
Electronic Notes in Theoretical Computer Science 4 (1997)
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Clavel et al.� Based on rewriting logic. This makes it particularly well suited to express ina declarative way concurrent and state-changing aspects of systems. Pro-grams are theories, and rewriting logic deduction exactly corresponds toconcurrent computation.� Wide-spectrum. Rewriting logic is a logical and semantic framework inwhich speci�cation, rapid prototyping, and e�cient parallel and distributedexecution, as well as formal transformations from speci�cations to programscan be naturally supported [13].� Multiparadigm. Since rewriting logic conservatively extends equational logic[14], a equational style of functional programming is naturally supported in asublanguage. A declarative style of concurrent object-oriented programmingis also supported with a simple logical semantics. Since rewriting logic alsoextends Horn logic with equality in a conservative way [14], Horn logicprogramming can also be supported and extended in an implementationwith basic facilities for uni�cation.� Re
ective. Rewriting logic is re
ective [8,7]. The design of Maude capital-izes on this fact to support a novel style of metaprogramming with very pow-erful module-combining and module-transforming operations that surpassthose of traditional parameterized programming and can greatly advancesoftware reusability and adaptability.� Internal Strategies. The strategies controlling the rewriting process canbe de�ned by rewrite rules and can be reasoned about inside the logic.Therefore, instead of having a \Logic+Control" introduction of extra-logicalfeatures, in Maude \Control � Logic."Maude's implementation has been designed with the explicit goals of sup-porting executable speci�cation and formal methods applications, of beingeasily extensible, and of supporting re
ective computations. Although it isan interpreter, its advanced semi-compilation techniques support 
exibilityand traceability without sacri�cing performance. It can reach up to 200,000rewrites per second on some applications running on a 90 MHz Sun Hyper-SPARC.Section 2 explains the sublanguage of functional modules. An informalintroduction to rewriting logic and to object-oriented modules in given inSection 3. System modules, re
ection, and internal strategies are discussed inSection 4. Maude's metaprogramming capabilities are the subject of Section 5.Section 6 summarizes the semantic foundations of the language, and Section 7describes the interpreter implementation. We conclude with some plans forthe future.2 Functional ModulesFunctional modules de�ne data types and functions on them by means ofequational theories whose equations are Church-Rosser and terminating. Amathematical model of the data and the functions is provided by the initialalgebra de�ned by the theory, whose elements consist of equivalence classes2



Clavel et al.of ground terms modulo the equations. Evaluation of any expression to itsreduced form using the equations as rewrite rules assigns to each equivalenceclass a unique canonical representative. Therefore, in a more concrete waywe can equivalently think of the initial algebra as consisting of those canoni-cal representatives; that is, of the values to which the functional expressionsevaluate.As in the OBJ language [11] that Maude extends, functional modules canbe unparameterized, or they can be parameterized with functional theories astheir parameters. Functional theories have a \loose semantics," as opposedto an initial one, in the sense that any algebra satisfying the equations inthe theory is an acceptable model. For example, a parameterized list moduleLIST[X :: TRIV] forms lists of models of the trivial parameter theoryfth TRIV issort Elt .efthwith one sort Elt; those models as just sets of elements. Similarly, a sortingmodule SORTING[Y :: POSET] sorts lists whose elements belong to a modelof the POSET functional theory, that is, the elements must have a partial order.The equational logic on which Maude functional modules are based is anextension of order-sorted equational logic called membership equational logic[15,3]; we discuss this and give more details about the semantics of functionalmodules in Section 6.1. For the moment, it su�ces to say that, in additionto supporting sorts, subsorts, and overloading of function symbols, functionalmodules also support membership axioms, a generalization of sort constraints[22] in which a term is asserted to have a certain sort if a condition consisting ofa conjunction of equations and of unconditional membership tests is satis�ed.We can illustrate these ideas with a parameterized module PATH[G ::GRAPH] that forms paths over a graph. This module has a path concatenationoperation, has nodes as identities, and source and target functions.th GRAPH issorts Node Edge .ops s t : Edge -> Node . *** source and targetethfmod PATH[G :: GRAPH] issorts Path Path? .subsorts Node Edge < Path < Path? .ops s t : Path -> Node .op _;_ : Path? Path? -> Path? .var E : Edge .var N : Node .var P : Path .vars Q R S : Path? .eq (Q ; R) ; S = Q ; (R ; S) .cmb E ; P : Path if t(E) == s(P) .3



Clavel et al.eq s(N) = N .eq t(N) = N .ceq s(E ; P) = s(E) if t(E) == s(P) .ceq t(E ; P) = t(P) if t(E) == s(P) .ceq N ; P = P if s(P) == N .ceq P ; N = P if t(P) == N .endfmNote that the concatenation of two paths is a path if and only if the targetof the �rst is the source of the second. This follows as an inductive consequenceof the simpler conditional membership axiomcmb E ; P : Path if t(E) == s(P) .where E is an edge and P a path. We can then instantiate this modulewith a concrete graph corresponding to an automaton, and can evaluate pathexpressions to check whether they are valid paths in the automaton.fmod AUTOMATON issorts Node Edge .ops a b c : -> Node .ops f g h i j : -> Edge .ops s t : Edge -> Node .eq s(f) = a . eq t(f) = b .eq s(g) = c . eq t(g) = a .eq s(h) = b . eq t(h) = c .eq s(i) = c . eq t(i) = b .eq s(j) = b . eq t(j) = b .endfmmake RECOGNIZER is PATH[AUTOMATON] endm3 Rewriting Logic and Object-Oriented ModulesThe type of rewriting typical of functional modules terminates with a singlevalue as its outcome. In such modules, each step of rewriting is a step ofreplacement of equals by equals, until we �nd the equivalent, fully evaluatedvalue. In general, however, a set of rewrite rules need not be terminating, andneed not be Church-Rosser. That is, not only can we have in�nite chains ofrewriting, but we may also have highly divergent rewriting paths, that couldnever cross each by further rewriting.The essential idea of rewriting logic [18] is that the semantics of rewritingcan be drastically changed in a very fruitful way. We no longer interpret aterm t as a functional expression, but as a state of a system; and we no longerinterpret a rewrite rule t �! t0 as an equality, but as a local state transition,stating that if a portion of a system's state exhibits the pattern described byt, then that portion of the system can change to the corresponding instanceof t0. Furthermore, such a local state change can take place independently4



