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Dynamical Systems

A lot of engineering and science concerns dynamical systems

• State Space: The set of states, X

• Dynamics: The evolutions, T 7→ X

◦ Discrete Systems: T is N

◦ Continuous Systems: T is R

◦ Hybrid Systems: T is R × N
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Formal Models I

Modeling languages:

• Continuous systems: Differential equations

◦ The state space formulation

ẋ(t) = f(x(t), u(t), t)

y(t) = h(x(t), t)

u x y

• Discrete systems: (Finite) state machines

◦ t(~x, ~x′) is a formula in some theory
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Formal Models II

Putting the two formal models together, Hybrid Automata:

• Embed a continuous dynamical system inside each state

• World now evolves in two different ways

◦ Move from one state to another via a discrete transition

◦ Remain in the state and let the continuous world evolve

• System has different modes of operation, while some discrete logic

performs mode switches

Time

X
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Hybrid Automata

A tuple (Q, X,S0, F, Inv , R):

• Q: finite set of discrete variables

• X: finite set of continuous variables

• X = <|X|, Q = set of all valuations for Q

• S = Q×X

• S0 ⊆ S is the set of initial states

• F : Q 7→ (X 7→ <|X|) specifies the rate of flow, ẋ = F (q)(x)

• Inv : Q 7→ 2<
|X|

gives the invariant set

• R ⊆ Q× 2X 7→ Q× 2X captures discontinuous state changes
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Hybrid Automata: In picture

x = −kx
.

x = M − kx
.

68 < x

x < 82

q = off

q = on

x < 70

x > 80

Time

X

Dense Time: Time does not elapse during discrete transition
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Semantics of Hybrid Systems

s1 s2 s3 s4 s5 s6

• s1 ∈ S0 is an initial state

• Discrete Evolution: si→si+1 iff R(si, si+1)

• Continuous Evolution: si = (l, xi)→si+1 = (l, xi+1) iff there exists a

f : <|X| 7→ <|X| and δ > 0 such that

xi+1 = f(δ) xi = f(0)

ḟ = F (l) f(t) ∈ Inv(l) for 0 ≤ t ≤ δ
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Questions

What can we say (deduce, compute) about the model?

• Reachability. Is there a way to get from state ~x to ~x′

• Safety. Does the system stay out of a bad region

◦ Can the car ever collide with the car in front?

• Liveness. Does something good always happen

• Stability. Eventually remain in good region

• Timing Properties. Something good happens in 10 seconds

Does the model satisfy some property.

Property is described in a logic interpreted over the formal models.
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Problem

• Given a hybrid automata

• And a property: safety, reachability, liveness

• Show that the property is true of the model

• Discrete systems: mc, bmc, abs. inter., inf-bmc, k-induction, deductive rules

• Continuous systems: ?

• Hybrid systems: ...
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Continuous Systems

Approach 1: Solve the ODE and eliminate t

Eg. If ẋ = 1, ẏ = 1, then Reach := ∃t : (x = x0 + t ∧ y = y0 + t)

~̇x = A~x, then Reach := ∃t : ~x = eAt ~x0

If A is nilpotent: eAtx0 is a polynomial

If A has all rational eigenvalues: eAtx0 is a polynomial with e

If A has all imaginary rational eigenvalues: eAtx0 is a polynomial with

sin, cos

In all cases, reduces to ∃ elimination over RCF
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Continuous Systems

Approach 2: Use inductive invariants

cf. Barrier Certificates, Lyapunov Functions

Consider the CDS:

ẋ1 = −x1 − x2

ẋ2 = x1 − x2

x2
1 +x2

2 ≤ 0.5 is an invariant set.

But there are more invariants:

|x1| ≤ 0.5 ∧ |x2| ≤ 0.5 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5
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Invariants for Dynamical Systems

Illustration of invariant sets in 2-D:

Invariant Region
Box Invariance Box Invariance

Arbitrarily shaped Box shaped
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Box Invariants

A positively invariant rectangular box

~l ≤ ~x ≤ ~u

i.e., invariants of the form,

l1 ≤ x1 ∧ x1 ≤ u1 ∧ l2 ≤ x2 ∧ x2 ≤ u2 ∧ . . .

Related Concepts—

• Component-wise Asymptotic Stability (CWAS)

• Lyapunov stability under the infinity vector norm

Unstable systems can have useful box invariants
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Why Box Invariants?

An Empirical Law for Biological Models: If a model of a biological system is

stable, then it also has a rectangular box of attraction—if the system enters

this box, then it remains inside it.

This “ law” allows verification and parameter estimation for models of

biological systems.

Natural intuitive meaning
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Computing Box Invariants

Find Box (~l, ~u) such that vector field points inwards on the boundary

∃~l, ~u : ∀~x :
∧

1≤j≤n

((~x ∈ FaceLj(~l, ~u) ⇒
dxj

dt
≥ 0)

∧ (~x ∈ FaceU j(~l, ~u) ⇒
dxj

dt
≤ 0)), (1)

If
dxj

dt
is a polynomial expression, then existence of box invariants is

decidable.
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Linear Systems: Deciding Box Invariance

A ∈ Qn×n

Am = matrix obtained from A s.t. am
ii = aii, am

ij = |aij | for i 6= j.

