
'

&

$

%

Logical Interpretation

Static Program Analysis Using Theorem Proving

Ashish Tiwari
Tiwari@csl.sri.com

Computer Science Laboratory
SRI International

Menlo Park CA 94025
http://www.csl.sri.com/˜tiwari

Ideas partly contributed by all my collaborators

Ashish Tiwari, SRI Combining Abstract Interpreters: 1

'

&

$

%

The Problem

Complex Systems: How to

• understand ?

• design ?

Examples:

• living cell, drug action

• software systems

• embedded systems

• cyber physical systems

Ashish Tiwari, SRI Combining Abstract Interpreters: 2

'

&

$

%

The Only Way We Know

Using formal mathematical models

Explored and analyzed using
Automated Deduction ?

Flashback: Use of deduction technology as Embedded Logical Engines
Resulted in SMT approaches

Ashish Tiwari, SRI Combining Abstract Interpreters: 3

'

&

$

%

What We Now Need: Part I

Evidence: Embed the technology in tools

• Embedded System Design Tools: Matlab Simulink/Stateflow

• Software Development Tools

• Drug Design Tools

• Medical Devices

•
...

Ashish Tiwari, SRI Combining Abstract Interpreters: 4

'

&

$

%

What We Now Need: Part II

Next Generation Automated Deduction Engine: Requirements–

Attributes Why Modern SMT Solvers

speed embedded use yes

support for theories symbols have meaning yes

interface embedded use lacking

beyond satisfiability need more no

reduced expressiveness partly

stochastic reasoning no

Ashish Tiwari, SRI Combining Abstract Interpreters: 5

'

&

$

%

Evidence

Some case studies:

Application Formalism Core Technology Example

Embedded Sys. Hybrid Systems Th. of Reals Transmission,
Powertrain

Systems Bio. Discrete Sys. SAT/MaxSAT Cell Signalling

Medical Devices Continuous Sys. Linear Arith. Insulin Control

Software Verif. C programs Benchmarks,
Code Fragments

Ashish Tiwari, SRI Combining Abstract Interpreters: 6

'

&

$

%

Outline of the Talk

Part I. Over-approximating ∨
Part II. Over-approximating ∨ in a combination of theories
Part III. Approximating ∨,∧, ∃, ∀
Part IV. Theory Anyone?

Ashish Tiwari, SRI Combining Abstract Interpreters: 7

'

&

$

%

Example

1 x := 0; y := 0; z := n;

2 while (*) {

3 if (*) {

4 x := x+1;

5 z := z-1;

6 } else {

7 y := y+1;

8 z := z-1;

9 }

10 }

Ashish Tiwari, SRI Combining Abstract Interpreters: 8

'

&

$

%

Traditional Approach: Annotate & Check

1 x := 0; y := 0; z := n;

[z - x - y == n]

2 while (*) {

3 if (*) {

4 x := x+1;

5 z := z-1;

[z - x - y == n]

6 } else {

7 y := y+1;

8 z := z-1;

[z - x - y == n]

9 }

10 }

Ashish Tiwari, SRI Combining Abstract Interpreters: 9

'

&

$

%

Traditional Approach: Annotate & Check

Proof obligation generated:

z − x− y = n ∧ x′ = x+ 1 ∧ z′ = z − 1 ∧ y′ = y

T
⇒ z′ − x′ − y′ = n

z − x− y = n ∧ y′ = y + 1 ∧ z′ = z − 1 ∧ x′ = x

T
⇒ z′ − x′ − y′ = n

The theory T determined by semantics of the programming language.

Ashish Tiwari, SRI Combining Abstract Interpreters: 10

'

&

$

%

Example: Abstract Interpretation

[true]

1 x := 0; y := 0; z := n;

[x = 0 ∧ y = 0 ∧ z = n]

2 while (*) {

3 if (*) {

4 x := x+1;

5 z := z-1; [(x = 1 ∧ y = 0 ∧ z = n− 1)]

6 } else {

7 y := y+1;

8 z := z-1; [(x = 0 ∧ y = 1 ∧ z = n− 1)]

9 }

[(x = 1 ∧ y = 0 ∧ z = n− 1) ∨ (x = 0 ∧ y = 1 ∧ z = n− 1)]

10 }

Ashish Tiwari, SRI Combining Abstract Interpreters: 11

'

&

$

%

Example: Abstract Interpretation

(x = 1 ∧ y = 0 ∧ z = n− 1) ∨ (x = 0 ∧ y = 1 ∧ z = n− 1)