Clavel et al.from, and therefore concurrently with, any other non-overlapping local statechanges. Of course, rewriting will happen modulo whatever structural axiomsthe state of the system satis�es. For example, the top level of a distributedsystem's state does often have the structure of a multiset , so that we canregard the system as composed together by an associative and commutativestate constructor.We can represent a rewrite theory as a four-tuple R = (
; E; L;R), where(
; E) is a theory in membership equational logic, that speci�es states of thesystem as an abstract data type, L is a set of labels, to label the rules, andR is the set of labeled rewrite rules axiomatizing the local state transitions ofthe system. Some of the rules in R may be conditional [18].Rewriting logic is therefore a logic of concurrent state change. The logic'sfour rules of deduction|namely, re
exivity, transitivity, congruence, and re-placement [18]|allow us to infer all the complex concurrent state changes thata system may exhibit, given a set of rewrite rules that describe its elementarylocal changes. It then becomes natural to realize that many reactive systemsso speci�ed should never terminate, and that a system may evolve in highlynondeterministic ways through paths that will never cross each other.These ideas can be illustrated by explaining how concurrent object-orientedsystems can be speci�ed in rewriting logic, and how they can be executed usingMaude's object-oriented modules.In a concurrent object-oriented system the concurrent state, which is usu-ally called a con�guration, has typically the structure of a multiset made upof objects and messages. Therefore, we can view con�gurations as built up bya binary multiset union operator which we can represent with empty syntaxassubsorts Object Msg < Configuration .op __ : Configuration Configuration -> Configuration[assoc comm idr: null] .where the multiset union operator is declared to satisfy the structural lawsof associativity and commutativity and to have identity null. The subsortdeclarationsubsorts Object Msg < Configuration .states that objects and messages are singleton multiset con�gurations, so thatmore complex con�gurations are generated out of them by multiset union.As a consequence, we can abstractly represent the con�guration of a typ-ical concurrent object-oriented system as an equivalence class [t] modulo thestructural laws of associativity and commutativity obeyed by the multisetunion operator of a term expressing a union of objects and messages, i.e., asa multiset of objects and messages.An object in a given state is represented as a termhO : C j a1 : v1; : : : ; an : vniwhere O is the object's name or identi�er, C is its class, the ai's are the namesof the object's attribute identi�ers, and the vi's are the corresponding values.5



Clavel et al.The set of all the attribute-value pairs of an object state is formed by repeatedapplication of the binary union operator ; which also obeys structural lawsof associativity and commutativity; i.e., the order of the attribute-value pairsof an object is immaterial.Consider for example a concurrent system made up of sender and receiverobjects that communicate with each other by sending messages in an unreliableenvironment in which messages may be received out of order, some messagescan be lost, and other messages can be duplicated. A fault-tolerant connectionbetween two such objects can be accomplished by numbering the messages andsending acknowledgments back. A receiver object may have the form< R : Receiver | from: S, recq: Q, reccnt: M >where the attribute from is the name of the sending object, recq is thequeue of received messages, and reccnt is the receiver's counter. In Maude,the class Receiver of such objects is speci�ed by the declarationclass Receiver | from: OId, recq: Queue, reccnt: Nat .that introduces the attribute names and the corresponding value sorts. Theconcurrent local state change corresponding to the reception of one messagefrom the sender by the receiver object can then be described by the followinglabeled rewrite rule.rl [ receive ] :< R : Receiver | from: S, recq: Q, reccnt: M >(to: R (E,N))=> < R : Receiver | from: S,recq: (if N == s(M) then push(Q,E) else Q fi),reccnt: (if N == s(M) then s(M) else M fi) >(to: S ack N) .That is, the new value E is appended to the queue and the counter is increasedi� the number N in the message is M + 1; otherwise, the message is discardedand the receiver does not change its state, but in any case an acknowledgmentis always sent to the sender.The entire fault-tolerant protocol for sender and receiver objects|discussedin a somewhat di�erent way in Chandy and Misra [5], and similar in someways to the presentation of the alternating bit protocol by Lam and Shankar[?]|can be de�ned in the following parameterized object-oriented module.Note that Maude's syntax for object-oriented modules leaves implicit somewell-understood assumptions, such as the syntax for objects, the existence ofa multiset union operator to form con�gurations, and the conventions for classinheritance. However, object-oriented modules can be systematically trans-lated into ordinary rewrite theories by making explicit all these assumptions.They can therefore be understood as a special case of system modules. Adetailed account of this translation process can be found in [19].omod PROTOCOL[ELT :: TRIV] isprotecting QUEUE[ELT] . 6



Clavel et al.sort Contents Count .subsort Elt < Contents .op z : -> Count .op s_ : Count -> Count .op empty : -> Contents .msg to:_(_,_) : OId Elt Count -> Msg . *** data to receivermsg to:_ack_ : OId Count -> Msg . *** acknowledgment to senderclass Sender | rec: OId, sendq: Queue, sendbuff: Contents,sendcnt: Count, repcount: Count .class Receiver | from: OId, recq: Queue, reccnt: Count .vars S R : OId .vars N M X : Count .var E : Elt .var Q : Queue .var C : Contents .rl [ produce ] :< S : Sender | rec: R, sendq: cons(E, Q), sendbuff: empty,sendcnt: N, repcount: X > =>< S : Sender | rec: R, sendq: Q, sendbuff: E,sendcnt: s(N), repcount: s(s(s(z))) > .rl [ send ] :< S : Sender | rec: R, sendq: Q, sendbuff: E,sendcnt: N, repcount: s(X) > =>< S : Sender | rec: R, sendq: Q, sendbuff: E,sendcnt: N, repcount: X >(to: R (E,N)) .rl [ rec-ack ] :< S : Sender | rec: R, sendq: Q, sendbuff: C,sendcnt: N, repcount: X >(to: S ack M) =>< S : Sender | rec: R, sendq: Q,sendbuff: (if N == M then empty else C fi),sendcnt: N, repcount: X > .rl [ receive ] :< R : Receiver | from: S, recq: Q, reccnt: M >(to: R (E,N))=> < R : Receiver | from: S,recq: (if N == s(M) then push(Q,E) else Q fi),reccnt: (if N == s(M) then s(M) else M fi) >(to: S ack N) .endomThese de�nitions will generate a reliable, in-order communication mechanism7



