
HybridSAL Relational Abstractor: A New

Abstractor for Hybrid Systems

Ashish Tiwari

September 7, 2011

1 Detailed Example and the HybridSal Rela-
tional Abstractor Tool

Consider a simple 2-dimensional continuous system defined by

dx

dt
= −y + x

dy

dt
= −y − x

Assume we are given the initial condition x = 1, y = 2 and the invariant that y
is always non-negative. We wish to prove that x always remains non-negative.

This example can be encoded in HybridSAL as shown in Figure 1. The
HybridSAL syntax is almost identical to the syntax of SAL [2], but for a few
modifications that enable encoding of continuous dynamical systems. The key
changes in HybridSAL are:

• Variables whose name ends in dot denote the derivative. In Figure 1, there
are two state variables x, y, and their derivatives are denoted by variables
named xdot, ydot respectively. These special dot variables can only be used
as left-hand sides of simple definitions (equations) that appear in guarded
commands. Thus, the equation xdot′ = −y + x denotes the differential
equation dx/dt = −y + x.

• The guard of the guarded command that encodes the system of differential
equation denotes the state invariant; that is, the system is forced to remain
inside the invariant set while evolving as per the differential equations.
This meaning is consistent with the usual semantics of guards in SAL. In
Figure 1, the guard y ≥ 0 ∧ y′ ≥ 0 says that y ≥ 0 is the mode invariant
for the only mode in the system.

The definition of contexts, modules, and properties (theorems) are exactly as in
the SAL language [2].

1



Linear1: CONTEXT =

BEGIN

control: MODULE =

BEGIN

LOCAL x,y:REAL

LOCAL xdot,ydot:REAL

INITIALIZATION

x = 1; y = 2

TRANSITION

[

y >= 0 AND y’ >= 0 -->

xdot’ = -y + x ;

ydot’ = -y - x

]

END;

% proved using sal-inf-bmc -i -d 2 Linear1 helper

helper: LEMMA

control |- G(0.9239 * x >= 0.3827 * y);

% proved using sal-inf-bmc -i -d 2 -l helper Linear1 correct

correct : THEOREM

control |- G(x >= 0);

END

Figure 1: HybridSAL file describing a simple two-dimensional continuous dy-
namical system, along with two safety properties of that system.

The user creates a HybridSAL model, similar to the one shown in Figure 1,
using a text editor. Following the SAL convention for naming files, the Hy-
bridSAL file containing the model in Figure 1 is stored as file Linear1.hsal.
Thereafter, to prove the two properties contained in Linear1.hsal, the user
executes the following commands.

bin/hsal2hasal examples/Linear1.hsal . This command is run from the
root directory of the HybridSAL relational abstraction tool. It will create
a set of files in the subdirectory examples/, including the file Linear1.sal
that contains the relational abstraction of the original model. The process
of going from Linear1.hsal to Linear1.sal involves the following stages
(that are all performed in a single run of the above command):

Linear1.hsal −→ Linear1.hxml −→ Linear1.haxml −→ Linear1.xml −→ Linear1.sal

The hsal2hxml converter is in the subdirectory hybridsal2xml. It is
simply the HybridSAL parser that parses a files and outputs it in .hxml

2



format. The program bin/hsal2hasal can take as input either a .hsal

file or a .hxml file. It creates .hasal and .haxml – which is a file in
extended HybridSAL syntax – that contains the original model as well as
its relational abstraction. It is an intermediate file that is useful only for
debugging purposes at the moment. In the last stage, the final .xml and
.sal files are easily extracted from the .haxml files.

sal-inf-bmc -i -d 2 Linear1 correct . Once the relational abstraction has
been created, it can be model checked. Note that the relational abstraction
(in file Linear1.sal) is an infinite state system. Hence, we can not use fi-
nite state model checkers. We can, however, use the SAL infinite bounded
model checker (sal-inf-bmc) and the k-induction prover (sal-inf-bmc
-i). The k-induction prover can sometimes fail to prove a correct assertion
because the assertion is not inductive. In such a case, auxiliary lemmas
may be needed to complete a proof. In the running example, we need a
helper lemma. Using the lemma helper, the property correct can be
proved using the command:
sal-inf-bmc -i -d 2 -l helper Linear1 correct

The lemma helper can itself be proved using k-induction as:
sal-inf-bmc -i -d 2 Linear1 helper

This completes the discussion of the application of the HybridSAL relational
abstraction tool on the running example. For more complex examples, including
examples of hybrid systems, the reader is referred to the examples/ subdirectory
in the tool. We note a few points here.

