
Computer Science Laboratory, SRI International

Hybrid Systems

Ashish Tiwari

SRI International

Hybrid Dynamical Systems

A hybrid dynamical system consists of

• hybrid-space: X ⊂ Nn × Rm

• That is, some variables take values in a discrete domain N

• Other variables take values in a continuous domain R

The trajectories are de�ned over

• hybrid-time: T = R× N

• That is, at some time instants t ∈ R, the system makes n ∈ N jumps

Useful for modeling systems having complex, nonlinear, multimodal behavior

Or systems involving interaction between physical system and software

1

Specifying the Dynamics

Dynamics are typically speci�ed using local rules

A dynamical system can be speci�ed as a tuple (X,→) where
X : variables de�ning state space of the system

→ : binary relation over state space de�ning system dynamics

A �run� of such a system is a sequence of states related by →:

s0 → s1 → s2 → · · ·
Now, we can talk about temporal properties of dynamical systems

But what about continuous-time systems?

2

Continuous Dynamical Systems

We give semantics to continuous-space continuous-time systems by mapping them to

continuous-space, discrete-time systems

Continuous dynamics are speci�ed using ordinary di�erential equations d~xdt = F (~x), where
F : Rn 7→ Rn

Discrete-time semantics: ~x0 → ~x1 i� there exists a f : R+ 7→ Rn and δ ≥ 0 such that

~x0 = f (0)
~x1 = f (δ)

df (t)
dt = F (f (t))

A state can have uncountably many successors

Now we can make sense of temporal logic properties of continuous-time systems

3

Hybrid Systems

For hybrid systems

• X includes Boolean- and Real-valued variables; hence, a hybrid state space

• executions are in hybrid-time, hence its semantics → relates a state to all its hybrid-time

successors

→ := →disc ∪ →cont

4

Example of a Hybrid System

dx
dt = vx
dy
dt = vy
dvx
dt = −1− vx
dvy
dt = 1− vy

x + vx ≥ −2

x + vx ≤ −2
−→

←−
x + vx ≥ 2

dx
dt = vx
dy
dt = vy
dvx
dt = 1− vx
dvy
dt = 1− vy

x + vx ≤ 2

Starting from a region −1 ≤ x ≤ 1, y = 0, vx = vy = 0, how to prove G(−3 ≤ x ≤ 3) for this
system?

5

Example: Simulations of the Robot

The controller is non-deterministic:

• Switches from Mode 1 to Mode 2 when x + vx + 2 ≤ 0
• Switches from Mode 2 to Mode 1 when x + vx − 2 ≥ 0

Two possible simulation trajectories:

−3 −2 −1 0 1 2 3
0

2

4

6

8

10

12

Position x

P
os

iti
on

 y

Position
x=−3
x=3
Alt Position

6

HybridSAL: Modeling

3−3 0

10

The goal is to prove that the robot remains inside Safe starting

from Init:

Init := (x ∈ [−1, 1], y = 0, vx = 0, vy = 0)
Safe := (|x| ≤ 3)

The robot can move in 2 modes:

• Mode 1: Force applied in (1, 1)-direction
dx
dt = vx,

dvx
dt = 1− vx, dy

dt = vy,
dvy
dt = 1− vy

• Mode 2: Force applied in (−1, 1)-direction
dx
dt = vx,

dvx
dt = −1− vx, dy

dt = vy,
dvy
dt = 1− vy

7

Example: Driving a Robot

Consider a non-deterministic controller:

• Switch from Mode 1 to Mode 2 when x + vx + 2 ≤ 0
• Switch from Mode 2 to Mode 1 when x + vx − 2 ≥ 0

Two possible simulation trajectories:

−3 −2 −1 0 1 2 3
0

2

4

6

8

10

12

Position x

P
os

iti
on

 y

Position
x=−3
x=3
Alt Position

8

HybridSAL Model of Robot

robot:CONTEXT =

BEGIN

system: MODULE =

BEGIN

LOCAL direction : BOOLEAN % moving left/right

LOCAL x, vx, y, vy : REAL

LOCAL xdot, vxdot, ydot, vydot : REAL

INVARIANT TRUE

INITFORMULA

-1 <= x AND x <= 1 AND vx = 0 AND vy = 0 AND y = 0

...