The following problems are all equivalent and can be solved in O(n3) time:

• Is ~̇x = A~x strictly box invariant?

• Is ~̇x = Am~x strictly box invariant?

• Is there a ~z > 0 such that Am~z < 0 ?

• Does there exist a positive diagonal matrix D s.t. µ(D−1AmD) < 0 (in the

infinity norm)?

• Is −Am a P -matrix?

Box invariance is stronger than stability for linear systems
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Linear Systems, Box Invariance, Metzler Matrices

Matrices with non-negative off-diagonal terms, such as Am, are known as

Metzler matrices.

Am ∈ Rn×n is Metzler and irreducible. Then it has an eigenvalue τ s.t.:

1. τ is real; furthermore, τ > Re(λ), where λ is any other eigenvalue of Am

different from τ ;

2. τ is associated with a unique (up to multiplicative constant) positive (right)

eigenvector;

3. τ ≤ 0 iff ∃~c > ~0, such that Am~c ≤ ~0; τ < 0 iff there is at least one strict

inequality in Am~c ≤ ~0;

4. τ < 0 iff all the principal minors of −Am are positive;

5. τ < 0 iff −(Am)−1 > 0.
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Examples

Glucose/Insulin metabolism in Human Body:

• Compartmental model of whole body is typically box invariant.

• Boxes give bounds on blood sugar concentration in different organs.

EGFR / HER2 trafficking model:

Proposed affine model is box invariant.

Delta-Notch lateral signaling model:

The stable modes are box invariants

Tetracycline Antibiotics Resistance:

The resistant mode is box invariant
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Nonlinear Systems

d~x

dt
= ~p(~x)

∃~l, ~u : ∀~x :
∧

1≤j≤n

((~x ∈ FaceLj(~l, ~u) ⇒
dxj

dt
≥ 0)

∧ (~x ∈ FaceU j(~l, ~u) ⇒
dxj

dt
≤ 0)), (2)

If ~p are all polynomials, then

inductive properties of the form |~x| ≤ c can be computed

Efficiency is an issue
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Nonlinear Systems: Multiaffine

d~x

dt
= ~p(~x)

Multiaffine: Degree at most one in each variable

Example: x1x2 − x2x3 is multiaffine

If p is multiaffine and ~x ∈ Box (~l, ~u), then

p(~x) is bounded by values of p at vertices of the box

∃∀(2n) to ∃(n2n):

Box Invariance Box Invariance

Generalize: Degree of xj can be arbitrary in pj
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Nonlinear Systems: Monotone

Generalize multiaffine systems

If f is a monotone function, then f(~x) is bounded by values f(~v) at the

vertices v

~̇x = ~p is monotone if pi is monotone wrt xj for all j 6= i.

Examples:

~̇x = 1 − x2 is monotone, but not multiaffine

~̇x = x3 + x is monotone, but not multiaffine

∃∀(2n) to ∃(n2n)
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Nonlinear Systems: Uniformly Monotone

f is uniformly monotone wrt y if it is monotone in the same way for all

choices of ~x − y

Examples:

xy − yz is not uniformly monotone wrt y, whereas it is monotonic wrt y

xy − yz is uniformly monotone wrt x in domain {y ≥ 0}

∃∀(2n) to ∃(n2n) to ∃(2n)

Linear systems are uniformly monotone

Linear ⊆ Uniformly monotone ⊆ Monotone
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Uniformly Monotone Nonlinear Example

Phytoplankton Growth Model:

ẋ1 = 1 − x1 −
x1x2

4
, ẋ2 = (2x3 − 1)x2, ẋ3 = x1

4
− 2x2

3,

Monotone, but not multiaffine

Uniformly monotone in the positive quadrant

Box invariant sets can be computed by solving

1 − u1 −
u1l2

4
≤ 0, u2(2u3 − 1) ≤ 0, u1

4
− 2u2

3 ≤ 0,

1 − l1 −
l1u2

4
≥ 0, l2(2l3 − 1) ≥ 0, l1

4
− 2l23 ≥ 0.

One possible solution: ~l = (0, 0, 0) and ~u = (2, 1, 1/2)
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Continuous to Hybrid Systems

Hybrid systems = control flow graph over continuous systems

• Analysis of each node

• Control flow: loops

If dynamics are simple (timed, multirate), discrete control flow can be

complex

If dynamics are complex, control flow needs to be restricted
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Summary

• Continuous and Hybrid Systems can model biological and control systems

• We can use ideas, such as, inductive invariants, for analysis

• All symbolic analysis requires reasoning over the reals

• Biological systems tend to be box invariant

• Monotonicity — interesting property that can be utilized for analysis

• Biological systems are monotone or nearly-monotone (Sontag)
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