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Cyber-Physical Systems

There is increasing interaction between embedded software/cyber and the
physical world

• Aerospace
◦ flight control: traditional to adaptive
◦ unmanned vehicles

• Automobile
◦ powertrain control
◦ cooperative adaptive cruise control

How to design, verify, and certify such systems?
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Systems Biology

The goal of Systems Biology is to study and understand biological phenomena
by building and analyzing dynamic system-level models

Few examples

• Aplysia: Neural circuitry of the feeding behavior

• B.Subtilis: Sporulation initiation network
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Symbolic Systems Biology

The goal of Symbolic Systems Biology is to study and understand biological
phenomena by building and analyzing dynamic system-level models
symbolically
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Backend Engines

We need general-purpose symbolic+numeric reasoning engines to enable
analysis of these rich models

A popular architecture for building analysis tools

Matlab Script C Program

Computer Algebra Sys.Theorem Prover

Back−end Engines

Application
(Analysis Tool)

LP SolverODE Numerical
Solver

SMT Solver
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Outline

1. Part I: Why we need symbolic solvers?

2. Part II: What are SMT solvers? How to overcome complexity barriers?

3. Part III: Theory of Reals = Gröbner basis + ?
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Part I:

Why we need symbolic solvers?
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Safety of Cruise Control

Example. Consider a cruise control:

v̇ = a

ȧ = −4v + 3vf − 3a + gap

˙gap = −v + vf

where v, a is the velocity and acceleration of this car, vf is the velocity of car
in front, and gap is the distance between the two cars.

Suppose we enter the cruise control mode whenever Init holds.
Prove that the cars will not crash.
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Invariants / Barriers

We can prove cars will not crash if we can find an invariant set whose
boundary separates unsafe states from initial states

Initial

States

Bad / Unsafe
States

Suppose I guess that the invariant is of the form:

c1v + c2vf + c3a + c4gap ≤ c5

How can I find c1, . . . , c5?
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Invariants / Barriers

I need to solve:

∃c1, . . . , c5 : ∀v, vf , a, gap :

Init(v, vf , a, gap) ⇒ c1v + c2vf + c3a + c4gap ≤ c5

∧

c1v + c2vf + c3a + c4gap = c5 ⇒
d

dt
(c1v + c2vf + c3a + c4gap) ≤ 0

∧

c1v + c2vf + c3a + c4gap ≤ c5 ⇒ gap > 0

Need backend solvers to decide satisfiability of above.

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 10



'

&

$

%

Dynamical Systems

A lot of engineering and science concerns dynamical systems

• State Space: The set of states, X

◦ Discrete: X is Nn

◦ Continuous: X is Rn

◦ Hybrid: X is Nn1 × Rn2

• Dynamics: The evolutions, T 7→ X

◦ Discrete: T is N

◦ Continuous: T is R

◦ Hybrid: T is R × N

These systems can be modeled using differential equations, (Finite) state
machines, or hybrid automata.

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 11



'

&

$

%

Typical Properties of Systems

What can we say (deduce, compute) about the model?

• Reachability. Is there a way to get from state ~x to ~x′

• Safety. Does the system stay out of a bad region
◦ Can the car ever collide with the car in front?

• Liveness. Does something good always happen

• Stability. Eventually remain in good region

• Timing Properties. Something good happens in 10 seconds

Does the model satisfy some property.

Property is described in a logic and evaluated over the semantic structure
defined by the formal models.
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Verification Problem for Dynamical Systems

• Given a dynamical system

• And a property: safety, reachability, liveness

• Show that the property is true of the model

Approaches:

• model checking (MC), bounded MC (BMC), infinite BMC (iBMC)

• deductive verification, k-induction

• Abstract interpretation
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Verification by Invariance Checking

Also called Barrier Certificates

Consider the CDS:

dx1

dt
= −x1 − x2

dx2

dt
= x1 − x2

x2
1+x2

2 ≤ 0.5 is an invariant.
−0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

Proof obligation:

∀x1, x2 : x2
1 + x2

2 = 0.5 ⇒ 2x1(−x1 − x2) + 2x2(x1 − x2) < 0
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Verification by Abstraction

The Hybrid Abstraction Approach:

Create a finite abstraction of the continuous/hybrid system and model-check it

Consider a system with state space <2, partitioned w.r.t signs of x1, x2, p1, p2:

