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Abstract

This paper introduces the basic concepts of the rewriting logic language Maude and
discusses its implementation. Maude is a wide-spectrum language supporting for-
mal specification, rapid prototyping, and parallel programming. Maude’s rewriting
logic paradigm includes the functional and object-oriented paradigms as sublan-
guages. The fact that rewriting logic is reflective leads to novel metaprogramming
capabilities that can greatly increase software reusability and adaptability. Con-
trol of the rewriting computation is achieved through internal strategy languages
defined inside the logic. Maude’s rewrite engine is designed with the explicit goal
of being highly extensible and of supporting rapid prototyping and formal methods
applications, but its semi-compilation techniques allow it to meet those goals with
good performance.

1 Introduction

Maude is a logical language based on rewriting logic [16,23,19]. It is therefore
related to other rewriting logic languages such as Cafe [10], ELAN [12], and
DLO [6]. The equational language OBJ [11] can be regarded as a functional
sublanguage of Maude.

This paper gives an introduction to the language and its interpreter im-
plementation. Particular emphasis is placed on its basic principles and on its
semantics. The style is informal, and the ideas are illustrated with simple
examples to facilitate their comprehension.

The key characteristics of Maude can be summarized as follows:
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* Based on rewriting logic. This makes it particularly well suited to express in
a declarative way concurrent and state-changing aspects of systems. Pro-
grams are theories, and rewriting logic deduction exactly corresponds to
concurrent computation.

» Wide-spectrum. Rewriting logic is a logical and semantic framework in
which specification, rapid prototyping, and efficient parallel and distributed
execution, as well as formal transformations from specifications to programs
can be naturally supported [13].

* Multiparadigm. Since rewriting logic conservatively extends equational logic
[14], a equational style of functional programming is naturally supported in a
sublanguage. A declarative style of concurrent object-oriented programming
is also supported with a simple logical semantics. Since rewriting logic also
extends Horn logic with equality in a conservative way [14], Horn logic
programming can also be supported and extended in an implementation
with basic facilities for unification.

* Reflective. Rewriting logic is reflective [8,7]. The design of Maude capital-
izes on this fact to support a novel style of metaprogramming with very pow-
erful module-combining and module-transforming operations that surpass
those of traditional parameterized programming and can greatly advance
software reusability and adaptability.

o Internal Strategies. The strategies controlling the rewriting process can
be defined by rewrite rules and can be reasoned about inside the logic.
Therefore, instead of having a “Logic+Control” introduction of extra-logical
features, in Maude “Control C Logic.”

Maude’s implementation has been designed with the explicit goals of sup-
porting executable specification and formal methods applications, of being
easily extensible, and of supporting reflective computations. Although it is
an interpreter, its advanced semi-compilation techniques support flexibility
and traceability without sacrificing performance. It can reach up to 200,000
rewrites per second on some applications running on a 90 MHz Sun Hyper-
SPARC.

Section 2 explains the sublanguage of functional modules. An informal
introduction to rewriting logic and to object-oriented modules in given in
Section 3. System modules, reflection, and internal strategies are discussed in
Section 4. Maude’s metaprogramming capabilities are the subject of Section 5.
Section 6 summarizes the semantic foundations of the language, and Section 7
describes the interpreter implementation. We conclude with some plans for
the future.

2 Functional Modules

Functional modules define data types and functions on them by means of
equational theories whose equations are Church-Rosser and terminating. A
mathematical model of the data and the functions is provided by the initial
algebra defined by the theory, whose elements consist of equivalence classes
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of ground terms modulo the equations. Evaluation of any expression to its
reduced form using the equations as rewrite rules assigns to each equivalence
class a unique canonical representative. Therefore, in a more concrete way
we can equivalently think of the initial algebra as consisting of those canoni-
cal representatives; that is, of the values to which the functional expressions
evaluate.

As in the OBJ language [11] that Maude extends, functional modules can
be unparameterized, or they can be parameterized with functional theories as
their parameters. Functional theories have a “loose semantics,” as opposed
to an initial one, in the sense that any algebra satisfying the equations in
the theory is an acceptable model. For example, a parameterized list module
LIST[X :: TRIV] forms lists of models of the trivial parameter theory

fth TRIV is
sort Elt
efth

with one sort E1t; those models as just sets of elements. Similarly, a sorting
module SORTINGLY :: POSET] sorts lists whose elements belong to a model
of the POSET functional theory, that is, the elements must have a partial order.

The equational logic on which Maude functional modules are based is an
extension of order-sorted equational logic called membership equational logic
[15,3]; we discuss this and give more details about the semantics of functional
modules in Section 6.1. For the moment, it suffices to say that, in addition
to supporting sorts, subsorts, and overloading of function symbols, functional
modules also support membership axioms, a generalization of sort constraints
[22] in which a term is asserted to have a certain sort if a condition consisting of
a conjunction of equations and of unconditional membership tests is satisfied.

We can illustrate these ideas with a parameterized module PATH[G
GRAPH] that forms paths over a graph. This module has a path concatenation
operation, has nodes as identities, and source and target functions.

th GRAPH is

sorts Node Edge

ops s t : Edge -> Node . x*** source and target
eth

fmod PATH[G :: GRAPH] is
sorts Path Path?
subsorts Node Edge < Path < Path?
ops s t : Path -> Node
op _;_ : Path? Path? -> Path?
var E : Edge
var N : Node
var P : Path .
vars Q R S : Path?
eq @; R) ;8=0Q; (R ; 8
cmb E ; P : Path if t(E) == s(P)
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eq s(N) = N .
eq t(N) =N .
ceq s(E ; P) = s(E) if t(E) == s(P)
ceq t(E ; P) = t(P) if t(E) == s(P)
ceq N ; P =P if s(P) == N .
ceq P ; N =P if t(P) ==

endfm

Note that the concatenation of two paths is a path if and only if the target
of the first is the source of the second. This follows as an inductive consequence
of the simpler conditional membership axiom

cmb E ; P : Path if t(E) == s(P)

where E is an edge and P a path. We can then instantiate this module
with a concrete graph corresponding to an automaton, and can evaluate path
expressions to check whether they are valid paths in the automaton.

fmod AUTOMATON is
sorts Node Edge
ops a b ¢ : -> Node
ops f gh i j : —-> Edge
ops s t : Edge -> Node .
eq t(f) =

eq s(f) = a b .

eq s(g) = ¢ eq t(g) = a .

eq s(h) = b eq t(h) = c .

eq s(i) = ¢ eq t(i) = b .

eq s(j) = Db eq t(j) = b .
endfm

make RECOGNIZER is PATH[AUTOMATON] endm

3 Rewriting Logic and Object-Oriented Modules

The type of rewriting typical of functional modules terminates with a single
value as its outcome. In such modules, each step of rewriting is a step of
replacement of equals by equals, until we find the equivalent, fully evaluated
value. In general, however, a set of rewrite rules need not be terminating, and
need not be Church-Rosser. That is, not only can we have infinite chains of
rewriting, but we may also have highly divergent rewriting paths, that could
never cross each by further rewriting.

