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Preface

SRI International has prepared this document as a full and complete disclosure of
the Next-Generation Intrusion-Detection Expert System (NIDES) [3] statistical algo-
rithm, including how it works, what decisions influenced the form of the algorithm,
and the rationale behind those decisions. We have divided this document into four
sections:

� Chapter 1 is a description of the NIDES statistical algorithm. It describes what
the algorithm is and how it functions.

� Chapter 2 is a broad justification for the NIDES statistical algorithm. This
section also includes a comparison to other statistical approaches to intrusion
detection.

� Chapter 3 is a set of statistical criteria that can be used to evaluate the ap-
propriateness of any statistical approach to intrusion detection. Although we
did not formally use these criteria in the development of the NIDES statistical
algorithm, they nevertheless had an important influence on the development
of the algorithm. They may also be used to evaluate the suggestions of other
statistical algorithm developers.

� Chapter 4 is a set of specific questions and answers that can be posed about
the NIDES statistical algorithm. In this section we explore in more depth the
specific choices we made in developing the NIDES statistical algorithm. We
have found it convenient to use the question-and-answer format to address the
relationship of the NIDES statistical algorithm to the work of Helman et al.
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Chapter 1

Description of the
tatistical Component

1.1 Overview of Statistical Component

The SRI NIDES statistical component observes behavior on a monitored computer
system and adaptively learns what is normal for individual subjects: users, groups,
remote hosts and the overall system. Observed behavior is flagged as a potential
intrusion if it deviates significantly from expected behavior. The NIDES statistical
component maintains a statistical subject knowledge base consisting of profiles. A
profile is a description of a subject�s normal (i.e., expected) behavior with respect
to a set of intrusion-detection measures. Profiles are designed to require a minimum
amount of storage for historical data and yet record sufficient information that can
readily be decoded and interpreted during anomaly detection. Rather than storing
all historical audit data, the profiles keep only statistics such as frequencies, means,
and covariances.

The deductive process used by NIDES in determining whether behavior is anoma-
lous is based on statistics, controlled by dynamically adjustable parameters, many
of which are specific to each subject. Audited activity is described by a vector of
intrusion-detection measures (or variables). Measures can be turned �on� or �off�
(i.e., included in the statistical tests), depending on whether they are deemed to be
useful for the monitored system. As each audit record arrives, the relevant profiles
are retrieved from the knowledge base and compared with the vector of intrusion-
detection measures. If the point in N-space defined by the vector of intrusion-detection
measures is sufficiently far from the point defined by the expected values stored in
the profiles, then the record is considered anomalous. Thus, NIDES evaluates the
total usage pattern, not just how the subject behaves with respect to each measure
considered singly.

The statistical knowledge base is updated daily, using the most recent day�s ob-
served behavior of the subjects. Before the new audit data are incorporated into
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2 Description

the profiles, the frequency tables in each profile are aged by multiplying them by an
exponential decay factor. Although this factor can be set by the security officer, we
believe that a value that reduces the contribution of knowledge by a factor of 2 for
every 30 days is appropriate (this is the long-term profile half-life). This method of
aging has the effect of creating a moving time window for the profile data, so that
the expected behavior is influenced most strongly by the most recently observed be-
havior. Thus, NIDES adaptively learns subjects� behavior patterns; as subjects alter
their behavior, their corresponding profiles change.

1.2 The NIDES Score Value

For each audit record generated by a user, NIDES generates a single test statistic value
(the NIDES score value, denoted T2) that summarizes the degree of abnormality in
the user�s behavior in the near past. (The concept of near past is defined later.)
Consequently, if the user generates 1000 audit records in a day, there will be 1000
assessments of the abnormality of the user�s behavior. Because each assessment is
based on the user�s behavior in the near past, these assessments are not independent.

Large values for T2 are indicative of abnormal behavior, and values close to zero
are indicative of normal behavior (e.g., behavior consistent with previously observed
behavior). Thus, the security officer should be more concerned about larger values of
T2 than with smaller values.

Using historical information about T2, cutoff values can be calculated correspond-
ing to various alert levels (with higher alert levels associated with higher T2 values).
Each alert level is associated with a corresponding false positive rate (the probability
that a normal user�s activities will falsely be declared to be anomalous). The false
positive rate can be expressed in two general ways: (1) as the proportion of audit
records generated by the normal user that will exceed the threshold for declaring an
audit record to be anomalous, or (2) as the probability that a normal user will be de-
clared anomalous sometime during an average day. Currently, we have implemented
only the first definition. In future versions of NIDES, we may implement the second
definition. When multiplied by the number of system users, the latter definition cor-
responds loosely to the amount of effort that will be expended by the security officer
in tracking down false leads. We have expressed the true positive rate (i.e., the prob-
ability that abnormal activity will be declared to be anomalous) as the proportion of
�guest� user audit records that exceed the detection threshold (i.e., the proportion of
one user�s normal audit records that are declared anomalous when �played� through
another user�s profile, as if the first user had logged on as an uninvited �guest� in the
second user�s account). If a suite of intrusion scenarios is developed, the definition of
true positive rates can be changed to the percentage of the intrusion scenarios that
are detected. The security officer decides what actions should correspond to various
alert levels, based partially upon the number of false leads that he or she can pursue
and partially upon the system security needs. For example, the security officer might
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choose to completely ignore the lowest alert levels, and be notified only at alert levels
corresponding to an average of three false alerts per day.

Because the T2 statistic summarizes behavior over the near past, and sequential
values of T2 are dependent, the T2 values will slowly trend upward or downward.

To avoid inundating the security officer with notification of continued alerts we
notify the security officer only when a change occurs in the alert level. We also �clear�
the alert whenever the T2 value becomes sufficiently low1.

1.3 How T2 is Formed from Individual Measures

The T2 statistic is itself a summary judgment of the abnormality of many measures
taken in aggregate. Suppose that there are n such constituent measures, and let us
denote these individual measures by Si, 1  i  n. Each Si is a measure of the degree
of abnormality of behavior with regard to a specific feature (such as CPU usage or
file accesses). In the current version of NIDES, the T2 statistic has been set equal to
the sum of the squares of the Si:

T 2 = (S1

2 + S 2

2 + . . . + Sn

2 ) /n

Because the T2 statistic is a simple average of the n squares of the Si, T
2 does not

explicitly address the correlations among the Si. We believe that there is additional
useful information contained in the correlations among the Si. Subsequent versions
of NIDES could explore ways of introducing this covariation by defining a statistic
L2 as follows:

Here, h(S i, S j, C ij ) is a well-behaved function of Si, Sj, and their correlation
Cij that takes large values when Si and Sj are not behaving in accordance with their
historical correlations. An audit record would be declared to be abnormal when either
T2 or L2 exceeded an appropriate threshold.

1.4 Types of Individual Measures

The individual S measures each represent some aspect of behavior. For example, an
S measure might represent file accesses, CPU time used, or terminals used to log
on. Two S measures might also represent only slightly different ways of examining

1The false positive and true positive rates should be calculated as if the modification of the alerting
mechanism (to avoid inundating the security officer) had not been implemented. For example, the
true positive rate is the proportion of intruder audit records detected as exceeding the threshold,
whether or not alerts after the first were suppressed.
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the same aspect of behavior. For example, both Si and Sj might represent slightly
different ways of examining file access.

We have found it useful to classify the different types of individual measures in
the NIDES statistical system into the following four classes:

 Intensity measures - These three measures track the number of audit records
that occur in different time intervals, on the order of 1 minute to 1 hour. These
measures can detect bursts of activity or prolonged activity that is abnormal,
primarily based on the volume of audit data generated.

 Audit record distribution measure - This single measure tracks all the types of
activity that has been generated in the recent past, with the last few hundred
audit records having the most influence on the distribution of activity types.
For example, we might find that the last 100 audit records contained 25 audit
records indicating that files were accessed, 50 audit records indicating that CPU
time was incremented, 30 audit records indicating that I/O activity occurred,
and 10 audit records indicating activity from a remote host. These data are
compared to a profile of previous activity (generated over the last few months)
to determine whether or not the distribution of activity types generated in the
recent past (i.e., the last few hundred audit records) is unusual.

 Categorical measures - These are transaction-specific measures for which the
outcomes are categories. For example, categorical measures could include the
names of files accessed, the ID of the terminals used for logon, and the names of
the remote hosts used. For the categorical measure of the names of files accessed,
the individual categories within that measure are the file names themselves. The
names of the files that were used in the last 100 to 200 audit records containing
file names are compared to a historical profile of file names used to determine
if recent usage is abnormal.

�  Counting measures - These are measures for which the outcomes are counts.
For example, counting measures might include CPU time (which counts the
number of seconds of CPU used, with accuracy to 0.001 second) or the amount
of I/O. Behavior over the last 100 to 200 audit records is compared to a historical
profile of behavior to determine if recent usage is abnormal.

These different classes of measures serve different hierarchical purposes. The in-
tensity measures assess the extent to which the volume of audit records generated is
normal. The audit record distribution measure assesses, over the last few hundred
audit records generated, the extent to which the types of measures being affected are
normal. The categorical and counting measures assess within a type of audit record
(e.g., an audit record that involves accessing a file, or that involves incrementing CPU
time), the extent to which the behavior is normal over the past few hundred audit
records.
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1.5 Algorithm for Computing S from Q for the
Intensity Measures

Each S measure is derived from a corresponding statistic that we will call Q. In
fact, each S measure is a �normalizing� transformation of the Q statistic so that
the degree of abnormality for different types of features (such as CPU usage and the
names of files accessed) can be added on a comparable basis. Two different methods
for transforming the Q statistics into S values are used. One method is used for
computing the values of S corresponding to the three intensity measures; a second
method is used for computing the values of S corresponding to all the other measures.

For the intensity measures, the value of Q corresponding to the current audit
record represents the number of audit records that have arrived in the recent past.
Here, �recent� past corresponds to the last few minutes for the Q statistic with a
half-life of 1 minute and to the last few hours for the Q statistic with a half-life of 1
hour. In addition to knowing the current value for Q, NIDES maintains a historical
profile of all previous values for Q. Thus, the current value of Q can be compared to
this historical profile to determine whether the current value is anomalous.

The transformation of Q to S for the intensity measures requires knowledge of
the historical distribution of Q. For example, we might find the following historical
information for the intensity measures Q with a half-life of 1 minute:

� 1% of the Q values are in the interval 0 to 10 audit records

� 7% are in the interval 10 to 20

� 35% are in the interval 20 to 40

� 18% are in the interval 40 to 80

� 28% are in the interval 80 to 160

� 11% are in the interval 160 to 320

The S statistic would be a large positive value whenever the Q statistic was in
the interval 0 to 10 (because this is a relatively unusual value for Q) or whenever Q
was larger than 320 (because this value has not historically occurred). The S statistic
would be close to zero whenever Q was in the interval 20 to 40, because these are
relatively frequently seen values for Q. The selection of appropriate intervals for
categorizing Q is important to the functioning of the algorithm. We are currently
using 32 intervals for each Q measure, with interval spacing being either linear or
geometric. The last interval does not have an upper bound, so that all values of Q
belong to some interval.

Small values of Q are indicative of a recent past that is similar to historical be-
havior, and large values of Q are indicative of a recent past that is not similar to
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historical behavior. This induces a modification in the transformation of Q to S, so
that S is small whenever Q is small, and S is large whenever Q is large. Hence, S
can be viewed as a type of rescaling of the magnitude of Q.