Clavel et al.from an unreliable one. The message counts are used to ignore all out-of-ordermessages, and the replication count is used to replicate messages that may belost if the channel is faulty. The fairness assumptions of Maude will ensurethat the send action and corresponding receive actions will be repeated untila rec-ack can be performed, or the replication counter goes to zero. Onecan directly represent unbounded retransmission by eliminating this check aswell, although the protcol then relies more strongly on fairness assumption.In [23,19] it is explained how we can also model some fault modes of thecommunication channel by additional rewrite rules which duplicate or destroymessages declared in a module extending the one above.Formally, letting C denote the initial con�guration of objects and C 0 de-note con�guration resulting after rewriting, we have been able to deduce thesentence C �! C 0 as a logical consequence of the rewrite rules in the module.Indeed, the rules of deduction of rewriting logic support sound and completereasoning about the concurrent transitions that are possible in a concurrentsystem whose basic local transitions are axiomatized by given rewrite rules.That is, the sentence [t] �! [t0] is provable in the logic using the rewrite rulesthat axiomatize the system as axioms if and only if the concurrent transition[t] �! [t0] is possible in the system.In this object-oriented case we make several implicit assumptions, includ-ing the associativity and commutativity of the multiset union operator. Ingeneral system modules, however, the axioms E can be varied as a very 
ex-ible parameter to specify many di�erent types of concurrent systems. In thisway, rewriting logic can be regarded as a very general semantic framework forconcurrency that encompasses a very wide range of well-known models [18,21].Maude's default interpreter can be quite adequate for simulating concur-rent object-oriented systems. However, for the purposes of studying a systemin depth|for example, by exploring all the possible rewrites from a given stateto another|or of controlling the possibly highly nondeterministic evolutionof a system that need not be object-oriented, we need other means.4 System Modules, Strategies, and Re
ectionThe most general Maude modules are system modules. They specify the initialmodel of a rewrite theory R [18]. This initial model is a transition systemwhose states are equivalence classes [t] of ground terms modulo the equationsE in R, and whose transitions are proofs � : [t] �! [t0] in rewriting logic|that is, concurrent computations in the system so described. Such proofs areequated modulo a natural notion of proof equivalence that computationallycorresponds to the \true concurrency" of the computations.Consider for example a system module NIM specifying a version of thegame of Nim. There are two players and two bags of pebbles: a \draw" bagto remove pebbles from, and a \limit" bag to limit the number of pebbles thatcan be removed. The two players take turns making moves in the game. Ateach move a player draws a nonempty set of pebbles not exceeding those inthe limit bag. The limit bag is then readjusted to contain the least number8



Clavel et al.of pebbles in either the double of what the player just drew, or what was leftin the draw bag. The game then continues with the two bags in this newstate. The player who empties the draw bag wins. An intermediate move isaxiomatized by the rule [mv]; the last, winning move is axiomatized by therule win.mod NIM isprotecting BOOL .sorts Pebble Bag State .subsorts Pebble < Bag .op o : -> Pebble .op nil : -> Bag .op __ : Bag Bag -> Bag [assoc comm] .op _=<_ : Bag Bag -> Bool .op least : Bag Bag -> Bag .op state : Bag Bag -> State .vars X Y Z : Bag .eq o nil = o .eq nil =< X = true .eq o X =< nil = false .eq o =< o = true .eq o =< o X = true .ceq o X =< o = false if X =/= nil .eq o X =< o Y = X =< Y .eq least(X,Y) = if X =< Y then X else Y fi .crl [mv] : state(X Y,Z) => state(Y,least(X X,Y))if X =< Z and X =/= nil .crl [win] : state(X,Y) => state(nil,nil)if X =< Y and X =/= nil .endmThe initial model described by this module is the transition system con-taining exactly all the possible game moves allowed by the game. But thereare many bad moves that would allow the other player to win. A good playershould avoid such bad moves by having a winning strategy . With such a strat-egy, each move made by the player inexorably leads to success, no matter whatmoves the other player attempts.What we obviously want, in this and in many other examples, is to havegood ways of controlling the rewriting inference process|which in principlecould go in many undesired directions|by means of adequate strategies. Manysystems, for example theorem provers and declarative languages implementa-tions, support certain strategies of this nature. However, such strategies areoften external to the languages they control: they may constitute a sepa-rate programming language external to the logic, or may be part of the lan-guage's \extralogical features." In Maude, thanks to the re
ective capabilitiesof rewriting logic, strategies can be made internal to rewriting logic. That is,they can be de�ned by rewrite rules, and can be reasoned about as with rules9



