Dynamic On-the-fly Generation of Scan Schedules

Ants Final Demo November 2001

Bruno Dutertre System Design Laboratory SRI International e-mail: bruno@sdl.sri.com

_ 1

Outline

Single Platform DSS

- Problem Statement
- Construction of Regular Schedules
- Hardness and Phase Transitions
- \circ Finding Optimal \bigtriangleup 's
- Implementation

Multiplatform DSS

Conclusion

- Known Limits and Possible Improvements
- Generalizations

Problem Statement

Initial Specifications

Input

- \circ *n*: number of frequency bands
- Emitter table
- For each emitter type E: a weight W_E and minimal coverage $p_E \in (0, 1]$

Objective

 \circ Compute in real time a scan schedule S that maximizes

$$F = \sum_{E} W_E P_S(E)$$

where $P_S(E)$ is the probability of detecting *E* with *S*.

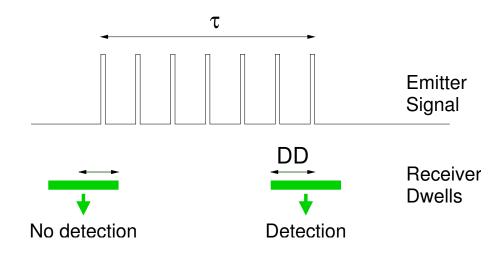
Coverage Constraints

• Make sure that $P_S(E) \ge p_E$ for all E.

Emitter Characteristics

For each emitter type E

- \circ *i*: frequency band
- $\circ \tau_E$: nominal illumination time
- \circ *DD*_E: duration to detect



Central Concept: Regular Schedules

Definition

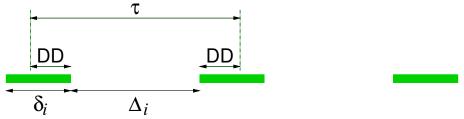
- Characterized by parameters $\delta_1, \ldots, \delta_n$ and $\Delta_1, \ldots, \Delta_n$.
- All dwells for band *i* are of length δ_i .
- \circ Two successive dwells for band *i* are separated by a delay no more than Δ_i .

Important property

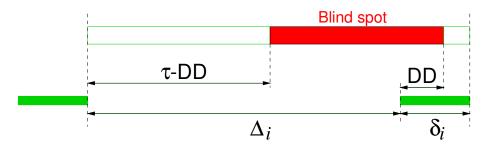
• If *E* is an emitter of band *i*, then a lower bound on $P_S(E)$ can be easily obtained from δ_i and Δ_i .

Detection Probabilities

 $\delta_i \ge DD_E \text{ and } \Delta_i \leqslant \tau_E - 2DD_E \implies P_S(E) = 1$



 $\delta_i \ge DD_E \text{ and } \Delta_i > \tau_E - 2DD_E \implies P_S(E) \ge \frac{\delta_i + \tau_E - 2DD_E}{\delta_i + \Delta_i}$



7

Reformulating the Problem

Let
$$Q(E) = \min(1, \frac{\delta_i + \tau_E - 2DD_E}{\delta_i + \Delta_i})$$

New Objective Function

$$G(\Delta_1,\ldots,\Delta_n) = \sum_E W_E Q(E)$$

Bounds on Δ_i

• Upper bound: The constraints $Q(E) \ge p_E$ for emitters in band *i* give

 $\Delta_i \leqslant B_i$

where B_i depends on δ_i and on the emitters in band *i*.

• Lower bound: There is A_i below which Q(E) = 1 for all emitters in band *i*.

Reformulating the Problem (cont'd)

Dwell times are fixed: δ_i is the maximal DD_E among emitters E in band i.

New optimization problem:

• Objective:

maximize $G(\Delta_1,\ldots,\Delta_n)$

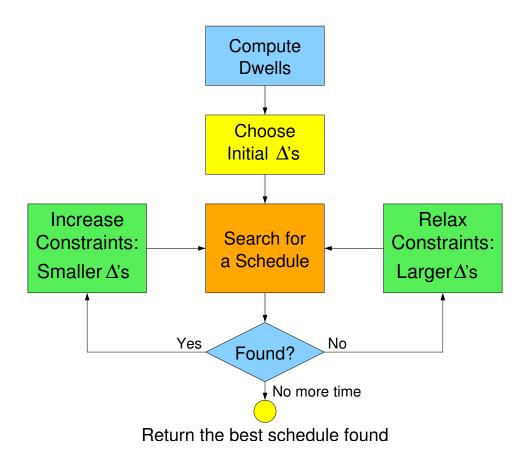
• Coverage constraints:

$$\begin{array}{rcl} A_1 & \leqslant & \Delta_1 & \leqslant & B_1 \\ & & \vdots \\ A_n & \leqslant & \Delta_n & \leqslant & B_n \end{array}$$

• Feasibility constraint:

Make sure that there exists a regular schedule S for $\delta_1, \ldots, \delta_n$ and $\Delta_1, \ldots, \Delta_n$.