The algorithm for converting individual Q values to S values for the intensity
measures (but not for other measures) is as follows:

1. Let Pm denote the relative frequency with which Q belongs to the mth interval.
In our example, the first interval is 0 to 10 and the corresponding P value (say
P0) equals 1%. There are 32 values for Pm, with 0  m  31.

2. For the mth interval, let TPROBm denote the sum of Pm and all other P values
that are smaller than or equal to Pm in magnitude. In our previous example,
TPROB for the interval of 40    80 equal to 18% + 11% + 7% + 1% =
37%.

3. For the mth interval, let sm be the value such that the probability that a normally
distributed variable with mean 0 and variance 1 is larger than sm in absolute
value equals TPROBm. The value of sm satisfies the equation

  TPROBm

or

   

where  is the cumulative distribution function of a N(0,l) variable. For exam-
ple, if TPROBm is 5%, then we set sm equal to 1.96, and if TPROBm is equal
to l00%, then we set sm equal to 0. We do not allow sm to be larger than 4.0.

4. Suppose that after processing an audit record we find that the Q value is in the
mth interval. Then S is set equal to sm, the s value corresponding to TPROBm.

1.6 Algorithm for Computing S from Q for All
Other Measures

For all measures other than the intensity measures, Q compares short-term behavior
to long-term behavior. For example, for the command usage measure, Q measures
the extent to which the most recent few hundred commands issued are consistent
with long-term command usage.

For both the intensity measures and the other measures, we calculate a long-term
profile for Q using 32 intervals. For example, for a non-intensity measure such as
names of commands used we might find a probability distribution for Q similar to
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the one displayed earlier for an intensity Q, except that the range of values into which
Q could be classified would not be in units of audit records. Rather, the range of
values would be expressed in terms of the degree of similarity between the short-term
profile of command usage and the long-term profile of command usage, with larger
numbers representing less similarity.

Because of the difference in the way that Q is defined for intensity measures and
other measures, the transformation of Q to S is slightly different for non-intensity
measures. For non-intensity measures, we let TPROBm =   Pm + 1+ . . .+ P 3 1.
In our previous example, if Q were a non-intensity measure, the TPROB value of
the interval 40  Q  80 would be equal to 18% + 28% + 11% = 49%. Thus, in
these cases, S is a simple mapping of the percentiles of the distribution of Q onto the
percentiles of a half-normal distribution.

In practice these algorithms are easy to implement, with the Q tail probability
calculations done only once - at update time (usually close to midnight). (The
si values, requiring only a table look up, are done in real time.) Each interval for
Q is associated with a single s value, and when Q is in that interval, S takes the
corresponding s value.

1.7 Computing the Frequency Distribution for Q

The historical frequency distribution for Q is required for Q to be transformed into
S. The calculation procedures described here are used for all types of measures.

The first step in calculating the historical probability distribution for Q is to define
bins into which Q can be classified. We always use 32 bins (numbered 0 to 31) for
a measure Q. Let Qmax be the maximum value that we ever expect to see for Q.
This maximum value depends on the particular types of measures being considered.
Default values are provided in NIDES for these maximum values and they should
be reset by the security officer if Q is in the highest bin more than 1% of the time.
The cut points for the 32 bins are defined on either a linear or geometric scale. For
example, when a geometric scale is used, bin 0 extends from 0 to  bin 1
extends from  to  bin 2 extends from  to  and bin
31 extends from  to infinity.

As before, let Pm denote the relative frequency with which Q is in the mth interval
(i.e., bin). Each Q statistic is evaluated after each audit record is generated (whether
or not the value of Q has changed), and therefore Pm is the percentage of all audit

records for which Q is in the m th interval.
The formula for calculating Pm on the kth day after initiating NIDES monitoring

of a user is:

    
j = l
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where

k = the number of days that have occurred since the user was first moni-
tored

b = the decay rate for Pm that determines the half-life of the data used to
estimate Pm; we currently recommend a 30-day half-life, corresponding
to a b value of -log 2 (0.5)/30 = 0.0333

Wm,j  = the number of audit records on the jth day for which Q was in
the mth interval

N k = the exponentially weighted total number of audit records that have
occurred since the user was first monitored

The formula for Nk is:

where

W j = the number of audit records occurring on the jth day

The formula for Pm,k appears to involve keeping a long sum (e.g., since monitoring
first began), but the computations are simplified by using the following recursion
formulas:

    

    

In NIDES, we update Pm,k and Nk once per day and keep running totals for Wm,k

and Wk during the day.

1.8 Computing the Q Statistic for the Intensity
Measures

When a user is first audited, that user has no history. Consequently, we must choose
some convenient value to begin the Q statistic history. For example, we might initially
let each Q measure be zero, or some value close to the mean value for other similar
users.

Each Q statistic for intensities is updated each time a new audit record is gen-
erated. Let us now consider how to update Q. Let Qn be the value for Q after the
nth audit record, and Qn+ 1 be the value for Q after the (n +1) st audit record. The
formula for updating Q is:
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Q n + 1 = 1 + 

where

� The variable t represents the time (say in minutes or fractions thereof) that has
elapsed between the nth and (n + 1)st audit records.

� The decay rate r determines the half-life of the measure Q. Large values of r
imply that the value of Q will be primarily influenced by the most recent audit
records. Small values of the decay rate r imply that Q will be more heavily
influenced by audit records in the more distant past. For example, a half-life
of 10 minutes corresponds to an r value of 0.10 = log 2 (0.5)/10.0. The security
officer may set the half-life of the intensity measures at any values that he or
she feels are appropriate. We are currently using three intensity measures with
half-lives of 1, 10, and 60 minutes, respectively.

Q is the sum of audit record activity over the entire past usage, exponentially
weighted so that the more current usage has a greater impact on the sum. Q is more
a measure of near past behavior than of distant past behavior, even though behavior
in the distant past also has some influence on Q. The Q statistic has the important
property that it is not necessary to keep extensive information about the past to
update Q.

We note that the intensity measures use clock time as the unit by which age is
calculated. This is important because the intent of this measure is to assess the extent
to which bursts of activity are normal. All the other measures in NIDES determine
�age� using audit record counts. For example, an audit record may be the most recent
record (that affects that measure), the second most recent, the third most recent, and
so forth. This assures profile continuity over nights and weekends - periods when
there is typically little activity. Thus, for the non-intensity measures we address the
issue of whether over the past few hundred audit records that affected the measure,
behavior was normal in comparison with historical standards, regardless of when that
activity took place. (Although at first glance this means that abnormal �short term�
behavior might include behavior from days, weeks, or even months in the past, this
is not a concern, since the portion of the activity in the short-term profile that has
taken place earlier than the last profile updating will have already been incorporated
into the historical profile, and will tend to be assessed as normal).

1.9 Computing the Q Statistic for the Audit
Record Distribution Measure

Each audit record that is generated indicates one or more types of activity that have
occurred for a user. For example, a single audit record may indicate that a file has
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been accessed, that I/O has occurred, and that these activities occurred from a remote
host. The Q statistic for the audit record distribution measure is used to evaluate
the degree to which the type of activity in the recent past agree with the distribution
in a longer-term profile.

The calculation of the audit record distribution measure begins with the specifi-
cation of the types of activities that will be examined. We currently recommend that
each categorical and counting measure (with some exceptions as noted below) consti-
tute an activity type. For example, if name of file accessed is a categorical measure,
then the corresponding activity would be that any named file was accessed. Similarly,
if amount of I/O used is a counting measure, then the corresponding activity would
be that any I/O was used. That is, if an audit record would cause a categorical or
counting measure to be recalculated, then a corresponding activity type should be
defined. The exception would be a categorical or counting measure that would be
affected by any audit record. For example, if hour of audit record generation is a
categorical measure, then every audit record causes this categorical measure to be
updated and no purpose is served in defining a corresponding activity type. We note
that in general a single audit record can impact multiple measures. (That is, a single
audit record can �touch� multiple measures.)

It may be useful to define activity types in addition to those based on the cat-
egorical and counting measures used. For example, the security officer may want
to evaluate the percentage of audit records generated that indicate that the user is
logged onto a remote host. The security officer who is not interested in which remote
host is being used may accomplish this goal in one of two ways. The first way is
to establish a categorical measure with two categories - "remote host indicated�
and �remote host not indicated�. If this approach is used, then there should be no
corresponding activity type defined because every audit record is relevant to the cal-
culation of the categorical measure. The second way is to define an activity type of
�remote host indicated� to be used by the audit record distribution measure and not
to define a categorical measure. These two approaches yield similar (although not
totally equivalent) results, but the second approach is computationally less intensive.

Suppose that we have established M �activity types. For each activity we must
calculate a long-term historical relative frequency of occurrence, denoted  , , for that
activity type. For example, suppose that over the last 3 months, 7% of all audit
records have involved file accesses. Then fm for the file access activity type would
be 0.07. Note that each fm is between 0 and 1.0 inclusive. The sum of the fm may
be greater than 1.0 because a single audit record may indicate that multiple activity
types have occurred.

The algorithm used to compute fm is essentially the same as that used to calculate
Pm and uses the same decay rate. That is, we may write that the value of fm on the
kth day is equal to
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j = l

11

where Nk, and b are defined as before and Wm,j is the number of audit records on
t hthe j day that indicate that the mth activity type has occurred.

In NIDES, the Q statistic compares the short-term distribution of the types of
audit records that have been generated with the long-term distribution of types. In
the simplest situation, Qn (the value of the Q statistic when the nth audit record is
processed) is defined as follows:

     

where

= the relative frequency with which the mth activity type has oc-
curred in the recent past (which ends at the nth audit record)

Vm
= the approximate variance of the gm,n

If we view gm,n as the short-term profile for the audit record distribution and we
view fm as the long-term profile for audit record distribution, then Qn measures the
degree of dissimilarity between the short-term behavior and long term-behavior. That
is, Qn is larger whenever the distribution of activity types in the recent past differs
substantially from the historical distribution of activity types, where �substantially�
is measured in terms of the statistical variability introduced because the near past
contains relatively small (effective) sample size. The value of gm,n is given by the
formula

  [I  

or by the recursion formula

    

where

j = an index denoting audit record sequence
I(  j, m) = 1.0 if the jth audit record indicates activity type m has occurred

and 0.0 otherwise
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r = the decay rate for Q that determines the half-life for the Q measure; we
have set the half-life to approximately 100 audit records, corresponding
to an r value of  = (0.5)/l00 = 0.01.

Nr
= the sample size for the Q statistic, which is given by the formula

   

j = l

and which rapidly approaches an asymptotic value of l/(1 - 

The value of Vm is given by the formula

    

except that Vm is not allowed to be smaller than 0.01/N r.

1.10 Computing the Q Statistic for Categorical
Measures

Categorical measures are those that involve the names of particular resources being
used (such as the names of files being accessed, or the location from which logons are
attempted) or involve other categorical characteristics of audit records, such as the
hour of the day on which the audit record was generated.

