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Problem Statement
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Initial Specifications

Input

◦ n: number of frequency bands

◦ Emitter table

◦ For each emitter type E: a weight WE and minimal coverage pE ∈ (0, 1]

Objective

◦ Compute in real time a scan schedule S that maximizes

F =
∑
E

WEPS(E)

where PS(E) is the probability of detecting E with S.

Coverage Constraints

◦ Make sure that PS(E) > pE for all E.
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Emitter Characteristics

For each emitter type E

◦ i: frequency band

◦ τE: nominal illumination time

◦ DDE: duration to detect

τ

Detection

DD
Receiver
Dwells

No detection

Signal
Emitter
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Central Concept: Regular Schedules

Definition

◦ Characterized by parameters δ1, . . . , δn and ∆1, . . . ,∆n.

◦ All dwells for band i are of length δi.

◦ Two successive dwells for band i are separated by a delay no more than ∆i.

δi δi δi<∆i <∆i <∆i<∆i δi

Important property

◦ If E is an emitter of band i, then a lower bound on PS(E) can be easily obtained
from δi and ∆i.
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Detection Probabilities

δi > DDE and ∆i 6 τE − 2DDE ⇒ PS(E) = 1

δ ∆

DD DD

τ

i i

δi > DDE and ∆i > τE − 2DDE ⇒ PS(E) >
δi + τE − 2DDE

δi + ∆i

∆ i

τ-DD

Blind spot

DD

δi
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Reformulating the Problem

Let Q(E) = min(1,
δi + τE − 2DDE

δi + ∆i
)

New Objective Function

G(∆1, . . . ,∆n) =
∑
E

WE Q(E)

Bounds on ∆i

◦ Upper bound: The constraints Q(E) > pE for emitters in band i give

∆i 6 Bi

where Bi depends on δi and on the emitters in band i.

◦ Lower bound: There is Ai below which Q(E) = 1 for all emitters in band i.
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Reformulating the Problem (cont’d)

Dwell times are fixed: δi is the maximal DDE among emitters E in band i.

New optimization problem:

◦ Objective:
maximize G(∆1, . . . ,∆n)

◦ Coverage constraints:
A1 6 ∆1 6 B1

...
An 6 ∆n 6 Bn

◦ Feasibility constraint:

Make sure that there exists a regular schedule S for
δ1, . . . , δn and ∆1, . . . ,∆n.
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Overview of the DSS Approach

’s∆

Found?
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Schedule Construction Algorithm
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Construction of Regular Schedules

Objective

◦ Given δ1, . . . , δn and ∆1, . . . ,∆n, compute a regular schedule S for these
parameter or determine that no such schedule exists.

Complexity

◦ This is an NP -hard problem

Necessary Conditions for Feasibility

◦ We must have δi 6 ∆j for i 6= j and
n∑
i=1

δi
δi + ∆i

6 1
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Translation to a Graph Problem

Regular Schedule:

◦ S is an infinite sequence of band indices (ft)t∈N

◦ At step t, let qi(t) be the delay since the last occurrence of band i:

qi(0) = 0

qi(t + 1) =

{
qi(t) + δft if ft 6= i

0 if ft = i.

qi (t)

δiδ i

Since S is regular, we have

∀t ∈ N : qi(t) 6 ∆i
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Translation to a Graph Problem (cont’d)

Directed graph defined by the δ’s and ∆’s

◦ Vertices:

Tuples q = (q1, . . . , qn) such that qi 6 ∆i for i = 1, . . . , n.

◦ Edges:

q −→ q′ if there is j such that

q′j = 0

q′i = qi + δj if i 6= j

Properties

◦ A regular schedule S is an infinite path in this graph.

◦ Since the set of vertices is finite, there is a regular schedule if and only if the
graph has a circuit.
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Algorithm

Naı̈ve Algorithm

◦ Search for a circuit in the graph using depth-first search starting from (0, . . . , 0).

◦ (The graph is too large to compute transitive closure or use other algorithms
that are polynomial in the graph size)

Optimizations

◦ Pruning to detect dead-ends early.

◦ Subsumption: finding a circuit is not necessary, a weaker property is sufficient.