Clavel et al.in any other theory. The value of specifying strategies with rewrite rules isalso emphasized in the most recent work on ELAN [2].In fact, there is great freedom for de�ning many di�erent strategy lan-guages inside Maude. This can be done in a completely user-de�nable way, sothat users are not limited by a �xed and closed strategy language. Also, evenif some users decide to adopt a particular strategy language because of itsgood features, such a language remains fully extensible, so that new featuresand new strategy concepts can be de�ned on top of them. Of course, suchlanguages should be de�ned in a disciplined way that guarantees that they arecorrect, that is, that they only produce valid rewrites, as we explain below.In Maude, a strategy language is a function on theories, that assigns to amodule M another module strat(M), whose terms are called strategy expres-sions specifying desired, possibly quite complex, set of rewrite deductions inthe original theory M . Executing such a strategy expression is simply rewrit-ing it using the rules in strat(M). In some cases, such executions may neverterminate. However, as the expression is being rewritten, more and more ofthe desired rewrites in the theory M that the strategy expression in questionwas supposed to describe become directly \visible" in the partially rewrittenstrategy expression. In this way, we can tame the wildness ofM by shifting ourground to a much more controllable theory strat(M). For example, strat(M)may be Church Rosser, and therefore essentially a functional module, so thatcomputations of strategy expressions become essentially deterministic. Thisis of course not a necessary requirement, but it is nevertheless an attractivepossibility in the context of a sequential implementation.We �rst brie
y discuss re
ection in rewriting logic and then explain howit can be used to de�ne and give semantics to internal strategy languages.Rewriting logic is re
ective [8,7]. That is, there is a rewrite theory U witha �nite number of operations and rules that can simulate any other �nitelypresentable rewrite theory R in the following sense: given any two terms t; t0in R there are corresponding terms hR; ti and hR; t0i in U such that we haveR ` t �! t0 () U ` hR; ti �! hR; t0i:Let us denote by FPTh the class of �nitely presented rewrite theories. Aninternal strategy language is a theory-transforming function strat : FPTh �!FPTh that satis�es speci�c semantic requirements [8,7]. A sound method-ology for de�ning such languages is to �rst de�ne a strategy language kernelas a function, say, meta : FPTh �! FPTh that sends R to a de�nitionalextension of U|or a suitable subtheory of U|by rewrite rules de�ning howrewriting in R is accomplished at the metalevel. A typical semantic de�nitionthat one wants to have in meta(R) is that of metaapply(l; t), that simulates atthe metalevel one step of rewriting at the top of a term t using the rule labeledl in R. Proving the correctness of such a small strategy language kernel isthen quite easy, by using the correctness of U itself as a universal theory. Thenext step is to de�ne a strategy language of choice, say strat, as a functionsending each theory R to a theory that extends meta(R) by additional strat-egy expressions and corresponding semantic rules, all of which are recursivede�nitional extensions of those in the kernel in an appropriate sense, so that10



Clavel et al.their correctness can then be reduced to that of the kernel.The descriptions of meta and strat that we have just given are phrasedin metalevel terms, that is, they are described as metalevel functions. Butin fact they are de�nable as functions within rewriting logic. Note that in Uthe theory R is represented as a term R. In fact, assuming a sorted versionof the logic, all such terms R are the elements of a sort Module in U . Thismeans that any e�ective function F : FPTh �! FPTh mapping a �nitelypresentable rewrite theory to another at the metalevel of the logic can nowbe represented at the object level as a computable function F : Module �!Module. Therefore, by the metatheorem of Bergstra and Tucker [1], we canalways specify such a function by a �nite set of Church-Rosser and terminatingrewrite equations in a suitable conservative extension of U .More details on the semantic de�nition of an internal strategy languagefor a logic in general, and for rewriting logic in particular, can be found in [7].Since the rewrite engine can be naturally regarded as an implementation of keyfunctionality in the universal theory U , the Maude implementation supports astrategy kernel META<X : Module> in a built-in fashion for greater e�ciency.The de�nition of a concrete strategy language STRAT as a functional moduleextending META is given in Appendix 9.A strategy expression in STRAT initially has the formrew T => ? with Swhere T stands for the representation t in U of a term t in the objecttheory R in question|for example, the two pebble bag (o o) in NIM has therepresentation ' ['o,'o] in STRAT<NIM>|and S is the rewriting strategythat we wish to compute. The symbol ? indicates that we are beginning thecomputation of such a strategy; as the computation proceeds, ? gets rewritteninto a tree of solutions, and S is rewritten into the remaining strategy to becomputed. In case of termination, this is the idle strategy and we are done.This language can then be used to �nd a winning strategy for the NIMexample. Such a strategy can easily be de�ned by extending the basic moduleSTRAT<NIM> with a couple of mutually recursive strategies movetowin andfindawinnerfmod NIM-WIN isextending STRAT <NIM> .ops mv win : -> Label .ops movetowin findawinner : -> StrategyName .vars T T' : Term . var SlT : SolTree . var SlTL : SolTreeList .eq rew T => SlTf<- T'g with movetowin =rew T => SlTf<- T'g with(apply(win);; idleorelse (dk-apply(mv); findawinner)) .eq rew T => SlTf<- mk(SlTL)g with findawinner =rew T => SlTf<- mk(SlTL)g 11



Clavel et al.with downleft ; (movetowin ;; (prunesol ; findawinner)orelse (prunerest ; up)) .endfmIntuitively, given a state hX; Y i in the game, movetowin will �nd a win-ning move hX 0; Y 0i for a player A if there is one, in the sense that eitherhX 0; Y 0i = hnil; nili or hX 0; Y 0i is a move that eventually will lead the playerA to success, no matter what moves the player B attempts, assuming that inthe following moves, the player A always plays with the strategy movetowin.In particular, movetowin de�nes the following strategy for a player Agiven a state hX; Y i in the game: try to win the game with just one move(apply(win)); if not, create a tree whose leaves hX 0i; Y 0i i, 1 � i � n, are allthe allowed moves from the state hX; Y i (dk-apply(mv)). Then, try to �nda leaf hX 0i; Y 0i i representing a state from which the player B can not make awinning move (findawinner); if not, the result of the strategy movetowin forthe player A will be failure.As expected, findawinner de�nes the following strategy for a player Aover a tree T (possibly empty) of allowed moves: try to select the �rst leafhX 01; Y 01i of T (downleft); note that if T is empty, the result of downleft willbe failure. Then, if the player B can make a winning move from hX 01; Y 01i(movetowin), prune that leaf (prunesol) and try to �nd among the rest ofthe leaves a winning move (findawinner); if the player B can not make awinning move from hX 01; Y 01i, prune the rest of the leaves (prunerest) andselect hX 01; Y 01i (up) as a winning move.We can then run the following examples to �nd a winning move when thereis one, or to fail to do so otherwise.Maude>red rew 'state[('__['o,'o,'o,'o]),('__['o,'o,'o])] => ?with movetowin .Result in sort StrategyExp:rew 'state[('__['o,'o,'o,'o]),('__['o,'o,'o])] =>^f<- 'state['__['o,'o,'o],'__['o,'o]]g with idle .Maude>red rew 'state[('__['o,'o,'o,'o,'o]),('__['o,'o,'o,'o])]=> ? with movetowin .Result in sort StrategyExp: failure .5 Metaprogramming in MaudePerhaps one of the most important new contributions of Maude is themetapro-gramming methodology that it supports in a simple and powerful way. Thismethodology is well integrated with the language's semantic foundations, par-ticularly with its logical foundations for re
ection.By \metaprogramming" we of course mean the capacity of de�ning pro-grams that operate on other programs as their data; in our case, equationaland rewrite theories that operate on other such theories as their data. By ob-serving that we can not only reify theories, but also views among them, this12