The essential idea of rewriting logic [18] is that the semantics of rewriting
can be drastically changed in a very fruitful way. We no longer interpret a
term ¢ as a functional expression, but as a state of a system; and we no longer
interpret a rewrite rule t — ¢’ as an equality, but as a local state transition,
stating that if a portion of a system’s state exhibits the pattern described by
t, then that portion of the system can change to the corresponding instance
of ¢'. Furthermore, such a local state change can take place independently
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from, and therefore concurrently with, any other non-overlapping local state
changes. Of course, rewriting will happen modulo whatever structural axioms
the state of the system satisfies. For example, the top level of a distributed
system’s state does often have the structure of a multiset, so that we can
regard the system as composed together by an associative and commutative
state constructor.

We can represent a rewrite theory as a four-tuple R = (€, E, L, R), where
(Q, E) is a theory in membership equational logic, that specifies states of the
system as an abstract data type, L is a set of labels, to label the rules, and
R is the set of labeled rewrite rules axiomatizing the local state transitions of
the system. Some of the rules in R may be conditional [18].

Rewriting logic is therefore a logic of concurrent state change. The logic’s
four rules of deduction—namely, reflexivity, transitivity, congruence, and re-
placement [18] allow us to infer all the complex concurrent state changes that
a system may exhibit, given a set of rewrite rules that describe its elementary
local changes. It then becomes natural to realize that many reactive systems
so specified should never terminate, and that a system may evolve in highly
nondeterministic ways through paths that will never cross each other.

These ideas can be illustrated by explaining how concurrent object-oriented
systems can be specified in rewriting logic, and how they can be executed using
Maude’s object-oriented modules.

In a concurrent object-oriented system the concurrent state, which is usu-
ally called a configuration, has typically the structure of a multiset made up
of objects and messages. Therefore, we can view configurations as built up by
a binary multiset union operator which we can represent with empty syntax
as

subsorts Object Msg < Configuration
op __ : Configuration Configuration -> Configuration
[assoc comm idr: nulll

where the multiset union operator __ is declared to satisfy the structural laws
of associativity and commutativity and to have identity null. The subsort
declaration

subsorts Object Msg < Configuration

states that objects and messages are singleton multiset configurations, so that
more complex configurations are generated out of them by multiset union.

As a consequence, we can abstractly represent the configuration of a typ-
ical concurrent object-oriented system as an equivalence class [t] modulo the
structural laws of associativity and commutativity obeyed by the multiset
union operator of a term expressing a union of objects and messages, i.e., as
a multiset of objects and messages.

An object in a given state is represented as a term

(O:Clay:v,... a4, vy)

where O is the object’s name or identifier, C' is its class, the a;’s are the names
of the object’s attribute identifiers, and the v;’s are the corresponding values.
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The set of all the attribute-value pairs of an object state is formed by repeated
application of the binary union operator _, _ which also obeys structural laws
of associativity and commutativity; i.e., the order of the attribute-value pairs
of an object is immaterial.

Consider for example a concurrent system made up of sender and receiver
objects that communicate with each other by sending messages in an unreliable
environment in which messages may be received out of order, some messages
can be lost, and other messages can be duplicated. A fault-tolerant connection
between two such objects can be accomplished by numbering the messages and
sending acknowledgments back. A receiver object may have the form

< R : Receiver | from: S, recq: Q, reccnt: M >

where the attribute from is the name of the sending object, recq is the
queue of received messages, and reccnt is the receiver’s counter. In Maude,
the class Receiver of such objects is specified by the declaration

class Receiver | from: 0Id, recq: Queue, reccnt: Nat

that introduces the attribute names and the corresponding value sorts. The
concurrent local state change corresponding to the reception of one message
from the sender by the receiver object can then be described by the following
labeled rewrite rule.

rl [ receive ]
< R : Receiver | from: S, recq: Q, reccnt: M >
(to: R (E,N))
=> < R : Receiver | from: S,
recq: (if N == s(M) then push(Q,E) else Q fi),
reccnt: (if N == s(M) then s(M) else M fi) >
(to: S ack N)

That is, the new value E is appended to the queue and the counter is increased
iff the number N in the message is M + 1; otherwise, the message is discarded
and the receiver does not change its state, but in any case an acknowledgment
is always sent to the sender.

The entire fault-tolerant protocol for sender and receiver objects—discussed
in a somewhat different way in Chandy and Misra [5], and similar in some
ways to the presentation of the alternating bit protocol by Lam and Shankar
[?] can be defined in the following parameterized object-oriented module.