Initialization The initial state of the system need not be a single point. It can
be a region of the state space. For example, in Figure 1, the initialization
section can be replaced by the initialization

INITIALIZATION

x IN {z:REAL|0 <= z AND z <= 1};

y IN {z:REAL|2 <= z AND z <= 3};

The new model can again be verified using the same set of commands
given above.

Composition The model need not be a single module, and it can be a com-
position of modules. Modules can be purely discrete – they need not all
have dynamics given by differential equations. For example, the example
in the File TGC.hsal describes a model of the train-gate-controller in Hy-
bridSAL that is a composition of five modules. Only one of the five has
continuous differential equations in the dynamics.

Apart from the syntax for writing differential equations, the HybridSAL
input language supports two additional features that are not part of the SAL
language [2]. These features are:

3



Invariant Apart from INITIALIZATION and TRANSITION blocks, each base-
module can also have an INVARIANT block. The invariant block contains
a formula that is an (assumed) invariant of the system.

In our running example, we can add the Invariant block:

INVARIANT y >= 0

in the basemodule, for example, just before/after the INITIALIZATION

block. Then, we could replace the guard y ≥ 0 ∧ y′ ≥ 0 by the new guard
True in the (only) transition. If φ is declared as the invariant, then it has
the effect of adding the formula φ∧φ′ in the guards of all transitions. This
is performed as a preprocessing step by the HSal Relational Abstractor.

INITFORMULA Instead of INITIALIZATION block, a HybridSAL input file
can contain a INITFORMULA block that has a formula as the initialization
predicate.

In our running example, the initialization block shown above can be re-
placed by

INITFORMULA 0 <= x AND x <= 1 AND 2 <= y AND y <= 3

without changing the meaning of the HybridSAL model.

The INITFORMULA block is also handled during the preprocessing phase.
The preprocessing phase also handles defined constants.

2 HSal Relational Abstractor: Flags

The HybridSAL Relational Abstractor tool accepts the following options/flags.

-n, –nonlinear With this option, the tool creates a more precise relational
abstraction, but it may be nonlinear. Even when the input model is
a linear continuous dynamical system, the output could be a nonlinear
discrete time system.

Currently, the SAL model checker can not analyze nonlinear discrete time
systems. Hence, this flag is useful only if using other backend tools that
can handle discrete time nonlinear systems.

By default, this option is not turned on, and the tool creates linear rela-
tional abstractions that can be analyzed by SAL infinite bounded model
checker.

-c, –copyguard With this option, the tool explicitly handles the guard in the
continuous dynamics as state invariants. Recall the HybridSAL code for
the differential equations dx/dt = −y + x, dy/dt = −y − x.

4



[

y >= 0 AND y’ >= 0 -->

xdot’ = -y + x ;

ydot’ = -y - x

]

Here the guard y ≥ 0∧y′ ≥ 0 says that y should be nonnegative both before
and after the transition. In other words, y ≥ 0 is the mode invariant. We
could have written the same dynamics as follows:

[

y >= 0 -->

xdot’ = -y + x ;

ydot’ = -y - x

]

The new HybridSAL file, when processed with the flag -c, produces the
same output as the original file would produce without the -c flag. Thus,
the -c flag causes copying of the guard of the continuous transitions, but
with variables replaced by their prime forms.

By default, this option is not turned on, and the tool assumes that the
input HybridSAL file already contains guards on prime variables.

-o, –opt This flag turns on some optimizations in the relational abstractor.
Currently, this flag causes the tool to construct a relational abstraction
that assumes that a certain amount of time is always spent in each mode.
This is an unsound assumption. Hence, the output of the relational ab-
stractor can be unsound when the -o flag is used.