Clavel et al.includes the more traditional \parameterized programming" capabilities inthe Clear-OBJ tradition [4,11] as a particular instance. The di�erence is thatin that tradition theories are metalevel entities not accessible at the objectlevel of the logic, since this is only possible in an explicitly re
ective logicalcontext.What re
ection accomplishes is to open up to the user the metalelevel ofthe language, so that instead of having a �xed repertoire of parameterizedprogramming operations we can now de�ne a much wider range of theory-transforming and theory-combining operations that could not be de�ned usingmore traditional means. We have illustrated this power with the meta(X :Module) and strat(X : Module) constructions, that are \parameterized mod-ules" in this much more general sense. Another good example, given in [14],is the rei�cation of the logic map 	 : LLogic �! RWLogic from linear logic torewriting logic as an equationally de�ned function 	 : LLTheory �! Moduleinside rewriting logic. This example illustrates a general method by which,when using rewriting logic as a logical framework, we can always reify an ef-fectively given map of logics � : L �! RWLogic, sending �nitely presentabletheories in L to �nitely presentable rewrite theories, as an equationally de�nedfunction 	 : TheoryL �! Module inside rewriting logic.Many more examples could be given. Indeed, we plan to systematically ex-ploit Maude's metaprogramming capabilities to make the language and its en-vironment very easily extensible and modi�able, and to support many logicalframework and semantic framework applications such as: representation andinteroperation of logics inside rewriting logic, executable de�nition of otherlogical languages in Maude, and de�nition of theorem-proving environmentsand tools for Maude and for other languages inside rewriting logic.In summary, what re
ection makes possible in Maude is the de�nition of anopen, extensible, and user-de�nable module algebra supporting a new style ofmetaprogramming with very promising advantages for software methodology.6 The Semantics of MaudeWe summarize the semantic foundations of Maude's functional, object-oriented,and system modules.6.1 Membership equational logic and functional modulesMaude is a declarative language based on rewriting logic. But rewriting logichas its underlying equational logic as a parameter. There are for exampleunsorted, many-sorted, and order-sorted versions of rewriting logic, each con-taining the previous version as a special case. The underlying equational logicchosen for Maude is membership equational logic [15,3], a conservative ex-tension of both order-sorted equational logic and partial equational logic withexistence equations [15]. It supports partiality, subsorts, operator overloading,and error speci�cation.A signature in membership equational logic is a triple 
 = (K;�; S) with13



Clavel et al.K a set of kinds, (K;�) a many-sorted (although it is better to say \many-kinded") signature, and S = fSkgk2K a K-kinded set of sorts.An 
-algebra is then a (K;�)-algebra A together with the assignment toeach sort s 2 Sk of a subset As � Ak. Intuitively, the elements in sorts arethe good, or correct, or nonerror, or de�ned, elements, whereas the elementswithout a sort are error or unde�ned elements.Atomic formulas are either �-equations, or membership assertions of theform t : s, where the term t has kind k and s 2 Sk. General sentences areHorn clauses on these atomic formulae, quanti�ed by �nite sets of K-kindedvariables. That is, they are either conditional equations(8X) t = t if ( î ui = vi) ^ ( ĵ wj : sj)or membership axioms of the form(8X) t : s if ( î ui = vi) ^ ( ĵ wj : sj):Membership equational logic has all the usual good properties: soundnessand completeness of appropriate rules of deduction, initial and free algebras,relatively free algebras along theory morphisms, and so on [15].In Maude, functional modules are equational theories in membership equa-tional logic satisfying additional requirements. The semantics of an unparam-eterized functional module is the initial algebra speci�ed by its theory; thesemantics of a parameterized functional module is the free functor associatedto the inclusion of the parameter theory. Functional theories are also mem-bership equational logic theories, but they have instead a loose interpretation,in that all models of the theory are acceptable, although a functional theorymay impose the additional requirement that some of its subtheories shouldbe interpreted initially. This is entirely similar to the treatment of \objects"and theories in OBJ [11]. Indeed, since membership equational logic con-servatively extends order-sorted equational logic, Maude's functional modulesextend OBJ modules.Maude does automatic kind inference from the sorts declared by the userand their subsort relations. There is no need to declare kinds explicitly. Theconvenience of order-sorted notation is retained as syntactic sugar. Thus, anoperator declarationop push : Nat Stack -> NeStack .is understood as the membership axiom(8x; y) push(x; y) : NeStack if x : Nat ^ y : Stack:Similarly, a subsort declaration NeStack < Stack corresponds to the mem-bership axiom (8x) x : Stack if x : NeStack:Computation in a functional module is accomplished by using the equa-tions as rewrite rules until a canonical form is found. Therefore, the equationsmust satisfy the additional requirements of being Church-Rosser, terminat-ing, and sort-decreasing [3]. This guarantees that all terms in an equivalence14