The method used for computing Q for categorical measures is essentially the same
as that previously described for computing Q for the audit record distribution mea-
sure. In fact, we may view the audit record distribution measure as a categorical
measure. The only difference in the definition of Q is that every audit record results
in the recalculation of the audit record distribution measure, whereas for all other
categorical measures, Q is only updated whenever the audit record contains informa-
tion relevant to the particular measure. For example, the file name accessed measure
would only be updated whenever the audit record concerns a file access. A half-life for
the file name accessed measure of 100 audit records would refer to 100 audit records
relevant to file names accessed, rather than to the last 100 audit records.

1.11 Computing the Q Statistic for Counting
Measures

Counting measures are those that involve counts of particular resources used (such
as CPU time in milliseconds or I/O counts) or some other numerical feature of audit
records (such as the interarrival time in milliseconds of consecutive audit records).
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Counting measures are transformed to categorical measures. For example, con-
sider the counting measure of CPU time. Individual audit records arrive that indicate
that a non-zero amount of CPU time has been incrementally expended since the last
reporting of CPU usage. We might expect that this delta-CPU value would be be-
tween 0 and a maximum of 200 seconds. We define 32 geometrically scaled intervals
between 0 and 200 milliseconds employing the same procedure as we used for defining
intervals for the historical profile for Q (including the convention that the last interval
actually extends to infinity). When a delta-CPU value arrives and is classified into
interval m, we state that a categorical event m has occurred. Thus, we translate
CPU time into a categorical measure where a category is activated whenever an au-
dit record arrives with a delta-CPU value in that category. Thus, the Q measure for
CPU time doesn�t directly measure total CPU usage in the near past; rather, it mea-
sures whether the distribution of delta-CPU values in the near past is similar to the
historical distribution of delta-CPU values. Once the counting measure is redefined
as a categorical measure as discussed above, the Q statistic is calculated in the same
fashion as for any other categorical measure.

1.12 Addition of a �Rare� Category

In previous versions of NIDES, each category of behavior in a particular measure was
treated separately when comparing the long- and short-term profiles. For example,
for the measure of �files accessed,� each different file name in the long-term profile
was treated as an individual category. Often, this resulted in hundreds of categories
in the long-term profile, the vast majority of which had very small probabilities (much
less than 1%).

The presence of so many categories makes it difficult to detect intruders. An
intruder browsing the host�s files would tend to touch a reasonable number of the
files that the user doesn�t use very often. Thus, the intruder might demonstrate a
short-term profile with small but non-negligible probabilities (say on the order of 2%)
for many of these files. On a file-by-file basis, a comparison of two small probabilities
would not be statistically significant.

We decided that if we aggregated the rarest categories, then the detection of an
intruder who frequently touched rare categories would be easier. We now create
a temporary new �rare� category (at profile updating time) that contains all of the
user�s files with very small probabilities. Categories are temporarily added to the rare
category until the addition of another category would cause the cumulative sum of the
probabilities that have already been added to the rare category to first exceed a preset
threshold for the sum of rare probabilities (for example, 1%). When the short-term
profile is compared to the long-term profile, all of the files that are combined into the
new rare category are treated as if they were the same file. Thus, an intruder might
have a short-term profile in which 30% of the probability was in the rare category.
The difference between the actual rare category probability sum in the long-term
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profile and 30% probability in the short-term profile will tend to be easier to detect
than the differences between very small probabilities.

We note that the use of the rare category is not without trade-offs. For example,
if the intruder continues to use a single file in the rare category, this will be more
difficult to detect than previously. We also note that separate counts for all categories
are maintained (whether or not a particular category has temporarily become part of
the rare category for a particular day); this allows categories to migrate into and out
of the rare category on different days.

1.13 Addition of a �New� Category

One type of behavior that we need to be particularly careful to identify is the creation
of, or use of, new categories. The most obvious example would be the use of commands
that the host user has never used before. (Because our profiles eventually discard
categories with associated probabilities that decay below certain limits, it is more
precise to say that these are categories that have not been used recently by the host.)

To increase our ability to detect new behavior within a measure, we have added
a �new� category. The first time during a day when a short-term behavior is noticed
for which there is no category in the long-term profile, the short-term probability of
the new category is incremented. This is compared to the probability in the long-
term profile for the new category to determine whether the amount of new behavior
is statistically significant.

For example, suppose that the probability in the long-term profile for the new
category is 0.1%. (This will almost always be a very small probability.) Further
suppose that there are no categories in the long-term profile for commands W, X, Y,
or Z. Suppose that the short-term profile is effectively based on 200 audit records,
and that until now no new short-term behavior has been observed over, say, the last
1000 audit records.) Finally, suppose that 10 new audit records arrive, including two
occurrences of X, three of Y, one of Z, and one of W. The short-term probability of
the new category would be 4/200 = 2%2. In the calculation of Q we include a term for
the "new category� with an observed percentage of 2% and an expected percentage
of 0.1% (e.g., an observed count of about 4 and an expected count of about 0.2).

2The probability for the new category is calculated separately from the probabilities for all other
categories. Thus, if there is a measure with many new categories (such as a file access measure) the
probabilities for all other categories still sum to 100%.



Chapter

ationale for the Current N
Statistical Component

The objective of describing the rationale for the NIDES statistical component is
fourfold:

� To justify the statistical algorithms that SRI is currently using in NIDES

� To discuss how the NIDES approach relates to those used in two other intrusion-
detection systems (Wisdom and Sense and Haystack)

� To discuss how the NIDES approach relates to four general statistical ap-
proaches (pattern recognition, discriminant and classification analysis, Mar-
covian transition analysis, and Bayesian decision analysis)

2.1 The Current NIDES Statistical Component

2.1.1    Statistical Component Philosophy

Understanding why SRI has chosen to implement certain types of algorithms in the
NIDES statistical component requires an explanation of the philosophy underlying
the statistical component. A critical element in the development of this philosophy
was the knowledge that the NIDES statistical component would be used in conjunc-
tion with a rule-based component. It was assumed that the rule-based component
would be defined to detect all known methods of compromising system security (or
detect indicators that system security is or might be compromised). The statistical
component is therefore devoted to uncovering all anomalous behaviors, just in case
these anomalous behaviors might imply that system security is being compromised
via some unknown or otherwise undetectable method. It may be the only way of
detecting an insider attack, which may be composed of actions that in other circum-
stances would be considered acceptable or which exploit previously unknown system
vulnerabilities.

15
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The basic philosophy underlying the statistical component is that it is intended
as the detection or protection system of last resort. It is intended to uncover those
actions that cannot be prevented (e.g., through physical or software safeguards, such
as passwords) or detected by a set of rules embedded in a rule-based component.
Thus, whenever we (i.e., the intrusion-detection community) know that a particular
set of actions either constitutes a violation of system security or is sufficiently serious
to warrant an investigation or immediate preventive steps (such as disconnecting the
user), the statistical component assumes that such set of actions is either prevented via
physical or software safeguards or encoded as a set of rules in a rule-based component.

Because it is intended as a detection system of last resort, the statistical com-
ponent cannot rely on our previous knowledge of security violations or methods of
compromising security. It must assume that the user might be engaging in a totally
new or previously unknown method of compromising security. It cannot therefore
rely on the body of knowledge that we have previously gathered. All that previous
knowledge is assumed to be embedded in the rule-based component. (However, test-
ing the statistical component against known intrusion, masquerading, or malfeasance
scenarios is valuable in that it provides us with some level of assurance that the
statistical component is capable of detecting these types of anomalous behavior.)

Because it cannot rely on previous knowledge of methods to compromise security,
the statistical component attempts to detect any anomalous behavior, whether or
not that behavior has been previously associated with malfeasance. Thus, if the
user engages in unusual behavior (where the unusualness of behavior is measured
relative to that user�s own prior behavior or relative to the behavior of a group of
employees who are supposed to be using the computer system in the same way), the
statistical component raises a warning flag. The warning flag does not mean that
system security is being compromised only that the user is behaving in an unusual
fashion. For example, if a user suddenly starts accessing directories that he or she has
not previously accessed, this anomaly would be detected even if the user has full and
legitimate access to those directories. On the other hand, if a user routinely exploits
a flaw in the operating system to change his or her access privileges to �root� and
then back again, then this behavior would not be deemed anomalous even though
this action violates system security.

2.1.2 Basic NIDES Statistical Approach

The basic statistical approach in NIDES is to compare a user�s short-term behavior
to the user�s long-term behavior. Whenever short-term behavior is sufficiently unlike
long-term behavior, a warning flag is raised. As discussed above, this statistical
approach requires no a priori knowledge about what types of behaviors would lead
to compromised security.

The number of audit records or number of days that constitute short-term and
long-term behavior can be set by the security officer through the specification of a
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�half-life.� The NIDES developers will provide �rules of thumb� for the specification
of the half-life. For example, a security officer who wants short-term behavior to
be on the order of 200 audit records should specify a half-life of approximately 100
audit records. This will assure that the 200th audit record has only one-quarter
the influence of the most recent audit record, the 400th audit record has only one-
sixteenth the influence, and so forth. Similarly, a reasonable half-life for a long-term
profile might be 30 days.

In comparing short-term behavior to long-term behavior, the statistical compo-
nent will be concerned about long-term behaviors that do not appear in short-term
behavior as well as about short-term behaviors that are not typical of long-term be-
havior. For example, if a particular file is the object of 10% of file accesses in the
long term, whereas in the current short-term behavior only 1% of file accesses involve
that file, then this discrepancy will contribute towards a finding of abnormality. Sim-
ilarly, if a particular file is the object of only 1% of file accesses in the long term,
whereas in the current short term this file is the object of 10% of file accesses, then
this discrepancy will contribute towards a finding of abnormality.

2.1.3 Time Horizon of Short-Term Behavior in NIDES

The NIDES statistical component keeps track of many different measures (or aspects)
of behavior, such as commands used, files accessed, and remote hosts accessed. For
each of these measures, it keeps track of short-term behavior separately. Therefore
the half-life of short-term behavior for commands used refers to the last (say) 100
commands issued, whether these commands were executed in the last minute, hour,
day, or week. The half-life of short-term behavior for files accessed refers to the last
(say) 100 files accessed, whether these files were accessed in the last minute, hour,
day, or week. Thus, the chronological time frames for the different measures can
be different. In addition, it is not theoretically necessary that short term behavior
for each measure refer to the same half-life (although the current implementation of
NIDES does not allow easy specification of measure-specific half-lives). For example,
the half-life of short-term behavior with respect to remote host logins could be 20
logins, whereas the half-life of short-term behavior with respect to file accesses might
refer to the last 500 file accesses. We hope in the future to provide automated support
to setting half-lives, so that the number of audit records that constitute the half-life
of short-term behavior for each measure is large enough to ensure stability in the
measure (making it easier to achieve a low false positive warning rate) and small
enough that the measure will react rapidly to an intrusion.
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2.2 Statistical Approaches in Other Intrusion-
Detection Systems

2.2.1 Sequences of Events in NIDES and Wisdom and Sense

The concept of a sequence of events is central to the Wisdom and Sense (W&S)
system [7]. To set the stage for discussing how (W&S) handles sequences of events,
we first discuss how both the statistical and rule-based components of NIDES handle
events.

