activity. Records the relative number of times a user does something
to a directory, categorized by the type of activity (e.g., create, delete, read,
modify).

 Directory Usage. Records the relative number of times a user accesses a di-
rectory on the system, categorized by directory names.

 File Activity. Records the relative number of times a user does something to
a file, categorized by the type of activity (e.g., create, delete, read, modify).

 File Usage. Records the relative number of times a user accesses a file within
the system, except for temporary files, categorized by file names.

User IDS Accessed. Indicates the relative number of times a user changes user
ID.

 System Errors by Type. Records the relative number of times each type of
error occurs.

 Hourly Audit Record Activity. Records the relative number of audit records
received for each hour, categorized by the hours of the day.

 Day of Use. Records the relative number of audit records produced by the
user on a daily basis, categorized by the days of the week.

 Remote Network Activity by Type. Records the relative number of individ-
ual network-related activities performed by the user, categorized by network-
activity type (e.g., remote logins, ftp, remote shells).

 Remote Network Activity by Hosts. Records the relative number of network-
activity records a user produces for each remote host, categorized by hosts.

 Local Network Activity by Type. Records the relative number of different
types of local network activity performed by the user, categorized by network-
activity types.

 Local Network Activity by Hosts. Records the relative number of local-network-
activity records produced by a user for individual hosts, categorized by hosts.

3. Audit Record Distribution.

For each of the above measures (categorical and ordinal) there is a corresponding
category (or activity type) in the audit record distribution measure. For example,
the category corresponding to the CPU measure is �audit record indicated that the
incremented CPU usage was greater than zero.� The category corresponding to
the �file usage� measure is �audit record indicated that a permanent file has been
read.�

In addition, we have added the following category, which is not directly associated
with a measure.

The Statistical Anomaly Detector 53

Temporary File Accessed. Records if a temporary file was accessed by the user.
Temporary files are those created and used during an execution of a program,
and removed after program completion.

4. Activity Intensity Measures. We currently are using the following three audit
record intensity measures (rate of audit records in a given time frame):

Volume per Minute. Number of audit records processed by a subject in a time
period with a l-minute half-life.

 Volume per 10 Minutes. Number of audit records processed by a subject in a
time period with a lo-minute half-life.

 Volume per Hour. Number of audit records processed by a subject in a time
period with a l-hour half-life.

While our development and testing so far have been primarily on user subject types, IDES
is by no means limited to this particular type of subject. Measures for other types, such
as target systems and remote hosts, can also be monitored. The next two subsections
list a variety of measures that will be used in subsequent versions of IDES for different
subject types.

5.32 Target System

These measures describe the behavior of the target system - that is, the system being
monitored:

 CPU Usage (ordinal). Records the amount of CPU time used on the target system.
The �delta� values used are the increments in overall CPU time used by all subjects
on the system.

 I/O Usage (ordinal). Records the amount of I/O used on the target system. The
delta values used are the increments in overall I/O calls used by all subjects on the
system.

 Hourly Bad Login Attempts (categorical). Records the relative number of bad login
attempts made on the target system during each hour, categorized by the hours of
the day. This measure is intended to track the times during the day that bad login
attempts are usually common/uncommon.

 Target System Errors by Type (categorical). Records the relative number of errors
of different types made on the target system, categorized by error types.

54 The Statistical Anomaly Detector

 Hourly System Errors (categorical). Records the relative number of errors that
occurred on the target system during each hour, categorized by the hours of the
day. It is intended to track the times during the day that system errors are likely
to occur.

 Network Activity by Type (categorical). Records the number of individual network
activity-related audit records produced on the target system, categorized by net-
work activity types.

 Network Activity by Hosts (categorical). Records the number of network activity
audit records the target system produced for a particular host, categorized by
remote hosts.

As in the user subject measures, the audit record distribution measure encapsulates all
of the categorical and ordinal measures defined above (does not include activity intensity
measures).

5.3.3 Remote Host

Remote host subjects are nonlocal machines that can connect to the target system via
network communications. Remote hosts are not necessarily being monitored themselves,
but their behavior with respect to the target system can be observed using the following
measures:

 User Accounts from the Remote Host (categorical). Records the relative number of
times a user account is accessed on the target system from the remote host subject,
categorized by account names. This measure is intended to track how often an
account on the target system is used from some outside host.

 Activity Type Count from the Remote Host (categorical). Records the relative num-
ber of different types of network activity (as designated by the port number) that
originated from the remote host subject, categorized by the network-activity type.

 Hourly Use from the Remote Host (categorical). Records the relative number of
network-activity audit records received each hour from the remote host subject,
categorized by the hours of the day.

 Hourly Use by Type from the Remote Host (categorical). Records the relative num-
ber of network-activity audit records of each type received each hour from the
remote host subject, categorized by the hours of the day and the type of network
activity.

The Statistical Anomaly Detector 55

 Bad Login Attempts from the Remote Host (categorical). Records the relative num-
ber of bad login attempts made from the remote host subject. It keeps track of
bad login attempts coming in from each particular remote host.

56 The Statistical Anomaly Detector

Chapter 6

The IDES Expert System

The rule-based component of IDES evaluates user behavior by evaluating events (audit
records) using a set of rules. These rules describe suspicious behavior that is based on
knowledge of past intrusions, known system vulnerabilities, and the installation-specific
security policy. The user�s behavior is analyzed without reference to whether it matches
past behavior patterns. In effect, the rules in the rule-based component constitute a min-
imum standard of behavior for users of the host system. While the statistical anomaly
detector attempts to define normal behavior for a user, the rule-based component at-
tempts to define proper behavior, and to detect any breaches of etiquette.

The IDES rule-based component operates in parallel with the statistical component.
It is loosely coupled in the sense that the inferences made by the two subsystems are
independent. The rule-based detector and statistical anomaly detector share the same
source of audit records and produce similar anomaly reports, but the internal processing
of the two systems is done in isolation. (In the Next Generation IDES we plan to introduce
a resolver to combine and further post-process the outputs of the two components.)

The knowledge base of the rule-based component contains information about known
system vulnerabilities and reported attack scenarios, as well as our intuitions about
suspicious behavior. We have obtained information about known system vulnerabilities
through discussions with members of CERT (Computer Emergency Response Team) at
Carnegie Mellon University�s Software Engineering Institute and other members of the
computer security community. Not all of the information we obtained in this fashion has
been incorporated into the rule base; see below for a discussion of our experiences in this
area.

The rule-based component can be vulnerable to system deficiencies and intrusion scenar-
ios that are not in its rule base. For this reason, it is important to update the system as
these vulnerabilities come to light. Apart from this, our expectation is that the statistical
component is likely to find new intrusion scenarios unusual enough to trigger an anomaly.

57

58 The IDES Expert System

IDES is thus a system containing complementary approaches, each of which helps cover
the vulnerabilities of the other.

The IDES rule-based detection component is a rule-based, forward-chaining system using
the Rete algorithm. By �forward-chaining� we mean that the system is driven by the facts
that are put into the knowledge base, as opposed to being driven by goals that the user
states. When a new fact appears, the system makes all the deductions it can about that
fact. This way of driving deduction fits in well with an event-driven system like IDES.
Each IDES audit event becomes a fact that gets asserted into the knowledge base. This
assertion causes the rules to be applied to the new fact and whatever other facts are in
the knowledge base.

We produce the executable system by writing a rule base that is translated into C lan-
guage code using the PBEST (Production-Based Expert System Tool) translator. The
syntax for the rule-specification language is relatively easy to master; the use of a trans-
lator instead of an interpreter improves the performance of the resulting system.

We have included a draft manual for PBEST as an appendix to this report. This manual
describes the tool in more detail, including information on how it works, how to write rule
bases for it, and how to incorporate the resulting rule-based engines into larger programs.

Early development effort on the rule-based component focused on the following areas:

Interactive Interface. PBEST can optionally produce an expert system with a
window-based interactive interface. This interface uses the IDES User Interface
Library, which is based on the X Window System. The interactive interface cur-
rently supports free running, single stepping, breakpoints, tracing, and assertion
and negation of facts. It maintains a display of the current state of the knowledge
base during execution. It also gives information about the conflict-resolution mech-
anism, showing which rules can fire and which facts make the rule eligible to fire.
The interface lists the firable rules in the order of firing priority.

Memory Management. We have incorporated a garbage-collecting memory allocator
into PBEST. Besides simplifying the memory management problem, this memory
allocator helps the overall performance of IDES by bounding the working set of the
rule-based component process and limiting fragmentation. That is, we are able to
specify that the memory allocator should create a memory area of a certain size and
use only that memory until it can no longer reclaim enough memory by garbage
collection to continue. The allocator will then expand its memory area. We have
found that in practice the rule-based components we have made to process FBI
data will run forever (e.g., process millions of audit records) without expanding
a l-megabyte heap. By tuning the initial heap size, we can find a good tradeoff
between time delays due to garbage collection and time delays due to paging. In
addition, since the garbage collector uses a specific area of memory for its heap, it

The IDES Expert System 59

will not scatter small areas of free memory throughout the process address space
in the course of asserting and negating facts.

GLU Implementation. We have brought up a version of the rule-based component
that will run under GLU. Chapter 8, describing the IDES version of GLU, discusses
our work in this area.

Rule Base. Most of our early effort in developing a rule base had gone into creating
one for the FBI�s IDES system.

Recent effort on the rule-based component has involved creating a UNIX-specific rule
base, exercising it, and modifying it in light of our experiences. We currently have 42
rules, of which six are used for interface purposes. The primary areas we have been able
to monitor with this component are logins, user privilege, and file access.

The rule-based component attempts to detect programmed login attacks by keeping track
of bad login attempts and creating alerts when several bad login attempts occur without
an intervening successful login attempt. The rule base also distinguishes between remote
and local logins, creating low-level alerts when it sees remote logins. Several rules also
create alerts when remote users do certain things. For example, the rule base attempts
to detect leapfroggers. A leapfrogger is a remote user who uses a given system to access
other systems with the intent of concealing his or her identity from system administrators
who want to find out who it was that was really accessing their systems. The system also
attempts to detect users outside of the local network who attempt to mount filesystems
residing on the local system.

The rule base also incorporates rules that attempt to detect when a user gains unautho-
rized privileges. It does this by comparing the audit user ID, which is guaranteed by the
auditing system to remain constant for the life of the session, with the current user ID,
which can change through the use of �setuid� system calls. Usually, a user who suddenly
starts executing programs with a current user ID different from the audit user ID has
obtained unauthorized privileges; the rule base notices this and creates an alert.

Currently, the rule base monitors some types of file access, such as modifying the automat-
ically executed shell scripts belonging to another user. These shell scripts get executed
whenever the user logs in and can thereby be used to plant Trojan horse programs. In
its present state, the rule base creates an alert whenever a user creates or modifies any
such shell scripts in directories other than his or her own.

As mentioned above, we have been unable to make use of all the information we have
obtained about UNIX system vulnerabilities. This is primarily due to shortcomings in the
auditing system. We have discovered shortcomings that are pertinent to the rule-based
component:

Command-line Arguments. The auditing system does not report, the arguments that

60 The IDES Expert System

are given to a program when it is invoked. This prevents us from detecting several
types of vulnerabilities. For example, there is a vulnerability in some versions of
the sendmail program that can be exploited when it is given -C as a command-line
argument. In addition, the find command can be used in many ways to attempt
to compromise security; none of these methods can be detected without looking at
the command-line arguments given to the find command when it is executed.

Program Termination. The auditing system does not report process termination.
This means that we cannot determine when a program stops running. If we at-
tempt to do deduction on a per-program basis, we need to know when the program
has terminated and the information about the program can be discarded.

It turns out that we can obtain program termination information from accounting
files on the system. However, there are two problems with using this source of
information. First, due to race conditions we often receive the report of the pro-
gram�s termination before getting the report of the program�s execution, especially
for small programs that execute rapidly. Handling this properly will require ex-
tra cumbersome mechanism in the rule base. Second, the accounting files do not
identify the termination of shell scripts. When a shell script executes, the auditing
system reports the invocation of the shell script, but the accounting system reports
the termination of the shell under which the shell script was run. For example, the
auditing system will report the execution of the command /bin/arch. When it
terminates, the accounting system will report the termination of the program sh.
Since many shell scripts run under sh, there is no easy way to figure out which
shell script is terminating. In general we have found it very difficult to correlate
the audit information with the accounting information. This has the effect both
of making it hard to detect intrusions (since certain kinds of shell scripts can be a
major vulnerability) and of causing the knowledge base to grow, since it is hard to
write rules to remove unneeded facts that work for every case.

We have run the rule-based component extensively. We have used it as part of
IDES to monitor three workstations running full Sun C2 auditing along with the
news/mail/ftp/dialin server auditing just accounting (program execution) and lo-
gins/logouts. We have seen no problems with throughput running on a Sun 3-260 work-
station. The realm interface causes the two components to run at the speed of the slowest
component; the rule-based component, which currently does no floating-point arithmetic,
is about ten times faster than the statistical component and thus is not the limiting factor
on throughput. Its speed is proportional to the number of rules. There is therefore a lot
of room for expansion, both of rules and monitored workstations, even running on Sun 3
hardware. Our major limiting factor in running IDES has not been throughput on the
IDES machine; it has been finding people willing to be monitored.

The rule-based component does detect what it is programmed to detect. It produces
alerts that are indications that, for example, a user has obtained root privilege or modified

The IDES Expert System 61

login scripts. We have also detected unusual events, such as remote logins to our ftp server
for very short periods of time (less than 10 seconds). Major shortcomings have been in
the area of scope. We are unable to detect some intrusions because the auditing system
does not produce the necessary information. We are unable to detect others because we
do not yet know how they are done.

In the future, we expect to overcome the auditing system problems either by cooperating
with the vendor to enhance the system or by modifying it on our own. We expect
to continue our knowledge-engineering efforts to extend the ability of the rule-based
component to detect new intrusions. We also plan to make the following enhancements
to PBEST:

 Adding and removing rules while the system is running

 Backward chaining

 Better performance profiling

 Improved programming environment

 Improved run-time user interface for noninteractive systems.

62 The IDES Expert System

Chapter 7

The IDES User Interface

This chapter describes the design and implementation of the user interface component
of IDES. In particular, two types of user interfaces have been implemented: the security
officer�s interface, which assimilates the output of the anomaly detector units, and a set
of analyst tools used for experimentation and testing of the IDES statistical component.

7.1 Design Concepts

The goal of the IDES user interface is to satisfy several types of users whose responsibili-
ties vary from high-level analysis of abnormal behavior to the maintenance of the system.
We have identified these types as follows.

 Users who need to be informed of any abnormal behavior on a targeted system in
as close to real time as possible

 Users who must rapidly assess the severity of an anomalous condition and act
accordingly

 Users who can define and/or modify the characteristics of normal behavior for a
particular subject or group of subjects; these would include definition of statistical
measures and expert-system rules

 Users who may want to make random queries to the data, perhaps to validate
different intrusion-detection methods, or for troubleshooting the system

 Users who may wish to do a historical analysis of events, for example, to build a
case against a misuser of the target system

 Users who must install and maintain the IDES system.

63

64 The IDES User Interface

The design provides a user environment that incorporates some of the innovative concepts
of information display, and represents an integrated and consistent view of the IDES
information. This section presents some of our ideas that were implemented.

7.1.1 IDES User Environment

IDES users are categorized into the following three classes:

Security Officers (SOS) are users who are normally watching out for target system in-
trusions, that is, they are considered the IDES �end users.� They are interested in
unusual events that occur on the target systems, and examine the IDES processed
data to determine whether or not a given set of observations is truly abnormal.
They can also be responsible for maintaining any user profiles, such as vacation or
workhour schedules, or any other information that might contribute to the analysis
of abnormal system behavior.

Data Analysts (DAs) understand the methods by which intrusion detection is performed.
DAs are interested in either the statistical analysis of IDES or the expert-system
rules used to detect abnormal behavior on the target system (or both). Like the
SOS, these users want to be notified if an intrusion has occurred, but their focus is
on how the intrusion was discovered as opposed to what the intrusion was.

System Administrators (SAs) are users who are responsible for the system�s maintenance
and performance, constantly making sure that the IDES components are running
as required. They must also understand how the system operates so that they can
tune it as needed for efficient processing.