Overview of the DSS Approach



10

____ SRI System Design Laboratory _____

Schedule Construction Algorithm

Construction of Regular Schedules

Objective

• Given $\delta_1, \ldots, \delta_n$ and $\Delta_1, \ldots, \Delta_n$, compute a regular schedule *S* for these parameter or determine that no such schedule exists.

Complexity

 \circ This is an NP-hard problem

Necessary Conditions for Feasibility

• We must have $\delta_i \leq \Delta_j$ for $i \neq j$ and

$$\sum_{i=1}^{n} \frac{\delta_i}{\delta_i + \Delta_i} \leqslant 1$$

Translation to a Graph Problem

Regular Schedule:

- $\circ S$ is an infinite sequence of band indices $(f_t)_{t\in\mathbb{N}}$
- At step t, let $q_i(t)$ be the delay since the last occurrence of band i:

$$q_{i}(0) = 0$$

$$q_{i}(t+1) = \begin{cases} q_{i}(t) + \delta_{f_{t}} & \text{if } f_{t} \neq i \\ 0 & \text{if } f_{t} = i. \end{cases}$$

$$q_{i}(t)$$

$$q_{i}(t)$$

Since *S* is regular, we have

$$\forall t \in \mathbb{N} : q_i(t) \leqslant \Delta_i$$

Translation to a Graph Problem (cont'd)

Directed graph defined by the δ 's and Δ 's

• Vertices:

Tuples
$$q = (q_1, \ldots, q_n)$$
 such that $q_i \leq \Delta_i$ for $i = 1, \ldots, n$.

• Edges:

 $q \longrightarrow q'$ if there is j such that

$$\begin{array}{rcl} q_j' &=& 0 \\ q_i' &=& q_i + \delta_j \text{ if } i \neq j \end{array}$$

Properties

- \circ A regular schedule *S* is an infinite path in this graph.
- Since the set of vertices is finite, there is a regular schedule if and only if the graph has a circuit.

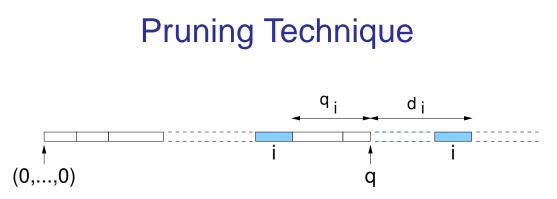
Algorithm

Naïve Algorithm

- \circ Search for a circuit in the graph using depth-first search starting from $(0, \ldots, 0)$.
- (The graph is too large to compute transitive closure or use other algorithms that are polynomial in the graph size)

Optimizations

- Pruning to detect dead-ends early.
- Subsumption: finding a circuit is not necessary, a weaker property is sufficient.
- Heuristics to order the search.



- q: last state on the current path, during depth-first search
- $d_i = \Delta_i + \delta_i q_i$: deadline for the next dwell in band i
- if q is on an infinite path, we can add a sequence of n dwells after q, one for each band, without missing any deadline
- Property: whether such a sequence of *n* dwells exits can be efficiently checked via a test based on earliest-deadline-first scheduling (EDF)
- Pruning: if this EDF test fails, q is not on an infinite path: no need to explore further
- Generalization: consider more than one dwell per band

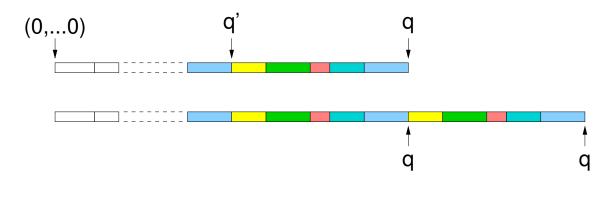
Subsumption

Definition

- $\circ q$ subsumes q' if $q \leq q'$, that is, $q_i \leq q'_i$ for $i = 1, \ldots, n$.
- \circ if $q\leqslant q'$ then all sequences of bands admissible in q' are admissible in q

Consequence

 \circ instead of searching for a circuit, we can stop exploration whenever we reach a q that subsumes a preceding state q'



____ SRI System Design Laboratory _____

Hardness Estimation Phase Transitions

Estimating Hardness

Objective

- An instance consists of 2n parameters $\delta_1, \ldots, \delta_n$ and $\Delta_1, \ldots, \Delta_n$.
- We need to determine a priori whether an instance is likely to be feasible of not.
- This is essential to achieve "good enough/soon enough" guarantees.