The NIDES statistical component can be considered as a tool for examining
whether the �events� in short-term behavior are similar to the �events� in long-
term behavior. Currently we define an �event� as a rather low-level concept, such
as the execution of a particular command, logging on from a particular terminal, or
accessing a particular file. A common feature of these events is that their occurrence
can be determined from individual audit records. However, the statistical algorithms
could be modified to handle higher-level events requiring information from multiple
audit records. For example, we could define a compound event such as �logs onto a re-
mote host as guest and then changes user name.� Later, we discuss how higher-level
events could be used to improve the detection capability of the NIDES statistical
component. For now, we note that if higher-level events are added to the NIDES
statistical component, these should not be restricted to those relatively few events
that are recognized as being precursors or indicators of an attempt to compromise
system security. Instead, the enumeration of suspicious events should be made in
the rule- based component. As soon as an identified suspicious event is detected,
the rule-based component can alert the security officer or take other preventive or
monitoring actions. Again, the purpose of the statistical component is to detect a
change in behavior rather than to identify the occurrence of a specific behavior.

The NIDES statistical component decides whether current behavior is anomalous
based on the entire group of events that have occurred in a rapidly aged past (gener-
ally, the past few hundred audit records). Thus, the decision is based on a group of
events, rather than any single event. NIDES raises an alarm when the most recent
event pushes the short-term profile "over the limit� in the sense that the short-term
profile becomes so different from the long term profile that the statistical component
considers the short-term profile to be anomalous. Although the NIDES statistical
component bases its decision on a group of events, it is not particularly influenced
by the order in which those events occur (except that more recently observed events
exert a greater influence on profile scoring than less recent events). Strictly speaking,
therefore, the NIDES statistical component cannot be said to monitor ordered events.

The NIDES rule-based component does handle event sequences. In most cases
with which we are familiar, the interest in sequences of events concerns very specific
sequences that are associated with compromises of system security. The rule-based
component can monitor the occurrence of different events, and when a sufficient por-
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tion of the sequence has occurred, the rule-based component can notify the security
officer that it is likely that the user in question is attempting to compromise system
security. In accordance with our general design philosophy, if a sequence has been
specifically identified because it has been associated with compromised security, it be-
longs in the rule-based component. If, on the other hand, we are examining sequences
so that we can better understand normal behavior, and therefore contrast short-term
behavior (i.e., recent behavior) with long-term behavior (i.e., historical behavior), the
proper place to examine the sequence would be in the statistical component.

Many rule-based systems (including the NIDES rule-based component) monitor
sequences of events. The only statistical intrusion-detection system with which we
are familiar that uses sequences is Wisdom and Sense, and the types of sequences
considered by W&S are fairly elementary. The W&S system builds its own sequences
and must consequently deal with a huge number of possible sequences. It does so by
building a massive tree structure (the branches of which are the sequences) and then
pruning the tree so that it contains only the most frequently used sequences. However,
to reduce the overhead required to build the tree structures, the W&S system usually
does not build tree structures for each individual user (instead, building a single
tree for all users) and the tree structure involves data from only the past few days.
Recent behavior of the user is compared to this tree structure in the following sense

 whenever the user has executed a sequence of n events, the first n  1 of which
are in the tree, the nth event is evaluated to determine whether or not it is also in
the tree. If it is in the tree, it typically nudges W&S toward concluding that the user
is behaving normally (particularly if the last node representing that event has a high
conditional probability of occurrence given the first n  1 nodes). If it is not in the
tree (or if the conditional probability of the last node is low), the last event nudges
W&S towards concluding that the user is behaving abnormally. Typically, sequences
in W&S are less than four to six events long. In addition, typical events are fairly
elementary in nature. For example, an event might be a user name, an action, an
object for an action, or a time of occurrence for an action. Thus, the mega-event that
user A logged in from terminal A at 8:20 a.m. would constitute a four-event sequence
represented in a four-node tree structure.

Owing to its complexity and the relative lack of documentation concerning W&S,
we do not know whether the W&S system of considering sequences of elementary
events and then evaluating conditional probabilities for the last node of those se-
quences is more or less powerful than the NIDES statistical component. We have
not chosen to implement the W&S approach, primarily because the W&S system
tends to profile a large group of users over very few days, whereas we wanted to base
our statistical comparisons on individual profiles of longer-term behavior. However,
the W&S approach does have merit, and its approach to handling sequences could
presumably be incorporated into NIDES by building hooks into W&S�s code.

Because of the potential value of sequences of events, we are also interested in
determining how sequences could be incorporated into the NIDES statistical compo-
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nent. The easiest way of doing this would be to define "mega-events.� For example,
the higher-level or compound event considered earlier (i.e., log onto remote host as
guest and then change user name) is a simple sequence of events. Mega-events could
be incorporated into the NIDES statistical component without a change in the cur-
rent methodology. However, the definition of those events, and the development of
software to recognize those events, would be a substantial research task.

Another method for embedding sequences into the statistical component would
be to rewrite the code so that the statistical component builds its own sequences.
For example, the statistical component could identify and track all three-event se-
quences and monitor their likelihood of occurrence. The difficulty with this approach
is that the number of different sequences being monitored could become excessively
large. For example, even if there were only 20 basic events, the number of possible
sequences of three events would be 20  20  20 = 8000. Unless the user�s behavior
were concentrated on a very small portion of these events, or the events could be
collapsed into a smaller number, the sequences would not be useful for examining
abnormality (because each individual sequence would have an extremely small prob-
ability of normal occurrence). Methods for collapsing (or clustering) behaviors into a
reasonable number of mega-events or sequences would be necessary. We believe that
it might be possible to develop a reasonable collapsing strategy, and that the resultant
methodology would be more powerful than the one used in W&S, because it would
not require the asymmetry inherent in the W&S approach (wherein most measures
serve as �conditions� and only one measure at a time can act as the "outcome�) and
would more fully exploit the �multidimensionality� of the data.

2.2.2 Haystack�s Statistical, Approach

In many respects, the Haystack statistical approach appears to be similar to the
NIDES statistical approach, although there are some quite distinct differences, and
we discuss both these similarities and differences here. We caution that we have not
been able to obtain complete documentation concerning Haystack [ll], and therefore
our conclusions regarding this system are preliminary. Steve Smaha, the Haystack
system developer, also recommended that we note that the Haystack system is a
number of years old.

In Haystack, as in NIDES, individual measures (called features) are monitored and
compared to historical behavior to determine their abnormality. However, in Haystack
this assessment appears to take place at the conclusion of the session, rather than in
real time or across sessions. In addition, it appears that only �counting� measures
(such as amount of I/O, amount of CPU, or number of files) are supported. (NIDES
also supports �categorical� measures such as name of terminal, names of files accessed,
names of directories changed, and names of commands executed.) For each measure,
the Haystack system determines a range of values that are considered �normal.� For
example, if the measure is number of files accessed, the normal behavior for a user
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consists of a range (such as 0 to 34 files) containing at least 90% of all observed values
for number of files accessed in the sessions belonging to the particular security group
to which the user belongs.

In contrast to NIDES, the Haystack statistical system contains a set of six generic
types of computer abuse (attempted break-ins by unauthorized users, masquerade
attack, penetration of the security control system, leakage, denial of service, and
malicious use). For each type of computer abuse there is a set of weights (from 0 to
9) indicating the extent to which each measure is related to that type of computer
abuse. For example, for denial of service, the measure �number of pages printed�
might be given a weight of 9, whereas a measure "password errors� might be given
a lesser weight. When Haystack analyzes a session, each session feature outside of
the predefined range causes a weight for that feature to be added to the session�s
score for that computer abuse. Each of the features is assumed to be independent of
the other features. Under this assumption, it is possible to calculate the probability
distribution of the computer abuse score (called a suspicion quotient) and alert the
security officer when that score is too large.

Haystack also contains a simple �trend� test to determine whether the counting
features are trending to larger or smaller values. This test (the Mann-Whitney pro-
cedure) is applied to contrast the values of the feature in the most recent 5 sessions
with the values of the feature in the most recent 20 sessions. Basically, this test looks
for changes in the median values. This test would not be applicable to categorical
measures, nor to more complicated types of changes in counting distributions (for
example, a trend towards both larger and smaller values but not a change in the
median value).

Although we have never conducted any tests with the Haystack system, we be-
lieve that the NIDES methodology for handling individual measures is preferable to
the Haystack methodology. For counting measures the difference in effectiveness is
probably marginal, except when the measures are bimodal (such as would occur if a
user engaged in two primary types of activity, one with low CPU usage per session
and one with high CPU usage per session), in which case the SRI approach should
yield better results. However, we believe that the most powerful measures will be the
categorical measures, which the Haystack system does not support. In addition, the
NIDES system supports nearly real time intrusion detection, whereas the Haystack
system supports only retrospective analysis of entire sessions.

The Haystack system combines functions of the NIDES statistical component
(i.e., identifying abnormal behavior) with functions of the planned NIDES resolver
(i.e., drawing conclusions as to whether a particular behavior is suggestive of a type
of computer abuse). Rather than combine these two distinct functions, we have
chosen to separate them, believing that by doing so each will be more efficacious.
For example, the planned resolver functions, to include model-based definitions of
suspicious behaviors, could potentially be far more powerful than Haystack�s relatively
simple approach.
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The degree of success of Haystack�s approach for drawing conclusions depends on
the validity of the weights used to obtain scores for computer abuse types. Unfor-
tunately, we have not been able to obtain those weights (or even a complete listing
of the measures used). We would be interested in examining the Haystack weight-
ing system to assess its sensitivity in detecting simulated intrusions. (In addition,
we note that in the absence of further development of model-based reasoning in the
resolver, the Haystack weighting system could be implemented fairly readily within
the NIDES resolver, while maintaining real-time intrusion detection and the use of
categorical measures.)

2.3 Alternative General Statistical Approaches

2.3.1 Pattern Recognition

Pattern recognition [2] is a fairly well defined set of procedures when applied to the
problem of identifying physical objects in two- or three-dimensional visual represen-
tations. Thus, when we discuss "pattern recognition� with respect to the problem
of having a robot navigate a room filled with objects or the problem of identifying
objects in a high-altitude photograph, it is fairly clear what set of procedures we are
considering.

In other realms of statistics, pattern recognition does not refer to a well-defined
set of procedures. A very wide range of statistical procedures has been used, in some
sense or another, to find "patterns� in the data. As an extreme example, even regres-
sion analysis (which is not usually considered to be a form of pattern recognition)
bears many characteristics of pattern recognition, since it is an optimal procedure for
determining how well the patterns of values in the independent variables match (or fit)
the pattern of values in the dependent variable. Thus, one of the main difficulties in
asking �Why didn�t NIDES use pattern recognition as its statistical approach� is that
so many different statistical procedures qualify as pattern recognition approaches.

In fact, we could easily consider the NIDES statistical approach to be one of
pattern recognition. The NIDES statistical component builds a long-term profile (or
pattern) of user behavior and then compares this pattern to the short-term profile
(or pattern) of user behavior. Thus, the NIDES statistical component is not only
constructing patterns, but is also comparing patterns.

Probably, the statistical procedures that are most closely associated with pattern
recognition are cluster analysis [l] and factor analysis [8]. Both of these procedures
are essentially exploratory in nature. We use cluster analysis to find clusters in
multivariate space (typically higher than three dimensions) and factor analysis to
reduce the dimensionality (i.e., number) of outcome variables.

With respect to factor analysis, it is difficult to conceive how such an approach
would be applied to intrusion detection. Presumably, each event would be charac-
terized according to measures such as the amount of CPU used, the number of files
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accessed, and the time of day of the activity) and then this data would be processed
to find fewer �factors� that explain the correlation among these measures. However,
we do not believe that the results of such a factor analysis would be interpretable,
and would probably only confuse the security officer.