It should be noted that the roles of each user class are not rigid; SOS can exercise system
administrative duties, and vice versa, and often DAs may be considered specialized SOS.
The classification is mainly defined for the purposes of design discussion. Nevertheless,
the system can be configured with default access privileges to reflect the principle of
separation of duties.

While the information available for each class may be different, the data presentations
should be similar in format to maintain consistency throughout the environment. This
is done by providing a library of display functions used by each user interface component
(see Section 7.3).

There are two ways to invoke the IDES user environment. The IDES machine may be
configured such that upon logging in, the user is immediately brought into the IDES
environment. Alternatively, the IDES user environment may be invoked as a command
executed from another environment, such as from a window management system or from

The IDES User Interface 65

the operating system itself. In either case, the user may be requested to supply a login
name and password before gaining access to the IDES environment.

The user interface is window based and equipped with menus and mouse control for
command selection. It is also available from remote sites, as the window system facility
used allows access and invocation of graphical displays from across the network.

To accommodate the classification of user types, the IDES user environment is organized
into three areas:

IDES processed data consists of all the information that supports the SO and SA duties.
These data include audit records, anomalies, user status, and privileges. This
information can be shown in a variety of ways (e.g., graphs, text, lists).

System administration tools support tasks ranging from the installation and configura-
tion of IDES to the regular maintenance of the system. The SA is typically con-
cerned with the running status of IDES, and needs to be aware of any problems
that may affect the performance of the system. The IDES environment provides
various tools to facilitate this role.

General OS functions are initially installed with all IDES environments. These include
processes such as a terminal window environment to invoke regular operating sys-
tem commands and receive system messages, an electronic mail facility, screen
locking, system logout, and so forth. As the IDES user becomes familiar with the
operating system environment, this list of commands may be expanded to include
other functions and applications. However, if the IDES environment is to be iso-
lated from other types of computer work (i.e., the computer is an IDES-dedicated
machine), then additional functionality should be added with discretion.

Section 7.2 describes the types of data each user class may be interested in, and how
such information is currently displayed in IDES. Again, it is important to note that the
classification is not rigid, and that any particular user may fall into more than one group.

7.1.2 Display Objects

To maintain consistency within the IDES user environment, it is useful to define a set of
standard data presentation formats so that the user can view and manipulate data in a
similar fashion regardless of what information is being displayed.

For example, the mouse buttons should invoke the same functions throughout the entire
user environment. A sample arrangement would be to have the right mouse button bring
up a menu with options to be invoked, while the left button selects items that are already
displayed on the screen, or confirms a selection that has been made. The middle button

66 The IDES User Interface

might be used to activate window commands, such as moving, resizing, and closing the
current window.

Likewise, data displays must be uniform throughout the user interface. Commands and
data results for either system-related information or IDES-specific data should be pre-
sented in the same manner.

Data views are static presentations of IDES information, and can be invoked at any
given time. Information is presented as a �snapshot� of the processed data at a specified
moment or period of time. To provide a consistent user interface environment, a standard
window format is used to display information. Each window contains the following four
components:

The

The

The

The

Selection Criteria subwindow is the section of the data view window that is reserved
for any search parameters the user may want to specify. Some selection criteria may
be mandatory, such as an ID number or a category type; these are labeled so that
the user can clearly see that such information must be provided before executing
the request (such as boldfacing or highlighting).

Commands subwindow contains various options pertaining to the information being�
requested. These functions include commands like HELP, EXECUTE, PRINT,
and QUIT. These commands are displayed as items that can be selected with the
mouse. If a request takes a few minutes (or even seconds) to execute, then the
command selection is shaded or blacked out to indicate that the request is still
in progress so as not to mislead the user into thinking that his request was not
acknowledged by the system.

Display subwindow presents the information as specified by the selection criteria in
a list format. This window is scrollable up or down, left or right. In addition,
the items in the displayed list in this subwindow are also selectable for detailed
information. This is done by picking an item in the displayed list with the mouse
button, and then selecting one of the command options to display appropriate
parameter information. The detailed information is either displayed in the same
data view window, or a new window is brought up.

Messages subwindow provides a place for status messages to appear, whether pro-
duced by the execution of the data view request or from the system itself. Invocation
error messages (such as not specifying enough selection criteria) are also displayed
in this window.

Users may often want to see IDES information presented dynamically (i.e., in real time),
especially if they wish to track a potential intrusion closely. These interfaces are referred
to as monitors. Data monitors are typically graphical in nature, as it is quicker to note
unusual events with visual aids as opposed to reading and interpreting text. The following

The IDES User Interface 67

are some samples of graphical presentations that might be used throughout the IDES
user interface:

Plotted graphs are graphs of events from a given time to the current time, and are updated
frequently (every minute or less). They indicate trends of activity, and are useful
in tracking down potential anomalous behavior.

Meters indicate the level of activity in the system. They are usually measured in per-
centage units; that is, if an activity reaches a maximum allowable state, the meter
will be marked at the l00-percent level. These data monitors help keep track of
things such as processing rates and data storage usage.

Flashing icons are very effective visual aids to indicate a critical situation or event. They
may be supplemented with audio mechanisms (e.g., beeps, buzzes) to emphasize the
importance of an anomalous condition. Such monitors are used primarily for events
that occur relatively infrequently, but when they do, the user must be notified as
quickly as possible.

Data monitors are not limited to graphical displays. Textual presentations are also
utilized, especially for occasions in which messages are produced to explain a situation
in more detail:

Dynamic lists are similar to those lists presented in data views, except that the list scrolls
(or redisplays) automatically as the process receives new information.

Message displays are the textual complements to flashing icons. Coupled with a flashing
icon, message displays can provide more meaningful information to the user when
something unusual occurs.

It should be mentioned that data monitors may potentially slow down the performance
of the IDES processing, although usually not significantly. This is because each monitor
runs as its own process, and must request data at frequent intervals to maintain a real-
time status. (Alternatively, a triggering function could be used to signal these monitor
processes to notify them of newly arrived information.) Data monitors do not allow
additional querying (i.e., the user cannot pick an item from a dynamic list for detailed
information). If a user wishes to elaborate on a particular piece of information, then the
data views are to be used.

Ad-hoc queries must also be addressed. These are requests for random data that do
not have a predetermined method of execution. This type of query is best supported
by a fourth-generation language (such as SQL) that is generally provided by a standard
database management system. However, integrating such a system into the user inter-
face would require the users to learn how to write SQL queries, or to use whatever forms

68 The IDES User Interface

interface is supported by the DBMS, hence increasing the difficulty of maintaining a con-
sistent user interface overall. Ideas on a more sophisticated interface for ad-hoc querying
are still being sought.

7.2 User Interface Components

This section describes in detail the different user interface components that are built
within IDES. We have built a security officer�s user interface, which integrates the output
from the statistical and expert system components. We have also implemented a series of
Data Analyst tools for the statistical anomaly detector, primarily used by the statisticians
for algorithm analysis and experimentation.

7.2.1 Security Officer�s User Interface

The security officer must have information ready at hand to quickly track down abnormal
system behavior once it has been detected. The SO�s primary concern is the occurrence of
target system intrusions. Once an anomaly is detected and confirmed by the appropriate
analytical engines in the IDES processing environment, the SO is notified by a flashing
graphical object and/or a textual message displayed in a designated section of the screen.

After recognizing the intrusion, the SO will generally want to track down the source of
the abnormality. Important information for this purpose might include the host on which
the intrusion occurred (in a multitarget environment), who/what the subject is, and what
other entities were affected. A window can be brought up to show a list of anomalies
that have been discovered by the system and an indication of the level of severity of each
anomalous record. By picking a particular anomaly in the list the SO may be able to
trace the path back to the original audit record(s) from whence the event propagated.
In addition, the SO may be able to examine other information that contributed to the
anomalous event.

The SO should be able to define various criteria for a set of audit records to be displayed,
such as the subject type (user, target system, remote host) and identification number,
time period in which they were recorded, and records received from a particular host.

The SO may also wish to actively monitor a particular subject (due to observation
or notification of previous suspicious behavior). An activity monitor can be used to
dynamically display a list of activities (perhaps a permuted representation of each relevant
audit record) for that subject as each audit record gets processed and incorporated into
the IDES processing environment.

The IDES security officer user interface (SOUI) is a real-time display that allows the SO
to monitor active users on the target system, and at the same time provides alerts to

The IDES User Interface 69

signify anomalous events. Such events are either known security violations that have been
traced by the expert system, or a significant threshold of abnormal behavior as detected
by the statistical analysis component. The SOUI also provides a means for the SO to
closely examine and analyze suspect behavior by retrieving a range of audit records (for
a particular user) that potentially contributed to the abnormal/illegal use of the target
system.

Main SOUI Window

The main window of the SOUI displays a list of active subjects. When a new subject
enters into the target system, its name appears in the window, as does a host name
if the subject is remotely logged in to the target system. The sequence number and
timestamp of the most recent target audit record for each subject is constantly updated
and displayed in this window, giving the SO an indication as to how much and how
recently a subject has been active on the target system.

Also displayed in the main window is a statistical score value sent from the statistical
anomaly detector (see Chapter 5 for details on what this score value means), and it is
also updated regularly.

The SO may delete any subject from the main SOUI window, especially as the list of
subjects grows to a large number and certain subjects may no longer be active. This may
be done by selecting the subject in the list with the mouse to highlight that entry, and
then selecting the DELETE option in the command box of the window. However, if a
graph window is currently being displayed for this subject, the name will not be deleted
from the list. Figure 7.1 shows a sample display of the main SOUI window.

Finally, the bottom-most view of the SOUI main window is reserved for informational
messages to the SO. Typical messages are operational errors, such as the SO�s trying
to delete a subject from the list while its anomaly graph is still being displayed, or
miscellaneous status data, such as a subject�s logging in to the target system from a
remote host (message sent by the expert system).

Online help is available at each window level, and can be selected by clicking on the
HELP button in the command box.

Anomaly Graph Window

The SOUI has a subwindow that can be displayed to view the trend of statistical scores
that have been produced by each subject. As each audit record is processed for a subject,
a score value is produced, and this score value is plotted in real time onto a graph
subdivided into four quadrants. These quadrants currently represent the log base 10
value of the scores; that is, the first quadrant (bottom level) represents values between

70 The IDES User Interface

Figure 7.1: SOUI Main Window

0 and 10.0, the second quadrant represents values between 10.0 and 100.0, and so forth.
The intent of this subdivision of values is to distinguish �yellow zone� scores from �red
zone� ones, allowing the SO to easily view when a subject is approaching a critical level
of abnormal behavior (as indicated by the score values). A sample display of the anomaly
graph window is shown in Figure 7.2. The score ranges within these zones still need to be
determined as more experiments are done with the statistics. As a future enhancement,
the zone definitions will be made to be flexible and configurable.

The SO can also select any portion of the displayed graph by using the mouse. If the
audit record archiver process is turned on, then another display window containing a list
of audit records pertaining to that selected portion of the graph will be shown. This
enables the SO to trace a portion of a subject�s activity that contributed to the score
graph indicated.

Other features at this window level include printing a hardcopy of the graph, and a
refresh option to start the graph.

The IDES User Interface

Figure 7.2: SOUI Anomaly Graph Window

Alert Windows

Alert windows are currently divided into two criticality levels. Level 0 is the most critical
level, and takes up the top half of the alert window. Level-l alerts are usually just
warnings, letting the security officer know that something unusual may happen.

These alert windows appear automatically, with a flashing background to attract the SO�s
attention. The SO must acknowledge the alert window for the flashing to discontinue.
This is done by clicking on the ACKNOWLEDGE button in the command box. This
window remains in existence, and each time a new alert comes in, the flashing occurs.

Alert windows are triggered when one of the following events occurs:

 The score value for a subject reaches a specified threshold value. When the score
value approaches the red zone, then the warning level of the alert window flashes.
When the score value reaches or exceeds the threshold value, the critical section of
the alert window is triggered.

 A subject is traced to a leap frog event - that is, when a user has logged in to one
host to log in to another host. This is a warning-level message only.

 A subject has touched his .login file, which triggers a critical-level alert.

Future plans for the SOUI will include the following features.

72 The IDES User Interface

 More detail on the cause of an alert

 Display of archived records for the statistics

 Journal of anomalous events, which would involve standardizing the format that
represents anomalies.

7.22 Data Analyst Information

A Data Analyst (DA) is generally interested in the anomaly-detection components of
IDES (i.e., the statistical module and the expert system).

Statistical profiles retain accumulated information about a subject�s behavior on the tar-
get system. The DA who is interested in the statistical analysis of anomaly detection can
view such information. These data include measures that are actively being monitored
for each subject, various statistical data for both discrete and continuous measures, and
a set of current (for that day) and historical (accumulated over a period of time) profiles
of a subject�s behavior.

Some examples of expert-system information that might be interesting to the DA are the
rules that were applied to detect anomaly and backtracking of rule path followed by the
system. Some of this capability is described in detail in Chapter 6.

Data analysts may also want to replay some data to test the accuracy of the anomaly-
detection units. Hence, the tools used by the SO users may also be used by the DAs to
configure and tweak at various parameters for experimentation.

We have implemented three such user interfaces for the data analyst, in particular for
the statistical component. Details are described in the following subsections.

Peek

The peek program is a tool used for the analysis of subject profiles. Most of the in-
formation presented is meaningful only to data analysts (particularly statisticians) with
comprehensive knowledge of the algorithms used in the IDES statistical component, and
is generally not much use to the general security officer. See Figure 7.3 for a sample peek
display. Peek has been used primarily for algorithm debugging and testing.

The main window of peek shows a list of subjects whose profiles are available for browsing.
Each subject has two sets of profiles, one for normal work usage (weekdays) and another
for weekend/holiday use; either one of these profiles may be selected for viewing. The
subject profiles are represented as a variety of probability vectors and matrices, and are
displayed in this manner. Again, unless one is familiar with the algorithms used for

The IDES User Interface 73

statistical anomaly detection, most of this information may seem rather cryptic to the
average user.

Peek: can run interactively with the active IDES statistical component by sending signals
(propagated by the user) to the statistical unit to request dumps of the latest profile
information that has been accumulated in the process cache.

Figure 7.3: Peek Selection Window

Scdist

The scdist program collects the cumulative score values for each subject and sorts them
into range bins. It is like a spreadsheet of score information, enabling the DA to view a
summary of the score trends produced by a particular subject. This tool is used often for
experimentation of the statistical component, to see if the tweaking of various statistical

74 The IDES User Interface

parameters will affect the value of the T2 scores. Figure 7.4 shows an example of an
scdist display.

The ranges of the score values can be modified to be larger or smaller, depending on how
fine the user wishes to view the distribution. Scdist can be run in automated mode, where
the score distribution display is updated every 10 seconds. A snapshot of the current
distribution can be taken any time, and either be saved into an ASCII formatted file or
sent directly out to a printer.

2407 554

0

Figure 7.4: Scdist Display Window

Statconfig

The statistical anomaly detector runs based upon a particular configuration of statisti-
cal parameters. This information can be modified by the SO or DA via the statistics
configuration program (statconfig), which is a graphical interface to the configuration file.

Three types of parameters are currently used by the statistical program: user measures,
command classes and system parameters. Once modified, these parameters are used in

The IDES User Interface 75

15
16
17
18

24
25

0.0

 1000.0
 1000.0

0.0 1000.0
1000.0

0.0 0.0

Figure 7.5: Statconfig Program (measure modifications)

the next invocation of the statistical component.

The configuration file contains a list of all possible measures that can be used by the
statistical component (see Chapter 5 for a detailed description of these measures). The
user can modify a variety of characteristics for any measure, such as activating or deac-
tivating it, reclassifying its type and/or description, or changing its contributory weight
or scalar values for the statistical algorithms (these latter items are particular to the
statistical algorithms and probably would not be changed directly by the SO). Changes
can be made easily by selecting on the appropriate measure and filling in the proper
information (see Figure 7.5).

A variety of statistical parameters can be modified by the SO or DA, allowing the sta-
tistical component to be tuned for a particular scenario or set of users. Currently, the
following items can be modified:

Audit Record Half-life. This parameter determines the half life of audit records processed
for each subject.

Profile Half-life. This parameter is the subject profile half-life, represented as a number
of days.

Correlation Cutoff. This value is used by the profile updater to determine how close the
correlation of measures should be (used only if a correlation matrix is used).

76 The IDES User Interface

 0.