◦ Heuristics to order the search.
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Pruning Technique

iq id

i i
(0,...,0) q

• q: last state on the current path, during depth-first search

• di = ∆i + δi − qi: deadline for the next dwell in band i

• if q is on an infinite path, we can add a sequence of n dwells after q, one for each
band, without missing any deadline

• Property: whether such a sequence of n dwells exits can be efficiently checked
via a test based on earliest-deadline-first scheduling (EDF)

• Pruning: if this EDF test fails, q is not on an infinite path: no need to explore further

• Generalization: consider more than one dwell per band
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Subsumption

Definition

◦ q subsumes q′ if q 6 q′, that is, qi 6 q′i for i = 1, . . . , n.

◦ if q 6 q′ then all sequences of bands admissible in q′ are admissible in q

Consequence

◦ instead of searching for a circuit, we can stop exploration whenever we reach a
q that subsumes a preceding state q′

q q

(0,...0) q’ q
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Hardness Estimation
Phase Transitions
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Estimating Hardness

Objective

◦ An instance consists of 2n parameters δ1, . . . , δn and ∆1, . . . ,∆n.

◦ We need to determine a priori whether an instance is likely to be feasible of not.

◦ This is essential to achieve “good enough/soon enough” guarantees.

Experiments on Random Instances

◦ Show that the utilization can be used to predict hardness

U =

n∑
i=1

δi
δi + ∆i

◦ On randomly generated instances, with δi and ∆i uniformly distributed, we see
a phase transition around U = 0.9, independent of n

– Almost all instances with U < 0.8 are feasible
– Almost no instance with U > 0.9 is feasible
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Phase Transition on Random Instances
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More Realistic Experiments

DSS Context

◦ Only ∆1, . . . ,∆n vary.

◦ The dwells δ1, . . . , δn are fixed a priori by the emitter table.

◦ Bounds on ∆1, . . . ,∆n are also given a priori:

Ai 6 ∆i 6 Bi.

Experiments

◦ For a fixed emitter table, generate random instances with ∆i uniformly
distributed between Ai and Bi

◦ Record how the number of feasible/infeasible instances varies with U
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Emitter Table 1
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Emitter Table 2
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Empirical Results

Results

◦ We still observe a phase transition for all the emitter tables we tried

◦ The sharpness and location of the transition vary with the emitter table

◦ Large dwells and small Ai’s cause the transition to move left (more instances
are hard)

Conclusion

◦ Experiments validate the use of U as a hardness indicator.

◦ Variation of hardness with U must be assessed for each emitter table and
coverage parameters.

◦ Two utilization bounds can be estimated empirically

– Ueasy: below which all instances are feasible
– Uhard: above which (almost) no instance is feasible
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Computing ∆’s
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Computing ∆’s

Objectives

◦ Find feasible ∆1, . . . ,∆n that maximize the function

G =
∑
E

WEQ(E)

and satisfy the constraints
Ai 6 ∆i 6 Bi.

Known Properties

◦ Determining feasibility is NP-hard

◦ Feasibility is related to

U =

n∑
i=1

δi
δi + ∆i

– U 6 Ueasy: very likely to be feasible
– U > Uhard: very unlikely to be feasible
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Computing ∆’s (cont’d)

The DSS problem can be decomposed in two steps:

Optimization Problem

◦ For an utilization bound U0, find ∆1, . . . ,∆n that maximize

G =
∑
E

WEQ(E),

under the constraints
Ai 6 ∆i 6 Bi,

n∑
i=1

δi
δi + ∆i

6 U0.

Schedule Construction

◦ For the optimal solution ∆1, . . . ,∆n to this problem, try to construct a regular
schedule S.

27



SRI System Design Laboratory

Selecting U0

Needs

◦ The two previous steps are iterated for several values of U0

◦ If step 2 succeeds, a solution is found: U0 is increased to attempt to find a
better schedule

◦ If step 2 fails, we need to relax the constraints by reducing U0

Approach Implemented

◦ Use dichotomy: maintain an interval [U1, U2] and take U0 = U1+U2
2

◦ Initially, U1 = Ueasy and U2 = Uhard

◦ If step 2 succeeds, set U1 = U0 otherwise set U2 = U0

◦ Iterate until U2 − U1 is small enough

Optimal strategy could be computed by solving a Markov Decision Process
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Solving the Optimization Problem

New Variables

xi =
1

δi + ∆i

then for any E in band i,

Q(E) = min(1, (τE + δi − 2DDE)xi) = min(1, αExi)

The problem is now almost linear:

Maximize
G =

∑
E

WE min(1, αExi)

under the constraints
1

Bi + δi
6 xi 6

1

Ai + δi
n∑
i=1

δixi 6 U0
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Idea Behind the Algorithm

Aggregate weights

◦ Take all emitters in band i and sort them in increasing order of 1/αE, say

1/αE1 6 1/αE2 6 . . . 6 1/αEm.