It might be possible to use cluster analysis for anomaly detection. In this case,
we would characterize events according to specific measures (such as amount of CPU
used, the numbers of files accessed, whether the user accessed some other user�s di-
rectory, and the time of day of the activity). We would then locate events gathered
over a fairly long period of time (say weeks or months) in n-space (where n is the
number of measures used in the event characterization) and form clusters. A proba-
bility would be assigned to each cluster corresponding to the number of events in that
cluster (relative to the total number of events). The events in short-term behavior
would also be identified, where we might define short-term behavior as the last 20
events. A running score would be computed for each user. That score would increase
if the last event engaged in by the user did not belong to any previously identified
cluster or was identified with a cluster with low probability of occurrence. Similarly,
that score would decrease if the last event engaged in by the user belonged to a previ-
ously identified cluster with a high probability of occurrence. When the score became
sufficiently large, the security officer would be notified that the user was engaging in
anomalous behavior.

The use of cluster analysis in the way described above would be compatible with
the current NIDES statistical approach. In essence, we currently track the probability
of each event by itself and increase or decrease the anomaly score function on the basis
of that individual probability. The cluster analysis approach would allow us to cluster
events into larger collections of events and then assign probabilities to that cluster
(which would be the sum of the probabilities of the individual events within that
cluster).

The difficulty in applying cluster analysis is that it is more an art form than
a set of definitive procedures. We are aware of and have used a wide variety of
cluster analysis procedures on other projects. Unfortunately, a large amount of a
statistician�s time and attention is necessary to make the clusters meaningful. For
example, the definition of the distance metric plays a critical role in determining
which events would cluster together and in determining whether we get clusters that
look more like �balls� or �strings� of events. We believe that it would be a fairly
substantial research effort to identify reasonable metrics and clustering procedures.
Worse, the clustering would have to be done repeatedly (say every few nights) on
hundreds or thousands of individual users, because it is doubtful that clusters would
be generalizable across systems or user communities. This would require storage of
immense amounts of data (for example, the last 10,000 or so events for each user of the
system) and might involve exorbitantly long processing times since cluster analyses
are time-consuming. Unfortunately, the cluster analysis would probably frequently
fail. Cluster analysis procedures tend to be very sensitive to the identification of
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the proper �seeds� for the clusters, and often it takes a trained analyst to identify
which seeds to use, based on the results of an unsuccessful clustering attempt. Thus,
although cluster analysis is a very useful exploratory tool we do not believe that it
would be appropriate for use in an anomaly detection system.

2.3.2 Discriminant or Classification Analysis

Classification analysis relies on previous examples of behavior to develop a set of
rules upon which current behavior can be classified. For example, if we had historical
examples of �normal� and �abnormal� behavior for a user, we could use those ex-
amples to classify new behavior as either normal or abnormal. Two commonly used
procedures are discriminant analysis and classification tree analysis [6].

In our experience, classification analysis is an extremely efficient and powerful
methodology for classifying current behavior as normal or abnormal. The principal
problem in using this analysis procedure is in finding the examples of abnormal be-
havior. We simply do not have a sufficient number of examples of behavior that
compromise system security. Nor do we trust the few examples that we have to be
exhaustive, in the sense that they cover all types of behavior that could compro-
mise system security. Even if we had exhaustive examples of known behavior that
compromised system security, we would have to be concerned about the extent to
which unknown or new behavior that compromised system security would resemble
previously identified behavior that compromised system security.

Because actual examples of behavior that compromises system security are difficult
to come by, analysts sometimes use the normal behavior of other users to characterize
abnormal behavior for the host user. The first prototype for IDES [4] used both
discriminant analysis and classification tree analysis in this way, and we showed that
it was relatively easy to distinguish between the normal behavior of different users.
We did not choose to continue the development of a classification approach because we
had doubts concerning the extent to which behavior intended to compromise system
security would resemble the normal behavior of other users. However, this approach
may still have some value in identifying masqueraders, and we have performed some
preliminary evaluations showing that there may be merit in adding a discriminant
analysis into NIDES.

It is possible to heuristically relate the current NIDES statistical approach to a
classification approach. Basically, in the current NIDES statistical approach we cal-
culate the absolute probability of each type of event (as determined by examining the
historical behavior of the host user) and then score recent behavior on the basis of
that absolute probability. Thus, if the absolute probability of an event (as measured
by the past history of events for that user) is small (say on the order of 0.0l%), and
the user has recently engaged in that event, we nudge the anomaly score upwards
towards a conclusion of �anomaly.� On the other hand, in classification analysis we
calculate the relative probability for each type of event, and then score recent behav-
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ior on the basis of that relative probability. For example, if the user engages only in a
particular type of event with a probability of 0.0l%, but the comparison population
(i.e., all other users or intruders) engages in that same type of event with a proba-
bility of 0.000l%, then the occurrence of that event is 100 times more likely for the
host than for the comparison population. Therefore, if that event occurs in recent
behavior it is evidence in favor of normal behavior rather than abnormal behavior.
Thus, it is possible (although not highly likely) that classification analysis and the
current NIDES analysis procedures could lead to opposite conclusions. The critical
role played by relative probabilities means that the definition of the comparison pop-
ulation and the inclusiveness and representativeness of the examples of the behavior
of the comparison population are critical to the success of classification analysis.

2.3.3 Markovian Transition Analysis

In Markovian transition analysis [5], we are typically concerned with the definition of
different states and the probabilities of transitions from one state to another.

In intrusion analysis, Markovian transition analysis might be used to anticipate to
which state a user would move. This would be important if the states were associated
with compromised security and it was necessary to take preventive action prior to a
particular state�s being reached. However, in this event it is necessary to calculate this
probability only once. Thereafter, a rule could be entered into a rule-based component
that simply states that if state A occurs the probability that the next state will be
associated with compromised security is higher than the allowable threshold, and
therefore preventive action should occur.

Another way to use Markovian transition analysis would be to characterize the
normal behavior of a user on the basis of which states he or she moves between
and with what probabilities. This approach would be absolutely consistent with
the current NIDES approach, where an �event� would be the transition between
two particular states. NIDES would track the probabilities of these events (i.e.,
the transition probabilities between states) and would score a user on the basis of
whether or not the transitions were typical for the host user. The only additional
effort needed to implement this approach is that involved in defining the states that
we want to track movement between, and writing the software to detect, that a state
has been achieved. This is not an easy exercise; we note that for N states, there are
N2 transition probabilities, and therefore the transition matrix approach can quickly
become unmanageable.

2.3.4 Bayesian Decision Analysis

The NIDES statistical team has recently implemented one of the most complicated
and state-of-the-art Bayesian decision analysis systems in use today, and is therefore
familiar with the advanced theory of Bayesian decision analysis as well as the imple-
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mentation issues involved. [10]  We believe that this analysis procedure (or a similar
procedure such as evidential reasoning) should play an important role in NIDES.
However, we believe that the proper role is in the resolver, which will be able to ac-
cept information from both the statistical and rule-based components and then draw
conclusions with respect to the likelihood that system security is being compromised
and the seriousness and type of the potential breach.

To some extent, a Bayesian decision analysis can be considered the next step
beyond the traditional rule-based system. In the traditional rule based system, rules
either fire or they do not. That is, each state represented by the rule has a probability
of either 0 or 1. There have been a number of attempts to integrate probabilities
into rule-based systems, so that we can infer the probability that a state is true,
rather than definitely judging it true or false. Most of these systems work to some
extent, but sooner or later run afoul of the rules of probability theory. (For example,
these systems rarely handle contradictory information very well.) Bayesian decision
analysis systems can be considered to be rule based systems that do obey the rules
of probability theory (although the rules are so cleverly disguised in the relationships
among nodes in the probability network that it is often difficult to realize that there
are even rules present).

To be truly successful, a Bayesian decision analysis system must incorporate a
substantial amount of knowledge concerning the different types of attacks that can
be used to compromise system security as well as the conditional probabilities that
various well-defined events will occur given that those attacks are in progress. We
believe that the intrusion-detection community is only at the first stages of trying to
assemble this type of knowledge.

Because the Bayesian decision analysis system approach relies very heavily on our
current knowledge of methods for compromising security, we do not believe that it is
a substitute for the current NIDES statistical component, which attempts to identify
any behavior that is not consistent with past behavior.
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Evaluation of Statistical
Approaches for Appropriateness
to Intrusion Detection

In the process of developing the NIDES statistical component, and in reading the
literature on intrusion detection, we had the occasion to consider a number of different
statistical approaches that might have been used. Although we did not develop a set
of formal evaluation criteria, it quickly became evident to us that most statistical
approaches were not suitable for intrusion detection. For example, the method that
we developed for NIDES, while it bears some similarity to chi-square analysis, has
undergone substantial modification and is much different from that approach as found
in the statistical literature.

Here, we present a set of evaluation criteria that should be considered when de-
termining how likely it is that a proposed statistical approach will work in a real-time
intrusion-detection environment.

3.1 Criterion 1. Does the Method Depend Upon
Distributional Assumptions?

Many statistical approaches require that the data fit a normal or other distribution
(such as gamma, chi-square, beta). Unfortunately, these assumptions are rarely true.
This can render the statistical approach unsuitable, unless one of two circumstances
occurs:

 The approach transforms the data in such a way as to force these distributions
to be true. For example, the average of a large number of observations would
probably be approximately normally distributed even if the individual observa-
tions were not. Another example is in NIDES, where we force the measures to
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follow what is essentially a chi-square distribution by mapping the empirical cu-
mulative distribution function of the measure into a �half-normal� distribution
and then squaring this variable.

 The statistical approach is robust to deviations from the distributional assump-
tion. For example, nonparametric approaches have few or no distribution as-
sumptions.

We note that it is typically not sufficient that the data for which a distribution is
assumed pass a goodness-of-fit test (which typically verifies only that the bulk of the
probability distribution has the required shape), because we are typically interested
in the extreme tails of the distribution of the test statistic.

The NIDES statistical component was developed so that it did not depend on
distributional assumptions. We felt that this was necessary because the system was
intended to be applied across a wide variety of computer systems, types of users, and
types of measures. Our reluctance to assume any distribution constrains the types
of statistical procedures that could be used. For example, if the measures could be
assumed to follow a true multivariate normal distribution, then there are optimal
statistical procedures that could have been applied.

3.2 Criterion 2. Does the Method Assume Inde-
pendence?

Data from audit streams are notoriously interdependent. For example, once a file has
been opened and read, it is highly likely that the following audit records will contain
subsequent reads on that file. Furthermore, the correlation that we tend to encounter
is not simple serial correlation. For example, if two files are open, then accesses to
these files are likely to alternate over a time span of audit data (as would be the case
if one file was open for reading and another for writing).

For a statistical approach to be suitable for intrusion detection it must not depend
upon the independence of the audit trail records. This is a very strong condition and
is one of the primary reasons why statistical approaches fail to be appropriate. The
NIDES statistical component has a feature that accommodates the lack of indepen-
dence of successive audit records without requiring that the type of dependence be
modeled. This feature is essentially the empirical observation of the distribution of
the evaluation statistic obtained by observing its values over time, rather than postu-
lating its distribution based on the observation of the distribution of its component
parts and assuming the independence of those parts.