Note that Maude’s syntax for object-oriented modules leaves implicit some
well-understood assumptions, such as the syntax for objects, the existence of
a multiset union operator to form configurations, and the conventions for class
inheritance. However, object-oriented modules can be systematically trans-
lated into ordinary rewrite theories by making explicit all these assumptions.
They can therefore be understood as a special case of system modules. A
detailed account of this translation process can be found in [19].

omod PROTOCOL[ELT :: TRIV] is
protecting QUEUE[ELT]
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sort Contents Count

subsort Elt < Contents

op z : —> Count

op s_ : Count -> Count

op empty : —> Contents

msg to:_(_,_) : 0Id Elt Count -> Msg . **x data to receiver

msg to:_ack_ : 0Id Count -> Msg . *** acknowledgment to sender

class Sender | rec: 0Id, sendq: Queue, sendbuff: Contents,
sendcnt: Count, repcount: Count

class Receiver | from: 0Id, recq: Queue, reccnt: Count

vars S R : 0Id .

vars N M X : Count

var E : Elt

var  : Queue

var C : Contents

rl [ produce ]
< S : Sender | rec: R, sendq: cons(E, Q), sendbuff: empty,
sendcnt: N, repcount: X > =>
< S : Sender | rec: R, sendq: Q, sendbuff: E,
sendcnt: s(N), repcount: s(s(s(z))) >

rl [ send ]
< S : Sender | rec: R, sendq: Q, sendbuff: E,
sendcnt: N, repcount: s(X) > =>
< S : Sender | rec: R, sendq: Q, sendbuff: E,
sendcnt: N, repcount: X >
(to: R (E,N))

rl [ rec-ack ]
< S : Sender | rec: R, sendq: Q, sendbuff: C,
sendcnt: N, repcount: X >
(to: S ack M) =>
< S : Sender | rec: R, sendq: Q,
sendbuff: (if N == M then empty else C fi),
sendcnt: N, repcount: X >

rl [ receive 1]
< R : Receiver | from: S, recq: Q, reccnt: M >
(to: R (E,N))
=> < R : Receiver | from: S,
recq: (if N == s(M) then push(Q,E) else Q fi),
reccnt: (if N == s(M) then s(M) else M fi) >
(to: S ack N)
endom

These definitions will generate a reliable, in-order communication mechanism
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from an unreliable one. The message counts are used to ignore all out-of-order
messages, and the replication count is used to replicate messages that may be
lost, if the channel is faulty. The fairness assumptions of Maude will ensure
that the send action and corresponding receive actions will be repeated until
a rec-ack can be performed, or the replication counter goes to zero. One
can directly represent unbounded retransmission by eliminating this check as
well, although the protcol then relies more strongly on fairness assumption.
In [23,19] it is explained how we can also model some fault modes of the
communication channel by additional rewrite rules which duplicate or destroy
messages declared in a module extending the one above.

Formally, letting C' denote the initial configuration of objects and C’ de-
note configuration resulting after rewriting, we have been able to deduce the
sentence C' — C" as a logical consequence of the rewrite rules in the module.
Indeed, the rules of deduction of rewriting logic support sound and complete
reasoning about the concurrent transitions that are possible in a concurrent
system whose basic local transitions are axiomatized by given rewrite rules.
That is, the sentence [t] — [t'] is provable in the logic using the rewrite rules
that axiomatize the system as axioms if and only if the concurrent transition
[t] — [t'] is possible in the system.

In this object-oriented case we make several implicit assumptions, includ-
ing the associativity and commutativity of the multiset union operator. In
general system modules, however, the axioms E can be varied as a very flex-
ible parameter to specify many different types of concurrent systems. In this
way, rewriting logic can be regarded as a very general semantic framework for
concurrency that encompasses a very wide range of well-known models [18,21].

Maude’s default interpreter can be quite adequate for simulating concur-
rent object-oriented systems. However, for the purposes of studying a system
in depth—for example, by exploring all the possible rewrites from a given state
to another or of controlling the possibly highly nondeterministic evolution
of a system that need not be object-oriented, we need other means.

4 System Modules, Strategies, and Reflection

The most general Maude modules are system modules. They specify the initial
model of a rewrite theory R [18]. This initial model is a transition system
whose states are equivalence classes [t] of ground terms modulo the equations
E in R, and whose transitions are proofs « : [t] — [t'] in rewriting logic—
that is, concurrent computations in the system so described. Such proofs are
equated modulo a natural notion of proof equivalence that computationally
corresponds to the “true concurrency” of the computations.

Consider for example a system module NIM specifying a version of the
game of Nim. There are two players and two bags of pebbles: a “draw” bag
to remove pebbles from, and a “limit” bag to limit the number of pebbles that
can be removed. The two players take turns making moves in the game. At
each move a player draws a nonempty set of pebbles not exceeding those in
the limit bag. The limit bag is then readjusted to contain the least number

8



CLAVEL et al.

of pebbles in either the double of what the player just drew, or what was left
in the draw bag. The game then continues with the two bags in this new
state. The player who empties the draw bag wins. An intermediate move is
axiomatized by the rule [mv]; the last, winning move is axiomatized by the
rule win.

mod NIM is

protecting BOOL

sorts Pebble Bag State

subsorts Pebble < Bag .

op o : —> Pebble

op nil : -> Bag .

op __ : Bag Bag -> Bag [assoc comm]

op _=<_ : Bag Bag -> Bool

op least : Bag Bag —-> Bag .

op state : Bag Bag -> State

vars X Y Z : Bag .

eq o nil = o

eq nil =< X = true

eq o X =< nil = false

eq o =< 0 = true

eq o =< o X = true

ceq o X =< o = false if X =/= nil

eq o X =o0Y=X=xY.

eq least(X,Y) if X =< Y then X else Y fi .

crl [mv] : state(X Y,Z) => state(Y,least(X X,Y))
if X =< Z and X =/= nil

crl [win] : state(X,Y) => state(nil,nil)
if X =< Y and X =/= nil

endm

The initial model described by this module is the transition system con-
taining exactly all the possible game moves allowed by the game. But there
are many bad moves that would allow the other player to win. A good player
should avoid such bad moves by having a winning strategy. With such a strat-
egy, each move made by the player inexorably leads to success, no matter what
moves the other player attempts.

What we obviously want, in this and in many other examples, is to have
good ways of controlling the rewriting inference process which in principle
could go in many undesired directions—by means of adequate strategies. Many
systems, for example theorem provers and declarative languages implementa-
tions, support certain strategies of this nature. However, such strategies are
often external to the languages they control: they may constitute a sepa-
rate programming language external to the logic, or may be part of the lan-
guage’s “extralogical features.” In Maude, thanks to the reflective capabilities
of rewriting logic, strategies can be made internal to rewriting logic. That is,
they can be defined by rewrite rules, and can be reasoned about as with rules



CLAVEL et al.

in any other theory. The value of specifying strategies with rewrite rules is
also emphasized in the most recent work on ELAN [2].