Suppose we do not have ∨ in our language

We can only represent conjunctions of atomic facts

We need to overapproximate

We need to find a conjunction of atomic formulas that is implied by both
x = 1 ∧ y = 0 ∧ z = n− 1 and x = 0 ∧ y = 1 ∧ z = n− 1

What is such a fact? x+ y = 1 ∧ z = n− 1

Ashish Tiwari, SRI Combining Abstract Interpreters: 12

'

&

$

%

Example: Abstract Interpretation

[true]

1 x := 0; y := 0; z := n;

[x = 0 ∧ y = 0 ∧ z = n]

2 while (*) {

[(x = 0 ∧ y = 0 ∧ z = n) ∨ (x+ y = 1 ∧ z = n− 1)]

3 if (*) {

4 x := x+1;

5 z := z-1; [(x = 1 ∧ y = 0 ∧ z = n− 1)]

6 } else {

7 y := y+1;

8 z := z-1; [(x = 0 ∧ y = 1 ∧ z = n− 1)]

9 }

[(x+ y = 1 ∧ z = n− 1)]

10 }

Ashish Tiwari, SRI Combining Abstract Interpreters: 13

'

&

$

%

Hence, we need to over-approximate

((x+ y = 1 ∧ z = n− 1) ∨ x = 0 ∧ y = 0 ∧ z = n)

(x+ y = 1 ∧ z = n− 1)
T
⇒ z + x+ y = n

(x = 0 ∧ y = 0 ∧ z = n)
T
⇒ z + x+ y = n

This is exactly the invariant we had annotated by hand.

Ashish Tiwari, SRI Combining Abstract Interpreters: 14

'

&

$

%

Logical Interpretation

Abstract Interpretation over logical lattices

Lattices defined by

elements : some subset of formulas in T closed under ∧
partial order : some subset of T

⇒

A common class is strictly logical lattices:
elements : conjunction φ of atomic formulas in Th
partial order : φ v φ′ if Th |= φ⇒ φ′

Ashish Tiwari, SRI Combining Abstract Interpreters: 15

'

&

$

%

In any logical lattice

meet u 7→ (over-approximation of) logical and ∧ (d∧e)

join t 7→ over-approximation of logical or d∨e
partial order v 7→ under-approximation of logical implies b⇒c
projection 7→ over-approximation of logical exists d∃e

In strictly logical lattices:

meet u 7→ ∧

join t 7→ φ1d∨eφ2 is the strongest φ ∈ Φ s.t. φi

T
⇒ φ for i = 1, 2

partial order v 7→
T
⇒

projection 7→ d∃eU.φ is the strongest φ′ ∈ Φ s.t. (∃U.φ)
T
⇒ φ′

Challenge: For what domains can we efficiently compute these operations?

Ashish Tiwari, SRI Combining Abstract Interpreters: 16

'

&

$

%

Over-Approximation of ∨: Examples

• Linear arithmetic with equality (Karr 1976)
Eg. {x = 0, y = 1}d∨e{x = 1, y = 0} = {(x+ y = 1)}

• Linear arithmetic with inequalities (Cousot and Halbwachs 1978)
Eg. {x = 0}d∨e{x = 1} = {0 ≤ x, x ≤ 1}

• Nonlinear equations (polynomials) (Rodriguez-Carbonell and Kapur 2004)
Eg. {x = 0}d∨e{x = 1} = {x(x− 1) = 0}

• Term Algebra (Gulwani, T. and Necula 2004)
Eg. {x = a, y = f(a)}d∨e{x = b, y = f(b)} = {y = f(x)}

Ashish Tiwari, SRI Combining Abstract Interpreters: 17

'

&

$

%

UFS does not define a logical lattice

The join of two finite sets of facts need not be finitely presented. [Gulwani, T.
and Necula 2004]

φ1 ≡ {a = b}

φ2 ≡ {fa = a, fb = b, ga = gb}

φ1d∨eφ2 ≡
∧

i

gf ia = gf ib

The formula
∧

i
gf ia = gf ib can not be represented by finite set of ground

equations.

Proof. It induces infinitely many congruence classes with more than one
signature.

