
The OWL-S Editor – A Development Tool for
Semantic Web Services

Daniel Elenius, Grit Denker, David Martin, Fred Gilham, John Khouri, Shahin
Sadaati, and Rukman Senanayake ?

SRI International, Menlo Park, California, USA
firstname.lastname@sri.com

Abstract. The power of Web Service (WS) technology lies in the fact
that it establishes a common, vendor-neutral platform for integrating
distributed computing applications, in intranets as well as the Internet
at large. Semantic Web Services (SWSs) promise to provide solutions to
the challenges associated with automated discovery, dynamic composi-
tion, enactment, and other tasks associated with managing and using
service-based systems. One of the barriers to a wider adoption of SWS
technology is the lack of tools for creating SWS specifications. OWL-S
is one of the major SWS description languages. This paper presents an
OWL-S Editor, whose objective is to allow easy, intuitive OWL-S ser-
vice development and to provide a variety of special-purpose capabilities
to facilitate SWS design. The editor is implemented as a plugin to the
Protégé OWL ontology editor, and is being developed as open-source
software.

1 INTRODUCTION

Web Services (WS) were invented to bring a new level of integration to the
computing industry and its networked communities. Ideally, service-based appli-
cations should be able to interoperate despite being developed in different pro-
gramming languages, at different times, by different people, with designs based
on different assumptions. Standard protocols for service interface descriptions
(WSDL1) and service invocation (SOAP2), coupled with a global data format
(XML3), were introduced to turn this vision of the Service-Oriented Architecture
[1] into reality.

Web Services have met with very strong initial success, mostly in the area
of integration within, and (to a lesser extent) between, businesses. An increas-
ing number of organizations are endorsing WS technology as a standardized
infrastructure for interoperation of disparate software components within the
organization, fulfillment of transactions between organizations, and sharing of

? Supported by the Defense Advanced Research Projects Agency through the Air
Force Research Laboratory under Contract F30602-00-C-0168 to SRI, and in part
by Vinnova (grant no. 2002-00907) and The Swedish Research Council (grant no.
621-2003-2991).

1 Web Service Definition Language, http://www.w3.org/TR/wdsl
2 Simple Object Access Protocol, http://www.w3.org/TR/soap12-part0/
3 Extensible Markup Language, http://www.w3.org/XML



corporate resources with customers and partners. However, this integration has
been achieved only through costly efforts in manually programming and design-
ing these WSs. Developers spend time searching for the right services and adding
adapter components between incompatible services, and the resulting applica-
tions cannot adapt dynamically to changes in their environment.

Although second-generation WS specifications are under development, such
as WS-CDL4 and BPEL4WS5, to enhance the usability, scope, and expressive-
ness of WSs, there is an increasing realization that technologies from the Se-
mantic Web (SW) [2] can also make crucial contributions to WS frameworks.
Semantic Web Services (SWSs) [3] take up on this idea, introducing ontologies to
describe, on the one hand, the concepts in the services’ domains (e.g., flights and
hotels, tourism, e-business), and on the other hand, characteristics of the services
themselves (e.g., control flow, data flow) and their relationships to the domain
ontologies (via inputs and outputs, preconditions and effects, and so on). These
semantically rich descriptions enable automated machine reasoning over service
and domain descriptions, thus supporting automation of service discovery, com-
position, and execution, and reducing manual configuration and programming
efforts. The three most prominent SWS specification approaches currently under
development are OWL-S [4], WSMO6, and SWSL7.

The field of SWSs is still in an early stage, and adoption has been slow.
A limiting factor has been the lack of tool support. The objective has been to
enable machines to manipulate services, yet so far arduous human work has been
necessary to create the semantic service descriptions. While tools to create and
edit SW ontologies in general do exist [5], modeling SWSs requires additional
functionality and developer support in order to be practically feasible.

Tools that make the SWS technology accessible to a broad audience with
diverse needs are a crucial factor in the success of SWS technology. Tools are
needed to facilitate tasks such as service definition and annotation, execution
and monitoring, and service registration and discovery. The OWL-S Editor is
aimed at providing a flexible, yet powerful editor for OWL-S service definitions.
This paper describes the design and current functionality of the OWL-S Editor
as well as its future directions.

The remainder of the paper is organized as follows. A brief introduction to
OWL-S is presented in Section 2. Section 3 forms the main part of this paper,
and outlines the main features of the tool. An overview of related work is given
in Section 4. Future work in this area is discussed in Section 5, and Section 6
concludes with a brief summary.

4 Web Services Choreography Description Language, http://www.w3.org/TR/2004/
WD-ws-cdl-10-20041012

5 http://www-128.ibm.com/developerworks/library/ws-bpel/
6 http://www.wsmo.org
7 http://www.daml.org/services/swsl/



2 OWL-S OVERVIEW

OWL-S is an ontology of service concepts. OWL-S organizes a service description
into four conceptual areas: the process model, the profile, the grounding, and the
service.