In fact, there is great freedom for defining many different strategy lan-
guages inside Maude. This can be done in a completely user-definable way, so
that users are not limited by a fixed and closed strategy language. Also, even
if some users decide to adopt a particular strategy language because of its
good features, such a language remains fully extensible, so that new features
and new strategy concepts can be defined on top of them. Of course, such
languages should be defined in a disciplined way that guarantees that they are
correct, that is, that they only produce valid rewrites, as we explain below.

In Maude, a strategy language is a function on theories, that assigns to a
module M another module strat(M), whose terms are called strategy expres-
stons specifying desired, possibly quite complex, set of rewrite deductions in
the original theory M. Executing such a strategy expression is simply rewrit-
ing it using the rules in strat(M). In some cases, such executions may never
terminate. However, as the expression is being rewritten, more and more of
the desired rewrites in the theory M that the strategy expression in question
was supposed to describe become directly “visible” in the partially rewritten
strategy expression. In this way, we can tame the wildness of M by shifting our
ground to a much more controllable theory strat(M). For example, strat(M)
may be Church Rosser, and therefore essentially a functional module, so that
computations of strategy expressions become essentially deterministic. This
is of course not a necessary requirement, but it is nevertheless an attractive
possibility in the context of a sequential implementation.

We first briefly discuss reflection in rewriting logic and then explain how
it can be used to define and give semantics to internal strategy languages.
Rewriting logic is reflective [8,7]. That is, there is a rewrite theory U with
a finite number of operations and rules that can simulate any other finitely
presentable rewrite theory R in the following sense: given any two terms %, ¢’
in R there are corresponding terms (R, ) and (R,#') in U such that we have

REt-——t <— UF (R — (R,T).

Let us denote by FPTh the class of finitely presented rewrite theories. An
internal strategy language is a theory-transforming function strat : FPTh —
FPTh that satisfies specific semantic requirements [8,7]. A sound method-
ology for defining such languages is to first define a strategy language kernel
as a function, say, meta : FPTh — FPTh that sends R to a definitional
extension of U/—or a suitable subtheory of /—by rewrite rules defining how
rewriting in R is accomplished at the metalevel. A typical semantic definition
that one wants to have in meta(R) is that of metaapply(l, ), that simulates at
the metalevel one step of rewriting at the top of a term ¢ using the rule labeled
[ in R. Proving the correctness of such a small strategy language kernel is
then quite easy, by using the correctness of U itself as a universal theory. The
next step is to define a strategy language of choice, say strat, as a function
sending each theory R to a theory that extends meta(R) by additional strat-
egy expressions and corresponding semantic rules, all of which are recursive
definitional extensions of those in the kernel in an appropriate sense, so that
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their correctness can then be reduced to that of the kernel.

The descriptions of meta and strat that we have just given are phrased
in metalevel terms, that is, they are described as metalevel functions. But
in fact they are definable as functions within rewriting logic. Note that in U
the theory R is represented as a term R. In fact, assuming a sorted version
of the logic, all such terms R are the elements of a sort Module in ¢/. This
means that any effective function F' : FPTh — FPTh mapping a finitely
presentable rewrite theory to another at the metalevel of the logic can now
be represented at the object level as a computable function F : Module —
Module. Therefore, by the metatheorem of Bergstra and Tucker [1], we can
always specify such a function by a finite set of Church-Rosser and terminating
rewrite equations in a suitable conservative extension of U.

More details on the semantic definition of an internal strategy language
for a logic in general, and for rewriting logic in particular, can be found in [7].
Since the rewrite engine can be naturally regarded as an implementation of key
functionality in the universal theory U, the Maude implementation supports a
strategy kernel META<X : Module> in a built-in fashion for greater efficiency.
The definition of a concrete strategy language STRAT as a functional module
extending META is given in Appendix 9.

A strategy expression in STRAT initially has the form

rew T => ? with S

where T stands for the representation ¢ in U of a term ¢ in the object
theory R in question for example, the two pebble bag (o o) in NIM has the
representation ’__[’0,’0] in STRAT<KNIM> and S is the rewriting strategy
that we wish to compute. The symbol ? indicates that we are beginning the
computation of such a strategy; as the computation proceeds, ? gets rewritten
into a tree of solutions, and S is rewritten into the remaining strategy to be
computed. In case of termination, this is the idle strategy and we are done.

This language can then be used to find a winning strategy for the NIM
example. Such a strategy can easily be defined by extending the basic module
STRAT<NIM> with a couple of mutually recursive strategies movetowin and
findawinner

fmod NIM-WIN is

extending STRAT <NIM> .

ops mv win : —> Label

ops movetowin findawinner : -> StrategyName

vars T T’ : Term . var S1T : SolTree . var S1TL : SolTreelist

eq rew T => S1T{<- T’} with movetowin =
rew T => S1T{<- T’} with
(apply(win);; idle
orelse (dk-apply(mv); findawinner))

eq rew T => S1T{<- mk(S1TL)} with findawinner =
rew T => S1T{<- mk(S1TL)}
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with downleft ; (movetowin ;; (prunesol ; findawinner)
orelse (prunerest ; up))

endfm

Intuitively, given a state (X,Y’) in the game, movetowin will find a win-
ning move (X' Y') for a player A if there is one, in the sense that either
(X" Y") = (nil,nil) or (X',Y") is a move that eventually will lead the player
A to success, no matter what moves the player B attempts, assuming that in
the following moves, the player A always plays with the strategy movetowin.

In particular, movetowin defines the following strategy for a player A
given a state (X,Y) in the game: try to win the game with just one move
(apply(win)); if not, create a tree whose leaves (X!, Y/), 1 < i < n, are all
the allowed moves from the state (X,Y) (dk-apply(mv)). Then, try to find
a leaf (X|,Y]) representing a state from which the player B can not make a
winning move (findawinner); if not, the result of the strategy movetowin for
the player A will be failure.

As expected, findawinner defines the following strategy for a player A
over a tree T' (possibly empty) of allowed moves: try to select the first leaf
(X],Y]) of T (downleft); note that if 7" is empty, the result of downleft will
be failure. Then, if the player B can make a winning move from (X7, Y/)
(movetowin), prune that leaf (prunesol) and try to find among the rest of
the leaves a winning move (findawinner); if the player B can not make a
winning move from (X],Y/), prune the rest of the leaves (prunerest) and
select (X{,Y/) (up) as a winning move.