The -o flag is useful if the (sound) relational abstraction is too large to be
analyzable (in reasonable time) by the model checker. In that case, the
user could try to create a simpler, but unsound, abstraction using the -o

flag and model checking it.

By default, this option is not turned on.

The tool is expected to include more options in the future as new extensions
and features are implemented.

3 HSal Relational Abstractor: Background

Hybrid dynamical systems are formal models of complex systems that have both
discrete and continuous behavior. It is well-known that the problem of verifying
hybrid systems for properties such as safety and stability is quite hard, both

5



in theory and in practice. There are no automated, scalable and compositional
tools and techniques for formal verification of hybrid systems.

HybridSAL is a framework for modeling and analyzing hybrid systems. Hy-
bridSAL is built as an extension of SAL (Symbolic Analysis Laboratory). SAL
consists of a language and a suite of tools for modeling and analyzing discrete
state transition systems. HybridSAL extends SAL by allowing specification of
continuous dynamics in the form of differential equations. Thus, HybridSAL
can be used to model hybrid systems. These models can be abstracted into
discrete finite state transition systems using the HybridSAL abstractor. The
abstracted system is output in the SAL language, and hence SAL (symbolic)
model checkers can be used to model check the abstraction. While HybridSAL
can be used to verify intricate hybrid system models, it is based on construct-
ing qualitative abstractions – which can be very coarse at times. Furthermore,
the HybridSAL abstractor is not compositional, and can not abstract modules
independently separately without being very coarse.

To alleviate the shortcomings of the HybridSAL abstractor, we developed the
concept of relational abstractions of hybrid systems. A relational abstraction
transforms a given hybrid system into a purely discrete transition system by
summarizing the effect of the continuous evolution using relations. The state
space of system and its discrete transitions are left unchanged. However, the
differential equations describing the continuous dynamics (in each mode) are
replaced by a relation between the initial values of the variables and final values
of the variables. The abstract discrete system is an infinite-state system that can
be analyzed using standard techniques for verifying systems such as k-induction
and bounded model checking.

Relational abstractions can be constructed compositionally by abstracting
each mode separately. Abstraction and compositionality are crucial for achiev-
ing scalability of verification. We have also developed techniques for construct-
ing good quality relational abstractions. The details are technical and can be
found in papers [3, 4]. The HybridSAL verification framework has been extended
by an implementation of relational abstraction.

3.1 Qualitative versus Relational Abstraction

Qualitative and predicate abstraction are techniques for abstracting a system
that work by simplifying the state space of the system. Specifically they re-
duce the state space of the system to a finite set of (qualitative) states defined
by certain (qualitative) predicates. In contrast, relational abstraction does not
simplify the state space but only simplifies the presentation of the dynamics
by replacing hard-to-analyze differential equations by discrete transitions. In
principle, predicate and qualitative abstraction can be used on a relational ab-
straction of a system to further approximate the system, if needed. The original
HybridSAL tool implements qualitative abstraction. The new HybridSAL Re-
lational Abstractor implements relational abstraction.

6



4 HSal Relational Abstractor: Technical Back-
ground

We extended the HybridSAL tool by implementing a relational abstractor for
HybridSAL models. The input to the tool is a specification of a hybrid system
in the HybridSAL language.

The verification workflow for using the HybridSAL relatioal abstractor is
as follows:

1. Create a model of a hybrid system in HybridSAL: The user creates such
a model in a file, say in file filename.hsal, using any text editor.

2. Construct a relational abstraction: The user runs the HybridSAL rela-
tional abstractor to create a discrete, but infinite-state relational abstrac-
tion of the original model. The relational abstraction is output in the SAL
language as filename.sal.

3. Analyze the SAL model: The user runs the SAL infinite bounded model
checker or k-induction prover to analyze the SAL model in filename.sal

We now discuss the implementation of the HybridSAL relational abstractor.
We first define relational abstraction of a continuous dynamical system.