Ashish Tiwari, SRI Combining Abstract Interpreters: 18

'

&

$

%

Part II. Over-Approximation in Union of Theories

Ashish Tiwari, SRI Combining Abstract Interpreters: 19

'

&

$

%

Combining Logical Interpreters: Motivation

x :=0; y := 0; x := c; y := c; x :=0; y := 0;
u := 0; v := 0; u := c; v := c; u := 0; v := 0;
while (*) { while (*) { while (*) {

x := u + 1; x := G(u, 1); x := u + 1;
y := 1 + v; y := G(1, v); y := 1 + v;
u := F(x); u := F(x); u := *;
v := F(y); v := F(y); v := *;

} } }

assert(x = y) assert(x = y) assert(x = y)

Σ = ΣLA ∪ ΣUFS Σ = ΣUFS Σ = ΣLA

Th = ThLA + ThUFS Th = ThUFS Th = ThLA

Ashish Tiwari, SRI Combining Abstract Interpreters: 20

'

&

$

%

Combining Logical Interpreters

Combining abstract interpreters is not easy [Cousot76]

For combining logical interpreters (over strictly logical lattices),
we need to combine:

• d∨e

• d∃e

•
T
⇒

Bad Example:

(x = 0 ∧ y = 1) t (x = 1 ∧ y = 0)

= x+ y = 1 ∧ C[x] + C[y] = C[0] + C[1]

Ashish Tiwari, SRI Combining Abstract Interpreters: 21

'

&

$

%

Logical Product

Given two logical lattices, we define the logical product as:
elements : conjunction φ of atomic formulas in Th1 ∪ Th2

E v E′ : E ⇒Th1∪Th2
E′ and AlienTerms(E′) ⊆ Terms(E)

AlienTerms(E) = subterms in E that belong to different theory
Terms(E) = all subterms in E, plus all terms equivalent

to these subterms (in Th1 ∪ Th2 ∪E)

Eg. {x = F (a+ 1), y = a} t {x = F (b+ 1), y = b} = {x = F (y + 1)} ∵

x = F (a+ 1) ∧ y = a ⇒ x = F (y + 1)

x = F (b+ 1) ∧ y = b ⇒ x = F (y + 1)

x = F (a+ 1) ∧ y = a ⇒ y + 1 = a+ 1

x = F (b+ 1) ∧ y = b ⇒ y + 1 = b+ 1

Ashish Tiwari, SRI Combining Abstract Interpreters: 22

'

&

$

%

Combining the Preorder Test

Combining satisfiability procedures

Nelson-Oppen combination method

Ashish Tiwari, SRI Combining Abstract Interpreters: 23

'

&

$

%

Combining Join Operator

Given procedures:

d∨eL1
(El, Er) : Computes Eld∨eEr in lattice L1

d∨eL2
(El, Er) : Computes Eld∨eEr in lattice L2

We wish to compute Eld∨eEr in the logical product L1 ∗ L2

Example.

{z = a+ 1, y = f(a)}d∨e{z = b− 1, y = f(b)} = {y = f(1 + z)}

Ashish Tiwari, SRI Combining Abstract Interpreters: 24

'

&

$

%

Combining Join Operators

z = a− 1, y = f(a) z = b− 1, y = f(b)

Purify+NOSat z = a− 1 y = f(a) z = b− 1 y = f(b)

LR-Exchange a = 〈a, b〉 a = 〈a, b〉 b = 〈a, b〉 b = 〈a, b〉

Base Joins JoinLA JoinUF

〈a, b〉 = 1 + z y = f(〈a, b〉)

Quant Elim QEUF∗LA

Return y = f(1 + z)

Ashish Tiwari, SRI Combining Abstract Interpreters: 25

'

&

$

%

Existential Quantification Operator

Required to compute transfer function for assignments

E = d∃eL(E′, V) if E is the least element in lattice L s.t.

• E′ vL E

• V ars(E) ∩ V = ∅

Examples:

• d∃eLAa : (x < a ∧ a < y) = (x ≤ y)

• d∃eUFa : (x = f(a) ∧ y = f(f(a))) = (y = f(x))

• d∃eLA∗UFa, b, c : (a < b < y ∧ z = c+ 1 ∧ a = ffb ∧ c = fb) =

(f(z − 1) ≤ y)

How to construct d∃eLA∗UF using d∃eLA and d∃eUF ?