We can then run the following examples to find a winning move when there
is one, or to fail to do so otherwise.

Maude>red rew ’state[(’__[’0,’0,’0,’0]1),(’__[’0,%0,%0])] => 7
with movetowin .
Result in sort StrategyExp:
rew ’state[(’__[’0,’0,0,%0]1),(C__[’0,%0,0])] =>
~{<- ’state[’__[’0,%0,%0],’__[’0,’0]]} with idle
Maude>red rew ’state[(’__[’0,’0,’0,’0,’0]),(’__[’0,%0,70,0])]
=> 7 with movetowin .
Result in sort StrategyExp: failure

5 Metaprogramming in Maude

Perhaps one of the most important new contributions of Maude is the metapro-
grammaing methodology that it supports in a simple and powerful way. This
methodology is well integrated with the language’s semantic foundations, par-
ticularly with its logical foundations for reflection.

By “metaprogramming” we of course mean the capacity of defining pro-
grams that operate on other programs as their data; in our case, equational
and rewrite theories that operate on other such theories as their data. By ob-
serving that we can not only reify theories, but also views among them, this
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includes the more traditional “parameterized programming” capabilities in
the Clear-OBJ tradition [4,11] as a particular instance. The difference is that
in that tradition theories are metalevel entities not accessible at the object
level of the logic, since this is only possible in an explicitly reflective logical
context.

What reflection accomplishes is to open up to the user the metalelevel of
the language, so that instead of having a fixed repertoire of parameterized
programming operations we can now define a much wider range of theory-
transforming and theory-combining operations that could not be defined using
more traditional means. We have illustrated this power with the meta(X :
Module) and strat(X : Module) constructions, that are “parameterized mod-
ules” in this much more general sense. Another good example, given in [14],
is the reification of the logic map W : LLogic — RWLogic from linear logic to
rewriting logic as an equationally defined function ¥ : LLTheory — Module
inside rewriting logic. This example illustrates a general method by which,
when using rewriting logic as a logical framework, we can always reify an ef-
fectively given map of logics ® : L — RWlLogic, sending finitely presentable
theories in L to finitely presentable rewrite theories, as an equationally defined
function ¥ : Theory, — Module inside rewriting logic.

Many more examples could be given. Indeed, we plan to systematically ex-
ploit Maude’s metaprogramming capabilities to make the language and its en-
vironment very easily extensible and modifiable, and to support many logical
framework and semantic framework applications such as: representation and
interoperation of logics inside rewriting logic, executable definition of other
logical languages in Maude, and definition of theorem-proving environments
and tools for Maude and for other languages inside rewriting logic.

In summary, what reflection makes possible in Maude is the definition of an
open, extensible, and user-definable module algebra supporting a new style of
metaprogramming with very promising advantages for software methodology.

6 The Semantics of Maude

We summarize the semantic foundations of Maude’s functional, object-oriented,
and system modules.

6.1 Membership equational logic and functional modules

Maude is a declarative language based on rewriting logic. But rewriting logic
has its underlying equational logic as a parameter. There are for example
unsorted, many-sorted, and order-sorted versions of rewriting logic, each con-
taining the previous version as a special case. The underlying equational logic
chosen for Maude is membership equational logic [15,3], a conservative ex-
tension of both order-sorted equational logic and partial equational logic with
existence equations [15]. It supports partiality, subsorts, operator overloading,
and error specification.

A signature in membership equational logic is a triple Q = (K, X, S) with
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K a set of kinds, (K,Y) a many-sorted (although it is better to say “many-
kinded”) signature, and S = {Si}rex a K-kinded set of sorts.

An Q-algebra is then a (K, X)-algebra A together with the assignment to
each sort s € Sy of a subset Ay, C Aj. Intuitively, the elements in sorts are
the good, or correct, or nonerror, or defined, elements, whereas the elements
without a sort are error or undefined elements.

Atomic formulas are either Y-equations, or membership assertions of the
form ¢ : s, where the term ¢ has kind £ and s € S;. General sentences are
Horn clauses on these atomic formulae, quantified by finite sets of K-kinded
variables. That is, they are either conditional equations

(VX) t=1t if (A?Li:1)i)A(/\11)j:sj)

or membership axioms of the form

(VX) t:s if (/\YLi:7)i)A(/\11)j18j)-

Membership equational logic has all the usual good properties: soundness
and completeness of appropriate rules of deduction, initial and free algebras,
relatively free algebras along theory morphisms, and so on [15].

In Maude, functional modules are equational theories in membership equa-
tional logic satisfying additional requirements. The semantics of an unparam-
eterized functional module is the initial algebra specified by its theory; the
semantics of a parameterized functional module is the free functor associated
to the inclusion of the parameter theory. Functional theories are also mem-
bership equational logic theories, but they have instead a loose interpretation,
in that all models of the theory are acceptable, although a functional theory
may impose the additional requirement that some of its subtheories should
be interpreted initially. This is entirely similar to the treatment of “objects”
and theories in OBJ [11]. Indeed, since membership equational logic con-
servatively extends order-sorted equational logic, Maude’s functional modules
extend OBJ modules.

Maude does automatic kind inference from the sorts declared by the user
and their subsort relations. There is no need to declare kinds explicitly. The
convenience of order-sorted notation is retained as syntactic sugar. Thus, an
operator declaration

op push : Nat Stack -> NeStack .
is understood as the membership axiom

(Va,y) push(z,y): NeStack if x: Nat Ay : Stack.

Similarly, a subsort declaration NeStack < Stack corresponds to the mem-
bership axiom

(Vz) «: Stack if = : NeStack.

Computation in a functional module is accomplished by using the equa-
tions as rewrite rules until a canonical form is found. Therefore, the equations
must satisfy the additional requirements of being Church-Rosser, terminat-
ing, and sort-decreasing [3]. This guarantees that all terms in an equivalence
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class modulo the equations will rewrite to a unique canonical form, and that
this canonical form can be assigned a sort that is smaller than all other sorts
assignable to terms in the class. For a module satisfying such conditions any
reduction strategy will reach a normal form; nevertheless, the user can assign
to each operator a functional evaluation strategy in the OBJ style [11] to con-
trol the reduction for efficiency purposes. If no such strategies are declared, a
bottom-up strategy is chosen. Since Maude supports rewriting modulo equa-
tional theories such as associativity or associativity/commutativity, all that
we say has to be understood for equational rewriting modulo such axioms.