Figure 7.6: Statconfig program (parameter modifications)

Score Threshold. If this score value is exceeded by any user, an alert is sent to the
security officer�s user interface. Currently there is one value for all users, but it will
be modified in the future to allow different threshold levels for different subjects or
subject groups.

Figure 7.6 shows a sample statconfig window with which the statistical parameters can
be changed.

The configuration file also contains the classification of specific commands, such as mailers
and editors. If the statistical measures for any of these special commands are turned on,
then a list of commands that fall into specific command classes must be defined. This
list can be updated by the security officer at any time using the statconfig program (for
example, when a new mailer system is installed on the target system). Each item in the
list should be separated by a comma. An example of the command classes section of the
configuration file is shown in Figure 7.7.

7.2.3 System Administration Data

The IDES system administrator (SA) is presented with a variety of functions that apply
to the basic system administration tasks, such as installation, configuration, and general
upkeep of the IDES system. While an SA is likely to have some general experience
with the operating system functionalities, the tools to aid him or her should present a

The IDES User Interface 77

Figure 7.7: Statconfig Program (command classes)

user interface style consistent with the overall IDES user environment. Procedures are
automated to the extent possible and are designed to allow the novice user to maintain
the system with a minimal amount of system operating skills.

It is the SA�s responsibility to constantly be aware of the system�s condition. IDES has
several processes running concurrently, and hence tools are provided to show the current
state of each process. Some examples of the types of information that might be shown
are:

 Number of audit records received from each target

 Number of rejected audit records

 Status of audit record processing in each component

 Processing throughput for each component

 Dates/times when each component was last invoked

 Storage utilization (how full the data storage area is)

 Overall system load

 Locations of components if running in a distributed environment.

78 The IDES User Interface

SAs must also control the system�s functions, such as initializing or terminating IDES
processes. Although most of the IDES processes are automatically started either during
the installation process or by another process, there are occasions (such as for system
maintenance purposes) when any of these must be temporarily halted and later restarted
(manual override). There are also situations (although rare) when a process may termi-
nate abnormally and require a manual startup.

The SA may use the archiver process to handle most of the storage hygiene procedures,
such as purging old data from the system. Explicit instructions will be provided and
automated wherever possible to minimize the number of steps the system administrator
needs to take to execute these procedures.

The SA is also responsible for the installation of IDES, and the process should be simple
and straightforward. The user interface should carefully guide the installer to ensure the
proper sequence of events, and also allow backtracking of steps in case something has
been overlooked or cannot be started properly. There should also be an internal checklist
of parameters to make sure everything has been installed correctly.

While configuration is part of the installation process, it may also be applied during
system execution. Configuration commands should allow the creation and modification
of user-definable parameters in IDES (for example, which measures to observe), definition
of expert-system rules to be triggered for anomaly detection, setup of location maps for
processes residing in a distributed environment, and indication of realm-specific references
to processing components.

At this writing, we have implemented a few programs that are currently being used
primarily as diagnostic and debugging tools for the realm interface components. As a
future task, our plan is to convert these tools into a graphical user interface, thus making
it more usable by an SA or SO who will be responsible for installing and configuring the
IDES system for a particular environment.

7.3 IDES User Interface Library (libiui)

We elected to use the X Window System to implement the IDES user interface. It is
portable, has remote viewing capabilities, and provides a wide variety of programming
tools to build one�s own catalog of viewing objects. A set of IDES data objects was
implemented and incorporated into a software library that any IDES component requiring
a user interface can use. This is the IDES user interface library, or libiui.

Libiui assumes a hierarchical, object-oriented interface to the underlying windowing sys-
tem. It is based upon the concept of windows and views, with a view being a section of a
window that can be manipulated as a unit. A view with more than one child is called a
composite view, and the location and size of each child is controlled by the parent view.

The IDES User Interface 79

Some composite views treat all children equally, while others allow the application to
specify certain constraints for each child view. Examples of constraints are read/write-
only capability, mandatory input, position in a larger view, and boldface or highlighting
characteristics.

The following views have been defined as the set of IDES data objects.

Stack views are composite views that stack their children vertically. The children have
the same width as the parent view, and their vertical area is divided according to
the constraints that have been set for them.

Box views arrange their children in order, from left to right, top to bottom. The box
places as many children left to right on a line as will fit, then moves down to the
next line.

Scroll views have exactly one child. The child view may be larger than the parent view,
which would then allow the user to scroll either vertically or horizontally to see the
entire child window. Scroll views are equipped with scroll bars along the sides and
bottom of the window.

Label views display a line of text. They are generally used to tag fields or provide headers
for columns.

Button views respond to mouse clicks by calling a function passed in by the application.

Toggle views look like button views, but remain highlighted until clicked again.

Question views allow a user to respond to a
mouse-driven text-editing interface to

given question. The
enter in a response.

user is given a standard

Multiple Choice views come in two flavors: one presents a list of all the choices simulta-
neously, while the other shows the choices one at a time (scrolls through the field).
In both cases, only one choice can be selected.

List views display lists of information to the user. The user can scroll vertically or
horizontally through the list, if the data cover more than the available screen space.
Items in the list can be selected and functions invoked as specified by constraints
defined by the parent view.

Message views display messages, such as status
scrollbar is included for long-winded text.

and error messages, to the user. A

Graph views are also called strip charts, and visually represent a history of some event(s).
Graph views can be displayed in two modes: display mode shows a graph that
is continuously moving, while selection mode is a snapshot representation of a
particular moment in time. The user is allowed to pick out a region of the graph
in selection mode and invoke a user-defined function.

80 The IDES User Interface

Meter views may be represented as bars or in �speedometer� style (type of scale with a
pointer indication measure amount).

These views have been implemented and are used by the IDES user interface components
described in the previous section.

Chapter 8

GLU

One of the main goals of the IDES prototype is to detect and report anomalous activities
as they occur despite partial failures and while accommodating changes in the volume
of audit data being processed. This chapter describes how this important system goal is
realized. First, the specific system requirements for the IDES prototype are identified.
Next, we justify the use of a multiprocessing methodology to meet the requirements.
We then describe a platform for multiprocessing (called GLU for Granular Lucid) and
discuss its capabilities. Finally, we present the structure of the IDES prototype on the
GLU platform and consider how well it meets the requirements.

8.1 System Requirements

The IDES prototype has to satisfy the following system-level requirements.

1. Detect anomalous activity as, or soon after, it occurs. This is the soft real-time
processing requirement.

2. Continue to detect anomalous activity despite partial failures of the prototype,
albeit with degraded performance. This is the fault-tolerance requirement.

3. Accommodate increased amounts of activity by proportional hardware addition
without compromising soft real-time processing or fault tolerance. This is the
scalability requirement.

81

82 GLU

8.2 The Multiprocessing Approach

An approach to meeting the above requirements is to rely on specialized technology. By
choosing a customized system that is sufficiently fast, fault tolerant, and easily expand-
able, the three requirements can be met. This approach has the following drawbacks.

1. A substantial and nontrivial programming effort would be needed to implement
IDES on the chosen system so as to satisfy all three requirements.

2. The peculiarities and limitations of a given system often become evident only after
considerable time and cost.

An alternative approach is that of multiprocessing, in which current off-the-shelf tech-
nology is used to meet all three requirements. Multiprocessing refers to the use of several
communicating autonomous computers to execute a single application such as IDES.
With the multiprocessing approach, speed is achieved by exploiting natural implicit par-
allelism in the activity instead of using fast hardware technology. The multiplicity of
processors, storage, and communication components facilitates detection and recovery
from failures of some components. Scalability is achievable because a multiprocessing
system can be easily expanded and its performance, should scale proportionally.

We have adopted the multiprocessing approach to meet the requirements of the IDES
prototype. While the underlying multiprocessing system is simple in its architecture - for
example, a network of conventional workstations - the methodology to map an applica-
tion onto this system is novel. A key aspect of a successful multiprocessing methodology
is the extent to which the mechanism and architecture of the methodology are hidden
from the applications (in this case the components of the IDES prototype) they support.
In our opinion, this not only reduces programming effort and enhances portability, but
it enables the IDES prototype to fully meet the requirements.

8.3 GLU: A Software Platform for Multiprocessing

The multiprocessing software platform called GLU [24,25,26] allows for development and
implementation of IDES on a multiprocessing system such as a network of workstations.
The methodology allows the following concerns to be hidden from the application (IDES).

 Multiprocessing system architecture

 Explicit creation and management of parallelism

 Explicit detection and recovery from partial failures.

The platform consists of the programming model and the execution model.

GLU 83

8.3.1 GLU Programming Model

A GLU program is a dataflow graph whose vertices denote functions and whose edges
denote data dependencies between functions. A function is either predefined or it is
defined by the programmer in a procedural language such as C. Note that issues of how
to exploit parallelism and how to react to partial failures are hidden from the GLU
program.

Operationally, a GLU program should be viewed as a mapping from a set of input
sequences of values to an output sequence of values. Each edge denotes a sequence
of values and each vertex denotes a function that consumes its incoming sequences to
generate its output sequence of values. Each edge value is referred to by the name of the
edge and its context, which is the conceptual position of the value in the edge sequence.

The context can be viewed as an n -tuple of integers that uniquely identifies a value
of an edge. When the context is n -dimensional, the sequence associated with an edge
corresponds to a set of values in an n -dimensional space.

The dataflow graph can be expressed in a simple, equational language as a set of equa-
tions. The expressiveness of the language is illustrated by describing the expert system
in it (see below and Figure 8.1).

// constants
#define BLOCK_SIZE 2000
#define MN_BUNDLE_SIZE 128

// data structure definitions
struct ar_record

{
char rec[ar_len];
struct ar_record *arp_next;

};
typedef struct ar_record *AUDIT_RECORD;

struct bt_entry
{ AUDIT_RECORD arp_first;

AUDIT_RECORD arp_last;
int bsize,csize;
string uname;

};
typedef struct bt_entry *AR_BUNDLE;

struct ar_block
{
AR_BUNDLE bundle[mu];

84

};
typedef struct ar_block *AR_BLOCK;

GLU

struct filename
{

char fn[flen];
};

typedef struct filename *FILENAME;

// function prototype definitions
local AR_BLOCK get_ar_block(int, int);
local int num_users(AR-BLOCK);
local AR_BUNDLE select_bundle(AR_BLOCK, int);
local int user_name(AR_BUNDLE);

int es_process(AR_BUNDLE, int);

// GLU program
e where

e = do_expsys(scatter(blk))
where

blk = get_ar_block(BLOCK_SIZE, time);
scatter(block) = p
where

bs = 0 fby bs + num_users(block);
s = bs upon advance;
advance = (next time == z);
z = s + num_users(b);
b = block upon advance;

P = select_bundle(b, time-s);
end;
do_expsys(bundle) = score

where
user = user_name(bundle);
score = (sc @ i) @.u user

where
index u;
i = time upon u == user;

user_bundle = bundle wvr u == user;
SC = (first invoke(user_bundle, 0)

fby
next invoke(user_bundle, prev SC)
)
where

invoke(ub, sc) = es_process(ub, time);
end;

GLU 85

end;
end;

end;
end

The GLU program shown above accepts, as input, blocks of audit records from an external
source. This way the communication cost is amortized over several records. Procedural
function get_ar_block, when given block size and block id, returns a block of audit
records as a C structure (AR_BLOCK.) The block, which may consist of audit records
from different users, is divided or scattered into smaller blocks (or bundles) where each
bundle consists of audit records from a specific user. This is accomplished using the GLU
function scatter and C functions num_users and select_bundle. Each record in each
bundle is processed by the expert system (implemented by es_process) by invoking the
GLU function do_expsys on each bundle.

8.32 GLU Execution Model

The GLU platform provides the programmer with important benefits of implicit coarse-
grain parallelism, transparent fault tolerance, and architecture independence. These
benefits are realized by using a novel model of parallel execution called eduction. Eduction
corresponds to lazy dynamic dataflow [27]. An important consequence of laziness is that
while it shares the greater asynchrony of its eager counterpart, it avoids superfluous
computation altogether. This is particularly important since procedural functions with
side effects in GLU programs should not be invoked when unnecessary, even if the side
effects are benign as far as the computation is concerned.

The most natural way to realize education is by tagged demand-driven execution. Simply
speaking, a term in a GLU program is evaluated (at a particular context) only when it is
demanded at that context (as identified by the demand�s tag). The evaluation consists
of two phases: first, simultaneous demands for the constituent subterms at appropriate
contexts are propagated and, second, the function associated with the term is applied
when the demanded values of each satisfied subterm are available, thereby producing the
originally demanded tagged result.

An important aspect of eduction is that it does not recompute the value of a term at a
given context (or tag) if that value has been previously demanded. Instead, the tagged
value is stored when the initial demand for it is satisfied, and is used to satisfy subsequent
demands for the value.

The eduction model exploits two kinds of parallelism. The first kind is functional paral-
lelism, which is exploited in the simultaneous computation of tagged values of subterms
demanded to produce a tagged value of a term. The granularity of parallelism is coarse
if the subterms correspond to procedural functions.

86 GLU

Figure 8.1: IDES Expert System in GLU

GLU 87

Given the program fragment, f(g(y), h(z)), if the tagged value f(...):c is
demanded (c is the tag of the value that is sought), demands for g(...):c and h(...):c
would be simultaneously made, which in turn would demand tagged values y:c and z:c.
When the latter become available, functions g and h can be applied simultaneously,
resulting in functional parallelism.

The second kind of parallelism is context parallelism (which loosely corresponds to data
parallelism [25]). This is exploited in the simultaneous evaluation of the same term at
multiple contexts. As a simple example, with the above program fragment, the term
corresponding to f(...) can be demanded simultaneously at contexts c and d and the
demanded tagged values of subterms at the two contexts can be computed independently
since there is no contextual dependency within the term. Further note that the exploita-
tion of context parallelism can occur independent of the exploitation of the functional
parallelism.

The program given in Figure 8.1 exhibits data parallelism in the simultaneous processing
of audit record bundles of different users. In other words, while audit records of a given
user are required to be processed in order, audit records of independent users can be
processed simultaneously. This parallelism is illustrated in Figure 8.2. The parallelism
exploited is coarse grain because a bundle (instead of an individual audit record) is used
as a unit of audit information If each bundle consists of only one audit record (i.e., fine
grain), the cost of communication of the bundle (overhead) will far outstrip any gains
made in exploitation of parallelism in simultaneous processing of the individual audit
record. Thus, we are currently experimenting with the effect of increasing bundle size on
performance.

8.3.3 Recovery from Partial Faults

Another benefit of the execution model is the ability to detect and recover from partial
failures. We assume a simple fault model in which a processor either operates correctly or
fails and stops. This will appear in our execution model either as an unsatisfied demand
or as loss of a previously computed value. In the first case, the unsatisfied demand can
be detected by a timeout mechanism and a simple protocol. Recovery would require
the demand to be reissued and processed elsewhere (i.e., at another processor). In the
second case, while the loss of a previously computed value cannot be detected, it does
not matter since the execution model will automatically recompute the demanded value
elsewhere.

Detection and recovery from failure is handled entirely by the execution model and does
not require programmer participation. However, for correct processing, the execution
model assumes that each function is programmed to be idempotent and atomic. Idem-
potence guarantees that repeated execution of the function with the same values has the
same effect and produces the same result. Atomicity guarantees that either none of the

GLU

Figure 8.2: Data Parallelism in an Expert System

GLU 89

effects take place and no result is produced, or all of them take place and the result is
produced. Functions of the IDES application (as described below) will be idempotent
and preserve atomicity.

8 . 4 I m p l e m e n t a t i o n o f I D E S u s i n g G L U

IDES can be viewed as a program that consumes a sequence of audit records and produces
a sequence of boolean values, each indicating whether any of the events associated with
the corresponding audit record are anomalous. IDES processes each audit record using
the rule-based expert subsystem and the historical profile-based statistical subsystem.
The analysis of the two subsystems is resolved by the resolver subsystem, which reports
whether an audit record signifies one or more anomalies. (Currently, the resolver function
is simply a place-holder that returns an anomaly when either the expert system or the
statistical component reports anomalies.) The rule-based expert system uses the audit
record and the knowledge base associated with the subject specified by the audit record
to perform anomaly analysis. For each subject, the statistical subsystem computes the
active profile using the audit record and the previous active profile for the subject, and
statistically analyzes the active profile with respect to the historical profile. To enhance
efficiency of failure recovery, the active and historical profiles are periodically written to
stable storage.