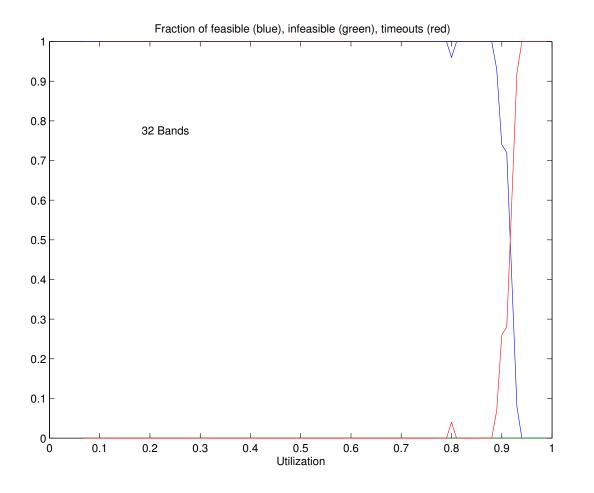
Experiments on Random Instances

• Show that the utilization can be used to predict hardness

$$U = \sum_{i=1}^{n} \frac{\delta_i}{\delta_i + \Delta_i}$$

- On randomly generated instances, with δ_i and Δ_i uniformly distributed, we see a phase transition around U = 0.9, independent of n
 - Almost all instances with U < 0.8 are feasible
 - Almost no instance with U > 0.9 is feasible

Phase Transition on Random Instances



20

More Realistic Experiments

DSS Context

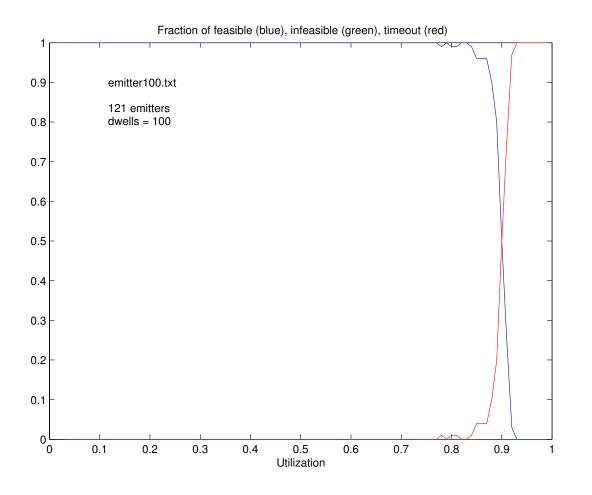
- \circ Only $\Delta_1, \ldots, \Delta_n$ vary.
- The dwells $\delta_1, \ldots, \delta_n$ are fixed a priori by the emitter table.
- \circ Bounds on $\Delta_1, \ldots, \Delta_n$ are also given a priori:

 $A_i \leqslant \Delta_i \leqslant B_i.$

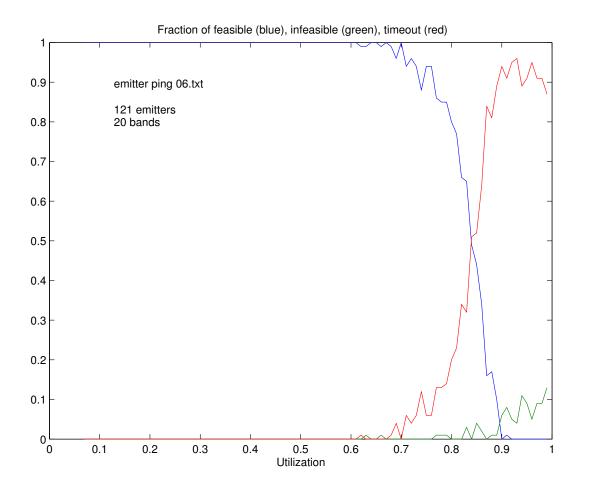
Experiments

- For a fixed emitter table, generate random instances with Δ_i uniformly distributed between A_i and B_i
- \circ Record how the number of feasible/infeasible instances varies with U