Ashish Tiwari, SRI Combining Abstract Interpreters: 26

'

&

$

%

Combining QE Operators

Problem a < b < y, z = c+ 1, a = ffb, c = fb {a, b, c}

Purify+NOSat a < b < y, z = c+ 1 a = ffb, c = fb

QSat → c 7→ z − 1

QSat a 7→ fc ←

Base QEs QELA QEUF

a ≤ y, z = c+ 1 a = fc

Substitute c 7→ z − 1, a 7→ fc

Return f(z − 1) ≤ y

Ashish Tiwari, SRI Combining Abstract Interpreters: 27

'

&

$

%

Part III. Approximating ∨,∧,∃,∀

Ashish Tiwari, SRI Combining Abstract Interpreters: 28

'

&

$

%

Quantified Abstract Domain

array-init(A, n)

1 for (i = 0; i < n; i++) {

2 A[i] = 0

3 }

[∀k(0 ≤ k < n ⇒ A[k] = 0)]

Ashish Tiwari, SRI Combining Abstract Interpreters: 29

'

&

$

%

Array Initialization

array-init(A, n)

1 for (i = 0; i < n; i++) {

(i = 1 ∧ A[0] = 0) ∨ (i = 2 ∧ A[0] = 0 ∧ A[1] = 0)

2 A[i] = 0

3 }

Let us write it out as a quantified fact.

Ashish Tiwari, SRI Combining Abstract Interpreters: 30

'

&

$

%

Array Initialization

array-init(A, n)

1 for (i = 0; i < n; i++) {

(i = 1 ∧ ∀k(k = 0 ⇒ A[k] = 0)) ∨

(i = 2 ∧ ∀k(k = 0 ⇒ A[k] = 0) ∧ ∀k(k = 1 ⇒ A[k] = 0))

2 A[i] = 0

3 }

Too many quantified facts...let us merge them into one.

i = 2 ∧ ∀k(⇒ A[k] = 0)

should be k = 0 b∨c k = 1 :

0 ≤ k ≤ 1⇒ (k = 0 ∨ k = 1)

Ashish Tiwari, SRI Combining Abstract Interpreters: 31

'

&

$

%

Array Initialization

array-init(A, n)

1 for (i = 0; i < n; i++) {

i = 1 ∧ ∀k(k = 0 ⇒ A[k] = 0) ∨

i = 2 ∧ ∀k(0 ≤ k < 2 ⇒ A[k] = 0)

2 A[i] = 0

3 }

Now we need to join two quantified facts.

Ashish Tiwari, SRI Combining Abstract Interpreters: 32

'

&

$

%

Array Initialization

i = 1 d∨e i = 2

∀k(k = 0⇒ A[k] = 0) ∀k(0 ≤ k < 2⇒ A[k] = 0)

1 ≤ i ≤ 2

∀k(⇒ A[k] = 0)

Obviously, should be k = 0b∧c0 ≤ k < 2.

k = 0 is no good.

Ashish Tiwari, SRI Combining Abstract Interpreters: 33

'

&

$

%

Array Initialization

i = 1 d∨e i = 2

∀k(k = 0⇒ A[k] = 0) ∀k(0 ≤ k < 2⇒ A[k] = 0)

1 ≤ i ≤ 2

∀k(⇒ A[k] = 0)

Hmmm, should be

i = 1⇒ k = 0b∧ci = 2⇒ 0 ≤ k < 2

Let us see if the answer satisfies this.

0 ≤ k < i⇒ (i = 1⇒ k = 0 ∧ i = 2⇒ 0 ≤ k < 2)

Ashish Tiwari, SRI Combining Abstract Interpreters: 34

'

&

$

%

The Quantified Domain

E ∧
∧

i

∀Ui(Fi⇒ ei)

Ashish Tiwari, SRI Combining Abstract Interpreters: 35

'

&

$

%

The Interface

Function Description

E1d∨eE2 join of E1 and E2

E1d∧eE2 meet of E1 and E2

d∃ex.E eliminate x from E

E1 b⇒c E2 partial order test comparing E1 and E2

(E1b∨cE2)/E under-approximate E ⇒ (E1 ∨E2)

(E1 ⇒ E′

1
)b∧c(E2⇒ E′

2
) underapprox. (E1 ⇒ E′

1
) ∧ (E2⇒ E′

2
)

b∀cx.(E ⇒ E′) underapproximate ∀x(E ⇒ E′)

Ashish Tiwari, SRI Combining Abstract Interpreters: 36

'

&

$

%

How are Under-Approximations Computed?

Under-approximation operators == Abduction

Given environment E and observation F , generate an explanation F ′ such that

E ∧ F ′ ⇒ F abduction
F ′ ⇒ (E ⇒ F) underapproximation

We start with over-approximations and then refine them using abduction.