� �� �
� ��
��

�����

� �� ����

x2 = 0

x1 = 0

p1 = 0

p2 = 0

{x1 = 0, x2 < 0, p1 < 0, p2 > 0}
#
⇒ {x1 > 0, x2 < 0, p1 < 0, p2 > 0} if

∃x1, x2 : x1 = 0 ∧ x2 < 0 ∧ p1 < 0 ∧ p2 > 0 ∧ dx1

dt
> 0
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Verification by Invariant Generation

Consider the system:

dx1

dt
= −x1 − x2

dx2

dt
= x1 − x2 + xd

Initially: x1 = 0, x2 = 1

Property: |x1| ≤ 1 always

Guess

• Template for witness W := ax2
1 + bx2

2 + c

• Template for assumption A := |xd| < d
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Example Continued

Verification Condition: ∃a, b, c, d : ∀x1, x2, xd :

x1 = 0 ∧ x2 = 1 ⇒ W ≤ 0

A ∧ W = 0 ⇒
dW

dt
< 0

W ≤ 0 ⇒ |x1| ≤ 1

Ask contraint solver for satisfiability of above formula

Solver says: a = 1, b = 1, c = −1, d = 1

x1 = 0 ∧ x2 = 1 ⇒ x2
1 + x2

2 − 1 ≤ 0

|xd| < 1 ∧ x2
1 + x2

2 − 1 = 0 ⇒ 2x1(−x1 − x2) + 2x2(x1 − x2 + xd) < 0

x2
1 + x2

2 − 1 ≤ 0 ⇒ |x1| ≤ 1

This proves that |x1| ≤ 1 always.
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Stability Verification

Consider the aircraft model:

d~x

dt
= f(~x)

where ~x is a state vector consisting of airspeed, angle of attack, pitch rate,
pitch angle, . . .

Property: System is asymptotically stable

Guess template for Lyapunov function V := ~xT A~x

Verification Condition:

∃A : ∀~x : V ≥ 0 ∧ (V > 0 ⇒
dV

dt
≤ 0)
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Summary So Far

• Formulas in the theory of real-closed fields arise when verifying continuous
and hybrid dynamical systems

∀ and ∃∀ formulas

• We need embeddable solvers that are
◦ incremental and fast,
◦ support rich API,
◦ generate small unsatisfiable core

• We need practical methods: detect inconsistency of “easy” instances
efficiently

• Ideally integrate with Satisfiability Modulo Theory (SMT) solvers
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Outline

1. Part I: Why we need symbolic solvers?

2. Part II: What are SMT solvers? How to overcome complexity barriers?

3. Part III: Theory of Reals = Gröbner basis + ?
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SMT Solvers

Decide satisfiability modulo theories using symbolic + algebraic techniques!

• Employ a propositional satisfiability solvers for Boolean reasoning

• Employ decision procedures for reasoning over theories
◦ rational linear arithmetic: simplex
◦ uninterpreted function symbols: congruence closure
◦ linear arithmetic over integers
◦ theory of arrays
◦ theory of bitvectors
◦ theory of datatypes

Example: Yices http://yices.csl.sri.com/
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SMT Solvers: Example

Consider the following constraints:

x > 3 ∨ x < 1,

x < 2 ⇒ f(y) = 2,

x > 2 ⇒ y = x,

f(x) = f(y) ⇒ x = 0,

f(y) > 0 ⇒ x > 1

Is there a value for x, y and f such that the above constraints are satisfiable?

SMT solvers can solve such problems – with 1000s of variables and
constraints
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Why are SMT Solvers So Effective?

SMT is a revolution

Successful combination of model searching and proof searching

Search for Model

Search for Proof

of F

of not(F)

The system now learns from failures, making the search feasible
SMT has realized the dream of having embedded deduction
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Nonlinear Constraint Solving

SMT solvers currently have limited support for things a computer algebra
system can do

Very limited reasoning about nonlinear constraints

Nonlinear constraint solving is essential for analyzing

• complex cyber-physical systems and

• models from systems biology

SMT + CAS : Challenge is to not compromise speed and scalability of SMT
solvers

Can we do it? Can we overcome the complexity barrier?
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Canonical Application Area: Analysis

Model analysis is the canonical application area for symbolic engines such as
SMT solvers

Most important problems in verification are undecidable

• Safety verification of infinite-state systems

and they can not be directly reduced to (decidable) SMT problems

Applications make a choice...
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View from the Application Layer

Any application that solves an undecidable problem L, when given an
instance φ, focuses on either

• showing φ ∈ L, or

• proving φ 6∈ L

but not both

A verification tool will target either

• exhibiting an error or

• proving correctness

but not both
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View from the Application Layer

Depending on what the application targets, the needs are different

Verification Approach Commitment Useful definitive answer

Abstraction Proving correctness Proof of not(F)