A process model describes how a service performs its tasks. It includes infor-
mation about inputs, outputs (including a specification of the conditions under
which various outputs will occur), preconditions (circumstances that must hold
before a service can be used), and results (changes brought about by a service).
The process model differentiates between composite, atomic, and simple pro-
cesses. For a composite process, the process model shows how it breaks down
into simpler component processes, and the flow of control and data between
them (see Sections 3.3 and 3.4). Atomic processes are essentially “black boxes”
of functionality, and simple processes are abstract process descriptions that can
relate to other composite or atomic processes.

A profile provides a general description of a WS, intended to be published
and shared to facilitate service discovery. Profiles can include both functional
properties (inputs, outputs, preconditions, and results) and nonfunctional prop-
erties (service name, text description, contact information, service category, and
additional service parameters). The functional properties are derived from the
process model, but it is not necessary to include all the functional properties
from the process model in a profile. A simplified view can be provided for ser-
vice discovery, on the assumption that the service consumer would eventually
look at the process model to achieve a full understanding of how the service
works.

A grounding specifies how a service is invoked, by detailing how the atomic
processes in a service’s process model map onto a concrete messaging protocol.
OWL-S allows for different types of groundings to be used, but the only type
developed to date is the WSDL grounding (see Section 3.5), which allows any
WS with a WSDL definition to be marked up as a SWS using OWL-S.

A service simply binds the other parts together into a unit that can be pub-
lished and invoked. It is important to understand that the different parts of a
service can be reused and connected in various ways. For example, a service
provider may connect its process model with several profiles in order to provide
customized advertisements to different communities of service consumers. A dif-
ferent service provider, providing a similar service, may reuse the same process
model, possibly as part of a larger composite process, and connect it to a differ-
ent grounding. The relationships between service components are modeled using
properties such as presents (Service-to-Profile), describedBy (Service-to-Process
Model), and supports (Service-to-Grounding).

3 OWL-S EDITOR: DESIGN AND FEATURES

There are two main tasks in the development of OWL-S services. The first task
is to define the service’s domain ontologies in terms of OWL classes, properties,
and instances. The second task is to create an OWL-S description of the service,
relating this description to the domain ontologies. An OWL-S service description



consists of instances of OWL-S classes such as Service, Process, Input, and
Output. In some cases, the OWL-S ontology is also extended to handle specific
modelling situations.

In order to best facilitate these tasks, we built the OWL-S Editor on top of the
Protégé OWL Ontology Editor [5]. Protégé allows editing of domain ontologies
out-of-the-box. However, efficient development of services requires additional
features. Our strategy has been to leverage the existing functionality of Protégé
and to utilize Protégé’s pluggable architecture to extend it where we judged
it would be helpful for the SWS developer. The result is a SWS development
environment where the domain ontologies are well integrated with the service
descriptions.

The main user interface to the OWL-S Editor is a so-called tab widget. Figure
1 shows the OWL-S Editor tab, which provides service-specific design capabilities
as described in the following sections.

Our design also makes it easy to extend the OWL-S ontologies. A common
scenario is to create subclasses of the OWL-S Profile class, creating a profile
hierarchy with profiles specific for different domains. Figure 2 shows an example
of a custom profile in such a hierarchy.

In addition, building our tool on top of Protégé means that users can take
advantage of the many other existing Protégé plugins, e.g. for querying and
visualizing the Knowledge Base (KB), and to export the KB to different formats.
These different plugins coexist gracefully, all working on the same KB (see Figure
1).

The icons in the toolbar on the top left of the OWL-S Editor tab provide pa-
rameter management, generating an OWL-S service from a WSDL specification,
graphical overview, and additional options. In the following sections we discuss
these and other features in more detail.

3.1 Managing the Top-Level Ontology

As explained in Section 2, a number of properties connect the different com-
ponents of OWL-S services. It is very important to be able to get a good
overview of these relationships when developing an OWL-S service. The OWL-S
Editor tab widget provides a customized view for managing instances of the
OWL-S subontologies. Along the left side of the OWL-S tab are four instance
panes (see Figure 1), one each for services, profiles, processes, and groundings.
Each pane lists all instances of the corresponding type. For the process in-
stance pane we also use small icons next to the process names to distinguish
the different types of processes (e.g., “a” for atomic and “c” for composite). An
ontology containing multiple service descriptions would have several instances
in each pane. To provide the user with an overview of how different service
components fit together and which instances are related to one another (via
presents, describedBy, and so on), the user can select an instance in one of
the instance panes, and all instances that are directly related to the selected
instance are emphasized in boldface in the other panes. In Figure 1 the service
ba service:BravoAir ReservationAgent was highlighted in the service instance



Fig. 1. The OWL-S Editor, a tab-widget plugin for Protégé is shown here next to the
standard Protégé-OWL tabs to the left, and, to the right, other tab-widget plugins for
ontology management, queries, and XML management.

pane. As a result, its profile ba profile:Profile BravoAir ReservationAgent, its
top-level process ba process:BravoAir Process, and its grounding
ba grounding:Grounding BravoAir ReservationAgent are boldfaced in the other
instance panes.

We have also implemented a graphical overview functionality. By selecting
an instance and clicking a button in the toolbar, the user gets a graph view of
the same information (see Figure 3).