Ashish Tiwari, SRI Combining Abstract Interpreters: 37

'

&

$

%

Magic

i = 1 d∨e i = 2

∀k(k = 0⇒ A[k] = 0) ∀k(0 ≤ k < 2⇒ A[k] = 0)

1 ≤ i ≤ 2

∀k(⇒ A[k] = 0)

Hmmm, should be

i = 1⇒ k = 0b∧ci = 2⇒ 0 ≤ k < 2

Compute
i = 1 ∧ k = 0d∨ei = 2 ∧ 0 ≤ k < 2

Join on linear arithmetic returns

1 ≤ i ≤ 2 ∧ 0 ≤ k < i

Ashish Tiwari, SRI Combining Abstract Interpreters: 38

'

&

$

%

Part IV. Theory Anyone?

Ashish Tiwari, SRI Combining Abstract Interpreters: 39

'

&

$

%

Part I. Invariant Checking

Program: A directed graph whose edges are labelled with:

• x := e

• x :=?

• skip

Ashish Tiwari, SRI Combining Abstract Interpreters: 40

'

&

$

%

Example

Given the following program and assertion z − x− y = n at the end, check if
assertion is an invariant of the program.

1 x := 0; y := 0; z := n;

2 while (*) {

3 if (*) {

4 x := x+1;

5 z := z-1;

6 } else {

7 y := y+1;

8 z := z-1;

9 }

10 }

assert(z - x - y = n)

x:= 0

y := 0

z := n

y++

z−−z−−

x++

skip

Ashish Tiwari, SRI Combining Abstract Interpreters: 41

'

&

$

%

Invariant Checking via Backward Propagation

Ashish Tiwari, SRI Combining Abstract Interpreters: 42

'

&

$

%

[n - 0 - 0 = n]

1 x := 0; y := 0; z := n;

[z - x - y = n]

2 while (*) {

[z - x - y = n]

3 if (*) {

4 x := x+1;

5 z := z-1;

[z - x - y = n]

6 } else {

7 y := y+1;

8 z := z-1;

[z - x - y = n]

9 }

[z - x - y = n]

10 }

Ashish Tiwari, SRI Combining Abstract Interpreters: 43

'

&

$

%

Simple Programs using Linear Arithmetic

Program P : Simple program using expression language of linear arith.
Assertion : linear arithmetic equality

In this case,

• At each point, we have a conjunction of linear equations

• Such a conjunct can have at most n non-redundant equations

• Therefore fixpoint converges in at most n iterations

Linear arithmetic equality invariant checking on simple programs is in PTIME

Ashish Tiwari, SRI Combining Abstract Interpreters: 44

'

&

$

%

Invariant Checking for Unitary Theories

e1 = e2 is an invariant at point π if every program path to π gives an
interpretation σ (for program variables) s.t. σ |= e1 = e2

Let σ1, σ2, . . . be all the interpretations reachable at π

Let σ be mguT(e1, e2). For all i,

e1σi =T e2σi

Implies σ is more general than σi

Implies σσi =T σi

Implies xσσi =T xσi for all x
Implies xσ = x is an invariant

If e1 = e2 is an invariant, then mguT(e1, e2) is an invariant in the simple
program model

Ashish Tiwari, SRI Combining Abstract Interpreters: 45

'

&

$

%

Invariant Checking for Unitary Theories

Program P : Expression language of a unitary theory
Assertion : e1 = e2, where ei are terms in the unitary theory

In this case,

• At each point, we have a conjunction of equations

• Such a conjunct can have at most n non-redundant equations (use
unification)

• Therefore fixpoint converges in at most n iterations

Invariant checking of equalities on simple programs over unitary theories is in
PTIME

Ashish Tiwari, SRI Combining Abstract Interpreters: 46

'

&

$

%

Example: A Simple Program over UFS

[c = c]

1 u := c; v := c;

[u = v]

2 while (*) {

[F (u) = F (v)] which is the same as [u = v]

3 u := F(u);

4 v := F(v);

[u = v]

5 }

[u = v]

Note that u = v is an invariant since all the following interpretations are
models of it:

〈u 7→ c, v 7→ c〉, 〈u 7→ Fc, v 7→ Fc〉, 〈u 7→ FFc, v 7→ FFc〉, . . .

Ashish Tiwari, SRI Combining Abstract Interpreters: 47

'

&

$

%

Disequality Invariant Checking is Undecidable

SolvePCP((u1, v1), . . . , (uk, vk)):
1 x := u1(ε); y := v1(ε);

2 while (*) {

3 if (*) {

4 x := u2(x); y := v2(y);

5 } elsif (*) {

6 x := u3(x); y := v3(y);

7 } elsif (*) {

8
...