The GLU program that implements IDES is given below and an explanation of the
program follows.

resolve(esp, stp)
where

esp = do_expsys(bundle);
stp = do_stats (bundle);
bundle = scatter(block);
block = get_ar_block();

The program (shown in Figure 8.3) uses get_ar_block to generate audit record blocks
that are scattered into bundles by the GLU function scatter and processed by both the
expert system (do_expsys) and the statistical system (do_stats). The results from each
are resolved using function resolve.

The execution of the above program results in two kinds of parallelism being exploited.
One kind is in the simultaneous processing of each block by both the expert system
(do_expsys) and the statistical system (do_stats). The other kind is the simultaneous
processing of independent bundles by both the expert system and the statistical system.

90 GLU

I

Figure 8.3: IDES in GLU

GLU

8.5 Evaluation

91

We have been successful in expressing both the statistical and expert-system components
of IDES using the GLU platform. We qualitatively consider how well the GLU imple-
mentation of IDES meets the requirements of soft real-time processing, fault tolerance,
and scalability. We also point to other benefits of using the GLU platform.

The soft real-time processing capability is achieved by the ability of GLU to automat-
ically exploit and effectively harness all useful parallelism that is implicit in the IDES
application. For example, the implementation would allow audit records from different
subjects to be processed in parallel, and within that, the expert and statistical processing
can proceed simultaneously. While the execution of a GLU program does entail over-
head in the form of demand propagation, this will be easily offset by significant speedup
obtained from useful parallelism.

The fault-tolerance requirement is achieved to a good measure because the GLU program
for IDES is evaluated using demand-driven execution. Demand-driven execution is a
natural and efficient mechanism for detecting failure in computing demanded values and
recovery by redemanding and recomputing such values using the available resources.

The scalability requirement is achieved since the details of the architecture are hidden
from the GLU program, and the execution model can easily accommodate increases (or
decreases) in computing capacity. Essentially, changes in computing capacity need only
be accounted for in the load distribution policy in the implementation of the execution
model.

GLU has other pertinent benefits. This platform provides a sound basis for software
design and development. A GLU program such as IDES is portable since it is independent
of the underlying architecture and operating system. The GLU platform also provides
efficient mechanisms for data transfer and synchronization, in contrast to the previous
version of IDES, which made heavy use of a database system for these purposes.

92 GLU

Chapter 9

Remaining and Proposed Work

The completion of this three-year project is an important milestone in the maturation
of the IDES intrusion-detection technology. We have demonstrated the system indepen-
dence of IDES by its ability to monitor a database-system-based application on an IBM
mainframe and a distributed network of Sun workstations running UNIX. A single IDES
is in fact capable of monitoring both environments simultaneously, and IDES can be
extended to monitor other environments. We are beginning to see the first commercial
interest in IDES as a potential product, and we are seeking opportunities for developing
customized versions of IDES for particular installations. Our first installation of IDES
outside SRI is at FBI Headquarters in Washington D.C., where IDES will monitor the
FBI�s Field Office Information Management System (FOIMS). We have also given copies
of the IDES software to several other U.S. Government agencies. We would like to see
IDES and systems based on the IDES technology available for use in sensitive applica-
tions in the Federal Government and in private companies working in partnership with
Federal agencies.

Such widespread use of IDES-like systems will require that these systems become stan-
dard, commercially available products. However, before IDES can easily find wide appli-
cation or become anything close to a turnkey commercial product, several aspects must
be explicitly addressed. These include improvements in the ease of use of IDES, reduc-
tions in its false-alarm rate, ensuring its resistance to attack, increasing its scalability,
and extending it with respect to network vulnerabilities and attacks. Our intent is to
produce a next-generation IDES that significantly extends IDES in each of these areas
and to design an architecture for the insertion of the next-generation IDES into a large,
complex network of computers. We briefly describe below our plans for each area.

Ease of Use and False Alarm Rate As the statistical component of IDES detects
anomalies, IDES reports the anomalies to the IDES security administrator, along
with a computation of how far from the expected norm the measured values are

93

94 Remaining and Proposed Work

and an indicator of the leading five intrusion-detection measures contributing to the
anomaly. As the IDES expert-system component detects events that trigger the
firing of its rules, IDES reports the events to the IDES security administrator along
with an explanation of what rules were fired and why. The number of anomalies
reported can be tuned to some extent by raising and lowering IDES�s statistical
threshold. However, raising the threshold can be done only at the expense of losing
some sensitivity to potential intrusions. It is difficult to tune the number of events
reported by the expert-system component, because this number does not depend on
any threshold or sensitivity factor. Thus, the number of suspicious events reported
by IDES will depend primarily on the number of users and systems monitored and
on how active those users are.

When IDES is used in a large user community with, for example, thousands of
users, it is entirely reasonable for it to be reporting hundreds of anomalies a day.
While this is a great improvement over the possibly millions of audit records per
day that the auditing system may be generating, it is still a large number of events
to be investigated by a security administrator, and may require a staff of several
people on every shift. We may safely assume that most of the events reported will
be false alarms, explainable after investigation using some information unknown to
IDES. For example, the security administrator may rule out some reported suspi-
cious events because he or she knows that the user has just begun a new job, was
promoted, moved to a new office, assigned new computer equipment, and so on.

To make IDES more usable, a new intelligent component is necessary that can auto-
matically apply such auxiliary knowledge to rule out "explainable" reported events
before they are ever shown to the IDES security administrator. This presents the
IDES security administrator with even fewer events to investigate, and avoids the
waste of time entailed in investigating events that can be explained away. We call
this new component of IDES the resolver. The resolver could also rank the remain-
ing reported events as to their seriousness, so that the IDES security administrator
can make the most effective use of his or her time in tracking down intruders.

Another approach to the problem of false positives is to use a detection component
with finer discrimination capabilities. It is likely that a neural net component will
be able to make the finer distinctions sought if it is sufficiently trained. While
neural nets do not provide explanation facilities, the combination of a neural net,
the resolver and the explanation facilities of the other two components could give
IDES the best of both worlds: fine discrimination to avoid false positives and the
ability to provide useful information about why a true positive is of concern.

The IDES platform supports the concept of interchangeable detection components
by specifying a uniform format for audit and anomaly data, and by having a highly
modular architecture. These characteristics of IDES allow us to concentrate on
engineering the detection components themselves, without needing to modify the
superstructure of IDES.

Remaining and Proposed Work 95

Resistance to Attack For a would-be penetrator attacking a system known to be mon-
itored by IDES, the logical first system component to be disabled would be IDES
itself. Thus, IDES itself must be able to resist attacks.

One approach to attack resistance is to implement IDES on a distributed system of
autonomous, cooperating processors. To resist attack, the distributed IDES should
transparently detect and react to failure or removal of one or more processors
while continuing to provide complete functionality even if only one processor is
operational.

This fault-tolerant capability can be provided by using the GLU (Granular Lucid)
platform to implement IDES. The GLU platform consists of a very high-level pro-
gramming language that supports coarse-grained parallelism on networked worksta-
tions. It assigns responsibility for each part of a computation to a specific processor,
thereby making the computation fault tolerant. If part of a computation fails, the
GLU system will notice and retry that part of the computation.

The current IDES incorporates GLU technology. However, our focus in this imple-
mentation has been on scalability and on gaining experience with the GLU platform
itself. Thus, the current implementation is vulnerable if the processor running the
interfaces to the GLU environment goes down. An enhanced implementation of
IDES in GLU would remove the dependence on a particular processor.

Scalability The amount of processing IDES must do depends on the number and type
of events audited, the number of users and systems monitored and their activity,
and the type of system being monitored. Even if an IDES installation is initially
adequate for a particular target system environment, if that environment grows in
size, acquires many new users, or begins to audit many more events, the original
processing power selected for the IDES installation may prove inadequate. What
is needed is a way to scale IDES as the demands on its processing power increase,
without having to scrap its hardware base and purchase an entire new system to
support the increased workload.

The GLU platform naturally provides for scalable performance. When IDES is
implemented on the GLU platform, increased processing power can be realized by
simply adding additional processors to the hardware base. Importantly, this can
be done without modifying the IDES application itself and even without stopping
the IDES processing.

Detecting Network Intrusions Current computing environments are, more and
more, massively networked sets of workstations, servers, mainframes, supercom-
puters, and special-purpose machines and devices. Focusing on the vulnerabilities
of any single host or even any single homogeneous local network of machines may
prove inadequate in such a distributed environment. Detecting intruders will re-
quire a comprehensive view of a network, possibly extending to other networks

96 Remaining and Proposed Work

connected to the local network. Applying IDES technology to this (possibly het-
erogeneous) computing environment will require expanding the scope of IDES to
include the ability to detect network intrusions as well as intrusions into the indi-
vidual host machines. To achieve this, the following steps are necessary.

 Build a rule base into IDES that contains specialized knowledge about network
vulnerabilities and intrusion scenarios.

 Enable IDES to work with partial information, since in a very large network
it is unlikely that IDES will possess complete information about the whole
network at all times. This capability will make IDES especially attractive
for use in tactical communication networks, which must operate in hostile
environments.

 Develop an overall architecture for inserting IDES or a distributed set of com-
ponent IDES machines into a large, complex network.

Below, we summarize our plans for addressing these requirements. The new capabilities
described below will be incorporated into a Next Generation IDES prototype.

 GLU Platform - We plan to develop and implement a GLU platform on a dis-
tributed system

- To guarantee highly resistant IDES processing

- To provide for scalable performance of IDES processing to meet changing
needs.

 Resolver - We plan to build a resolver component for IDES. The resolver will ac-
cept anomaly records from the IDES detection components and perform additional
analysis using these records and other sources of data as appropriate. It will then
act on the results of these analyses. We will build on the results of a current SRI
IR&D project that is investigating the use of model-based reasoning for intrusion
detection. We plan to use SRI�s Gister 1 evidential reasoning system for the fusion
and interpretation of evidence produced by IDES�s statistical and expert-system
components.

 Neural Nets - We plan to build a neural network detection component for IDES.

 Network Intrusion Detection - We plan to develop and implement a capability
for detecting network intrusions by combining a specialized rule base on network
vulnerabilities with intrusion scenarios, develop a capability for the detection of
intrusions with partial information, and develop an architecture for the integration
of IDES into a large, complex network.

1Gister is a trademark of SRI International [28].

Remaining and Proposed Work 97

 Large Network Architecture - We plan to develop an architecture for inserting
IDES into a large network, and will we work with a U.S. Government installation
(e.g., NOSC) to install IDES in such an environment.

 Improved Detection Capability - We will improve the detection capability of
the current IDES intrusion-detection components by continued statistical analysis
to reduce the false alarm rate, inclusion of trend tests into the statistical component,
and an improved rule base for the expert-system component.

 IDES Experimentation - We plan to perform experiments using the installed
IDES at FBI Headquarters in Washington D.C. to determine the effectiveness of
the intrusion-detection capability.

We describe these plans in more detail in the following sections.

9.1 Scalability and Resistance to Attack - The
GLU Platform

Our new core technology, GLU, can be used to allow IDES to be easily scaled to many
processors and, more important, to allow IDES to resist attack from an intruder. This
is extremely important for any intrusion-detection system, because we envision that an
intelligent intruder is likely to use an attack strategy in which the intruder attempts to
disable IDES before mounting an attack on the system IDES was intended to protect.

GLU will allow IDES to be resistant to attack by distributing processing over a distributed
set of workstations. GLU does this in such a way that if one of the machines it is using fails
for some reason, it will automatically move processing to another machine without losing
any information. If the intruder is informed enough to know that IDES is distributed, he
or she may continue to attack the other IDES component machines. As this occurs, GLU
will continue to move the IDES processing from machine to machine, without losing any
information or any audit records. As the disabled machines reboot and become available
again, GLU will automatically distribute IDES processing to these machines. In this
way, disabling IDES becomes more than just a matter of disabling one machine. IDES
will continue to run as long as any of its machines are available.

In addition, from a design standpoint, GLU allows us to exploit the natural parallelism
present in the IDES processing of audit data. By requiring that a program be expressed
as a graph with functional, stateless nodes, GLU encourages a highly modular design
with very loosely coupled modules.

We have tested GLU by implementing a portion of the IDES software on it. We have
demonstrated its ability to transparently distribute IDES processing among several Sun

98 Remaining and Proposed Work

workstations and to redistribute IDES processing when one of the workstations goes
down. GLU is the foundation for the Next Generation IDES.

The current prototype embodies our first attempt at incorporating GLU into IDES. The
result is something of a compromise in terms of both performance and robustness. For
example, the current design still has a weak link - the processor that the target systems
send the audit records to. If this processor fails, the whole of IDES will go down. We
would like to eliminate this weak link. We would also like to address the performance
concerns in the interprocess communication mechanism.

The current platform, which needs to be enhanced to meet the requirements of high
resistance to attack and scalable performance, offers a limited degree of resistance by
detecting and recovering from the failure of processors other than the main (weak link)
processor. However, IDES can be rendered ineffective in two ways:

 By causing the weak-link processor to fail

 By arbitrarily slowing down any processor.

Failure of the weak-link processor will cause audit records from the target systems to be
lost and no IDES processing to be performed. This can be compensated for by limited
replication, whereby each audit record is redundantly received and processed. Thus,
failure of any one processor will not cause IDES to cease operation.

Arbitrarily slowing down any processor can slow the IDES processing at that processor
enough to make it ineffective. However, the current GLU platform will not react to the
slowdown, because the processor is still operational. The platform needs to be enhanced
so that processing of each audit record is conducted redundantly and simultaneously in
several other processors. The result of the processing can then be determined as soon as
the fastest processor has completed processing, so that arbitrary slowdown of a processor
will not cause IDES as a whole to be ineffective.

With the current GLU platform, scalable processing is possible since it automatically
exploits and effectively harnesses all useful parallelism that is implicit in the IDES appli-
cation. However, to be fully scalable, the GLU platform needs to transparently accommo-
date increases (or decreases) in processing power without user intervention or temporary
stoppage of IDES processing.

9.2 The Resolver

Neither the statistical nor the expert-system components of IDES are capable of under-
standing the causes of anomalies they may detect. This is left to the system security

Remaining and Proposed Work

administrator. Because of this, in order to guard against excessive false alarms, detection
thresholds must be set rather conservatively.

To improve the performance of IDES in this regard, we plan to develop a model-based
resolver, which would review the conclusions of the two independent IDES components
(the statistical and expert-system components), in the context of more global information
in order to determine whether to raise an alarm. The resolver would consider more
complex explanations for apparent anomalies, thereby reducing the false-positive rate of
anomaly reports as well as eliminating the possibility of multiple alarms due to the same
suspicious behavior�s being reported by both the rule-based system and the statistical
detector.

Furthermore, the resolver would be able to reason about the potential severity of the
anomaly based on an understanding of the alarm in the context of the overall session.
This could often lead to the conclusion that unusual behavior is not a concern because
it does not have any security ramifications.

In ambiguous situations, the resolver could request that additional information be col-
lected or accessed in order to determine the likelihood of an intrusion. This would allow
the amount of audit data collected to be determined by the particular situation.

The resolver will be an intelligent, model-based reasoning component that will make its
decisions based on information from the other detection components in the context of a
larger, unified knowledge base. We plan to implement the resolver using the evidential
reasoning technology pioneered by SRI�s Artificial Intelligence Center.

The resolver would consist of the following components.

 A deduction engine that analyzes the inputs to the resolver

 A database component, giving the resolver access to volatile data

 A user-interface component, allowing users to interact with it on different levels
(a security watch officer could input calendar-type information while a security
administrator could modify its inference rules)

 A communication component, allowing the resolver to act on the conclusions it
reaches.

9.2.1 Resolver Models and Other Data Sources

The concept of the resolver extends the IDES paradigm to include specific models of
proscribed activities along with their associated observables. The role of the resolver will
be to determine the likelihood of an intrusion based on the combination of evidence for

100 Remaining and Proposed Work

and against it as determined by the available intrusion scenario models. The intrusion
scenarios are expected to vary for different types of intruders and for different systems.