In membership equational logic the Church-Rosser property of terminating
and sort-decreasing equations is indeed equivalent to the confluence of their
critical pairs [3]. Furthermore, both equality and membership of a term in a
sort are then decidable properties [3]. That is, the equality and membership
predicates are computable functions. We can then use the metatheorem of
Bergstra and Tucker [1] to conclude that such predicates are themselves speci-
fiable by Church-Rosser and terminating equations as Boolean-valued func-
tions. This has the pleasant consequence of allowing us to include inequalities
t # t' and negations of memberships not(t : s) in conditions of equations and
of membership axioms, since such seemingly negative predicates can also be
axiomatized inside the logic in a positive way, provided that we have a sub-
specification of (not necessarily free) constructors in which to do it, and that
the specification is indeed Curch-Rosser, terminating, and sort decreasing. Of
course, in practice they do not have to be explicitly axiomatized, since they are
built into the implementation of rewriting deduction in a much more efficient
way.

Let us denote membership equational logic by Fqtl’ and its associated
rewriting logic by RWLogic'. Regarding an equational theory as a rewrite
theory whose set of rules is empty defines a conservative map of logics [14]

Eqtl — RWlLogic’

This is the way in which Maude’s functional modules are regarded as a special
case of its more general system modules.

6.2 Semantics of object-oriented and system modules

As already pointed out, the logic of Maude is the membership logic variant of
rewriting logic RW_Logic'. A system module is then a rewrite theory. In the
unparameterized case its semantics is the initial model defined by the theory
[18], which is the algebra of all rewriting computations for ground terms in the
theory. From a systems perspective this model describes all the concurrent
behaviors that the system so axiomatized can exhibit. From that perspective
a term ¢ denotes a state of the system, and a rewrite t — t' denotes a possibly
concurrent computation.

A system module can contain one or more parameter theories. The inclu-
sion from the parameter(s) into the module then gives rise to a free extension
functor [17], which provides the semantics for the module. This of course
means that we can compose systems by putting together the rewrite theories
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in which they are specified.

A rewrite theory has both rules and equations, so that rewriting is per-
formed modulo such equations. However, this does not mean the Maude im-
plementation must have a matching algorithm for each equational theory that
a user might specify, which is impossible, since matching modulo an arbitrary
theory is undecidable. What we instead require for theories in system modules
is that:

* The equations are divided into a set A of axioms, for which matching algo-
rithms exist in the Maude implementation*, and a set E of equations that
are Church-Rosser, terminating and sort decreasing modulo A; that is, the
equational part must be equivalent to a functional module.

e The rules R in the module are coherent [25] (or at least what might be
called “weakly coherent” [19], Section 5.2.1) with the equations E modulo A.
This means that appropriate critical pairs exist between rules and equations
allowing us to intermix rewriting with rules and rewriting with equations
in any way without losing rewrite computations by failing to perform a
rewrite that would have been possible before an equational deduction step
was taken. In this way, we get the effect of rewriting modulo £ U A with
just a matching algorithm for A. In particular, a simple strategy available
in these circumstances is to always reduce to canonical form using E before
applying any rule in R.

Since the state of the system specified by a system module is axiomatized as
an abstract data type by the equations E modulo A, and the rules in R are
local rules for changing such a state, in practice the lefthand sides of rules in
R only involve constructor patterns, so that coherence is a natural byproduct
of good specification practice. Besides, using the completion methods in [25]
one can check coherence, and one can try to make a set of rules coherent when
they are not so.

The semantics of object-oriented modules is entirely reducible to that of
system modules, in the sense that there is a systematic desugaring process
translating each object-oriented module into its corresponding system mod-
ule [19]. However, the particular ontology supported by object-oriented mod-
ules is something very much worth keeping, and it does not exist for general
system modules. For example, in an object-oriented configuration we have ob-
jects that maintain their identity across their state changes, and the notions
of fairness adequate for them are more specialized than those appropriate for
arbitrary system modules. The approach taken in Maude is to provide a logi-
cal semantics for concurrent object-oriented programming by taking rewriting
logic as its foundation, and then defining in a rigorous way higher-level object-
oriented concepts above such a foundation. The papers [19,20] provide good
background on such foundations. Talcott’s paper [24] gives rewriting logic

4 Maude’s rewrite engine has an extensible design, so that matching algorithms for new
theories can be added and can be combined with existing ones [9]. At present, matching
modulo associativity and commutativity, and a preliminary version of matching modulo
associativity are supported.
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foundations for actors from a somewhat different viewpoint.
The basic ideas about the reflective semantics of Maude have already been
discussed in Section 4. Much more detail can be found in [7].

7 The Maude Implementation

This section describes the implementation of the Maude interpreter, which
consists of two main components: the front end and the engine.

7.1  Front end and module evaluation

The front end of the Maude interpreter is built on top of the OBJ3 front
end, and is written in Common Lisp. The Maude front end shares with
OBJ3 the convenient mixfix syntax for user-defined symbols and expressive
parameterized programming mechanisms. The Maude front end augments this
with additional syntax for Maude language constructs, tracing and debugging
commands, complete disambiguation of ad-hoc overloaded operators, a com-
plete module-flattening operation, a specialized pretty- and unpretty-printer,
a program transformation from object-oriented modules to system modules,
and support for meta-level specifications. The result is that users can enter
Maude specifications using powerful parameterized programming constructs
and mixfix syntax which are completely eliminated before a Maude specifica-
tion is passed to the engine. Output from the engine is passed back through
a pretty-printer which reparses the output in prefix form, and then prints the
result in the user-declared mixfix style. Timing and rewriting statistics from
the engine are also reported from the engine to the user through the front end.