Definition 1 (Relational Abstraction Without Time) Consider a contin-
uous dynamical system d~x

dt = f(~x), where ~x is a n × 1 vector of real-valued
variables. The relation R ⊆ R2n is a relational abstraction of this continuous
system if for all time trajectories τ : [0, T ) 7→ Rn of this system, it is the case
that (∀ t ∈ [0, T )) (τ(0), τ(t)) ∈ R.

Thus, a relational abstraction R captures all pairs of states (~x0, ~x) such that it
is possible to reach ~x from ~x) in a finite amount of time by evolving according
to the continuous dynamics. A relational abstraction of a hybrid system is
constructed by replacing each constituent continuous system by its relational
abstraction and keeping the discrete transitions unchanged.

We briefly describe the techniques implemented in the HybridSAL rela-
tional abstractor. Currently, HybridSAL relational abstractor can only con-
struct relational abstractions of hybrid systems in which all continuous dynam-
ics are given by linear ordinary differential equations. For linear systems, such
as d~x/dt = A~x, whenever A has real eigenvalues, useful relational abstrac-
tions can be generated using the eigenvectors of A′ corresponding to those
real eigenvalues [4]. Here, A′ denotes the transpose of matrix A. Specifi-
cally, if ~c is such that A′~c = λ~c, then by simple algebraic manipulation, we
obtain d

dt (c1x1 + . . . + cnxn) = λ(c1x1 + . . . + cnxn) where ~c := [c1; . . . ; cn]
and ~x := [x1; . . . ;xn]. Let p denote the linear expression c1x1 + . . . + cnxn
and let p0 denote the linear expression c1x10 + . . . + cnxn0. Here, xi0 de-
notes the old value of xi. If λ < 0, then we know that the value of p ap-
proaches zero monotonically. Consequently, we get the relational abstraction

7



Benchmark Affine Invs Affine+Eigen Invs Affine+Eigen+Box Invs
depth status time(s) depth status time(s) depth status time(s)

nav01 4 F 0.63 4 F 0.88 4 F 1.91
nav01 5 P 0.75 5 P 0.91 5 P 1.36
nav02 4 F 0.64 4 F 0.87 4 F 1.8
nav02 5 P 0.68 5 P 1.04 5 P 3.33
nav03 4 F 0.60 4 F 0.91 4 F 1.72
nav03 5 P 0.67 5 P 1.05 5 P 2.7
nav04 3 CE 0.49 8 F 3.21 8 F 34.883
nav04 4 P 0.75+0.99 4 P 0.98+2.21
nav05 2 CE 0.47 8 F 3.85 8 F 37.31
nav05 8 P 2.15+2.50 8 P 5.38+11.05
nav06 4 CE 0.61 8 F 18.01 8 F 494.5
nav06* 4 CE 1.03 8 P 21.80+7.42 8 P 40.22+35.08
nav07 5 CE 0.66 - - - 5 F 69.9
nav07 - - - 6 P 6.25
nav08 4 CE 0.52 - - - 6 CE 0.95
nav09 4 CE 0.57 4 CE 1.45 4 CE 19.87
nav10 3 CE 0.44 3 CE 0.99 3 CE 0.95

Table 1: Comparison of various abstractions over the NAV benchmarks. All
experiments were performed on an Intel Xeon E5630 2.53GHz single-core pro-
cessor (x86 64 arch) with 4GB RAM running Ubuntu Linux 2.6.32-26. Legend
— depth: k-induction depth, time: time taken by verifier, status: P: Proved
Property, CE: k-induction base case fails and counterexample is produced, F:
inductive step fails, no proofs or counterexample. Note: Relational eigenin-
variants are inapplicable for nav07, nav08 (indicated by -). k-induction timings
reported as t1 + t2 indicate that an auxiliary lemma was used. t1 is the time to
prove the property, and t2 to discharge the lemma.

(p0 ≤ p < 0) ∨ (p0 ≥ p > 0) ∨ (p = p0 = 0). Similarly, we can write the
relational invariants for the case when λ > 0 and λ = 0. This key idea also
generalizes to the case when d~x

dt = A~x+~b. We call such relational abstractions
eigen-invariants.

When A has complex eigenvalues, we get other kinds of relational abstrac-
tions; for details, the reader is referred to [4].