The resolver would be activated in response to an anomaly signaled by either the statis-
tical detector or the expert-system component. The information leading to the anomaly
would be combined with other available information (such as the current schedules of
valid users) and other indications of anomalies in order to determine the likelihood that
the anomalous behavior is truly due to an intruder. At this point, the resolver may
request additional information in order to reach a conclusion.

The resolver will require a knowledge base consisting of a set of �scenario models� of
typical intrusion activities. These models will be specified in terms of the sequences of
user behavior that constitute the scenario. For example, one scenario might represent a
programmed password attack. This scenario would describe the typical steps necessary
to carry out the attack, expressed in terms of the specific user behavior involved.

The typical �observables� associated with specific behaviors (for example, �accessed the
password file�) would be linked to the behaviors in such a way that evidence about the
observables can be related to particular activities. Finally, the available audit data would
be related to the observables (e.g., �file accesses to etc/passwd� is linked to the observable
�accessed the password file�). In this way, audit data may be linked to the particular
patterns of behavior represented by the models.

Information concerning users, such as changes in user status, new users, terminated users,
users on vacation, changed job assignments, user locations, and so forth will be useful for
the resolver. Additional information about files, directories, devices, and authorizations
will also be of value.

9.22 Resolver Operation

In effect, new anomaly data will cause the resolver to create instances of its models
that are implied by those data. In some cases, the degree to which the data (possibly
in conjunction with earlier data) imply certain intrusion scenarios may be sufficient to
raise an immediate alarm; in other cases this evidence may be inconclusive. If the
evidence is inconclusive, the resolver may choose to suspend the decision until further
evidence is available, or it may request additional information. The resolver will have the
ability to carry out sensitivity analyses over its potential sources of information in order
to determine which sources might have the greatest impact on its conclusions. These
sources may represent audit data that are not collected normally or that are collected
but not evaluated in the normal operation of the system.

This mapping of aspects of user behavior to how the behavior will show up in the audit
data must exhibit properties that differentiate the particular behavior of concern from
other innocuous activities. These distinguishing properties should have the following

Remaining and Proposed Work 101

characteristics.

 They should be easily recognized, so that they can be readily detected.

 They should be clearly associated with the behavior in question.

 They should allow intrusive behavior to be distinguished from normal behavior.

9.2.3 Evidential Reasoning

We have examined the feasibility of using SRI�s Gister evidential reasoning system for
the fusion and interpretation of evidence for hypothesized intrusions. Gister grew out
of earlier work, sponsored jointly by SPAWAR and DARPA, aimed at developing new
techniques for Naval intelligence analysis. We will implement a model-based intrusion-
detection capability, based on Gister, for inclusion within IDES.

The goal of evidential reasoning is to assess the effect of all available pieces of evidence
upon a hypothesis, by making use of domain-specific knowledge. The first step in applying
evidential reasoning to a given problem is to delimit a propositional space of possible
situations. Within the theory of belief functions, this propositional space is called the
frame of discernment. A frame of discernment delimits a set of possible situations,
exactly one of which is true at any one time. Once a frame of discernment has been
established, propositional statements can be represented by subsets of elements from
the frame corresponding to those situations for which the statements are true. Bodies
of evidence are expressed as probabilistic opinions about the partial truth or falsity
of propositional statements relative to a frame. Belief assigned to a nonatomic subset
explicitly represents a lack of information sufficient to enable more precise distribution.
This allows belief to be attributed to statements whose granularity is appropriate to the
available evidence.

In evidential reasoning, domain-specific knowledge is defined in terms of compatibility
relations that relate one frame of discernment to another. A compatibility relation simply
describes which elements from the two frames can simultaneously be true.

Evidential reasoning provides a number of formal operations for assessing evidence, in-
cluding:

1. Fusion - to determine a consensus from several bodies of evidence obtained from
independent sources. Fusion is accomplished through Dempster�s rule of combina-
tion.

2. Translation - to determine the impact of a body of evidence upon elements of a
related frame of discernment.

102 Remaining and Proposed Work

3. Projec t ion - to determine the impact of a body of evidence at some future (or
past) point in time.

4. Discount ing - to adjust a body of evidence to account for the credibility of its
source.

Several other evidential operations have been defined and are described elsewhere [28].

Independent opinions are expressed by multiple bodies of evidence. The evidential rea-
soning approach focuses on a body of evidence, which describes a meaningful collection
of interrelated beliefs, as the primitive representation. This allows a system to reason
about evidence pertaining to a model consisting of multiple, interrelated activities. In
contrast, all other such technologies focus on individual propositions. Previous appli-
cations of Gister include intelligence processing, military situation assessment, medical
diagnosis, and acoustic and electronic signal processing.

9.2.4 Benefits of Model-Based Reasoning

The potential benefits of using a model-based resolver within IDES are manyfold, includ-
ing the following:

 More data can be processed, because the technology will allow the selective nar-
rowing of the focus of the relevant data. Thus, at any given time, only a small part
of the data collected may need to be examined in detail.

 More intuitive explanations of what is being detected can be generated, because
the events flagged can be related to the defined intrusion scenarios.

 The system can predict what the intruder�s next action will be, based on the defined
intrusion models. Such predictions can be used to verify an intrusion hypothesis,
to take preventive action, or to determine which data to look for next.

With the model-based reasoning approach, the descriptions of intrusion scenarios allow
the intrusion-detection system to focus its attention on the data likely to be of most�
utility at the moment. The models can be used to examine only the data most relevant
to detecting intrusions. In effect, we can narrow the field of view to optimize the data
that have to be analyzed. This is analogous to pointing and tuning a sensor to optimize
performance.

If the stream of audit data contains a significant number of intrusions in comparison
with the total volume of audit data (i.e., there is a large signal-to-noise ratio), then an
approach in which all the incoming data are examined and analyzed can be successful.
However, if the number of intrusions is very small in comparison with the total volume

Remaining and Proposed Work 103

of audit data (a small signal-to-noise ratio), then the amount of data to be examined
can quickly overwhelm the intrusion-detection system. The system will be drawing very
many conclusions, most of which will be dead ends. In this case, a more efficient approach
would be to examine only the specific data in the audit data stream that are relevant at
the moment. Thus, we can, in effect, increase the signal-to-noise ratio in particular areas
by looking only in those areas. This top-down approach to data analysis will be more
efficient in the intrusion-detection domain, where the signal-to-noise ratio is extremely
small.

With the model-based reasoning approach, the models of intrusion can be used to decide
what specific data should be examined next. These models allow the system to predict
the action of an intruder who is following a particular scenario. This in turn allows the
system to determine specifically which audit data to be concerned with. If the relevant
data do not occur in the audit trail, then the scenario under consideration is probably not
occurring. If the system does detect what it was looking for, then it predicts the next step
and will then examine only data specifically relevant to confirming the hypothesis of the
posited intrusion, and so on until a conclusion is reached. Thus, a model-based system
reacts to the situation, using only those data most appropriate to the given situation and
context.

By providing the means to consider more complex, global explanations of anomalies, the
resolver should increase the likelihood of catching actual intrusions, reduce the number of
false alarms, and improve the overall effectiveness of both the statistical component and
the expert-system component of IDES. Furthermore, by reducing the amount of data to
be considered routinely, the overall performance of IDES should be improved.

9.3 Monitoring Network Traffic

We also plan to extend the theoretical basis for IDES to enable the development of an
IDES that could monitor traffic in tactical communication networks to detect suspicious
activity. The required extensions are twofold:

 IDES�s statistical algorithms are based on the probabilities of occurrence of the
events it observes. In a network, however, IDES would not be able to operate with
global knowledge. Thus, IDES�s algorithms must be extended to give meaningful
results when some information is missing and probabilities can only be estimated.

 IDES�s rule base has been designed for detecting suspicious user activity. To use
IDES to monitor network traffic, where user data are not available, we must create
a rule base with a set of rules specific to the domain of detecting suspicious network
traffic patterns.

104 Remaining and Proposed Work

In addition to establishing the theoretical foundations for these extensions to IDES, we
plan to develop candidate architectures for incorporating one or more IDES into the
network topology. So far, IDES has assumed centralized control and is thus appropriate
for systems with high channel capacity and low transfer delay. Tactical networks oper-
ating under stress are expected to have neither. Moreover, tactical networks can become
partitioned, so that an IDES with centralized control would not have global knowledge.
Thus, a distributed approach to detecting anomalous behavior is more appropriate for
tactical communication networks. We envision that IDES in this context would consist
of a set of loosely coupled IDES machines (see Section 9.5).

9.4 A Neural Net Component for IDES

Matching a subject�s observed behavior to a model of the subject�s past behavior is
difficult, since subject behavior can be very complex. False alarms can result from invalid
assumptions about the distribution of the audit data made by the statistical algorithms.
Missed detections can result from the inability to discriminate intrusive behavior from
normal behavior on a purely statistical basis. Our use of a second, rule-based approach
is an attempt to help fill some of the gaps in the statistical approach. In this approach,
an event can trigger a rule apart from any consideration of whether the event is normal
for the subject. Thus, intrusion scenarios that may not be anomalous for the subject
(because the intruder has trained the system to see the behavior as normal) can be
detected by appropriate rules.

However, the rule-based approach also has limitations. Writing such a rule-based system
is a knowledge-engineering problem, and the resulting expert system will be no better
than the knowledge and the reasoning principles it incorporates. An intrusion scenario
that does not trigger a rule will not be detected by the rule-based approach. Besides,
maintaining a complex rule-based system can be as difficult as maintaining any other
piece of software of comparable magnitude, especially if the system depends heavily on
procedural extensions such as rule ranking and deleting facts.

To address these concerns, we have considered the use of neural nets as another detection
component in IDES.

9.4.1 Neural Networks

A neural network, considered abstractly, is a machine for transforming inputs to outputs
by the action of a large set of simple, highly connected elements. The particular function
computed in the transformation is determined by the characteristics of the elements and
the connectivity and strengths of the interconnections. Several canonical structures have
been studied and used for practical applications. Neural networks perform either classi-

Remaining and Proposed Work 105

fication functions (e.g., pattern recognition), or optimization functions (e.g., minimizing
some function over a set of state variables). In the following discussion, only classification
is considered.

The particular transformation function computed by the network may be determined by
adjusting the weights of the connections between the elements. Adjustment of weights
is analogous to the writing of a program for general-purpose computation. It may be
accomplished either under supervision, that is, the correctness of a network response to
data is decided externally, or without supervision, that is, functions evolve according to
a built-in decision rule.

For the classification application, the network output should correctly identify the class
to which the input data belong. For this goal, the network would be trained using sets
of sample data that exemplify the various classes. In general, the effect of new sample
values may be to modify or amalgamate existing classes or to create a new class. In the
intrusion-detection application, a network would be trained to recognize the particular
pattern of behavior for individual users, so that when a user claims to be a particular
person, the neural network for that user would determine if the behavior conforms to the
named user�s pattern of usage.

9.4.2 Uses of Neural Networks in IDES

We envision that neural networks could address the following problems in IDES.

 The need for accurate statistical distributions. Statistical methods sometimes de-
pend on some assumptions about the underlying distributions of subject behavior,
such as Gaussian distribution of deviations from a norm. These assumptions may
not be valid and can lead to a high false-alarm rate. Neural networks do not require
such assumptions; a neural network approach will have the effect of relaxing these
assumptions on the data distribution.

 Difficulty in evaluating detection measures. We selected the current set of intrusion-
detection measures for IDES on the basis of our intuition and experience. We do not
know how effective these measures are for characterizing subject behavior, whether
for subjects in general, or for any particular subject. A measure may seem to be
ineffective when considered for all subjects, but may be useful for some particular
subject. A neural network can serve as a tool to help us evaluate the effectiveness
of various sets of measures.

 High cost of algorithm development. The development time for devising new statis-
tical algorithms and building new software is significant. It is costly to reconstruct
the statistical algorithms and to rebuild the software implementing them. We may
remove assumptions that are invalid for the audit data we are using, but we may

106 Remaining and Proposed Work

find that we have to modify the algorithms yet again when we apply them to a new
user community with different behavior characteristics. Neural network simulators
are easier to modify; we envision using a �plug-compatible� approach where one
simulator can be replaced by another using a different methodology with minimal
effort.

 Difficulty in scaling. New problems are anticipated in applying IDES to very large
communities, for example, thousands of users. Methods are needed for assigning
individuals to groups on the basis of similarity of behavior, so that group profiles
may be maintained instead of a profile for each user. Our current thinking is that
users will be grouped manually (by a security administrator) according to job title,
shift, responsibilities, and so forth. These methods may be inadequate. We envision
using a neural network to classify users according to their actual observed behavior,
thus making group monitoring more effective.

We do not feel that a neural network can simply replace the IDES statistical compo-
nent. The most important reason for this is that IDES�s statistical component provides
information as to which measures contributed to considering an event to be anomalous.
Finding ways to get explanatory information out of neural networks is currently a research
issue.

Our approach would be to build a prototype intrusion-detection component using a neural
network simulator. This component would run in parallel with the statistical and expert-
system components of IDES. Its output would also be reported to the resolver.

9.5 Large Network Architecture

There are many issues to be addressed when considering the use of IDES to monitor a
large complex network. Such networks many be composed of hundreds or even thousands
of computers, from personal computers to workstations to large timesharing systems,
and may have gateways to several larger external networks. The monitored network may
itself be subdivided into smaller internal networks interconnected by internal gateways
or bridges. The issues to be considered include the following.

 How best to integrate IDES into the desired environment

 How to distribute IDES processing over the network

 Which audit data to select for forwarding to IDES from the target environment

 The effect of forwarding audit data to IDES on network performance and capacity

Remaining and Proposed Work 107

 Which are the most appropriate audit data collection and storage points in the
target environment

 The most effective manner for getting the selected audit data to IDES.

We will examine these issues in the context of a particular U.S. Government installation
to be selected jointly by SPAWAR and SRI. NOSC is a likely candidate for this.

9.6 Improved Detection Capability

In addition to adding new detection components to IDES, as described above, we will also
continue to improve the detection capability of the current IDES detection components -
the statistical component and the expert-system component. Our approach is as follows.

 Perform statistical analysis to reduce the false alarm rate while remaining sensitive
to suspicious behavior. We will revise the statistical algorithms so as to increase
detection strength.

 Perform statistical analysis to find which measures (or combinations of measures)
are the best discriminators of intrusive behavior. This analysis will be performed
through experimentation, by activating or deactivating certain profiles, monitoring
different mixes of users, and adjusting system parameters.

 Stage intrusions in an effort to determine which measures are the most effective
in detecting intrusions - that is, which have the highest true-positive rate while
maintaining an acceptable false-positive rate. Based on this analysis, we may also
implement additional intrusion-detection measures.

 Make IDES statistical tests parameterizable, so that

1. Some measures can be deactivated for some subjects.
Different intrusion-detection measures may be appropriate to different classes
of subject. For example, for users whose computer usage is almost always dur-
ing normal business hours, an appropriate measure might simply track whether
activity is during normal hours or off hours. However, other users might fre-
quently log in during the evenings as well, yet still have a distinctive pattern
of use (e.g., logging in between 7:00 and 9:00 p.m. but rarely after 9:00 p.m.
or between 5:00 p.m. and 9:00 p.m.); for such users, an intrusion-detection
measure that tracks for each hour whether the user is likely to be logged in
during that hour would be more appropriate. For still others for whom �nor-
mal� could be any time of day, a time-of-use intrusion-detection measure may
not be meaningful at all. Our vision is for IDES to allow the security officer
to activate or deactivate specific measures for particular subjects.

108 Remaining and Proposed Work

2. Different subjects can have different thresholds.
Our vision is to allow the IDES security officer to adjust the false-positive rates
individually for each subject. For example, the security officer might raise a
user�s false-positive rate (which simultaneously raises the true-positive rate)
if he has reason to doubt a user�s integrity or if the user�s current assignment
or security level requires closer scrutiny. The security administrator might
lower a user�s false-positive rate if he knows that a user�s current assignment
is changing or that the user has other legitimate reasons for changing his
behavior.

3. Different subjects can have different profile update periods.

4. Different subjects can have different initial default profiles.

 Perform trend tests. We will develop and implement second-order intrusion-
detection measures; that is, methods for conducting trend tests (to detect how
fast a user�s statistical profile changes). We will evaluate the effectiveness of using
these trend tests to detect planned attacks in which a user gradually moves his or
her behavior to a new profile, from which to safely mount an attack, or gradually
increases the spread of the behavior considered normal.