Evaluation 29

3.3      Criterion 3. Does the Method Accommodate
Categorical Data?

In our experience, the most valuable data in the audit trail are the categorical data,
such as names of directories accessed, names of files accessed, commands used, and
terminals used. Furthermore, there are sometimes hundreds (or even thousands) of
categories for a single measure. Unfortunately, many statistical approaches assume
the existence of continuous data and are not capable of handling categorical data
well. Such approaches are less likely to extract sufficient information out of the
data stream to be useful (i.e., to have a high probability of detecting misuse or an
intrusion). Much of the recent work in NIDES has gone into making our approach
very friendly to categorical data (in fact, we even transform continuous measures into
categorical measures).

3.4 Criterion 4. Does the Method Allow Real-
Time Evaluation of Audit Records?

During a typical day, tens or hundreds of thousands of audit records may be generated,
and these records will tend to be heavily concentrated in about 10 business hours. If
the objective is real-time audit trail assessment, then the statistical component will
similarly have to implement tens or hundreds of thousands of assessments each day of
whether an intrusion or misuse has occurred. This imposes considerable constraints on
the statistical procedure - it must be sufficiently efficient to execute an assessment in
a fraction of a second. (NIDES is currently capable of processing approximately 30 to
45 audit records per second.) Although many statistical procedures are capable of this
(e.g., discriminant analysis, neural networks), other procedures may not be capable.
In particular, there may be a problem if the proposed statistical approach is using a
sliding window of data (say the last 100 audit records), and whenever a new audit
record is added and one subtracted from the historical queue, the entire statistic needs
to be recomputed, rather than merely being given a simple recursive adjustment.
Many of the refinements to the NIDES statistical component were implemented in
order to speed evaluation, including the use of exponentially weighted "sufficientn

statistics.

3.5 Criterion 5. Does the Method Allow for Pro-
files for Individual Users?

Individual profiles may vary substantially from person to person. In order to achieve
the maximum discriminatory power, we believe that in general, it is necessary to
develop individual profiles. In developing NIDES, we set as a requirement that each
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user have his or her own profile. This requirement affects both the time necessary to
update profiles (since there are many profiles to update) and memory requirements.
Profiles must be capable of being stored in a reasonable amount of space, or an
excessive amount of time will be spent swapping profiles in and out of memory.
Currently, NIDES requires about 100kb per profile in the Sun-Unix environment,
which has a rich set of measures available. We suspect that the NIDES profiles could
be stored in less space when using audit record data from other computer systems.

In some environments job classifications may be tightly prescribed, and individuals
in the same job classification may use the computer in essentially the same way. In this
case it may be possible to develop useful group profiles, and individual profiles may not
be necessary. A statistical approach used in such an environment would not need to
allow for individual user profiles, because group profiles would be sufficient. However,
because NIDES was developed as a general-purpose intrusion-detection system, we
developed a statistical component that could efficiently process individual profiles.

3.6 Criterion 6. Does the Method Allow for Pro-
files to Periodically Update without Human
Intervention?

User profiles are constantly changing as the legitimate work of the user changes.
Therefore, it is necessary that the statistical procedure be capable of updating user
profiles at least once daily. Because there may be thousands of user profiles, efficiency
in updating is important.

If we assume that updating should occur once per day, and that during the 10
business hours of the day the statistical system will be too busy processing audit
records to update profiles, then the profiles will need to be updated during the re-
maining 14 hours (i.e., 50,000 seconds) of the day. If there are 2000 user profiles
(i.e., a decently large system), each profile will need to be updated within 25 seconds.
(With fewer users the profile updating time can take longer, and with more users
the profile updating time will need to be less.) If we put in �a safety margin of 50%,
then profiles for a 2000 user system should each update within 12.5 seconds. While
most statistical algorithms are capable of updating in this time frame, some may re-
quire more than this amount of time. The NIDES statistical component can update
all profiles for an individual user in a second or so, and consequently if we initiate
updating at midnight, we are typically finished within tens of minutes later.

It is also important that the updating procedure not require the guidance of a
trained statistician, but rather be completely automated. Some statistical procedures,
such as cluster analysis, typically require the intervention of a statistician to obtain
decent results. A statistician will not typically be available when updating is required,
and even if he or she were available, human intervention would slow the updating
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process unacceptably.
intervention to update profiles.

The NIDES statistical component does not require human

3.7 Criterion 7. Does the Method Allow for Mul-
tivariate Statistical Inference?

It is our belief that much of the ability to detect interactions rests in the interaction
of different aspects of behavior. For example, a set of particular commands may be
associated with a particular host computer or with action on a particular set of files.
The statistical approach should therefore be able to extract additional information
about the normality of different actions taking place essentially simultaneously (e.g.,
invoking commands and accessing files).

The use of highly dimensional multivariate data involves many difficulties that
affect the ability of the statistical approach to satisfy other criteria. For example,
the multivariate cross product of only three measures, with only 100 categories each,
results in a matrix of 1,000,000 possibilities. Even though the matrix would probably
be sparsely populated, storing and processing such a matrix would tend to make the
statistical algorithm too slow and the storage requirements too large. In addition,
development of stable probabilities for the matrix cells would require long training
periods perhaps sufficiently long that behavior would change before training was
completed.

The NIDES approach makes limited use of multivariate data, and we consider this
to be one of the statistical component�s primary limitations. However, we have de-
veloped the theoretical approach necessary to incorporate multivariate data (at least
to some extent), and could incorporate this approach in future versions of NIDES.

3.8 Criterion 8. Roes the Method Require the
Existence of Defined Jobs or Sessions?

Computing used to be defined in terms of batch jobs. Now most processing takes
place in continuous sessions, which may last for many hours. (In the extreme case,
the user may never log off.) The statistical approach should not require that there be
"jobsn or �sessions� or their equivalents, but rather should make assessments about
data from a continuous stream of audit records. The lack of a natural time unit
of analysis (that is, job or session) is directly responsible for the use in NIDES of
exponentially weighted statistics.
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3.9

Evaluation

Criterion 9. Does the Method Require the
Existence of Simulated or Actual Intrusions?

Many statistical classification methods such as discriminant analysis or some neural
networks require that training sets exist and the audit data in the training set be
preclassified. For example, one portion of the training set might consist of audit
data from users who are known not to be misusing the computer system and who
own accounts that have not been subjected to intrusions. The other portion of the
training set might consist of audit data gathered during simulated or actual misuse or
intrusions. By comparing the �normal� and �intrusive� audit records in the training
set, the statistical method can determine what features in the audit data best classify
the data as normal or intrusive.

Unfortunately, data sets of simulated or actual intrusions are not widely available.
(If such data sets had been available, we would probably have included a statistical
classification method in NIDES.) A researcher who proposes to use a classification
approach that requires the existence of simulated or actual intrusions should have a
good idea where such data would come from or how to generate it. In addition, the
ability of the statistical method to detect intrusions will generally be limited by the
type of intrusions that it is trained on. That is, it will be able to detect new types of
intrusions only to the extent to which they share features with the types of intrusions
in the training set. Therefore, the generality and completeness of the simulated or
actual intrusions in the training set should be assessed.

3.10 Criterion 10. Does the Method Develop Its
Assessment Based on Differences between
Users?

Because training sets of simulated or actual intrusions are not typically available, the
researcher might propose to apply the statistical classification method to a training set
consisting only of normal users. For example, to develop an algorithm for identifying
abnormalities in User A, one portion of the training set might consist of user A�s
audit data and the other portion consist of a mixture of audit data from other users
(which might be identified either as �non-A� or by their individual user ID S). The
statistical method would then be trained to classify a new audit record either as A
or as non-A.

Statistical approaches that distinguish normal users from one another might also
be capable of identifying misuse or intrusive activity in an audit stream. We believe
that such methods are worth investigating. However, it is not clear that such methods
would actually be able to detect unauthorized activity. For example, for there to be
a high probability that unauthorized activity in User A�s account would be identified
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as non-A, that unauthorized activity must much more closely resemble the typical
activity of other users than the activity of user A. In the event that the intrusive
activity does not closely match either user A�s activity or the activity of other users,
statistical approaches such as discriminant analysis might fail to classify the activity
as not belonging to A.

The NIDES methodology continuously compares a user�s recent activity with his
or her long-term profile. It is in this sense self-referential and independent of the
activity of other users on the system. As such, it makes no assumption as to the
nature of the difference between legitimate and unauthorized activity.

3.11 Criterion 11. Does the Method Require As-
sumptions about the Distribution of Intru-
sive Behavior?

Because data on actual and simulated intrusions are scarce, and a number of statisti-
cal procedures have been proven to have optimality properties when comparing two
known distributions, it is tempting to make assumptions concerning the distribution
of intrusive behavior. These assumptions are typically of one of two types. The first
is an assumption that intrusive behavior always tends towards larger (or sometimes
smaller) values of a particular measure of resource consumption (e.g., CPU time,
I/O, file accesses, �finger� commands). The second is an assumption that intrusive
behavior is uniformly distributed across all possible behaviors.

Although these assumptions allow �optimal� tests to be derived, unless the cor-
rectness of these assumptions is verified, the optimality of these tests must be severely
discounted. In fact, most �reasonable� statistical tests can be shown to be optimal
or near optimal versus some assumed distribution of intrusive behavior. This can be
done by finding the set of behaviors that would result in the declaration of an anomaly
and then assuming that intruder behavior is concentrated on those outcomes. (Un-
fortunately, the math involved in making such assessments is quite complicated.)

The NIDES statistical algorithms were not postulated with a specific distribution
of intrusive behavior in mind, nor have we reverse-engineered the set of intrusive
behaviors for which our statistic is optimal. However, the form of our test statistic
(e.g., similar to a chi-square statistic) suggests that we spread our detection power
over many possible intrusive behaviors and so would do particularly well versus a flat
or uniform distribution for intrusive behavior.
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3.12 Criterion 12. Does the Method Provide the
InformationSecurity Officer with Adequate

to Conduct an Inquiry?

By their very nature, statistical approaches to anomaly detection will raise false
positive alerts. That is, users do change their behavior over time  and sometimes
abruptly so. Statistical algorithms will detect these changes and issue alerts even
though no misuse activity is actually transpiring. Because the vast majority (i.e.,
99% or more) of activity on a typical computer system will be legitimate, the number
of false positive alerts will tend to outnumber the true positive alerts. A good deal
of the system security officer�s time will therefore be devoted to investigating false
positive alerts. The statistical procedure must be capable of providing the security
officer with information that can be used to identify the reason why the alert was
issued. This will tend to greatly reduce the time involved in the security officer�s
determination of whether misuse has actually occurred.

The requirement for �understandability� may restrict the type of statistical proce-
dures that can be applied. For example, factor analytic procedures tend to transform
the space of measures in complicated ways, and it can become quite difficult to un-
scramble the statistical results in such a way that they can be explained to the security
officer.