◦ Compute the aggregate weights:

agw(Ej) =

m∑
k=j

WEk

◦ Properties

– If 1/αEj−1 6 xi and xi + ε 6 1/αEj then increasing xi by ε increases G by
ε× agw(Ej)

– Increasing xi by ε has a cost of ε× δi in terms of utilization.
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Algorithm Overview

Optimal solution is found as follows:

◦ Sort all the emitters in decreasing order of the ratios agw(E)/δj:

agw(E1)/δi1 > agw(E2)/δi2 > . . . > agw(EN)/δiN

◦ Iteratively compute x1, . . . , xn so as to ensure

Q(E1) = 1, . . . , Q(EM) = 1

for as many of these emitters as possible (i.e., for the largest possible M ).

◦ Stop when
∑n

i=1 δixi = U0.
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Implementation
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Implementation

Software

◦ Around 10K lines of C

◦ Linux compatible

◦ Includes DSS algorithm plus all algorithms for generating and solving random
instances

◦ Output of DSS is a scan schedule given as a CDW table

Performance

◦ DSS computes a schedule in 1-2 seconds, depending on parameter settings,
on a 400MHz Pentium III

◦ Experimental evaluation performed by BAE System
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Multiplatform DSS
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Overview

Rely on fast schedule construction

Distribute load accross the platforms

◦ Each platform is assigned a subset of the bands to focus on

◦ The weight of emitters in other bands is set to 0

◦ This gives a local scan-scheduling problem that is solved by DSS

Experimental Evaluation

◦ Based on a simplified emitter simulator that generates on/off files for each
platform

◦ Can also use on/off files from BAE
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Architecture

Band
Allocation

Band
Allocation

DSS

Local Schedule

1, 3, 6, 8, ...

Weights &

Constraints
Coverage

Communication channel

DSS

Local Schedule

2, 4, 5, 7, ...
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Band Allocation Approach

Objective

◦ Ensure that all bands are covered (allocated to at least one platform)
◦ Balance the load among the platforms

Approach

◦ All platforms receive the same weight and coverage data, and perform the
same computation
◦ They all compute the total weight of each band:

Wi =
∑

E∈Bandi

WE

◦ Bands are then sorted in decreasing order of Wi/δi.
◦ Bands are partitioned into N balanced subsets (currently N = 2) using a

heuristic similar to the bin packing best-fit heuristic
◦ Platform j is assigned partition j.
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Conclusion
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Main Outcomes of the Work

Feasibility and benefits of on-line DSS generation

◦ Computing DSS in real time is possible even though the problem is NP-hard in
general

◦ Simulation shows improved detection performance of adapting scan-schedule
to changing mission priorities

◦ Online schedule construction algorithm enables dynamic cooperation between
multiple platforms

Main Innovation

◦ Combination of graph exploration algorithms with hardness prediction based
on utilization.
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Limits and Possible Extensions

Limits of Regular Schedules

◦ Too restrictive in some cases

◦ A regular schedule requires δj 6 ∆i whenever i 6= j. This rules out certain
emitter tables.

◦ In a regular schedule δi is the maximal DDE among emitters in band E. This
may be expensive if high-weight emitters in band i have DDE much smaller
than the maximum.

Possible Solutions

◦ Use non-regular schedules where dwells in a band have different lengths

◦ Graph exploration technique generalizes to this type of schedules without
much problem.

◦ Generalization of hardness estimation techniques less clear.

40



SRI System Design Laboratory

Limits and Possible Extensions (cont’d)

Coverage Constraints

◦ Useful in the multiplatform case for robustness: no emitter is totally ignored by
a platform

◦ But this can limit how well DSS does in overconstrained cases

Alternative: No Coverage Requirements

◦ Allows some emitter types to be ignored completely

◦ Should allow DSS to work beyond the “257 limit”

◦ Straightforward to implement, but has a nontrivial impact on the hardness
prediction
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Other Applications

• Graph algorithms and heuristics could be applicable to many other types of
scheduling problems

• Examples

◦ Task scheduling in RTOS

◦ Bus scheduling in TTA or similar architectures

◦ Communication scheduling in wireless networks

The relation between utilization and hardness should also generalize to these
examples
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