Emitter Table 1



Emitter Table 2



23

Empirical Results

Results

- \circ We still observe a phase transition for all the emitter tables we tried
- The sharpness and location of the transition vary with the emitter table
- Large dwells and small A_i 's cause the transition to move left (more instances are hard)

Conclusion

- \circ Experiments validate the use of U as a hardness indicator.
- \circ Variation of hardness with U must be assessed for each emitter table and coverage parameters.
- Two utilization bounds can be estimated empirically
 - $-U_{easy}$: below which all instances are feasible
 - U_{hard} : above which (almost) no instance is feasible

Computing Δ 's

Computing \triangle 's

Objectives

• Find *feasible* $\Delta_1, \ldots, \Delta_n$ that maximize the function

$$G = \sum_{E} W_{E}Q(E)$$

and satisfy the constraints

$$A_i \leqslant \Delta_i \leqslant B_i$$

Known Properties

- Determining feasibility is NP-hard
- \circ Feasibility is related to

$$U = \sum_{i=1}^{n} \frac{\delta_i}{\delta_i + \Delta_i}$$

– $U \leqslant U_{\text{easy}}$: very likely to be feasible

 $-U \ge U_{hard}$: very unlikely to be feasible

Computing \triangle 's (cont'd)

The DSS problem can be decomposed in two steps:

Optimization Problem

 \circ For an utilization bound U_0 , find $\Delta_1, \ldots, \Delta_n$ that maximize

$$G = \sum_{E} W_E Q(E),$$

under the constraints

$$A_i \leqslant \Delta_i \leqslant B_i,$$
$$\sum_{i=1}^n \frac{\delta_i}{\delta_i + \Delta_i} \leqslant U_0.$$

Schedule Construction

• For the optimal solution $\Delta_1, \ldots, \Delta_n$ to this problem, try to construct a regular schedule *S*.

Selecting U_0

Needs

- \circ The two previous steps are iterated for several values of U_0
- \circ If step 2 succeeds, a solution is found: U_0 is increased to attempt to find a better schedule
- \circ If step 2 fails, we need to relax the constraints by reducing U_0

Approach Implemented

- Use dichotomy: maintain an interval $[U_1, U_2]$ and take $U_0 = \frac{U_1 + U_2}{2}$
- \circ Initially, $U_1 = U_{easy}$ and $U_2 = U_{hard}$
- \circ If step 2 succeeds, set $U_1 = U_0$ otherwise set $U_2 = U_0$
- \circ Iterate until $U_2 U_1$ is small enough

Optimal strategy could be computed by solving a Markov Decision Process

Solving the Optimization Problem

New Variables

$$x_i = \frac{1}{\delta_i + \Delta_i}$$

then for any E in band i,

$$Q(E) = \min(1, (\tau_E + \delta_i - 2DD_E)x_i) = \min(1, \alpha_E x_i)$$

The problem is now almost linear:

Maximize

$$G = \sum_{E} W_E \min(1, \alpha_E x_i)$$

under the constraints

$$\frac{1}{B_i + \delta_i} \leqslant x_i \leqslant \frac{1}{A_i + \delta_i}$$
$$\sum_{i=1}^n \delta_i x_i \leqslant U_0$$

29

Idea Behind the Algorithm

Aggregate weights

 \circ Take all emitters in band *i* and sort them in increasing order of $1/\alpha_E$, say

$$1/\alpha_{E_1} \leq 1/\alpha_{E_2} \leq \ldots \leq 1/\alpha_{E_m}.$$

• Compute the aggregate weights:

$$\mathsf{agw}(E_j) \;=\; \sum_{k=j}^m W_{E_k}$$

- Properties
 - If $1/\alpha_{E_{j-1}} \leq x_i$ and $x_i + \varepsilon \leq 1/\alpha_{E_j}$ then increasing x_i by ε increases G by $\varepsilon \times \operatorname{agw}(E_j)$
 - Increasing x_i by ε has a cost of $\varepsilon \times \delta_i$ in terms of utilization.