Because of the need for understandability, the NIDES statistical component uses
the concept of long- and short-term profiles, which are probability distributions for
categorical measures. Although the presentation format for these probability distri-
butions still requires improvement, the concept of frequency distributions is easily
grasped. For example, the security officer can see how frequently different commands
have been issued in the past and which commands have been more recently issued. It
is relatively easy then to identify those commands that are now being issued, but have
not been issued in the past (or were issued much less frequently in the past) as well
as those commands that were frequently issued in the past but are now conspicuously
absent. The use of relatively simple individual measures (e.g., commands used, file
names, hosts used, number of access denials) makes the results more comprehensible.
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Answers to Specific Questions
about Features of the
Statistical Algorithm

The NIDES statistical approach has evolved over many years. This evolution has
been motivated by a mixture of theoretical considerations, practical considerations
(dealing principally with issues of computing speed), and practical experience in ex-
ercising the algorithm. Here, we identify some of the major decisions that shaped the
statistical approach and describe some of the specific features of the algorithm. We
have adopted a question-and-answer format, where the questions deal with different
features of the NIDES statistical approach, and the answers offer insight into why
those features were incorporated. Occasionally, we group a set of questions that have
closely related answers. We have also formulated a number of the questions (par-
ticularly the questions that appear early in this section) so that they illuminate the
relationship between NIDES and the approach of Helman et al.[9]

4.1 Q: Is the NIDES Statistical Approach Based
on an Assumed Intruder Behavior?

A decision made early in the NIDES development process is that we should not
assume any knowledge of how intruders would compromise system security (or how a
user would alter his or her behavior to compromise system security). All knowledge
of this nature was to be incorporated into the expert system. We made this decision
for four principal reasons:

 The expert system is typically more accurate in detecting known intrusion ap-
proaches.
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  There were insufficient data on intrusion attempts to train a statistical ap-
proach.

 The typical (normal) usage of other users was not believed to be a reasonable
surrogate for intrusion attempts to train a statistical approach.

� Future intrusions need not follow historical methods.

This decision was probably the single most important and influential decision in
shaping the statistical approach. If we had been willing to model intrusive behavior,
then we could have applied the Neyman-Pearson Lemma (and the decades of statisti-
cal research that followed from this lemma) to develop an optimal statistical approach.
The Neyman-Pearson Lemma (proven in the 1930s by two of the founders of modern
statistical theory) states that if there are two known probability distributions, then
the optimal statistical test for distinguishing between these two distributions is based
on the ratio of their values. For example, let x denote an outcome (derived from audit
records), let n(x) denote the probability of that outcome for the host user, and let
m(x) denote the probability of that outcome for the intruder. Suppose that we want
to determine the set of outcomes X such that X occurs very rarely for the host user
(say no more than 0.1% of the time) but much more frequently for the intruder. The
optimal selection for X is the set of values of x with the highest values for the ratio
m(x)/n(x). That is, we order all values for x according to the ratio of m(x)/n(x)
and add x values into X until n(X) equals 0.1%. A restatement of this lemma in a
Bayesian framework can be found in Helman et al. (1992).

If we had chosen to model intrusive behavior, then by access to the Neyman-
Pearson Lemma we could have developed an optimal approach for detecting intrusive
behavior. This would have allowed use of many standard statistical approaches (such
as discriminant analysis, Hotelling�s T2 tests) that stemmed (either directly or indi-
rectly) from this lemma. Instead, we were faced with the task of defining a region
X without reference to assumed intruder behavior, but rather based on the fact that
such behavior was unusual for the user (whether or not it would be unusual for the
intruder).

4.2 Q: What Does the Space X of Outcomes Look
Like? How as the Unusual Aspects of this
Space Influenced the NID S Statistical Com-
ponent?

Statistical intrusion approaches accept audit record inputs that define the outcomes
of subject behavior. These outcomes define a space, which we have denoted as X.
A member x belonging to X is the particular behavior that has been exhibited by a
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subject. We want to decide whether x is representative of the normal behavior of the
user or whether x is anomalous (and therefore indicative of misuse). For example,
Helman et al. (1992) define two stationary stochastic processes on the outcome space

 N(x), which denotes normal or legitimate transactions, and M(x), which denotes
misuse transactions - that map values of x into probabilities or probability densities,
and then later show the optimal test statistic for determining whether the particular
value of x that was seen came from N () or M().

The ease in theoretically specifying that there is a space X belies the practical
difficulties in actually defining X. (This difficulty directly affects the feasibility of
implementing the Helman approach and has also influenced the NIDES statistical
approach.) The following problems arise:

 Individual audit records typically do not contain complete values x within X.
We observe a sequence of audit records, each of which contains limited infor-
mation about user activity. Let us denote these audit records as rt where t is
the unique time stamp on the audit record. For example the value for rt might
denote that at the time that the last audit record was generated (i.e., time t)
a particular command was being executed, a particular file was being accessed,
the user was logged on from a particular terminal, and so forth. One method for�
specifying a value x is to let x be the complete past history of audit records or,
perhaps more reasonably, all audit records generated over the last 10 minutes.
That is, x =

 A substantial number of the values of rt are missing. For example, a particu-
lar audit record might not contain information about files being used at that
moment, or about I/O, memory, or CPU usage. In addition, because a user
can (intentionally or unknowingly) spawn a number of processes - all of which
can be simultaneously using computer resources (even on a single machine) -
and each audit record is tied to a specific process, each audit record gives only
partial information about the totality of activity that is going on in a single
user�s account at the time of audit record generation.

 Because audit records from separate processes can be intermingled (as different
processes swap in and out of memory or are actually simultaneously executed
on different processors), user behavior as recorded on audit records can appear
to be quite erratic. This type of behavior is not well explored in the literature
(which usually assumes rather well-behaved time series or stochastic processes).

 Because there may be long periods without any audit activity and periods of
time with very intense activity, it is not immediately apparent how many audit
records should be included in x. For example, if x is defined in terms of clock
time (say 5 minutes), there will be periods in which x is composed of thousands
of audit records, and many other times when x is empty. On the other hand, if x
is defined in terms of audit records (say a few hundred audit records), there will
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be times when x denotes activity over a very short period of time (i.e., seconds
or minutes) and times when x denotes activity over much longer periods of time
(i.e., hours of near inactivity).

This discussion demonstrates the following:

� The dimensionality of x is potentially very large. At any particular time there
may be many different processes executing (or temporarily in abeyance). Each
individual process can have many different files open. Often, each process can
have executed numerous commands. Whenever audit records address only very
limited single actions (such as is the case with Sun-Unix audit records), we would
want x to span a reasonable period of time. There is considerable uncertainty
concerning whether to measure time by the clock or number of audit records,
and either way can lead to undesirable results.

� The space X is at least as complicated as any outcome space considered in
the statistical literature. The vast majority of statistical literature deals with
very simple outcome spaces (e.g., independent or serially correlated outcomes,
each of a fixed constant dimensionality) that cannot be applied to X without
considerable modification.

In defining the NIDES statistical component we found it useful to let X be the
space of all prior behavior (extending backwards in time to the first actions of the
user). However, we weighted the audit records within x so that the more recent audit
records were much more influential in our decision making. Furthermore, we found
that by defining a set of statistics (i.e., long-term profiles) that were easily updatable
exponentially weighted sums, we were able to avoid much of the complexity in the
space X. For example, we could update our statistics only by looking at the most
recent audit record, without having to consider the relationships of the current audit
record to previous audit records.

4.3 Q: How Has the Size of the Space X  Affected
the NIDES Statistical Algorithm?

One tempting approach to anomaly detection is to enumerate all of the possible
outcomes, observe the empirical probability for each of those outcomes for the normal
user, and then declare a recent outcome (i.e., an audit record or set of audit records)
to be anomalous if it is one of the outcomes that historically has rarely been seen.
Unfortunately, the size of the space X precludes this approach.

The size of the space X is huge. Consider only two measures  command name
used and file name used. A typical user might use 100 different commands and have a
file system with 1000 different file names (excluding temporary files that are generated
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by processes executed by the user). In this event, the space X has 100,000 possible
values (although only a fraction of these possible values might actually have been
experienced). Add measures for host used, time of day, CPU time used, I/O amount,
memory usage, and so forth, and the potential size of the space X becomes enormous.
Conservatively, the size of the space X would contain trillions of possible values. Even
if we limit the space X to those values actually experienced by the user, X would
contain millions or billions of values. Simply enumerating these values (so we can
keep a record of their historical non-zero probabilities) might overwhelm our storage
capability, and processing this list would unacceptably slow down our algorithm.

In addition to processing capability problems inherent in considering the full space
of outcomes, there is an even greater problem concerning the sample size requirements.
As noted by Helman et al., �the sample size mandated by the enormity of the event
space [X] . . . might exceed memory limitations, or perhaps, the [normal and misuse]
processes . . ." cannot be assumed to be stationary over the time required to accumu-
late the requisite historical database.� By the time we gather enough data to obtain
reliable probabilities for the events in X, the user will have changed job assignments,
changed jobs, or possibly died. Even if user behavior were extremely stable over time,
we doubt that any system security officer would be willing to wait one or more years
before starting anomaly detection on a new user.

On the basis of the above discussion, we conclude that in general the �tempting�
procedure of enumerating all possible approaches is infeasible. However, there is
one important exception. If the event space X can be reduced in size sufficiently,
then the approach is implementable. This appears to be the case in the Wisdom and
Sense algorithm. Because W&S relies on higher level auditing information (essentially
information at the network level about logins) the size of the space X is severely
restricted. Even in this restricted space, processing is a challenging task, and the
W&S developers deserve praise for the clever algorithms that they use to process and
encode the data. We decided not to pursue this method of restricting the scope of
data to process statistically with NIDES for three reasons: (1) we felt that the expert
system could do a fairly good job of detecting many types of unusual login activity,
(2) we wanted NIDES to be capable of processing more detailed information about
user activity, and (3) NIDES was designed to be extensible and allow the inclusion of
modules such as W&S.

Our approach to the problems raised by the size of X was to assess the unusualness
in each measure individually. (After we had assessed the unusualness of each measure
individually, we summed these assessments to obtain an overall assessment of unusu-
alness.) This approach dramatically lowers storage and the sample size requirements.
The corresponding loss is that we cannot distinguish changes in the combinations of
values of measures. For example, if a user only executes command "a" with file �b�
and command �c� with file �d�, then an intruder onto this user�s account who exe-
cutes command �a� with file �d� and command "c" with file �b� will not be flagged
as anomalous. (This limitation is not inherent in the NIDES algorithm. Although
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not currently part of NIDES, the NIDES statistical algorithm could be rewritten so
that any two measures that are currently considered separately could also be consid-
ered jointly. For example, command name and file name could be jointly considered
as a single measure, which takes categorical measures that are specified by both the
command name and the file name.)

4.4 Q: What is the Relationship of the NIDES
Statistical Algorithm to the Work of Helman
et al.?

As mentioned earlier, the approach of Helman et al. is essentially to derive an opti-
mal test statistic under the assumption that the probability distribution for misuse
behavior is known. Helman et al. realize, however, that in practice probability distri-
butions for misuse behavior will probably not be known. They therefore discuss two
assumptions that can be made that dramatically simplify forms for these probability
distributions:

� Independence - Under this assumption each measure (denoted by Helman as
an attribute) is independent of each other attribute.

 Uniformity Under this assumption, misuse behavior for each measure is as-
sumed to be uniformly distributed over the possible values for the measure.

Because the NIDES statistical component does not assume a known probability
distribution for misuse behavior, it cannot be easily related to Helman�s approach.
But we can make some observations:

� We do not believe that assumptions of independence or uniformity of misuse
behavior are justified. Optimal procedures for detecting independent and uni-
form misuse behavior might be very poor in detecting actual misuse behavior.
Nevertheless, it is desirable, in the absence of knowledge about misuse behav-
ior, that an anomaly detector be at least capable of detecting independent and
uniform misuse behavior.