Clavel et al.class modulo the equations will rewrite to a unique canonical form, and thatthis canonical form can be assigned a sort that is smaller than all other sortsassignable to terms in the class. For a module satisfying such conditions anyreduction strategy will reach a normal form; nevertheless, the user can assignto each operator a functional evaluation strategy in the OBJ style [11] to con-trol the reduction for e�ciency purposes. If no such strategies are declared, abottom-up strategy is chosen. Since Maude supports rewriting modulo equa-tional theories such as associativity or associativity/commutativity, all thatwe say has to be understood for equational rewriting modulo such axioms.In membership equational logic the Church-Rosser property of terminatingand sort-decreasing equations is indeed equivalent to the con
uence of theircritical pairs [3]. Furthermore, both equality and membership of a term in asort are then decidable properties [3]. That is, the equality and membershippredicates are computable functions. We can then use the metatheorem ofBergstra and Tucker [1] to conclude that such predicates are themselves speci-�able by Church-Rosser and terminating equations as Boolean-valued func-tions. This has the pleasant consequence of allowing us to include inequalitiest 6= t0 and negations of memberships not(t : s) in conditions of equations andof membership axioms, since such seemingly negative predicates can also beaxiomatized inside the logic in a positive way, provided that we have a sub-speci�cation of (not necessarily free) constructors in which to do it, and thatthe speci�cation is indeed Curch-Rosser, terminating, and sort decreasing. Ofcourse, in practice they do not have to be explicitly axiomatized, since they arebuilt into the implementation of rewriting deduction in a much more e�cientway.Let us denote membership equational logic by Eqtl : and its associatedrewriting logic by RWLogic :. Regarding an equational theory as a rewritetheory whose set of rules is empty de�nes a conservative map of logics [14]Eqtl : �! RWLogic :This is the way in which Maude's functional modules are regarded as a specialcase of its more general system modules.6.2 Semantics of object-oriented and system modulesAs already pointed out, the logic of Maude is the membership logic variant ofrewriting logic RWLogic:. A system module is then a rewrite theory. In theunparameterized case its semantics is the initial model de�ned by the theory[18], which is the algebra of all rewriting computations for ground terms in thetheory. From a systems perspective this model describes all the concurrentbehaviors that the system so axiomatized can exhibit. From that perspectivea term t denotes a state of the system, and a rewrite t �! t0 denotes a possiblyconcurrent computation.A system module can contain one or more parameter theories. The inclu-sion from the parameter(s) into the module then gives rise to a free extensionfunctor [17], which provides the semantics for the module. This of coursemeans that we can compose systems by putting together the rewrite theories15



Clavel et al.in which they are speci�ed.A rewrite theory has both rules and equations, so that rewriting is per-formed modulo such equations. However, this does not mean the Maude im-plementation must have a matching algorithm for each equational theory thata user might specify, which is impossible, since matching modulo an arbitrarytheory is undecidable. What we instead require for theories in system modulesis that:� The equations are divided into a set A of axioms, for which matching algo-rithms exist in the Maude implementation 4 , and a set E of equations thatare Church-Rosser, terminating and sort decreasing modulo A; that is, theequational part must be equivalent to a functional module.� The rules R in the module are coherent [25] (or at least what might becalled \weakly coherent" [19], Section 5.2.1) with the equations E moduloA.This means that appropriate critical pairs exist between rules and equationsallowing us to intermix rewriting with rules and rewriting with equationsin any way without losing rewrite computations by failing to perform arewrite that would have been possible before an equational deduction stepwas taken. In this way, we get the e�ect of rewriting modulo E [ A withjust a matching algorithm for A. In particular, a simple strategy availablein these circumstances is to always reduce to canonical form using E beforeapplying any rule in R.Since the state of the system speci�ed by a system module is axiomatized asan abstract data type by the equations E modulo A, and the rules in R arelocal rules for changing such a state, in practice the lefthand sides of rules inR only involve constructor patterns, so that coherence is a natural byproductof good speci�cation practice. Besides, using the completion methods in [25]one can check coherence, and one can try to make a set of rules coherent whenthey are not so.The semantics of object-oriented modules is entirely reducible to that ofsystem modules, in the sense that there is a systematic desugaring processtranslating each object-oriented module into its corresponding system mod-ule [19]. However, the particular ontology supported by object-oriented mod-ules is something very much worth keeping, and it does not exist for generalsystem modules. For example, in an object-oriented con�guration we have ob-jects that maintain their identity across their state changes, and the notionsof fairness adequate for them are more specialized than those appropriate forarbitrary system modules. The approach taken in Maude is to provide a logi-cal semantics for concurrent object-oriented programming by taking rewritinglogic as its foundation, and then de�ning in a rigorous way higher-level object-oriented concepts above such a foundation. The papers [19,20] provide goodbackground on such foundations. Talcott's paper [24] gives rewriting logic4 Maude's rewrite engine has an extensible design, so that matching algorithms for newtheories can be added and can be combined with existing ones [9]. At present, matchingmodulo associativity and commutativity, and a preliminary version of matching moduloassociativity are supported. 16



Clavel et al.foundations for actors from a somewhat di�erent viewpoint.The basic ideas about the re
ective semantics of Maude have already beendiscussed in Section 4. Much more detail can be found in [7].7 The Maude ImplementationThis section describes the implementation of the Maude interpreter, whichconsists of two main components: the front end and the engine.7.1 Front end and module evaluationThe front end of the Maude interpreter is built on top of the OBJ3 frontend, and is written in Common Lisp. The Maude front end shares withOBJ3 the convenient mix�x syntax for user-de�ned symbols and expressiveparameterized programming mechanisms. The Maude front end augments thiswith additional syntax for Maude language constructs, tracing and debuggingcommands, complete disambiguation of ad-hoc overloaded operators, a com-plete module-
attening operation, a specialized pretty- and unpretty-printer,a program transformation from object-oriented modules to system modules,and support for meta-level speci�cations. The result is that users can enterMaude speci�cations using powerful parameterized programming constructsand mix�x syntax which are completely eliminated before a Maude speci�ca-tion is passed to the engine. Output from the engine is passed back througha pretty-printer which reparses the output in pre�x form, and then prints theresult in the user-declared mix�x style. Timing and rewriting statistics fromthe engine are also reported from the engine to the user through the front end.7.2 Maude's rewrite engineThe design objectives of the Maude rewrite engine are consistent with the ex-ecutable speci�cation and formal method uses that we wish to support. Thesystem should \look and feel" like an interpreter, should be capable of support-ing user interrupts and source level tracing, and above all should be extensiblewith new equational theories and new built-in operators both of which mayrequire new term/data representations to be integrated seamlessly with exist-ing term/data representations. Re
ective capabilities are also central to ourdesign, since the system should support arbitrary levels of meta-rewriting.Although we have sought the most e�cient implementation meeting theabove objectives, supporting them all but rules out a number of performanceenhancing techniques such as: compilation to native machine code (or C);compilation to a �xed architecture abstract machine; program transforma-tions and partial evaluation; and tight coupling between the matching/ re-placement/ normalization code for di�erent equational theories|i.e., wherecode operating on symbols in one equational theory recognizes symbols inalien theories and makes use of their properties.The design chosen is essentially a highly modular semi-compiler where themost time consuming run-time tasks are compiled at parse-time into a sys-17