9

HybridSAL Model of Robot

TRANSITION

[direction = TRUE AND x + vx >= -2 -->

xdot' = vx; vxdot' = -1 - vx;

ydot' = vy; vydot' = 1 - vy

[] direction = FALSE AND x + vx <= 2 -->

xdot' = vx; vxdot' = 1 - vx;

ydot' = vy; vydot' = 1 - vy

[] direction = TRUE AND x + vx <= -2 -->

direction' = FALSE

[] direction = FALSE AND x + vx >= 2 -->

direction' = TRUE]

END;

...

10

HybridSAL Model of Robot

robot: CONTEXT

BEGIN

system: MODULE =

BEGIN

LOCAL ...

INVARIANT ...

INITFORMULA ...

TRANSITION

[... [] ... [] ...]

END;

correct: THEOREM

system |- G(0 <= x+3 AND x <= 3);

END

11

HybridSAL Analysis

HybridSAL provides an abstractor that takes a HybridSAL model and outputs a �nite state SAL

model

HybridSAL is written in Lisp has a command-line interface:

mlisp

(load "load.lisp")

(in-package :sal)

(abstract "robot" 'system :property 'correct)

This creates a �le �robotABS.sal�

12

Abstract Model in SAL

%% Abstract variable to Polynomial Mapping:

%% g11 --> -1*x - 3

%% g10 --> x - 3

%% g9 --> -1*x - 1

%% g8 --> x - 1

%% g7 --> vx

%% g6 --> vy

%% g5 --> y

%% g4 --> x + vx + 2

%% g3 --> x + vx - 2

%% g2 --> -1*vy + 1

%% g1 --> -1*vx - 1

%% g0 --> -1*vx + 1

...

13

Abstract Model in SAL

robotABS: CONTEXT =

BEGIN

SIGN: TYPE = {pos, neg, zero};

ASSVP(x0: SIGN, x1: SIGN): [SIGN -> BOOLEAN] = ...

ASSVN(x0: SIGN, x1: SIGN): [SIGN -> BOOLEAN] = ...

INV12(g11: SIGN, ..., g0: SIGN): BOOLEAN = ...

system: MODULE = BEGIN

GLOBAL g0, ..., g11: SIGN

LOCAL direction: BOOLEAN

INITIALIZATION g11 = neg; ... ; g0 = pos

...

14

Abstract Model in SAL

TRANSITION

[(direction = TRUE AND (g4 = pos OR g4 = zero)) AND

INV12(g11', ..., g0') AND (g4' = pos OR g4' = zero) -->

g11' IN ASSVN(g11, g7); ...; g0' IN ASSVN(g0, g1)

[]

(direction = FALSE AND (g3 = neg OR g3 = zero)) AND

INV12(g11', ..., g0') AND (g3' = neg OR g3' = zero) -->

g11' IN ASSVN(g11, g7); ...; g0' IN ASSVN(g0, g0)

[]

(direction = TRUE AND (g4 = neg OR g4 = zero)) AND

INV12(g11', ..., g0') --> direction' = FALSE

[]

(direction = FALSE AND (g3 = pos OR g3 = zero)) AND

INV12(g11', ..., g0') --> direction' = TRUE

]

15

Abstract Model in SAL

robotABS: CONTEXT =

BEGIN

...

system: MODULE = ...

correct: THEOREM

system |- G((g11 = neg OR g11 = zero) AND

(g10 = neg OR g10 = zero));

END

16

Model Check the Abstract Model

If SAL is installed, then we can analyze the abstract SAL model

sal-deadlock-checker robotABS system

sal-smc -v 3 robotABS correct

We can thus verify the safety property of the hybrid robot model.

If property is not true of abstract model, then we get a counter-example in the abstract

Which may be spurious

17

HybridSAL: Discussion

• Predicates for abstraction are chosen automatically

• This choice is crucial, and can be in�uenced by command-line input

• The abstraction process is completely automatic, but it can take long

• Tool is still work in progress: several features of SAL are not supported in HybridSAL

• Such as compositional abstraction

• http://sal.csl.sri.com/hybridsal/

18

http://sal.csl.sri.com/hybridsal/