Invariant Checking Proving correctness Proof of not(F)

Bounded Model-Checking Showing a bug Model for F

Both SAT and UNSAT answers are useful

But only ONE answer needs to be definitive for soundness claims
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Skewing the Symmetry

There is a market for asymmetric tools

Tool+(φ):

Input: φ

Output:

DEFINITELY SAT or

MAYBE UNSAT

Tool-(φ):

Input: φ

Output:

DEFINITELY UNSAT or

MAYBE SAT

If output = DEFINITELY SAT, then φ should indeed be satisfiable
If output = DEFINITELY UNSAT, then φ should indeed be unsatisfiable
If output = MAYBE SAT/UNSAT, then nothing can be inferred about φ.
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Skewing the Symmetry

Tool+: Tool-:
Search for Model

Search for Proof

of F

of not(F)

Search for Model

Search for Proof

of F

of not(F)

Can still build sound tools
That continue to be incomplete

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 29
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Landscape

Termination

Soundness Completeness

Application/

SMT Solver

If a certain problem is undecidable, then we cannot have a sound, complete
and terminating technique.

Application will compromise completeness, so backend solver can
compromise completeness too!

Applications overcome undecidability, backend solvers overcome
inefficiency/undecidability
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Outline

1. Part I: Why we need symbolic solvers?

2. Part II: What are SMT solvers? How to overcome complexity barriers?

3. Part III: Theory of Reals = Gröbner basis + ?
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Nonlinear Real Arithmetic: Problem

Focus on ∀ formulas first

Given a set of nonlinear equations and inequalities:

p = 0, p ∈ P

q > 0, q ∈ Q

r ≥ 0, r ∈ R

where P, Q, R ⊂ Q[~x] are sets of polynomials over ~x

Is the above set unsatisfiable over the reals?

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 32
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Examples

Examples of satisfiable constraints:

{x2 = 2}

{x2 = 2, x < 0, y ≥ x}

Examples of unsatisfiable constraints:

{x2 = −2, y ≥ x}

{x2 = 2, 2x > 3}

Applications in: control, robotics, solving games, static analysis, hybrid
systems, . . .
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Known Results

• The full FO theory of reals is decidable [Tarski48]
Nonelementary decision procedure, impractical

• Double-exponential time decision procedure [Collins74, MonkSolovay74]

• Exponential space lower bound

• Collin’s algorithm based on “cylindrical algebraic decomposition” has been
improved over the years and implemented in QEPCAD.
In practice, could fail on p > 0 ∧ p < 0.

Obtaining efficient, sound and complete method unlikely

SMT+/SMT-: Can we obtain efficiency by relaxing completeness?

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 34
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SMT- Procedure for NRA

The approach is reminiscent of Simplex

• Introduce slack variables s.t. all inequality constraints are of the form
v > 0, or w ≥ 0

P = 0, Q > 0, R ≥ 0 7→

P = 0, Q − ~v = 0, R − ~w = 0, ~v > 0, ~w ≥ 0

• Search for a polynomial p s.t.

P = 0 ∧ Q = ~v ∧ R = ~w ⇒ p = 0

~v > 0, ~w ≥ 0 ⇒ p > 0

• If we find such a p, return “unsatisfiable” else return “maybe satisfiable”

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 35
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How to search for p?

Witness for unsatisfiability p satisfies:

P = 0 ∧ Q = ~v ∧ R = ~w ⇒ p = 0 (1)
~v > 0, ~w ≥ 0 ⇒ p > 0 (2)

We need efficient sufficient checks

Sufficient check for Condition 1: p ∈ Ideal(P, Q − ~v, R − ~w)

Sufficient check for Condition 2: p is a positive polynomial over ~v, ~w

To search for p, compute the Gröbner basis for P making ~v, ~w smaller in the
ordering

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 36
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Example: Easy Instance

Consider E = {x3 = x, x > 2}.

x3 − x = 0, x − v − 2 = 0

(v + 2)3 − (v + 2) = 0, x − v − 2 = 0

v3 + 6v2 + 11v + 6 = 0, x − v − 2 = 0

⊥

Computing GB and projecting it onto the slack variables discovers the witness
p for unsatisfiability

May not work always ...

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 37
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Example: Harder Instance

Let I = {v1 > 0, v2 > 0, v3 > 0}.

v1 + v2 − 1 = 0, v1v3 + v2 − v3 − 2 = 0

v1 + v2 − 1 = 0, (1 − v2)v3 + v2 − v3 − 2 = 0

v1 + v2 − 1 = 0, v2v3 − v2 + 2 = 0

This is a Gröbner basis.