Clavel et al.
Core FacilitiesSort, VariableSymbol,Variable, Equation,Substitution,: : : Theory InterfaceSymbol, DagNode,Term,LhsAutomaton,: : :

Free TheoryFreeSymbol,FreeDagNode,FreeTerm,: : : AC TheoryAC Symbol,AC DagNode,AC Term,: : : A TheoryA Symbol,A DagNode,A Term,: : : � � �
BOOLEqualitySymbol,BranchSymbol,SortTestSymbol META-THEORYMetaRewriteSymbol � � �
Front EndMaudeModule, Attribute,SortWithTests(+ bison & 
ex code) Utility Data TypesVector, Graph, Digraph,UnionFind, IntSetDiophantineSystem,: : :Fig. 1. Overall structure of the Maude Interpreter's Rewrite Enginetem of lookup tables and automata which are interpreted at run-time. Aftersome early experiments it was found very useful to have two distinct repre-sentations for terms. For most uses terms are represented as trees, in whichnodes are decorated with all kinds of information to simplify parse time anal-ysis. For the subject term being rewritten, however, a directed-acyclic-graph(DAG) representation is used with very compact nodes. Heavy use is made ofobject-oriented structuring techniques and great care has been taken to ensureextensibility and to make the bulk of the engine application-independent.The overall structure of the rewrite engine is shown in Figure 1, whereeach module is shown as a box and some of the names of the modules classesare shown in each box. Solid arrows indicate that some of the classes in thetarget module are derived from classes in the source module; dotted arrowsindicate that classes in the target module use facilities provided by the sourcemodule. The modules themselves are organized in a layered structure whereinner layers have no knowledge of, or dependency on, outer layers.The innermost layer consists of the modules Core Facilities and TheoryInterface. The Theory Interface consists of abstract classes for basic objects18



Clavel et al.whose concrete realization will di�er for di�erent equational theories, such as:symbols, dag nodes, terms, lefthand side automata (for matching), righthandside automata (for constructing and normalizing righthand side and conditioninstances), matching subproblems and matching extension information. Someof the classes in the Theory Interface contain some concrete data and functionmembers to provide useful common functionality to derived classes. The CoreFacilities module consists of concrete classes for basic objects that are indepen-dent of the di�erent equational theories, such as: sorts, connected components(kinds), variable symbols, variables (as terms), equations, sort constraints,rules, sequences of matching subproblems and substitutions. Neither the CoreFacilities nor the Theory Interface treat any sort, symbol or equational theoryas special in any way whatsoever; all are manipulated through virtual func-tions in the abstract classes belonging to the Theory Interface. In particular,this means that the code that handles conditional equations knows nothingabout the Maude built in sort Bool and its built in constants true and false.Instead conditional equations always have the forml = r if c1 = c2:and if a more complex boolean condition b is desired, it is encoded as theequality b = true.The next layer consists of modules for individual equational theories. Eachmodule in this layer consists of concrete descendents of abstract classes fromthe Theory Interface, which provide a theory-speci�c implementation of vir-tual functions such as match(), compileLhs() and rewrite(). In this way eachequational theory has its own representation objects such as symbols, terms,dag nodes and matching automata. At this level there are no special sorts orsymbols and each module is only aware of the representation of its own classes;everything else is alien and is manipulated through the Theory Interface.The next layer consists of modules containing classes which provide sym-bols with non-standard run-time properties. Even here there are no specialsorts or symbols; only classes for symbols that have rather generalized non-standard run-time behavior. The BranchSymbol class for example can be usedto generate all manners of conditional constructs including the `if-then-else-�'needed for Maude. These classes only a�ect the behaviour of a symbol whenan attempt is made to rewrite at a dag node containing it. All other properties(such as matching and normalization) and data representations are inheritedfrom the parent equational theory.The outermost module Front End contains a rudimentary parser, the classMaudeModule and a couple of minor classes. Only here do Maude speci�coperators such as `if-then-else-�' and `meta-apply' really exist. The FrontEnd is dependent on all the other modules but no other module depends onit. It can be changed or replaced without modifying the rest of the engine.One �nal module is the Utility Data Types. This contains classes and classtemplates implementing `components of general utility' such as vectors, graphsand Tarjan's union-�nd data structure. These are used freely throughout theengine. 19



Clavel et al.Performance enhancing techniques implemented in the current prototypeinclude:(i) Fixed size dag nodes for in-place replacement.(ii) Full indexing for the topmost free function symbol layer of patterns; whenthe patterns for some free symbol only contain free symbols this is equiv-alent to matching a subject against all the patterns simultaneously.(iii) Use of greedy matching algorithms, which attempt to generate a singlematching substitution as fast as possible for patterns and subpatternsthat are simple enough and whose variables satisfy certain conditions(such as not appearing in a condition). If a greedy matching algorithmfails it may be able to report that no match exists; but it is also allowedto report `undecided' in which case the full matching algorithm must beused.(iv) Use of binary search during AC matching for fast elimination of groundterms and previously bound variables.(v) Use of a specially designed sorting algorithm which uses additional infor-mation to speed up the renormalization of AC terms.(vi) Use of a Boyer-Moore style algorithm for matching under associativefunction symbols.(vii) Compile time analysis of sort information to avoid needless searchingduring associative and AC matching.(viii) Compile time analysis of non-linear variables in patterns in order to prop-agate constraints on those variables in an `optimal' way and reduce thesearch space.(ix) Compile time allocation of �xed size data structures needed at run time.(x) Caching dynamically sized data structures created at run time for laterreuse if they are big enough.(xi) Bit vector encoding of sort information for fast sort comparisons.(xii) Compilation of sort information into regularity tables for fast incrementalcomputation of sorts at run time.(xiii) E�cient handling of matching with extension through a theory indepen-dent mechanism that avoids the need for extension variables or equations.In large examples involving the free theory, we have observed speedups inthe order of 35{55 times faster than the OBJ3 implementation, reaching up to200,000 rewrites per second on a 90 MHz Sun HyperSPARC. For examples ofassociative commutative rewriting we have observed typical speeds of 10,000rewrites per second, and in some cases three or more orders of magnitudespeedup over OBJ3.The current version of the engine comprises 79 classes implemented byapproximately 19500 lines of C++.
20