We evaluate the HybridSAL relational abstractor over the navigation bench-
marks [1]. The navigation benchmarks model a vehicle moving in a 2-dimensional
rectangular space [0,m− 1]× [0, n− 1]. This space is partitioned in m×n cells.
Let x, y denote the position of the vehicle and vx, vy denote its velocity. Then
the dynamics of the vehicle in any particular cell are given by the ODEs:

dx
dt = vx

dvx
dt = a11(vx − b) + a12(vy − c)

dy
dt = vy

dvy

dt = a21(vx − b) + a22(vy − c)

where the matrix A := [a11, a12; a21, a22] and the direction (b, c) are parameters
that can potentially vary (for each of the cells)1.

1The matrix A is Hurwitz: the dynamics for (vx, vy) asymptotically converge to (b, c).

8



Every benchmark in the suite is specified by fixing the matrix A, the number
of cells m × n, the direction (b, c) in each cell, and initial intervals for each
of the four state variables x, y, vx, vy. Our experiments focus on proving the
unreachability of a distinct cell marked B for each benchmark instance [1].

In our experiments, we verify the safety property for the navigation bench-
marks using k-induction over the relational abstraction. We use the SAL infinite
bounded model checker, with the k-induction flag turned on (sal-inf-bmc -i),
which uses the SMT solver Yices in the back end. Table 1 reports the results. For
each benchmark, we report the depth used for performing k-induction (under
“depth”), the output of k-induction (under “status”), and the time it took (un-
der “time”). There are three possible outputs: (a) the base case of k-induction
fails and a counterexample is found (denoted by “CE”), (b) the base case is
proved, but the induction step fails; i.e., no counterexample is found, but no
proof is found either (denoted by “F”), (c) the base case and the induction step
are successfully proved (denoted by “P”). Since we perform k-induction on an
abstraction, the counterexamples may be spurious, but the proofs are not. As
Table 1 indicates, relational abstractions are sufficient to establish safety of the
benchmarks nav01–nav05, nav06*, and nav07. The system nav06* is the same
as nav06 but with a slightly smaller set of initial states. However, the proof fails
on nav06 and nav08–nav10. There are two reasons for failure: (a) poor quality
of abstraction, which is reflected in entries “CE” in Table 1, and (b) inability
to find suitable k-inductive lemmas. This happens in the case of nav06, where
the proof fails without yielding a counterexample. We employed three kinds of
relational abstractions for each mode: affine, eigen, and box. Table 1 also shows
performance of each of these techniques.

For further details on relational abstraction, and for downloading the Hy-
bridSAL relational abstractor and documentation, the reader is referred to the
website http://www.csl.sri.com/~tiwari/relational-abstraction/.

5 Conclusion

Compositional verification of complex systems is a challenging problem. We
developed a new approach that enables compositional analysis of continuous
and hybrid dynamical systems. It is based on computing relational abstractions
of continuous dynamics of a complex system.

Relational abstraction replaces the differential equations in the system de-
scription by sound abstract discrete transitions, thus enabling application of
discrete verification tools. The HybridSAL relational abstractor automatically
computes such abstractions for linear hybrid systems. The extension to nonlin-
ear dynamics is left for future work.

9



References

[1] Rajeev Alur and George J. Pappas, editors. Benchmarks for Hybrid Systems
Verification, volume 2993 of Lecture Notes in Computer Science. Springer,
2004.

[2] SRI Intl. Formal Methods Group. SAL: Symbolic Analysis Laboratory, 2011.
http://sal.csl.sri.com/.

[3] Sriram Sankaranarayanan and Ashish Tiwari. Relational abstractions for
continuous and hybrid systems. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, Proc. 23rd Intl. Conf. on Computer Aided Verification, CAV, volume
6806 of Lecture Notes in Computer Science, pages 686–702. Springer, 2011.

[4] A. Tiwari. Approximate reachability for linear systems. In Proc. 6th Intl.
Workshop on Hybrid Systems: Computation and Control, HSCC 2003, vol-
ume 2623 of Lecture Notes in Computer Science, pages 514–525. Springer,
2003.

10