There is an unsatisfiability witness p for this example, but we failed to find it.

Recall that in the linear case, Simplex performs pivoting
What is the nonlinear analogue of pivoting

First, let us revisit GB computation

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 38
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Gröbner Basis

Algorithm for computing Gröbner basis is a completion algorithm

Idea behind completion:

• Starting with a set of facts

• Add new facts (saturation)
◦ that do not have a smaller proof using existing facts

• Delete any fact (simplification)
◦ that do have a smaller proof using other facts

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 39
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Gröbner Basis: Example

View as completion enables optimizations

xy2 − x = 0, x2y − y2 = 0

xy2 → x, x2y → y2

xy2 → x, x2y → y2[y], x2 = y3

xy2 → x, x2y → y2[y], y3 → x2

xy2 → x[y], x2y → y2[y], y3 → x2, xy = x3

xy2 → x[y], x2y → y2[y], y3 → x2, x3 → xy

xy2 → x[y, x2], x2y → y2[y, x], y3 → x2, x3 → xy

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 40
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Property of Gröbner Basis

If
p′ ∈ Ideal(P )

G : Gröbner basis for P

Then
p′ ↔∗

P 0 definition of ideal
p′ →∗

G 0 definition of GB

Claim. If there is no p′′ ≺ p′ s.t. p′′ ∈ Ideal(P ), then p′ ∈ G.
Proof. If p′ →G p′′ →∗

G 0, then p′ � p′′ and both p′, p′′ ∈ Ideal(P ).

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 41
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Example: Easy Instance

Recall: We prove unsatisfiability of P = 0 ∧ Q > 0 ∧ R ≥ 0 by searching for
a polynomial p s.t.

P = 0 ∧ Q = ~v ∧ R = ~w ⇒ p = 0

~v > 0, ~w ≥ 0 ⇒ p > 0

Consider E = {x3 = x, x > 2}.

x3 − x = 0, x − v − 2 = 0

(v + 2)3 − (v + 2) = 0, x − v − 2 = 0

v3 + 6v2 + 11v + 6 = 0, x − v − 2 = 0

⊥

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 42
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Finding p

We know p ∈ Ideal(P ).

If p is “small-enough” in the ordering �, then p will appear explicitly in the
Gröbner basis for P constructed using �.

Example: P = {w1 − 2w3 + 2, w2 + 2w3 − 1} and I = {w1 ≥ 0, w2 ≥ 0}.

If w1 � w2 � w3, then GB�(P ) = P .

If we make w3 � w1 and w3 � w2 in the ordering, then

GB�(P ) = {2w3 − w1 − 2, w2 + w1 + 1}.

For linear polynomials, this is pivoting, but what is its analogue for nonlinear
systems ?

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 43
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Finding p: Nonlinear Issues

It is not always possible to change � to get witness p ∈ GB�(P ).

• Problem 1:
P1 = {v + w1 − 1, w1w2 − w1 + 1}

Need w1 � w1w2 to “get” v + w1w2 in GB(P1).

Solution: Introduce new definitions and get flexibility in choosing �

Add w1w2 − w3 to P1 and have w1 � w3.

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 44
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Problem 1: Example

v + w1 − 1 = 0, w1w2 − w1 + 1 = 0

v → −w1 + 1, w1w2 → w1 − 1

v → −w1 + 1, w1w2 → w1 − 1, w1w2 → w3

v → −w1 + 1, w1 → w3 + 1, w1w2 → w3

v → −w3, w1 → w3 + 1, w1w2 → w3

⊥

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 45
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Finding p: Nonlinear Issues

It is not always possible to change � to get witness p ∈ GB�(P ).

• Problem 2:
P2 = {w2

1 − 2w1w2 + w2
2 + 1}

Need w1, w2 � (w1−w2)
2 to “get” the witness (w1−w2)

2 +1 in GB(P2).

Solution: Introduce new definitions and get flexibility in choosing �

Add (w1 − w2)
2 − w3 to P2 and have w1, w2 � w3.

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 46
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Problem 2: Example

w2
1 − 2w1w2 + w2

2 + 1 = 0

w2
1 → 2w1w2 − w2

2 − 1

w2
1 → 2w1w2 − w2

2 − 1, (w1 − w2)
2 = w3

w2
1 → 2w1w2 − w2

2 − 1, w2
1 → 2w1w2 − w2

2 + w3

w3 → −1, w2
1 → 2w1w2 − w2

2 + w3

⊥

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 47
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Positivstellensatz

What guarantees the existence of such a witness?