Clavel et al.8 Future PlansWe have introduced the main ideas and the basic principles of Maude and haveillustrated them with examples. In addition to continued work on theoreticalfoundations much more experimentation and implementation work lies aheadof us. The following areas will receive special attention:� Further development of, and experimentation with, Maude's re
ective andmetaprogramming capabilities.� Experimentation with di�erent strategy languages, development of usefulstrategy libraries, and study of parallel strategies.� Extension of the rewrite engine with matching algorithms for new equationaltheories.� Implementation of uni�cation algorithms to support narrowing computa-tions in addition to rewriting. This will also allow adequate treatment ofrules with extra variables in their righthand sides, that are not supportedby the current implementation.� Development of a theorem-proving environment supporting automated rea-soning about speci�cations in Maude and in other languages.� Implementation of foreign interface modules [23,19], to support frequentlyoccurring computations in a more e�cient, built-in way.� Input-Output. This should be naturally speci�ed using Maude's concurrentobject-oriented concepts.� Compilation of Maude, as well as parallel and distributed implementationsof the language.� Applications and case studies. Application areas that seem particularlypromising include: logical framework applications, module algebra and meta-programming methodology, object-oriented applications, symbolic simula-tion, real-time system speci�cation, parallel programming, and uses of Maudeas a programming language de�nition and prototyping tool.AcknowledgementsWe cordially thank Timothy Winkler and Narciso Mart��-Oliet for their valu-able contributions to the development of the Maude ideas. We also thankCarolyn Talcott for many discussions on Maude and for her valuable sugges-tions on strategy aspects. We are grateful for very helpful discussions andexchanges with Kokichi Futatsugi, Claude and H�el�ene Kirchner, Martin Wirs-ing, Ulrike Lechner, Christian Lengauer, and many other colleagues. Ourprevious work with Joseph Goguen and the other members of the OBJ teamhas also in
uenced the development of our ideas.References[1] Jan Bergstra and John Tucker. Characterization of computable data types bymeans of a �nite equational speci�cation method. In J. W. de Bakker and J. van21
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Clavel et al.op _,_ : TermList TermList -> TermList [assoc] .op error* : -> Term .*** meta-apply is a built in function, that takes the meta-representation*** of a term, a rule label and a natural number in peano representation.****** meta-apply(t, l, n) is evaluated as follows:*** (1) "t" is converted to the term it represents.*** (2) this term is fully reduced using the equations*** (3) the resulting term is matched against all rules with label "l"*** with matches that fail to satisfy the condition of their rule*** discarded.*** (4) the first "n" successful matches are discarded*** (5) if there is an (n+1)th match, its rule is applied using that*** match; otherwise "error*" is returned*** (6) the new term is fully reduced using the equations*** (7) the resulting term is converted to a meta-term which is returnedop meta-apply : Term Label Nat -> Term .op z : -> Nat .op s : Nat -> Nat .endfm*** Here we just introduce the specification of STRAT <M : Mod> needed to*** compute reductions in NIM-WINfmod STRAT <M : Mod> isextending META <M> .sorts SolTree SolTreeList SolTreeExp StrategyName Strategy StrategyExp .subsort Term < SolTree .subsort SolTree < SolTreeList .subsort SolTree < SolTreeExp .subsort StrategyName < Strategy .op ? : -> SolTreeExp .op ^ : -> SolTree .op _,_ : SolTree SolTreeList -> SolTreeList .op mk : SolTreeList -> SolTree .op _f<-_g : SolTree SolTree -> SolTree .op sols : Term Label Nat -> SolTreeList .op failure : -> StrategyExp .op rew_=>_with_ : Term SolTreeExp Strategy -> StrategyExp .op _andthen_ : StrategyExp Strategy -> StrategyExp .op idle : -> Strategy .op _;_ : Strategy Strategy -> Strategy .op _;;_orelse_ : Strategy Strategy Strategy -> Strategy .op apply : Label -> Strategy .op dk-apply : Label -> Strategy .op downleft : -> Strategy .op up : -> Strategy .op prunesol : -> Strategy .op prunerest : -> Strategy . 24



Clavel et al.var N : Nat . vars T T' T'' : Term . var L : Label .var SlT SlT' : SolTree . var SlTL : SolTreeList .var S S' S'' : Strategy .eq rew T => ? with S = rew T => ^f<- Tg with S .eq rew T => SlT with (S ; S') = (rew T => SlT with S) andthen S' .eq rew T => SlT with idle andthen S = rew T => SlT with S .eq failure andthen S = failure .eq rew T => SlT with (S ;; S'' orelse S') =if rew T => SlT with S == failure then rew T => SlT with S'else rew T => SlT with S andthen S'' fi .eq rew T => SlTf<- T'g with apply(L) =if meta-apply(T',L,z)== error* then failureelse rew T => SlTf<- meta-apply(T',L,z)g with idle fi .eq rew T => SlTf<- T'g with dk-apply(L) =rew T => SlTf<- mk(sols(T',L,z))g with idle .eq rew T => SlTf<- mk(sols(T',L,N))g with downleft =if meta-apply(T',L,N) == error* then failureelse rew T => SlTf<- mk(^,sols(T',L,s(N)))gf<- meta-apply(T',L,N)g with idle fi .eq rew T => SlTf<- mk(^,SlTL)gf<- T'g with prunesol =rew T => SlTf<- mk(SlTL)g with idle .eq rew T => SlTf<- mk(^,SlTL)gf<- T'g with prunerest =rew T => SlTf<- ^gf<- T'g with idle .eq rew T => SlTf<- ^gf<- T'g with up = rew T => SlTf<- T'g with idle .endfm
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