9 } else {

10 x := uk(x); y := vk(y);

11 }

12 }

[x 6= y]

Ashish Tiwari, SRI Combining Abstract Interpreters: 48

'

&

$

%

Disjunctive Equality Invariant Checking is coNP-hard

Ashish Tiwari, SRI Combining Abstract Interpreters: 49

'

&

$

%

Solve3SAT(ψ):
c1 := 0; · · ·; cm := 0; // All clauses set to 0

if (*) {

All clauses containing b1 set to 1

} else {

All clauses containing ¬b1 set to 1

}
...

if (*) {

All clauses containing bn set to 1

} else {

All clauses containing ¬bn set to 1

}

[c1 = 0 ∨ c2 = 0 ∨ · · · ∨ cm = 0];

Invariant holds iff at least one clause is not satisfied for each assignment

Ashish Tiwari, SRI Combining Abstract Interpreters: 50

'

&

$

%

Equality Invariant Checking over UFS+LA

Recall the unification connection: For a simple program P over UFS+LA
F (a) + F (b) = F (x) + F (a+ b− x) is an invariant of P iff
x = a ∨ x = b is an invariant of P

Recursively using the same idea, we can write one equation e1 = e2 s.t.
e1 = e2 is an invariant of P iff
0 = c1 ∨ 0 = c2 ∨ · · · ∨ 0 = cm is an invariant of P

But checking this disjunctive assertion is coNP-hard

This proof generalizes to theories that can encode disjunction such as
x = a ∨ x = b

Ashish Tiwari, SRI Combining Abstract Interpreters: 51

'

&

$

%

Simple Programs over UFS+LA

Equality assertion checking is coNP-hard

We can show that it is decidable

The reason is that this theory is finitary

Hence backward propagation + unification can be shown to terminate

The argument generalizes to all convex and finitary theories

The result also generalizes richer program models that include assume
disequality nodes

Ashish Tiwari, SRI Combining Abstract Interpreters: 52

'

&

$

%

Richer Program Models

Additional edge labels:

• Assume(e1 6= e2)

• Assume(e1 = e2)

• Call(P)

If we include conditionals, then even for simple programs using simple
expression language (either UFS or LA), invariant checking is undecidable

Ashish Tiwari, SRI Combining Abstract Interpreters: 53

'

&

$

%

Summary of Results

Unification type of theory Complexity of Examples
of program expressions assertion checking

Strict Unitary PTIME `a, uf

Bitary coNP-hard `a+uf, c

Finitary-Convex Decidable `a+uf +c+ac

Figure 1: Results for simple programs. Row 4 holds even for disequality
guards.

Ashish Tiwari, SRI Combining Abstract Interpreters: 54

'

&

$

%

Summary

• Logical lattices are good candidates for thinking about and building abstract
interpreters

• Logical lattices can be combined in a new and important way
Logical Products:
◦ Logical product is more powerful than direct or reduced product
◦ Operations on logical lattices can be modularly combined to yield

operations for logical products
◦ Using ideas from the classical Nelson-Oppen combination method

Ashish Tiwari, SRI Combining Abstract Interpreters: 55

'

&

$

%

Summary

• The assertion checking problem:
◦ Equations in an assertion can be replaced by its complete set of
Th-unifiers for purposes of assertion checking

◦ Assertion checking over “lattices” defined by combination of two logical
lattices can be hard, even when it is in PTime for the lattices defined by
individual theories

◦ Finitary Th-unification algorithm implies decidability of assertion
checking for the logical lattices defined by Th

Ashish Tiwari, SRI Combining Abstract Interpreters: 56

'

&

$

%

Summary

• Base Abstract Domain 7→ Quantified Abstract Domain

• Require a rich interface from the base domain

• Ability to compute over- and under-approximations of various logical
operators

Ashish Tiwari, SRI Combining Abstract Interpreters: 57

'

&

$

%

Big Picture

Base Domains with rich API
�� �� �� �� · · · �� ��

Combination Domain: Logical Product
�� ��

Quantified Abstract Domain
�� ��

Applications: Memory Safety
�� ��

666

6

6

Ashish Tiwari, SRI Combining Abstract Interpreters: 58

'

&

$

%

Philosophy

Next Generation Automated Deduction Engine: Requirements–

Attributes Why Modern SMT Solvers

speed embedded use yes

support for theories symbols have meaning yes

interface embedded use lacking

beyond satisfiability need more lacking

reduced expressiveness partly

Ashish Tiwari, SRI Combining Abstract Interpreters: 59