The constraint

{p = 0 : p ∈ P} ∪ {q ≥ 0 : q ∈ Q} ∪ {r 6= 0 : r ∈ R}

is unsatisfiable (over the reals) iff
there exist polynomials p, q, and r such that

p ∈ Ideal(P ) {Σipiqi : pi ∈ P}

q ∈ Cone[Q] {Σis
2
i q1q2 . . . qk : qj ∈ Q}

r ∈ [R] {r1r2 . . . rk : ri ∈ R}

p + q + r2 ≡ 0

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 48
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Positivstellensatz Corollary

The constraint

{p = 0 : p ∈ P} ∪ {v > 0 : v ∈ ~v} ∪ {w ≥ 0 : w ∈ ~w}

is unsatisfiable iff
∃p′ such that

p′ ∈ Ideal(P ) ∩ (Cone[~v, ~w] + [~v])

Hence, the method is “refutationally complete”

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 49
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Example: Harder Instance

Let I = {v1 > 0, v2 > 0, v3 > 0}.

v1 + v2 − 1 = 0, v1v3 + v2 − v3 − 2 = 0

v1 + v2 − 1 = 0, (1 − v2)v3 + v2 − v3 − 2 = 0

v1 + v2 − 1 = 0, v2v3 − v2 + 2 = 0

v1 + v2 − 1 = 0, v2v3 − v2 + 2 = 0, v2v3 − v4 = 0

v1 + v2 − 1 = 0, −v2 + v4 + 2 = 0, v2v3 − v4 = 0

v1 + v4 + 1 = 0, −v2 + v4 + 2 = 0, v2v3 − v4 = 0

⊥

The polynomial v1 + v4 + 1 is the required witness to the unsatisfiability of
the constraints.

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 50
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Summary of the Procedure

• Turn all inequalities into equations by introducing slack variables

• Compute Gröbner basis of the equations

• If a positive polynomial is ever generated, return unsatisfiable

• If not, introduce new definitions to try different orderings and repeat

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 51
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Solving ∃∀ Formulas

Farkas’ Lemma converts ∀ to ∃ in linear arithmetic

Its generalization can be used for nonlinear arithmetic

∀~x : p1 ≥ 0 ∧ p2 ≥ 0 ⇒ p3 ≥ 0, if

∃s1, s2, s3 : s3p3 = s1p1 + s2p2 ∧ s1 ≥ 0 ∧ s2 ≥ 0 ∧ s3 ≥ 0

A sufficient condition for guaranteeing s1, s2 ≥ 0 is that they are sums of
squares

Once ∀ is eliminated, we can use the procedure for ∃

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 52
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Solving ∃∀ Formulas

Another approach we are pursuing is based on
Combining symbolic and numeric techniques

Suppose we wish to solve ∃x1, x2 : ∀y : p(x1, x2, y) ≥ 0 ∧ q(x1, x2, y) ≥ 0

• Use QEPCAD to eliminate ∀ from ∀y : p(x1, x2, y) ≥ 0

• Use numerical techniques to get a value for x1

• Use QEPCAD to eliminate ∀ from ∀y : q(x1, x2, y) ≥ 0 with x1

instantiated

Ashish Tiwari Theory of Reals for Analysis of Dynamical Systems: 53
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Sum-of-Squares Programming

The need for nonlinear reasoning and optimization has been recognized by
several communities

This has lead to the formulation of SOS programming

min~u∈Rnc1u1 + · · · + cnun

subject to
pi1u1 + · · · + pinun is a SOS, i = 1, 2, . . . , k

SOS programs can be converted into semidefinite programs using the
observation that
p is SOS iff p = zT Qz for some symmetric positive-semidefinite matrix Q

(z is a vector of all monomials of degree deg(p)/2)
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Semidefinite Programming

Semidefinite Programming:

min~u∈Rnc1u1 + · · · + cnun

subject to
F0 + u1F1 + · · · + unFn is positive semidefinite

where ci’s are given constants and Fi’s are given symmetric matrices.

SDPs can be solved using numerical convex optimization toolboxes

Is there a good way to combine SOS techniques with symbolic techniques?
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Conclusion

Symbolic and algebraic techniques will play increasingly important role as we
design, build and understand complex systems

We need fast and scalable tools that can be embedded in applications:
SMT+CAS?

There is a market for incomplete but fast tools

Reasoning about nonlinear constraints is presently a critical bottleneck

We will need to augment sound symbolic techniques with fast numerical
approaches
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