Algorithm Overview

Optimal solution is found as follows:

• Sort all the emitters in decreasing order of the ratios $agw(E)/\delta_j$:

 $\operatorname{\mathsf{agw}}(E_1)/\delta_{i_1} \geqslant \operatorname{\mathsf{agw}}(E_2)/\delta_{i_2} \geqslant \ldots \geqslant \operatorname{\mathsf{agw}}(E_N)/\delta_{i_N}$

 \circ Iteratively compute x_1, \ldots, x_n so as to ensure

$$Q(E_1) = 1, \ldots, Q(E_M) = 1$$

for as many of these emitters as possible (i.e., for the largest possible M).

• Stop when $\sum_{i=1}^{n} \delta_i x_i = U_0$.

Implementation

Implementation

Software

- Around 10K lines of C
- Linux compatible
- Includes DSS algorithm plus all algorithms for generating and solving random instances
- Output of DSS is a scan schedule given as a CDW table

Performance

- DSS computes a schedule in 1-2 seconds, depending on parameter settings, on a 400MHz Pentium III
- Experimental evaluation performed by BAE System

SRI System Design Laboratory

Multiplatform DSS

Overview

Rely on fast schedule construction

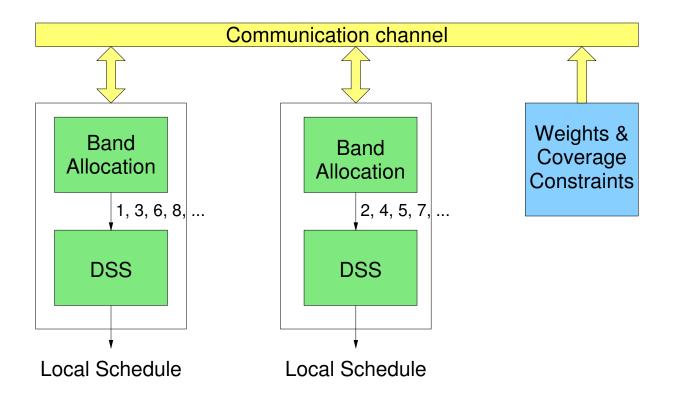
Distribute load accross the platforms

- Each platform is assigned a subset of the bands to focus on
- \circ The weight of emitters in other bands is set to 0
- \circ This gives a local scan-scheduling problem that is solved by DSS

Experimental Evaluation

- Based on a simplified emitter simulator that generates on/off files for each platform
- Can also use on/off files from BAE

Architecture



Band Allocation Approach

Objective

- Ensure that all bands are covered (allocated to at least one platform)
- Balance the load among the platforms

Approach

- All platforms receive the same weight and coverage data, and perform the same computation
- They all compute the total weight of each band:

$$W_i = \sum_{E \in \mathsf{Band}_i} W_E$$

- \circ Bands are then sorted in decreasing order of W_i/δ_i .
- Bands are partitioned into N balanced subsets (currently N = 2) using a heuristic similar to the bin packing best-fit heuristic
- \circ Platform *j* is assigned partition *j*.

Conclusion

Main Outcomes of the Work

Feasibility and benefits of on-line DSS generation

- Computing DSS in real time is possible even though the problem is NP-hard in general
- Simulation shows improved detection performance of adapting scan-schedule to changing mission priorities
- Online schedule construction algorithm enables dynamic cooperation between multiple platforms

Main Innovation

 Combination of graph exploration algorithms with hardness prediction based on utilization.

Limits and Possible Extensions

Limits of Regular Schedules

- \circ Too restrictive in some cases
- A regular schedule requires $\delta_j \leq \Delta_i$ whenever $i \neq j$. This rules out certain emitter tables.
- In a regular schedule δ_i is the maximal DD_E among emitters in band E. This may be expensive if high-weight emitters in band i have DD_E much smaller than the maximum.

Possible Solutions

- Use non-regular schedules where dwells in a band have different lengths
- Graph exploration technique generalizes to this type of schedules without much problem.
- Generalization of hardness estimation techniques less clear.

Limits and Possible Extensions (cont'd)

Coverage Constraints

- Useful in the multiplatform case for robustness: no emitter is totally ignored by a platform
- But this can limit how well DSS does in overconstrained cases

Alternative: No Coverage Requirements

- Allows some emitter types to be ignored completely
- Should allow DSS to work beyond the "257 limit"
- Straightforward to implement, but has a nontrivial impact on the hardness prediction

Other Applications

- Graph algorithms and heuristics could be applicable to many other types of scheduling problems
- Examples
 - Task scheduling in RTOS
 - Bus scheduling in TTA or similar architectures
 - Communication scheduling in wireless networks

The relation between utilization and hardness should also generalize to these examples