7.2  Maude’s rewrite engine

The design objectives of the Maude rewrite engine are consistent with the ex-
ecutable specification and formal method uses that we wish to support. The
system should “look and feel” like an interpreter, should be capable of support-
ing user interrupts and source level tracing, and above all should be extensible
with new equational theories and new built-in operators both of which may
require new term/data representations to be integrated seamlessly with exist-
ing term/data representations. Reflective capabilities are also central to our
design, since the system should support arbitrary levels of meta-rewriting.

Although we have sought the most efficient implementation meeting the
above objectives, supporting them all but rules out a number of performance
enhancing techniques such as: compilation to native machine code (or C);
compilation to a fixed architecture abstract machine; program transforma-
tions and partial evaluation; and tight coupling between the matching/ re-
placement/ normalization code for different equational theories—i.e., where
code operating on symbols in one equational theory recognizes symbols in
alien theories and makes use of their properties.

The design chosen is essentially a highly modular semi-compiler where the
most time consuming run-time tasks are compiled at parse-time into a sys-
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Core Facilities Theory Interface

Sort, VariableSymbol, [~ = Symbol, DagNode,
Variable, Equation, Term,
Substitution,. . . LhsAutomaton,. . .

Free Theory AC Theory A Theory

FreeSymbol, AC_Symbol, A _Symbol,
FreeDagNode, AC_DagNode, A _DagNode,
FreeTerm.,. .. AC_Term,... A _Term,. ..

BOOL
EqualitySymbol, META-THEORY
BranchSymbol, MetaRewriteSymbol
SortTestSymbol

L o o g
Front End Utility Data Types
MaudeModule, Attribute, Vector, Graph, Digraph,
SortWithTests UnionFind, IntSet
(+ bison & flex code) DiophantineSystem,. ..

Fig. 1. Overall structure of the Maude Interpreter’s Rewrite Engine

tem of lookup tables and automata which are interpreted at run-time. After
some early experiments it was found very useful to have two distinct repre-
sentations for terms. For most uses terms are represented as trees, in which
nodes are decorated with all kinds of information to simplify parse time anal-
ysis. For the subject term being rewritten, however, a directed-acyclic-graph
(DAG) representation is used with very compact nodes. Heavy use is made of
object-oriented structuring techniques and great care has been taken to ensure
extensibility and to make the bulk of the engine application-independent.

The overall structure of the rewrite engine is shown in Figure 1, where
each module is shown as a box and some of the names of the modules classes
are shown in each box. Solid arrows indicate that some of the classes in the
target module are derived from classes in the source module; dotted arrows
indicate that classes in the target module use facilities provided by the source
module. The modules themselves are organized in a layered structure where
inner layers have no knowledge of, or dependency on, outer layers.

The innermost layer consists of the modules Core Facilities and Theory
Interface. The Theory Interface consists of abstract classes for basic objects
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whose concrete realization will differ for different equational theories, such as:
symbols, dag nodes, terms, lefthand side automata (for matching), righthand
side automata (for constructing and normalizing righthand side and condition
instances), matching subproblems and matching extension information. Some
of the classes in the Theory Interface contain some concrete data and function
members to provide useful common functionality to derived classes. The Core
Facilities module consists of concrete classes for basic objects that are indepen-
dent of the different equational theories, such as: sorts, connected components
(kinds), variable symbols, variables (as terms), equations, sort constraints,
rules, sequences of matching subproblems and substitutions. Neither the Core
Facilities nor the Theory Interface treat any sort, symbol or equational theory
as special in any way whatsoever; all are manipulated through virtual func-
tions in the abstract classes belonging to the Theory Interface. In particular,
this means that the code that handles conditional equations knows nothing
about the Maude built in sort Bool and its built in constants true and false.
Instead conditional equations always have the form

l=rif ¢, = cy.

and if a more complex boolean condition b is desired, it is encoded as the
equality b = true.

The next layer consists of modules for individual equational theories. Each
module in this layer consists of concrete descendents of abstract classes from
the Theory Interface, which provide a theory-specific implementation of vir-
tual functions such as match(), compileLhs() and rewrite(). In this way each
equational theory has its own representation objects such as symbols, terms,
dag nodes and matching automata. At this level there are no special sorts or
symbols and each module is only aware of the representation of its own classes;
everything else is alien and is manipulated through the Theory Interface.

The next layer consists of modules containing classes which provide sym-
bols with non-standard run-time properties. Even here there are no special
sorts or symbols; only classes for symbols that have rather generalized non-
standard run-time behavior. The BranchSymbol class for example can be used
to generate all manners of conditional constructs including the ‘if-then-else-fi’
needed for Maude. These classes only affect the behaviour of a symbol when
an attempt is made to rewrite at a dag node containing it. All other properties
(such as matching and normalization) and data representations are inherited
from the parent equational theory.

The outermost module Front End contains a rudimentary parser, the class
MaudeModule and a couple of minor classes. Only here do Maude specific
operators such as ‘if-then-else-fi’ and ‘meta-apply’ really exist. The Front
End is dependent on all the other modules but no other module depends on
it. It can be changed or replaced without modifying the rest of the engine.

One final module is the Utility Data Types. This contains classes and class
templates implementing ‘components of general utility’ such as vectors, graphs
and Tarjan’s union-find data structure. These are used freely throughout the
engine.
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Performance enhancing techniques implemented in the current prototype
include:

(i) Fixed size dag nodes for in-place replacement.

(ii) Full indexing for the topmost free function symbol layer of patterns; when
the patterns for some free symbol only contain free symbols this is equiv-
alent to matching a subject against all the patterns simultaneously.

(iii) Use of greedy matching algorithms, which attempt to generate a single
matching substitution as fast as possible for patterns and subpatterns
that are simple enough and whose variables satisfy certain conditions
(such as not appearing in a condition). If a greedy matching algorithm
fails it may be able to report that no match exists; but it is also allowed
to report ‘undecided’ in which case the full matching algorithm must be
used.

(iv) Use of binary search during AC matching for fast elimination of ground
terms and previously bound variables.

(v) Use of a specially designed sorting algorithm which uses additional infor-
mation to speed up the renormalization of AC terms.

(vi) Use of a Boyer-Moore style algorithm for matching under associative
function symbols.

(vii) Compile time analysis of sort information to avoid needless searching
during associative and AC matching.

(viii) Compile time analysis of non-linear variables in patterns in order to prop-
agate constraints on those variables in an ‘optimal’” way and reduce the
search space.