� Because the NIDES statistical component uses a chi-square-like statistic to mea-
sure the differences between the short-term and long-term probability distribu-
tions for each individual measure, it will be capable of (and probably fairly good
at) detecting uniform and independent misuse behavior.

� The NIDES statistical component can detect misuse behavior that is neither
uniform nor independent. This is particularly true with respect to nonunifor-
mity. Chi-square-type statistics are good at detecting an extremely broad range
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of probability distributions that are not like the normal probability distribution.
Their principal deficiency is that they are not as powerful as statistical tests
formulated on the basis of a priori knowledge of the specific probability distri-
bution of misuse behavior. That is, the chi-square-type statistics spread their
power over a broad (in fact, infinite) range of probability distributions of misuse
behavior.

�  The NIDES statistical component does not assume independence of measures
under either the normal or misuse behavior, nor does its validity depend on the
independence of measures (that is, its false positive and false negative rates are
uninfluenced by the dependence of measures). However, because the NIDES al-
gorithm as currently configured does not place great emphasis on the correlation
among measures, it is quite compatible with the assumption of independence of
misuse behavior. In combination with the comments earlier about the unifor-
mity assumption, we would expect the NIDES statistical algorithm to perform
well when the misuse behavior is specified to be uniform and independent, al-
though it will not perform as well as the optimal statistical test.

�  Another type of misuse behavior that has not been explicitly considered by
Helman is when the misuse behavior does not affect the marginal distributions of
any measure, but does affect the correlation among the measures. As currently
configured, the NIDES statistical component will not be particularly powerful
in detecting this type of misuse behavior (unless the direction of change is to
increase the correlation coefficient among the measures). However, it is possible
to modify the algorithm in such a way that correlations are explicitly considered,
thus, considerably strengthening the ability to detect changes in correlations.
We view this as a potentially valuable area of future research.

4.5 Q: Can the NIDES Statistical Algorithm
Consider Pairs of Measures Simultaneously
(for example, command name and file name
used)?

Theoretically, the NIDES statistical component can consider pairs of measures simul-
taneously, although this requires defining a new measure that is the cross product
of two other measures. For example, consider the measure of name of file accessed
and the measure of time of day. A composite measure might be defined as the two-
tuple consisting of the name of the file accessed and the time of day of the access
(perhaps categorized by hour of day). Each value for the two-tuple is a category for
the new composite measure. The composite measure could thus, be handled by the
NIDES statistical measure as a categorical measure in essentially the same way as
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any other categorical measure. There is no need to limit this consideration to pairs;
this approach would apply equally well for triplets, quadruplets, and so forth.

The theoretical advantage of considering pairs of measures (or equivalently, of con-
structing new measures that are two-tuples of existing measures) is that interactions
between measures can be examined. Continuing our example, suppose that user A
(who works 8 a.m. to 5 p.m. on weekdays) accesses file B daily, but only during the
hour after lunch. One day, however, file B is used frequently between 9 a.m. and 10
a.m. The NIDES approach as currently implemented would not detect such usage as
anomalous, because it is not unusual for user A to use file B, nor is it unusual for
this user to access the computer during these hours. The use of a two-tuple approach
would be necessary for NIDES to detect as anomalous the use of file B during the
morning hours.

We have not added a mechanism in the NIDES computer program for constructing
new measures from groups of other measures. The primary reason for not doing so
is that we have concerns that the number of categories in composite measures would
become so large, and the frequency with which each category is seen would be so small,
that the NIDES methodology would cease to function well. The NIDES methodology
works best when user behavior is concentrated in relatively few categories.

4.6 Q: Why Does the NIDES Statistical Algo-
rithm Use Exponentially Weighted Sums?

The NIDES statistical algorithm uses exponentially weighted sums, rather than a
window of past values, for three primary reasons. First, we want to reduce storage
requirements and accelerate processing. Use of a window of past values would require
that we store all the past values in the window. Each time a new audit record
of the appropriate type arrived, we would have to recall those values, delete the
oldest value, and add the newest value to the list. We would then recalculate our
test statistic to accommodate the deletion of the oldest value and the addition of
the newest value. This is considerably more effort and requires more storage than
multiplying our summary weighted sum statistic by a decay constant and adding in
the value of the newest audit record. Second, we use an exponentially weighted sum
because we do not have any �natural� boundaries that delineate past from current
behavior and therefore would not know how long the window should extend into the
past. Third, we do want more distant behavior to count less towards anomalies than
more recent behavior. This does not occur with a window approach (except that audit
records further in the past than the window boundary do not count towards anomaly
detection), but occurs smoothly and gradually with an exponentially weighted sum
approach.
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4.7 Q: Why Does the NIDES Statistical Algo-
rithm Treat Counting Measures as if They
Were Categorical Measures?

The NIDES statistical algorithm converts counting measures to categorical measures
by defining categories that are ranges of counts. We do so because we wanted to
be very general with respect to the types of changes in counting distributions that
we would detect as anomalous. For example, consider a user who has two modes of
using the computer reading mail and running large spreadsheets. The first type of
activity would result in low CPU usage, and the second type of activity would result
in high CPU usage. Therefore, this user�s CPU usage would tend to be bimodal, with
very few audit records recording intermediate CPU values. In such a circumstance,
if we observed a large number of audit records that reflected activity with an average
amount of CPU usage (that is, audit records in the rarely occurring center bins of the
CPU usage distribution) we would tend to be suspicious. Such activity could not be
detected if we only examined statistics such as mean CPU usage. Rather, it would be
necessary to examine the entire distribution of CPU usage. We found that the most
convenient method for examining the entire distribution for counting measures was
to redefine them as categorical measures. This allowed us to use the already-existing
methodology for categorical measures.

Other statistical methods for examining the entire distribution of counting mea-
sures have been developed in the statistical literature. For example, Kolmogorov
statistics allow the comparison of an empirical cumulative distribution with a long-
term cumulative distribution. However, such procedures tend to either be compu-
tationally intensive or require substantial amounts of storage, and few have been
adapted

4.8 Q: Why Does the NIDES Statistical Algo-
rithm Use Exponential Weighting Based on
Counts of Audit Records (rather than Clock
Time) for Nearly All of the Measures?

The NIDES statistical algorithm differentiates between the volume of audit records
that are currently being received, the general type of activity that is represented
in those audit records, and the specific type of behavior that is occurring within
each measure. For the purpose of monitoring the volume of audit records we use
three audit record intensity measures, which currently have half-lives of 1, 10, and
60 minutes. For these three measures the exponential weighting is based on time.
A single measure, denoted audit record distribution, tracks what percentage of the
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most recent records have �triggered� or �touched� different measures. This provides
an overview of the general types of activity that have recently taken place. For
example, the audit record distribution measure would examine the percentage of
recent audit records that concern a file access (that is, touch the file access measure).
The audit record distribution measure uses exponential weighting based on counts of
audit records. The remaining measures track the type of behavior that has transpired
within a measure. For example, the file access measure examines which specific files
were recently accessed, and whether or not these were unusual files.

In previous versions of NIDES, we did not subdivide the volume of activity from
the specific behavior within that activity. This resulted in an inability to distinguish
a relatively low volume of highly suspicious behavior from a high volume of behavior
with typical levels of suspiciousness. The heuristic solution was to �normalize� our
measures by the volume of activity; this was functionally equivalent to weighting on
the basis of audit record counts and separately tracking audit record volume. This
change to weighting on the basis of audit record count also facilitated the construction
of short-term and long-term profiles, and the use of the chi-square statistic to compare
those profiles. (Exponential weighting based on time is not compatible with the chi-
square approach to profile comparison, and, as a result, the three intensity measures
use a different approach.) There is a secondary advantage to the separation of audit
record volume from the type of activity in those records  the measures are easier
to interpret. We can separately detect whether the volume of activity is too high,
whether the general type of activity within that volume is unusual (and in what ways
it is unusual), and whether specific behavior within the activity is unusual (and in
what ways it is unusual).

4.9 Q: For What Types of Computer Systems
Will the NIDES Statistical Component be
Most Applicable? Least Applicable?

The NIDES statistical component was developed to be very general and applicable
across a wide range of systems and types of �subjects.� Thus, it is our belief that the
NIDES statistical component should perform well in many circumstances. However,
there is no way of knowing exactly how well the statistical component will perform
without actually testing it.

It is important to distinguish between relative and absolute performance. Some
circumstances are generally favorable to statistical anomaly detection, including sta-
ble subject profiles, users with sharply defined and restricted behavior, and substantial
differences in misuse and normal behavior. Statistical systems, including NIDES, will
tend to perform better in these circumstances. Conversely, when these circumstances
are missing, all statistical systems will tend to yield poor results. We have no way
of knowing how well the NIDES statistical component performs relative to other sta-
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tistical approaches because other approaches have not been available to us to test
until relatively recently, nor have we been funded to perform such testing. We believe
that such testing could be very beneficial to statistical algorithm development, not so
much to determine which statistical algorithms are better, but rather to contribute to
an understanding of why they perform well or not, so that we can use such knowledge
to improve them further.

Because our most important sources of audit record data were our own Sun-
Unix systems and because the immediate client�s systems were also Sun-Unix, there
are undoubtedly aspects of our statistical component that are rather �tailored� to
these types of computer systems and users. We have also had an opportunity to
test our system in two other very different environments. One of these environments
was IBM mainframe audit record data gathered in field offices of a federal agency,
where the predominant usage was among clerks entering and retrieving data from
a fixed number of large databases. The second use was data where the subjects
were applications, and the intent of using the NIDES statistical component was to
differentiate among applications to detect masquerading by more resource intensive
applications (constituting misuse of exported computers). In all three environments,
the NIDES statistical system has performed very well. The last environment (which
was known as �Safeguard� because the intent was to safeguard the usage of exported
computers) is particularly noteworthy because it was amost diametrically opposed (in
many important statistical ways) to the SRI Sun-Unix environment in which NIDES
was developed:

� The subjects in the SRI Sun-Unix environment are sophisticated computer
users, while the subjects in Safeguard are applications.

� The volume of audit records in the SRI Sun-Unix environment averages about
2,000 per user-day; the volume in the Safeguard environment averages only
about 10 per day.

� Individual audit records in the SRI Sun-Unix environment contain only a small
fragment of the information necessary to determine the behavior of a user;
each individual audit record in the Safeguard environment contains complete
information about an invocation of an application.

 There is no natural beginning and ending to an SRI Sun-Unix user�s activity,
whereas in the Safeguard environment each audit record represents a complete
invocation of an application and is the natural analysis unit.

 In the SRI Sun-Unix environment the most distinguishing measures tend to be
those which are categorical, and therefore the NIDES statistical approach was
developed with categorical measures in mind; in the Safeguard environment all
measures are counting measures.



46 Answers

We were pleasantly surprised to find that the NIDES statistical component per-
formed as well as it did in the Safeguard environment, given its stark differences with
the SRI Sun-Unix environment, and the relatively small changes in the algorithm
parameters that were implemented. This gives us reason to be optimistic that the
NIDES statistical component can be applied in other circumstances, which were not
in our minds when the algorithm was developed. However, as mentioned earlier, there
is no substitute for actually testing the algorithm in those environments.
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