 Enhance intrusion-detection rules (measures) to enable IDES to handle a wider
variety of intrusions. To obtain the information necessary for this task, we will
meet regularly with law enforcement agencies, UNIX experts, intrusion experts,
and others to develop a realistic and useful rule base.

 Allow the capability of modifying intrusion-detection rules during execution time
to enable IDES to adapt dynamically to a frequently changing target environment.

 Enhance IDES to be tolerant of missing or incomplete audit data or other failures.

 Upgrade existing Sun 3 equipment to Sun 4 equipment. This will allow us to
upgrade obsolete equipment and to maintain at SRI the same version of IDES that
is running at the FBI and elsewhere.

In addition, we plan to enhance the security officer interface to provide additional capa-
bilities to the security officer.

The current user interface takes advantage of the windowing facility available on the Sun 3
workstation. This interface enables the security officer to receive reports, graphically view
the amount of abnormal activity, and perform some predefined queries. A more powerful
user interface would enable a security officer to tune the thresholds that control the alarm
rate, activate and deactivate profiles, perform more complex queries, and view system-
wide or user-specific information graphically, assisted by pop-up menus. Anomalies and
summary reports will be presented graphically in ways that would enable the security
officer to view a large amount of information easily.

Remaining and Proposed Work 109

9.7 IDES Experimentation

So as to gain an assessment of IDES�s effectiveness at detecting intrusions in an op-
erational setting, we will perform experiments using the installed IDES facility at FBI
Headquarters in Washington D.C. Thus, we will continue to provide support to the FBI
in the use of IDES and will continue to provide its personnel with regular updated ver-
sions of IDES. We will work closely with the FBI to design and enact a wide variety of
experiments, such as staging intrusions, investigating the anomalies reported by IDES,
and observing the effect of tuning various parameters in IDES.

9.8 Summary

SRI will develop the necessary technology to overcome several existing obstacles to
widespread use of IDES. This includes improvements in the ease of use of IDES, reduc-
tions in its false-alarm rate, ensuring its resistance to attack, increasing its scalability,
and extending it with respect to network vulnerabilities and attacks. We will design an
architecture for the insertion of the Next Generation IDES into a large, complex network
of computers.

110 Remaining and Proposed Work

Appendix A

PBEST - A Production-Based
Expert System Tool

In this appendix1, we present information on how to use PBEST, an expert-system tool
created by Alan Whitehurst, formerly of SRI. We describe how to produce expert systems
from rule specifications using the pbcc translator and how to create interfaces for the
expert-system engines produced by PBEST. Besides this, we show how to produce and
use interactive, window-based versions of expert-system engines. We describe the syntax
of the PBEST expert-system specification language. Finally, we cover some efficiency
considerations. We discuss implementation details primarily insofar as they bear on the
above issues.

A.1 Introduction

The PBEST system consists of a rule translator, pbcc, a library of run-time routines, and
a set of garbage-collection routines (these routines are copyright 1988 Hans-J. Boehm,
Alan J. Demers; see the GC_README file included with the garbage-collector source).
The rule translator accepts a set of rule and fact definitions and produces routines in the
C language to assert facts and process rules. The run-time library contains the code that
is constant for all expert systems, and includes routines to support interactive versions
of expert-system engines. By setting the appropriate flags, the user can produce expert
systems that run under Sunview or the IDES user interface library (the latter based on X-
windows). (The Sunview version is not described in this document.) These environments
allow the user to view the execution of the system, to single-step the execution, to set

1This appendix is a draft of a user�s manual for the PBEST system. We would appreciate getting
comments on both the manual and PBEST itself regarding bugs in PBEST, usefulness of PBEST and
the manual, and improvements that would enhance either.

111

112 PBEST

and remove breakpoints, to delete and assert facts, and to watch a trace of the effects of
the rules as they fire.

To produce an expert system, the user creates a file or files containing rule and fact
definitions, using any desired text editor. The user then runs this file through the pbcc
translator, producing a file of C code. This code can be compiled normally, and linked
with 1ibpb.a (the run-time routines), gc.o (the memory-allocating and garbage-collection
routines), and the necessary window libraries, if the user wants a window version. The
resulting program can be run as a stand-alone executable program. This process will
usually be done under the control of make or a similar program.

A.2 Getting Started

In this section, we will give a working example of a trivial expert system and show how
it is compiled and executed. Start by entering the following text into a text editor (don�t
worry about meaning right now; just concentrate on getting the text right):

 Everything on the line after a backquote is a comment. You need
not type comments in for this exercise if you don’t want

 to! You also do not need to worry about how things line

up* Just get the brackets and punctuation right.

 Declare count ptypes with value field
ptype[count value:int]
 Declare signal ptypes with flag field
ptype[sig flag:int]

 This rule fires if there are no count or signal facts.
It asserts a count fact and signal fact with their fields
set to 0. This example is set up to produce only one
count fact and only one signal fact.

== >

rule[rO (#-10):
[-count]

[-sig]

PBEST 113

[!|printf("Asserting count and sig facts.\n")]
[+count|value=O]
[+sig|flag=O]]

 This rule fires whenever the flag field of the signal
 fact is set to 1 and the count fact’s value field is less
 than 100.

rule[rl:
[+c:count|value<lOO]
[+s:sig|flag==1]

==>

[!|printf ("Incrementing count, resetting sig flag.\n")]
[/c|value+=l] Increment count value
[/s|flag=O]] Reset signal flag

 This rule fires whenever the flag field of the signal
 fact is set to 0 and the count fact’s value field is less
 than 100.

rule[r2:
[+c:count|value<lOO]
[+s:sig|flag==O]

==>
[!|printf("Removing old count fact, asserting new count fact,\

setting sig flag.\n")]
[+count|value=c.value+l] Make a new count fact and

 set its value field to the old
 fact’s value plus 1

[-|c] Delete count fact
[/s|flag=l]] Set signal flag

 This rule fires when the count fact’s value gets to 100.
 It removes the count fact and prints a message.
 After this, no rules will be able to fire, so the engine

stops in the window version and exits the program in the
non-window version.

114 PBEST

rule [r3 (#10):
[+c:count|value>=l00]

==>

[-|c]
[!|printf (Count >= 100.\n)]]

Save the file as �tst.pbest�.

At this point, the user must translate, compile and link this file to produce an executable
expert system. The user can use the make command to do this. We provide a sample
Makefile at the end of this document; it allows one to automatically produce and maintain
a particular expert system. Assuming things are set up as described in that section, the
user can issue the command

make tst

at the shell prompt. The system should execute the commands necessary to produce the
tst program. The user can then type

tst

at the shell prompt, and the expert system should execute.

To make the X-windows version, the user can type

make tstx

To run this program, the workstation must be running X-windows. Type

tstx

at the shell prompt.

Note that one could type

make

to produce the tst and tstx versions with one command.

PBEST 115

A.3 Basic Syntax

To create an expert system, the user must define rules and ptypes. Ptypes are also known
as pattern types. A complete specification of the syntax of PBEST can be found at the
end of this document. For now, we will discuss example rule and ptype declarations.

The following is an example of a ptype declaration:

ptype [count value : int]

This declaration consists of the keyword ptype, an opening bracket, a name count, and a
typed field, value, which is declared to be an integer. The declaration is terminated with
a closing bracket.

The purpose of this declaration is to establish a pattern or template for facts. Each fact
that exists in the expert system�s knowledge base will be an instance of some ptype.
Facts of ptype count will have one field, an integer called value. This declaration allows
rules to refer to count facts, and to inspect and modify the value field of these facts.
There will usually be many facts of a given ptype.

A ptype may have more than one field:

ptype [session userid : string,
terminal : string,
timeoutflag:int]

This ptype declaration establishes a pattern for facts with three fields: userid and ter-
minal, both strings, and timeoutflag, an integer.

Rules can refer to facts that have fields matching particular things. For example, a rule
could check for a session fact whose timeoutflag is 1 by including the following clause in
its antecedent (we will look at the complete structure of rules a little later):

[+session timeoutflag == 1]

The + sign after the opening bracket is used as a sort of �existential quantifier.� That
is, it allows a rule to check to see if any fact having certain characteristics exists. This
clause, then, will match any session fact having a timeoutflag field with the value 1.

A rule may also check to see that there is no fact of a given type using the - syntax. The
following example checks to see that there is no session fact with the user id of THISUSER:

[-session userid == "THISUSER"]

PBEST 117

==>
[/c|value+=l]
etc.

 Increment count fact’s value field

Note that modifications are implemented as if the original fact had been negated and a
new fact with the modified fields had been added. Anyone using the interactive window-
ing system will notice that when a fact gets modified, it gets a new number. This allows
the system to give priority in binding to modified facts over facts that were created more
recently but are �inactive.�

Here is an example of a complete rule declaration that demonstrates some of these tech-
niques:

rule[SimuLogon(#l;*):
[+tr:transaction]
[+se:session|userid == tr.userid]
[?|se.terminal != tr.terminal]

==>
[!|printf(SimuLogon: user %s at terminals %s, %s\n ,

tr.userid, tr.terminal, se.terminal)]
[-|tr]
[-|se]]

This rule detects a user logging in on a terminal while already logged in somewhere
else. It works by checking for some transaction fact (these facts must be instances of a
transaction ptype that the user declared), and checking to see if there is any session fact
with the same userid field. If such a session fact exists, it compares the terminal fields
of the transaction and session facts to see if they are different. If they are different, the
rule fires. This rule assumes that some other rule will look for login actions and create
session facts for each login.

The syntax of a rule is completely determined by the delimiters (brackets and ==>). The
above rule is formatted in a readable fashion, but such formatting is optional.

A rule declaration, then, begins with the keyword rule. It then has a name section
followed by a colon (:). The name section of the above rule consists of the name (SimuL-
ogon) followed by a set of options in parentheses. We will give a description of all possible
options later. The #l option gives the rule a ranking of 1. This means that if several
rules can fire, this rule will fire before rules with a lower ranking. Thus, if this rule and
a rule with a ranking of 0 can both fire, this one will be selected to fire. The asterisk (*)
option means the rule is repeatable. This means that the rule can be fired repeatedly
without some other rules firing in the meantime. By default, rules are not repeatable,
since once a rule�s antecedents are satisfied, they will continue to be satisfied forever, and

P B E S T 117

==>
[/c value+=1]
etc.

’ Increment count fact’s value field

Note that modifications are implemented as if the original fact had been negated and a
new fact with the modified fields had been added. Anyone using the interactive window-
ing system will notice that when a fact gets modified, it gets a new number. This allows
the system to give priority in binding to modified facts over facts that were created more
recently but are �inactive.�

Here is an example of a complete rule declaration that demonstrates some of these tech-
niques:

rule[SimuLogon(#l;*):
[+tr : transaction]
[+se:session|userid == tr.userid]
[?|se.terminal != tr.terminal]

==>
[!|printf (SimuLogon : user %s at terminals %s, %s\n",

tr.userid, tr.terminal, se.terminal)]

C-|se]]

This rule detects a user logging in on a terminal while already logged in somewhere
else. It works by checking for some transaction fact (these facts must be instances of a
transaction ptype that the user declared), and checking to see if there is any session fact
with the same userid field. If such a session fact exists, it compares the terminal fields
of the transaction and session facts to see if they are different. If they are different, the
rule fires. This rule assumes that some other rule will look for login actions and create
session facts for each login.

The syntax of a rule is completely determined by the delimiters (brackets and ==>). The
above rule is formatted in a readable fashion, but such formatting is optional.

A rule declaration, then, begins with the keyword rule. It then has a name section
followed by a colon (:). The name section of the above rule consists of the name (SimuL-
ogon) followed by a set of options in parentheses. We will give a description of all possible
options later. The #l option gives the rule a ranking of 1. This means that if several
rules can fire, this rule will fire before rules with a lower ranking. Thus, if this rule and
a rule with a ranking of 0 can both fire, this one will be selected to fire. The asterisk (*)
option means the rule is repeatable. This means that the rule can be fired repeatedly
without some other rules firing in the meantime. By default, rules are not repeatable,
since once a rule�s antecedents are satisfied, they will continue to be satisfied forever, and

118 P B E S T

the rule would fire again and again. As we will see below, this rule deletes the facts that
satisfy it and so prevents such a loop.

The body of a rule consists of a sequence of antecedent clauses, the delimiter ==>, and a
sequence of consequent clauses. Each antecedent clause consists of some test. The first
antecedent clause

[+tr : transaction]

checks for a transaction fact. It gives it the alias of tr. The clause

[+se : session|userid == tr.userid]

checks for a session fact with the same value in the userid field as the tr fact already
found. If it finds such a fact, it gives it the alias of se. The third clause

[?|se.terminal != tr.terminal]

checks to see if the terminal field in the session fact is different from the one in the
transaction fact.

If all the antecedent clauses of a rule are satisfied, the rule �fires�; that is, its consequent
clauses get executed. This rule has three consequent clauses. The first clause

[! |printf ("SimuLogon: user %s at terminals %s, %s\n",
tr.userid, tr.terminal, se.terminal)]

is a call to a C function. The ! | syntax indicates such a call. This call can be an
arbitrary C function. pbcc recognizes most of the built-in C functions; the user must
declare user-written ones (we will describe how to do this later). Such calls can reference
the fields in the facts as C structures. This is done using the fact alias followed by a clot
(.) and the field name.

The clauses

and

 I

P B E S T 119

remove the tr and se facts from the knowledge base. This is indicated by the - | syntax
followed by the fact alias. There are three reasons to remove facts. First, doing so
prevents the rule from firing over and over with the same facts satisfying it. Second,
removing facts from the knowledge base when they are no longer needed makes the
system run more quickly. This is because when a new fact is asserted into the knowledge
base, any rule with an antecedent clause that the new fact matches must compare the
new fact to all other facts matching the other antecedent clauses of the rule to see if some
set of facts matches the whole antecedent. In the above example, a new transaction fact
will cause the rule to check all session facts to see if any of them have the same userid
field. Thus, removing unneeded session facts can shorten this check.

Note that if a fact can match an antecedent clause in more than one rule, no rule should
remove it unless all the rules that may need it have used it. Checking this can be done
with marks, which we will describe later.

A third reason to remove facts once they are not needed is to conserve memory. Obvi-
ously, if the system is to run for long periods of time, things must be removed from the
knowledge base at the same rate as they are added to it, or else the knowledge base will
ultimately overflow the memory of the system.

A.4 More Syntax

This section describes the syntax of PBEST in more detail. It includes descriptions of
the mechanism for declaring external functions and for marking facts.

The PBEST system allows the user to call arbitrary C language functions within rules.
However, it only knows about certain built-in C language functions. If you want to use
your own function or a function that pbcc does not recognize, or if you want to use an
auxiliary variable, you must declare your intention to pbcc. You do this using the xtype
syntax. For example, say you have written a function to get data from the outside world.
This function, as a side effect, asserts facts into the knowledge base, and returns an
integer code indicating whether it was able to get some new data. You would include the
following statement in your code:

xtype [get_data:int]

pbcc would then recognize get_data as a valid function call.

Similarly, if you wanted an integer variable named returncode and a constant named
END_OF_FILE, you could include the statements

xtype[returncode:int]
xtype [END_oF_FILE :int]

120 P B E S T

in your code. You could then write the following rule:

rule [get-data (#-99; *) :
[?|’returncode != ’END_OF_FILE]

== >
[! | ‘returncode = get_data()]]

This rule will check to see that the returncode variable is not set to END_OF_FILE, and
if not, it will set its value to the result of calling the get_data() function. Note that the
returncode variable should be initialized to a value not equal to END_OF_FILE (the user
can write a statement to do this in the auxiliary C code section).

Notice that in the antecedent clause, both returncode and END_OF_FILE are preceded
by quote marks. This syntax indicates to pbcc that these identifiers have been declared
by xtype. The quote marks are optional in the consequent.

It is possible to have a function call in an antecedent clause. For example, one could
write

xtype[GOOD_DATA:int]

rule[test_data (#-99;*):
[?|get_data() == 'GOOD_DATA]

== >
etc.

The code for user-writ ten C language functions or variable declarations can be included
in the body of the rule file if the programmer desires. The syntax for this is simply

. . . C language statements.. .

Such code can be included at any point in the file outside of the body of a ptype, xtype,
or rule declaration.