(ix) Compile time allocation of fixed size data structures needed at run time.

(x) Caching dynamically sized data structures created at run time for later
reuse if they are big enough.

(xi) Bit vector encoding of sort information for fast sort comparisons.

(xii) Compilation of sort information into regularity tables for fast incremental
computation of sorts at run time.

(xiii) Efficient handling of matching with extension through a theory indepen-
dent mechanism that avoids the need for extension variables or equations.

In large examples involving the free theory, we have observed speedups in
the order of 35 55 times faster than the OBJ3 implementation, reaching up to
200,000 rewrites per second on a 90 MHz Sun HyperSPARC. For examples of
associative commutative rewriting we have observed typical speeds of 10,000
rewrites per second, and in some cases three or more orders of magnitude
speedup over OBJ3.

The current version of the engine comprises 79 classes implemented by
approximately 19500 lines of C++.
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8 Future Plans

We have introduced the main ideas and the basic principles of Maude and have
illustrated them with examples. In addition to continued work on theoretical
foundations much more experimentation and implementation work lies ahead
of us. The following areas will receive special attention:

e Further development of, and experimentation with, Maude’s reflective and
metaprogramming capabilities.

* Experimentation with different strategy languages, development of useful
strategy libraries, and study of parallel strategies.

* Extension of the rewrite engine with matching algorithms for new equational
theories.

e Implementation of unification algorithms to support narrowing computa-
tions in addition to rewriting. This will also allow adequate treatment of
rules with extra variables in their righthand sides, that are not supported
by the current implementation.

e Development of a theorem-proving environment supporting automated rea-
soning about specifications in Maude and in other languages.

* Implementation of foreign interface modules [23,19], to support frequently
occurring computations in a more efficient, built-in way.

e Input-Output. This should be naturally specified using Maude’s concurrent
object-oriented concepts.

e Compilation of Maude, as well as parallel and distributed implementations
of the language.

e Applications and case studies. Application areas that seem particularly
promising include: logical framework applications, module algebra and meta-
programming methodology, object-oriented applications, symbolic simula-
tion, real-time system specification, parallel programming, and uses of Maude
as a programming language definition and prototyping tool.
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9 Appendix

fmod META <M : Mod> is

sorts OpId VarId Term TermList Label Nat .
subsort VarId < Term .

subsort OpId < Term .

subsort Term < TermList .

op _[_] : OpId TermList -> Term .
23
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op _,_ : TermList TermList -> TermList [assoc]

op error* : -> Term .

*%x* meta-apply is a built in function, that takes the meta-representation
**x*x of a term, a rule label and a natural number in peano representation.
* ok ok

xxx meta-apply(t, 1, n) is evaluated as follows:

*xx (1) "t" is converted to the term it represents.

*** (2) this term is fully reduced using the equations

%% (3) the resulting term is matched against all rules with label "1"

*ok ok with matches that fail to satisfy the condition of their rule

**x*%x discarded.

*x*%x (4) the first "n" successful matches are discarded

x%* (5) if there is an (n+1)th match, its rule is applied using that

*kk match; otherwise "errorx*" is returned

*x*%* (6) the new term is fully reduced using the equations

*x** (7) the resulting term is converted to a meta-term which is returned

op meta-apply : Term Label Nat -> Term .

op z : —-> Nat
op s : Nat -> Nat
endfm

**x*x Here we just introduce the specification of STRAT <M : Mod> needed to
***% compute reductions in NIM-WIN

fmod STRAT <M : Mod> is

extending META <M>

sorts SolTree SolTreelList SolTreeExp StrategyName Strategy StrategyExp .
subsort Term < SolTree

subsort SolTree < SolTreelist

subsort SolTree < SolTreeExp .

subsort StrategyName < Strategy .

op 7 : —> SolTreeExp .

op = : —-> SolTree

op _,_ : SolTree SolTreelist -> SolTreelist

op mk : SolTreelList -> SolTree

op _{<-_} : SolTree SolTree -> SolTree

op sols : Term Label Nat -> SolTreelist

op failure : -> StrategyExp .

op rew_=>_with_ : Term SolTreeExp Strategy -> StrategyExp .
op _andthen_ : StrategyExp Strategy -> StrategyExp .

op idle : -> Strategy .

op _;_ : Strategy Strategy -> Strategy .

op _;;_orelse_ : Strategy Strategy Strategy -> Strategy .
op apply : Label -> Strategy .

op dk-apply : Label -> Strategy .

op downleft : -> Strategy .

op up : —> Strategy .

op prunesol : -> Strategy .

op prunerest : -> Strategy .
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var N : Nat . vars T T’ T’’ : Term . var L : Label .
var S1T S1T’ : SolTree . var SI1TL : SolTreelist
var S S’ S’’ : Strategy .

eq rew T => 7 with S = rew T => ~{<- T} with S
eq rew T => SIT with (S ; S’) = (rew T => SIT with S) andthen S’

eq rew T => S1T with idle andthen S = rew T => S1T with S
eq failure andthen S = failure

eq rew T => S1T with (S ;; S’’ orelse S’) =
if rew T => S1T with S == failure then rew T => SI1T with S’
else rew T => S1T with S andthen S’’ fi

eq rew T => S1T{<- T’} with apply(L) =
if meta-apply(T’,L,z)== error* then failure
else rew T => S1T{<- meta-apply(T’,L,z)} with idle fi

eq rew T => S1T{<- T’} with dk-apply(L) =
rew T => SIT{<- mk(sols(T’,L,z))} with idle

eq rew T => S1T{<- mk(sols(T’,L,N))} with downleft =
if meta-apply(T’,L,N) == error* then failure
else rew T => S1T{<- mk(~,sols(T’,L,s(N)))}
{<- meta-apply(T’,L,N)} with idle fi

eq rew T => S1T{<- mk(~,S1TL) }{<- T’} with prunesol =
rew T => SIT{<- mk(S1TL)} with idle

eq rew T => S1T{<- mk(~,S1TL) }{<- T’} with prunerest =
rew T => SIT{<- "}{<- T’} with idle

eq rew T => S1T{<- "}{<- T’} with up = rew T => SIT{<- T’} with idle
endfm
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