Another important feature of PBEST is the ability to mark and unmark facts, and to
test for these marks. Since marks can have names, an expert system can mark a fact
with different marks, and check for these marks by name. One use of this feature is to
make sure that all the rules that can possibly use a fact have had the chance to do so.
To do this, it helps to organize rules in groups, making sure that at least one rule in a

PBEST 121

group will always fire, and that each rule in the group will mark the fact with the same
mark if it does fire. Here is an example of how this would work:

'***

' Rule to check for unsuccessful logins for a single user
'***

 Predicate for counting login errors for a single user
 (lieucount stands for login_item_error_user_count)

ptype[lieucount
user_id:integer,
day:integer,
second:integer,
maximum:integer,
current:integer]

 Rule for first unsuccessful login for this user

rule[UNSLOG1:
[+lie:login_item_error^UNSLOG]
[-lieucount|user_id==lie.user_id]

== >
[!|printf("UNSLOG1: Found bad login for user %d\n",

lie.user_id)]
[+lieucount|user_id=lie.user_id,

day=lie.days,
second=lie.seconds,
maximum=4,
current=1]

[$|lie:UNSLOG]]

 Rule for counting unsuccessful logins after the first,
 up to lieuc.maximum

rule[UNSLOG2:

122 P B E S T

[+lie:login_item_error^UNSLOG]
[+lieuc:lieucount|user_id==lie.user_id]
[?|lieuc.current <= lieuc.maximum - 1]

== >
[/lieuc|current+=l]
[!|printf("UNSLOG2: Found bad login for user %d, number %d\n",

lie.user_id, lieuc.current)]
[$|lie:UNSLOG]]

 Now we have seen the maximum number of bad logins for this user

rule[UNSLOG:
[+lie:login_item_error^UNSLOG]
[+lieuc:lieucount|user_id==lie.user_id]
[?|lieuc.current == lieuc.maximum]

== >
[!|printf("UNSLOG: Found %d bad logins for user %d\n",

lieuc.maximum, lie.user_id)]
[$|lie:UNSLOG]
[-|lieuc]]

‘***
‘ Rule to check for unsuccessful logins for the host system
'***

 Predicate for counting bad logins for a host
 (liehcount stands for login_item_error_host_count)

ptype[liehcount
day:integer,
second:integer,
maximum:integer,
current:integer]

 Test rule for bad logins

P B E S T 123

 Rule for first unsuccessful login for this host

rule[UNSLGX1:
[+lie:login_item_error^UNSLGX]
[-liehcount]

==>
[!|printf("UNSLGX1: Bad login for host\n"]
[+liehcount|day=lie.days,

second=lie.seconds,
maximum=10,
current=11

[$|lie:UNSLGX]]

 Rule for counting unsuccessful logins after the first,
 up to liehc.maximum

rule[UNSLGX2:
[+lie:login_item_error^UNSLGX]
[+liehc:liehcount|urrent <= liehc.maximum - 1]

==>
[/liehc|current+=l]
[!|printf("UNSLGX2: Found %d bad logins for host\n",

liehc.current)]
[$|lie:UNSLGX]]

 Now we have seen the maximum number of bad logins for this host

rule[UNSLGX:
[+lie:login_item_error^UNSLGX]
[+liehc:liehcount|current == liehc.maximum]

== >
[!|printf("UNSLGX: Found %d bad logins for host\n",

liehc.maximum)]
[$|lie:UNSLGX]
[-|liehc]]

124 PBEST

 Remove login item errors seen by rule groups UNSLOG and UNSLGX

rule[UNSLGGC:
[+lie:login_item_error$UNSLOG]
[+lie:login_item_error$UNSLGX]

==>
[!|printf("Removing bad login fact with timestamp %s %s\n",

lie.days, lie.seconds)]
[-|lie]]

This example incorporates two groups of rules, one for single users and one for host
systems. The rules relating to single users are named UNSLOG1, UNSLOG2, and UN-
SLOG, while the ones relating to hosts are UNSLGX1, UNSLGX2, and UNSLGX. Each
rule in both groups looks for login item error facts. The single user rules all mark facts
with UNSLOG, while the host rules all use UNSLGX. Each rule also checks to see that
the fact it is looking at has not already been marked by its rule group. The example
includes a rule that will remove facts that have been �seen� by both rule groups.

The syntax for all this is as follows. If a rule wants to mark a fact, it includes a clause
like :

[$|lie:UNSLGX]

in its consequent. This clause is taken from the consequent of the fact named UNSLGX.
The $| followed by the fact alias and the mark name indicates the marking of the fact.
If a rule wants to check for a fact marked with UNSLGX, it would include the clause

[+lie:login_item_error$UNSLGX]

in its antecedent. This clause is taken from the antecedent of the UNSLGGC rule.

If a rule wants to check for a fact that has not been marked with a certain mark, it should
include a clause of the form

[+lie:login_item_error^UNSLGX]

in its antecedent. Similarly, if it wants to remove the mark from a fact, it should include
a clause of the form

P B E S T 125

[^|lie:UNSLGX]

in its consequent.

The UNSLGCC rule gives an example of the technique for removing facts that multiple
rules may want to use. This rule tries to find a fact that has been marked by both rule
groups. If it does find such a fact, it removes it.

One problem with the marking scheme is that we have not yet provided a robust way
to check for a single fact�s being marked by multiple marks. Looking at the UNSLGCC
rule, we notice that there are two antecedent clauses, each checking for a fact with a
particular mark. There is no guarantee that they will both select the same fact, though
in actuality they will because they will each scan the list of login item error facts in
the same way. However, this depends on several things, including the fact that the rule
UNSLGCC follows all the rules that may use the facts it removes, so they will fire first
(it would probably be better to give the UNSLGCC rule a lower priority than these other
rules). So this way of checking a fact for more than one mark does work, but it is not
really clean or robust. We will probably fix the syntax for checking marks at a later time.

A.5 Communicating with the Outside World

The trivial expert system defined above has no need to obtain information from the
outside; it creates its own facts and processes them. Even this system, however, reports
a result to the user, and thus communicates with the outside world. In general, an expert
system can both get information from the outside world and produce information. It does
this by using its ability to invoke arbitrary C language function calls.

For facts to be added to the knowledge base, they must be asserted. From a C language
point of view, this happens when the function assert_< ptypename > gets called with
the proper arguments. That is, for each ptype the pbcc translator creates a function that
allows facts of that type to be asserted. To use these functions the user can write rules
like the following:

This rule reads data into the knowledge base using the
get_fact_record() routine. It has a very low
priority so it doesn’t add new facts until the old ones
have been processed.

rule[get_fact_record_data (#-99;*):
[?|‘retval != 'END_OF_FILE]

126 P B E S T

[+c : count]
==>

[/c|value += 1]
[!| retval = get_fact_record()]]

The heart of this rule is the call to the C function get_fact_record(). Besides this,
the rule checks for end of file and keeps a count of the number of records read. The
get_fact_record() function will read a record from somewhere (a file), move it into a series
of variables, then call the assert_transaction() function with these variables for arguments.

Here is example code showing how the get_fact_record() function might look:

int get_fact_record()

int i, reader() ;

Read a record from the file into the buffer strings.
*/
i = reader(infp,(struct iovec *)iov1, 26);

if (i < 1)
if (i == -1) {

fprintf (stderr, Problem with data file, error %d\n , errno) ;
return(NO_DATA) ;
else {
fprintf(stderr, Reached end of file. \n) ;
return (END_OF_FILE) ;

assert-transaction (
dbid,
cpuid,
repdate,
reptime,
recdate,
rectime,

day,
week,
recordtype,
jobname,
userarea,
usertype,

P B E S T 127

userid,
altuserid,
terminal,
logon,

program,
idesfile,
command,
response,
duration,
enqueue,

);
return(GOOD_DATA);

}

For clarity, lots of detail is left out of this example. The get_fact_record() routine, how-
ever, simply calls reader() to read a record into the proper buffer strings, then calls
assert_transaction() to assert a transaction fact with this data into the knowledge base.
Note that the reader() function must be written by the user, but the assert_transaction()
function will be produced by the pbcc translator when it sees the following ptype decla-
ration in the rule file:

ptype [transaction
dbid:string,
cpuid:string,
repdate:string,
reptime:string,
recdate:string,
rectime:string,
day:string,
week:string,
recordtype:string,
jobname:string,
userarea:string,
usertype:string,
userid:string,
altuserid:string,
terminal:string,
logon:string,
program:string,
idesfile:string,
command:string,
response:string,

128 P B E S T

duration:string,
enqueue:string

]

The steps in making an input interface can be summarized as follows.

� Declare ptypes for the kinds of facts you want to assert into the knowledge base.

� Write a C language function that calls the proper assert_< ptypenane >() function.

� Write a rule that includes in one of its consequents or antecedents a call to this C
language function.

A . 6 O t h e r Programming Considerations

By default, pbcc creates a stand-alone C program. If the user invokes pbcc with the -e
flag, the program that results will not contain a main0 function. This allows the user
to �embed� the expert system in a larger program or to deal with special initialization
requirements. Any time the expert system is used in an embedded fashion, the user-
written main() function must call the initialization routines gc_init() and pb_init() (in
that order). The gc_init() routine initializes the garbage-collecting memory allocator,
while pb_init() initializes the expert system itself. The program must call these functions
before calling any other expert-system related functions.

If the program needs to transfer control to the expert system at some point, it should
then call the engine() function. This function will return when there are no more rules
that can fire. There is no provision for finer-grained control of the expert system at this
level.

If the program intends to use the X-Windows version of the expert system, it should
not call engine(); instead, it should call the function pb_xmonitor(). This function uses
argc and argv, the complete call should be

pb_xmonitor(argc, argv);

This allows the X server to get access to X specific command line arguments.

Note that the expert system uses its own memory-allocation system that is not com-
patible with malloc() and its related functions. A program that wants to allocate
memory that may be passed to expert system functions should not use malloc()
or calloc(); instead, it should request memory with the functions gc_malloc() and

P B E S T 129

gc_malloc_atomic(). The gc_malloc() function allocates memory that may contain point-
ers, while gc_malloc_atomic() can be used to allocate memory for things like strings that
do not contain pointers. These functions zero the memory they allocate.

One of the things the gc_init() function does is allocate a default heap from which to
allocate memory. If the programmer knows that the program will use lots of memory
and create lots of garbage, it may speed things up somewhat to force expansion of the
heap. (Note that an expert system that removes facts will create lots of garbage.) The
function expand_hp() does this. By expanding the heap, the program can run longer
before it needs to collect garbage. Note that if the memory allocator is unable to reclaim
enough memory by garbage collection to satisfy a memory request, it will automatically
expand the heap.

Since these functions use garbage collection to reclaim memory when necessary, the
program does not need to explicitly free the memory it obtains from them. However,
functions to explicitly free memory are provided.

For a complete description of the garbage collector, see the GC_README file included
with the source code.

A.7 The PBEST Interactive Window System

This section describes the interactive window system that pbcc produces when it is in-
voked with the -x flag. Figure 1 shows the display produced by running the tstx program
described in Section A.2. Note that this actually consists of two windows, the main
window and the menu window, arranged to overlap.

130 PBEST

Figure A.l: The PBEST Interactive Window

The main window has four areas. From top to bottom they are: the main buttons panel;
the facts list, which is empty in Figure A.l; the firable rules list, which contains r0; and
the message window, which is empty. Notice that the Negate and List Fact buttons are
ghosted. Since the user has not selected a fact (as there are not yet any to select), it is
impossible to negate or list a fact.

The menu window, on the right, has three areas: the menu list, a user-input area marked
�Assert�, and the menu buttons panel. The menu window is currently listing rules. There
are four rules listed, r0 through r4. All of the menu buttons relating to rules are ghosted
since the user has not selected any rule. The Assert Fact button is also ghosted, since
ptypes are not being displayed.

PBEST 131

Figure A.2: The Result of Clicking on the Step Button

Figure A.2 shows the result of clicking on the Step button. Since r0 was the only rule
that could fire, the engine executed the conclusion of r0. The clauses in the conclusion
of r0 asserted two facts into the fact base. These are shown in the facts list as <F1> and
<F2>. They are identified with their types and the values of their fields. Note that facts
get displayed in inverse chronological order, so the most recent facts will be visible by
default. Since the facts list is a scrollable window, the user can view any fact, but usually
the most recent ones are of interest.

Besides the facts, the firable rules list has changed. It now contains the line

r2: <f1>, <f2>

This line says that r2 can fire, and the facts that make it firable are facts <F1> and <F2>.
(Note that it is possible for many combinations of facts to make a rule firable. In such
cases, the more recent facts will be selected to activate the rule.)

132 PBEST

Figure A.3: The Result of Selecting a Rule from the Rules List

Figure A.3 shows the result of selecting a rule from the rules list in the menu window. In
this instance, the user has clicked on r0. Two of the buttons in the menu buttons panel
have become active.

PBEST 133

Figure A.4: The Effect of Clicking on the Set Breakpoint Button

Figure A.4 shows the effect of clicking on the Set Breakpoint button in the menu buttons
panel. The message window says that a breakpoint has been set at r1, and the Unset
Breakpoint and List Breakpoints buttons in the menu buttons panel have become active.

134 PBEST

Figure A.5: The Effect of Selecting a Fact in the Facts List

Figure A.5 shows the effect of selecting a fact in the facts list. The Negate and List Fact
buttons in the main buttons panel have become active.

PBEST 135

Figure A.6: The Result of Clicking on the Trace Button

Figure A.6 results from the user�s clicking on the Truce button in the main buttons panel
and then clicking on the Step button. Notice that the Trace button has changed into
a Notrace button. Besides this, each time a rule fires, the engine displays messages in
the message window, indicating some of its effects. In this case, r2 has deleted <Fl>,
asserted a new count fact, <F3>, and modified <F2>. Note that when a fact gets
modified, the engine does this by deleting the old fact and asserting a new fact with the
fields of this fact set to their new values. Thus, <F2> has become <F4>. This means
that the engine will look at newly modified facts before looking at older facts when it
tries to find groups of facts to fire a rule.

136 PBEST

Figure A.7: The Result of Clicking on the -> Pypes Menu Button

Figure A.7 shows the result of clicking on the -> Ptypes Menu button. This button
lets you switch the menu display between ptypes and rules. Once you are displaying
ptypes, you can select a ptype and assert a new fact of this ptype into the knowledge
base. This can be useful for making sure a rule will fire in the presence of a fact with
certain characteristics.

To assert a fact, perform the following steps.

� Make the menu display ptypes.

� Select the desired ptype.

� Click on the Assert Fact button.

� Type the fact fields into the Assert box in response to the prompts that will show
up above the typing area.

The following sequence of figures illustrates this process.

PBEST 137

Figure A.8: Selecting the count Ptype

In Figure A.8, the user has selected the count ptype from the list of ptypes in the menu
window. The Assert Fact button has become active.

138

Figure A.9: The Effect of Clicking on the Assert Fact Button

The user has clicked on the Assert Fact button in Figure A.9. It becomes inactive (you
have to finish asserting a fact before you can assert a new one). A message appears in
the message window, indicating that the user is asserting a count fact, and explaining
how to abort the assertion process. A prompt, value:int, has appeared in the entry area
of the menu window.

139

Figure A.10: Fact is Asserted

In Figure A.10, the user typed in the number 10 and pressed <return>.

Since this is the only field for that fact, the fact gets asserted. A message to this effect
shows up in the message window, and the fact itself shows up in the facts list window.

Note that if the user had typed in some invalid input, for example, lo instead of 10, this
input would not be accepted. Instead, the system would beep when the <return> key
was pressed.

Facts can also be removed from the knowledge base with the Negate button in the main
buttons panel.

140 PBEST

Figure A.11: Selecting a Fact to Negate

The user has selected a fact to negate in Figure A.11. The Negate and List Fact buttons
have become active.

PBEST 141

Figure A.12: The Effect of Clicking on the Negate Button

In Figure A.12, the user has clicked on the Negate button. The fact gets removed from
the knowledge base. The facts list is updated to reflect this, and the Negate and List
Fact buttons return to their inactive state.

142 PBEST

We can summarize the functions of the buttons as follows:

Run The Run/Stop toggle. Clicking on it puts the expert-system engine in free-running
mode if it is stopped, or stops it if it is running. The button label changes appro-
priately.

Step Drives the engine through one rule-firing cycle. It can also be used to stop the
system if it is running.

Negate Removes the selected fact from the knowledge base.

List Fact Lists the selected fact. It is useful mostly when the fact has many fields that
cannot all fit in the fact list window.

Trace Toggles tracing of the execution of the engine. When tracing is enabled, the
engine prints messages indicating what it is doing in the message window. The
label in the button will change to reflect what clicking on the button will do.

Reset Deletes all facts and breakpoints.

Quit Terminates the execution of the program and returns control to the shell.

The buttons in the menu buttons panel work as follows.

Set Breakpoint Associates a breakpoint with the selected rule; when the running en-
gine tries to fire a rule with a breakpoint, it will stop instead. Clicking on Run
or Step after the engine stops at a breakpoint causes the engine to execute the
conclusion of the rule with the breakpoint and then continue as appropriate. Note
that breakpoints are not removed when they are hit. If the engine tries to fire the
rule again later, the breakpoint will again cause it to stop.

Unset Breakpoint Removes the breakpoint from the selected rule, if the rule has one.
If the rule doesn�t have a breakpoint, the program displays a message in the message
window indicating that the selected rule had no breakpoint.

List Breakpoints Causes the program to print a list of rules with breakpoints in the
message window.

List Rule Causes the program to print some information about the selected rule in the
message window.

-> Ptypes Menu / -> Rules Menu Toggles the menu window between displaying
ptypes and rules.

Assert Fact Allows the user to assert an instance of a selected ptype as a fact into the
knowledge base.

P B E S T 143

A.8 Certainties and Justifications

The PBEST system currently supports three kinds of certainty factors: standard
(MYCIN-like), Bayesian, and fuzzy. These can be specified by a command line argu-
ment to pbcc. See Section A.11 on invoking pbcc for how to do this. We do not presently
anticipate using certainty factors in the IDES project. Should this change, we will incor-
porate a more complete description of certainty factors into this document.

PBEST also has a justification mechanism; however, this is not well supported. We
currently consider it to be superfluous in light of PBEST�s ability to execute arbitrary
C language functions. Should our opinion on this matter change, we will modify both
the implementation and the documentation to reflect whatever role we anticipate for
justifications.

A.9 A Sample Makefi le

The following is a Makefile that automates the production of expert systems from specifi-
cation files. To produce both a window (based on the X Window System) and nonwindow
version from the same set of rules, just give the command

make

at the shell prompt. To create only the X-Windows version, give the command

make tstx

at the shell prompt. To create the nonwindow version, give the command

make tst

at the shell prompt.

This file uses certain macro abbreviations that specify the locations of the libraries and
other files needed to make the executable programs. The user should make sure that
these are set correctly.

144 PBEST

Directory structure macros -- should only need to change
the value of the ROOT macro
ROOT=/home/caesar

IDES=$(ROOT)/ides
IDESLIB=$(IDES)/lib

Where the PBEST translator is
PBCC= $(IDES)/bin/pbcc

Show version number.
PBCCFLAGS= -v

The garbage collector and runtime libraries
PBCCLIBS=$(IDESLIB>/gc.o $(IDESLIB)/libpb.a

The window libraries
XLIBS= $(IDESLIB)/libiui.a -lXaw -lXmu -1Xt -1X11

C compiler stuff -- need the system v compatibility
version
CC= /usr/5bin/cc

Include symbols, search the ides and
global include directories
CFLAGS= -g -I$(IDES)/include -I/usr/global/include

#
.SUFFIXES: .pbest
#

##
Everything above here can be used as a skeleton Makefile.
The only thing that should need to change is ROOT, which
should be set when the system is installed.

Things below should be used more as an example. The main
thing is to make sure each language processor knows how to
find the libraries it is looking for.

SRC= tst.pbest

PBEST

OBJ= tst.o
XOBJ= tstx.o

#
NOTE: You must use TABS (^I) between the target and the
dependencies, and to start off the command lines
below each target-dependency specification.
Failure to do this will cause the make program to
refuse to do what you want and to produce a series
of uninformative error messages
this space made by tabs
||||||
VVVVVV
all:

tst:

tstx:

tst.o:

tst.c:

tstx.o:

tstx.c:

end:

A.10

tst tstx

$(OBJ)
$(cc) -o $@ $(OBJ) $(PBCCLIBS)

$ (XOBJ)
$(CC) -o $@ $(XOBJ) $(PBCCLIBS) $(XLIBS)

tst.c
$(CC) $(CFLAGS) -c tst.c

tst.pbest
$(PBCC) $(PBCCFLAGS) -o $@ tst.pbest

tstx.c
$(CC) $(CFLAGS) -c tstx.c

tst.pbest
$(PBCC) $(PBCCFLAGS) -x -o $@ tst.pbest

PBEST Syntax Diagrams

145

This section includes syntax diagrams for the PBEST expert-system specification lan-
guage. The diagrams use fairly standard conventions. For example, <object a> ::=

146 PBEST

<object b> means that the object on the left has the syntax shown on the right. �Lit-
erals� or keywords are in bold face. This includes brackets, bars, plus signs, and so on
that are written in boldface. The same symbols in lightface have a different meaning, as
follows.

� | (nonbold vertical bar) indicates alternatives; that is, we would say

<statement > ::= <ptypedef>
I <ruledef>
I <ccode>
I <xrefdef>
I <comment >

to indicate that a statement can be a ptypedef, a ruledef, an instance of ccode, an
xrefdef, or a comment.

� * (nonbold superscript asterisk) indicates that an item can occur as many times as
desired, but need not appear. For example,

<ante> . . -. . - [<clause>]*

says that an antecedent consists of zero or more clauses.

� + (nonbold superscript plus) indicates that an item can occur as many times as
desired, but must appear at least once. For example,

<cons> ::= [<action>]+

says that a consequent must consist of at least one action clause (though it may
have as many more as desired).

� [] (nonbold brackets) surrounding an item indicate grouping. In the examples
above, the brackets indicate that the asterisk and plus apply to whatever is inside
the brackets. If the brackets surround an item, but are not followed by an asterisk
or plus, they indicate that the item may occur zero times or once. For example

< m a r k t e s t > : : = $ [< n a m e >]

I �[<name>]

indicates that a mark test has an optional name after the dollar sign or up caret.

Several abbreviations are used. Some may be confusing:

� relop - relational (comparison) operator

� assop - assignment operator

� funcall - C language function call

� rcf - rule certainty factor

PBEST

� exstat - externally defined statement

< p b p r o g > : : = [< s t a t e m e n t >]+

<statement > ::= <ptypedef>
<ruledef>
<ccode>

 <xrefdef>
<comment>

<ptypedef> ::= ptype [<name> <fields>]

<fields> ::= <field>[,<field>]*

<field> . . -. . - <name>
I <name>:<typename>

<typename> : := in teger
 float
 list

string
symbol

<ruledef> ::= rule [<name> [(<opts>)] : <ante> => <cons>]

147

<opts> ::= <opt>[;<opt>]*

PBEST148

<opt >

<rank>

<repeat >

<certainty>

<explanation>

<ante>

<clause>

<pname>

<marktest>

. . -. . -

. . -. . -

. . -. . -

. . -. . -

. . -. . -

. . -. . -
I

. . -. . -
I

<rank>
<repeat>
<certainty>
<explanation>

<integer>

*

~ <real>

<string>

[<clause>]*

[+<pname>[<marktest>][<restrictions>]]
[-<name>[<marktest>][<restrictions>]]
[?<restrictions>]

<name> : <name>
<name>

$[<name>]
^[<name>]

<restrictions> ::= | <restricts>

<restricts> ::= <restrict>[,<restrict>]*

<restrict > ::= <expr> <relop> <expr>
I <expr>

PBEST 149

<expr>

<relop>

 (<expr>)
<expr> + <expr>
<expr> - <expr>
<expr> * <expr>
<expr> / <expr>
<expr> % <expr>
<expr> >> <expr>
<expr> << <expr>
<expr> & <expr>
<expr> � <expr>
<expr> <expr>
<expr> && <expr>
<expr> <expr>
<pvalue>

>=
<=

<pvalue> ::= <name>
 <name>

<integer>
<real>
<string>
<pfield>
<list >
<funcall>

150

<assop>

<pfield>

 < l i s t >

<funcall>

<arglist>

<cons>

<action>

<negate>

<mark>

<unmark>

PBEST

::= <name> . <name>

::= [[<pvalue>)*]

::= <name> ([<arglist>])

::= [<pvalue>],+

::= [<action>]+

::= [< n e g a t e >]
[<mark>]
[<unmark>]
[<assert>]
[<modify>]
[<execute>]

PBEST 151

<assert > ::= + <name> [<arestricts>][<rcf>]

<modify> ::= / <name> [<arestricts>][<rcf>]

<arestricts> ::= | <arestrict>[,<arestrict>]*

<arestrict> ::= <expr> <assop> <expr>

I <expr>

::= !|[<exstat>]T<execute>

<exstat>

<xassign>

<rcf>

<ccode>

<xrefdef>

<name>

<string>

<integer>

::= <xassign>
I <funcall>

. . -. . - [']<name> <assop> <expr>

. . -. . - <real>

::= { <string> }

::= xtype [<name> : <typename>]

::= [A-Za-z]+[A-Za-z0-9_]I�

. . - [<any character>]*

. . -

<real> ::= [o-g]*

152 PBEST

<comment> . . -. . - � [<any character>]* <newline>

153

A.11 Invoking p b c c

N A M E

p b c c - translate a PBEST source program into C code.

SYNOPSIS

pbcc [-c[s|f|b]] [-d|-x] [-e] [-j] [-VI [-o <file>] [<file>]

D E S C R I P T I O N

pbcc is a program for translating expert-system rule bases written in the language of
PBEST into C language source code for compilation. The following is a description of
the command line arguments that the user can give when invoking pbcc.

-c[s|f|b] Turns on certainty factors. -cs specifies standard certainty factors that im-
plement the Mycin strategy, -cf specifies fuzzy certainty factors, and -cb specifies
Bayesian certainty factors.

-d Turns on the Sunview-based debugging options. This will create a source module
that, when compiled and linked with the pb library, will produce a window-based
monitor for the expert system. See also the -x option below. Note that either -d
or -x can be specified, but not both.

-e Suppresses the generation of a main() function. In this case, the user must pro-
vide a main() function that includes calls to the initialization routines gc_init()
and pb_init(), and a call to one of engine(), pb_monitor() or pb_xmonitor(),
depending on which version of the expert system is being generated.

-j Turns on the generation of fact justifications.

-0 <file> Places output into the file named <file> in the current working directory. If
this option is not specified, output is sent to standard output.

-V Causes the version number and release date of the current version of pbcc to be
printed.

-X Turns on the X-windows-based debugging options. This will create a source module
which, when compiled and linked with the pb library, will produce a window-based
monitor into the expert system. Note that either -d or -x can be specified, but not
both.

154

PBEST

Bibliography

[l] T. F. Lunt, R. Jagannathan, R. Lee, S. Listgarten, D. L. Edwards, P. G. Neumann,
H. S. Javitz, and A. Valdes. Development and Application of IDES: A Real-Time
Intrusion-Detection Expert System. Technical report, Computer Science Laboratory,
SRI International, Menlo Park, California, 1988.

[2] T. F. Lunt, R. Jagannathan, R. Lee, A. Whitehurst, and S. Listgarten. Knowledge-
based intrusion detection. In Proceedings of the 1989 AI Systems in Government
Conference, March 1989.

[3] T. F. Lunt and R. Jagannathan. A prototype real-time intrusion-detection system.
In Proceedings of the 1988 IEEE Symposium on Security and Privacy, April 1988.

[4] T. F. Lunt. Real-time intrusion detection. In Proceedings of COMPCON Spring �89,
March 1989.

[5] T.F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P.G. Neumann, and C. Jalali. A
progress report. In Proceedings of the Sixth Annual Computer Security Applications
Conference, December 1990.

[6] T.F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, H.S. Javitz, A. Valdes,
and P.G. Neumann. A Real- Time Intrusion-Detection Expert System. Technical
report, Computer Science Laboratory, SRI International, Menlo Park, California,
1990.

[7] T. F. Lunt. Using statistics to track intruders. In Proceedings of the Joint Statistical
Meetings of the American Statistical Association, August 1990.

[8] T. F. Lunt. IDES: An intelligent system for detecting intruders. In Proceedings
of the Symposium: Computer Security, Threat and Countermeasures, Rome, Italy,
November 1990.

[9] H.S. Javitz and A. Valdes. The SRI statistical anomaly detector. In Proceedings of
the 14th National Computer Security Conference, October 1991.

[10] T.D. Garvey and T.F. Lunt. Model-based intrusion detection. In Proceedings of the
14th National Computer Security Conference, October 1991.

155

156 Bibliography

[11] J. P. Anderson. Computer Security Threat Monitoring and Surveillance. Technical
report, James P. Anderson Company, Fort Washington, Pennsylvania, April 1980.

[12] H. S. Javitz, A. Valdes, D. E. Denning, and P. G. Neumann. Analytical Techniques
Development for a Statistical Intrusion Detection System (SIDS) Based on Account-
ing Records. Technical report, SRI International, Menlo Park, California, July 1986.
Not available for distribution.

[13] T. F. Lunt, J. van Horne, and L. Halme. Automated Analysis of Computer System
Audit Trails. In Proceedings of the Ninth DOE Computer Security Group Conference,
May 1986.

[14] T. F. Lunt, J. van Horne, and L. Halme. Analysis of Computer System Audit
Trails--Initial Data Analysis. Technical Report TR-85009, Sytek, Mountain View,
California, September 1985.

[15] T. F. Lunt, J. van Horne, and L. Halme. Analysis of Computer System Audit
Trails-Intrusion Characterization. Technical Report TR-85012, Sytek, Mountain
View, California, October 1985.

[16] T. F. Lunt, J. van Horne, and L. Halme. Analysis of Computer System Audit Trails-
Feature Identification and Selection. Technical Report TR-85018, Sytek, Mountain
View, California, December 1985.

[17] T. F. Lunt, J. van Horne, and L. Halme. Analysis of Computer System Audit Trails-
Design and Program Classifier. Technical Report TR-86005, Sytek, Mountain View,
California, March 1986.

[18] J. van Horne and L. Halme. Analysis of Computer System Audit Trails-Training
and Experimentation with Classifier. Technical Report TR-85006, Sytek, Mountain
View, California, March 1986.

[19] J. van Horne and L. Halme. Analysis of Computer System Audit Trails-Final
Report. Technical Report TR-85007, Sytek, Mountain View, California, May 1986.

[20] T. F. Lunt. Automated audit trail analysis and intrusion detection: A survey. In
Proceedings of the 1lth National Computer Security Conference, October 1988. �

[21] D. E. Dennning and P. G. Neumann. Requirements and Model for IDES-A Real-
Time Intrusion Detection System. Technical report, Computer Science Laboratory,
SRI International, Menlo Park, California, 1985.

[22] D. E. Denning. An intrusion-detection model. IEEE Transactions on Software
Engineering, 13(2), February 1987.

[23] National Computer Security Center. Department of Defense Trusted Computer Sys-
tem Evaluation Criteria. DOD 5200.28-STD, Department of Defense, December
1985.

Bibliograpy 157

[24] R. Jagannathan and A.A. Faustini. GLU: A system for scalable and resilient large-
grain parallel processing. In Proceedings of 24th Hawaii International Conference
on System Sciences, Kauai, Hawaii, January 1991.

[25] R. Jagannathan and A.A. Faustini. The GLU Programming Language. Technical
Report SRI-CSL-90-11, Computer Science Laboratory, SRI International, Menlo
Park, California, November 1990.

[26] R. Jagannathan. Transparent multiprocessing in the presence of fail-stop faults. In
Proceedings of the Third Workshop on Large-Grain Parallelism, Pittsburgh, Penn-
sylvania, October 1989.

[27] R. Jagannathan. A Descriptive and Prescriptive Model for Dataflow Semantics.
Technical Report CSL-88-5, Computer Science Laboratory, SRI International, Menlo
Park, California, May 1988.

[28] John D. Lowrance, Thomas D. Garvey, and Thomas M. Strat. A framework for
evidential-reasoning systems. In Proceedings of the National Conference on Artificial
Intelligence, pages 896-903,445 Burgess Drive, Menlo Park, California, August 1986.
American Association for Artificial Intelligence.