When the user clicks an instance in one of the instance panes, the space
to the right of the four panes changes to show a detailed editing pane for the
selected instance. For example, if the user selects a profile instance, then the
right window will show all properties of the profile. For some instances, such
as processes, we have designed a layout on the right that provides a pictorial



Fig. 2. A profile hierarchy for e-commerce that defines additional properties such as
delivery mode and merchandise.

visualization of subprocesses, control constructs, and data flow (see Sections 3.3
and 3.4).

3.2 Managing Parameters

Inputs, outputs, preconditions, and results (IOPRs) are important parts of ser-
vices. Both profiles and processes have a set of properties to relate them to
their IOPRs: hasInput, hasOutput, hasPrecondition, and hasResult. As men-
tioned above, a profile usually includes a subset of the IOPRs of the process
to which it is related. For this reason, it is often convenient to compare a profile
side-by-side with the related process, and have them both in view when making
decisions about the values of the IOPR properties. In addition, we sometimes
want to relate the IOPRs of two profiles or processes (e.g., a composite process
and an associated simple process, or two processes of different services).

To support efficient management of these IOPRs, we designed the IOPR
Manager, which visualizes IOPR relationships in a very compact way (see Figure
4). Clicking a toolbar button brings up the IOPR Manager window, which is
somewhat similar to the main tab widget of the OWL-S Editor. Like the tab
widget, it provides four instance panes to the left, and an editing pane to the
right (not shown here). The instance panes of the IOPR Manager show all the
IOPRs in the KB, and allow the user to create and delete IOPRs. The user can
also edit IOPR properties in the editing pane. In addition, two combo boxes at
the top of the window allow users to select two processes and/or profiles that
are to be compared with regard to their IOPRs. Associated with each combo
box is a column of checkboxes, one for each IOPR. The user can simply check or
uncheck these boxes to add or remove instances of the corresponding properties
(hasInput, hasOutput, and so on).



Fig. 3. Graphical Overview of the Bravo Air service

As an example, if we select ba process:BravoAir Process and its profile
ba profile:Profile BravoAir ReservationAgent in the combo boxes, then the
checkboxes show that they both have the input ba process:ArrivalAirport. In
addition, the editing pane shows us that that the parameterType of this input
is the Airport class (which is imported from a domain ontology of flight-related
concepts).

Groundings also refer to inputs and outputs. However, groundings do not
refer to preconditions or effects, and the relationship with inputs and outputs
is somewhat different from that of profiles and processes. For these reasons, we
chose not to include the groundings in the IOPR Manager. Instead, we imple-
mented separate support for editing groundings (see Section 3.5).

3.3 Control Flow
A powerful feature of OWL-S is the ability to model composite processes. A com-
posite process is constructed from subprocesses that can in turn be composite,
atomic, or simple. The control flow of a composite process is defined using control
constructs, such as If-Then-Else, Sequence, and Repeat-Until. These constructs
can be nested to an arbitrary depth.

These control flows are particularly difficult to generate by hand or in a
plain ontology editor not designed for this task. The OWL-S editor visualizes
these control flows graphically, in a style similar to UML Activity Diagrams,
using boxes for subprocess invocation (called Performs in OWL-S), diamonds
for conditional nodes (e.g., for If-Then-Else constructs), and arrows showing the
flow of execution. Being able to view these “work flow” graphs was a high priority
for us. OWL-S control flows have more structure than arbitrary flow charts or
UML activity diagrams, however. Therefore, we do not allow users to directly
“draw” the work flow. Instead, we take advantage of the fact that all OWL-S



Fig. 4. IOPR Manager

control flows are trees in the graph-theoretical sense. We let the user model the
control flow in a GUI tree component, with full drag-and-drop support, whereas
the corresponding work flow graph is updated to reflect any changes to this tree
(see Figure 5).

The view in Figure 5 is the editing pane for composite processes. If a user
selects a composite process in the process instance pane, the editing pane to the
right has the shown layout. If the user does a right-click on the process graph
view of a composite process, a menu will pop up, offering zooming, printing, and
SVG exporting capabilities.

As a further note, the process modeling that forms a part of the service
semantics has reaped interest outside of the area of SWSs (e.g. in [6]). The
process modeling part of our tool can be used to create process descriptions not
necessarily related to WSs. However, this is not the primary goal of the OWL-S
Editor.

3.4 Data Flow

In addition to control flow, composite processes can specify their data flow. For
example, we can state that a certain input of Process B should be taken from a
certain output of Process A. The goal in OWL-S (and our tool) is to also be able
to define more complex things, such as the input of Process B being the sum of
the outputs of Processes A and C. The details of this remain to be worked out,
but the simple one-to-one mappings should be sufficient for many applications.

Data flow is another area that is complicated to do by hand, but that can take
great advantage of a graphical representation and specialized editing support.
Both are supplied by the OWL-S Editor (see Figure 6).

Data flow definitions relate two parameters of different processes with each
other. Either one associates a parameter of the parent process with a parameter



Fig. 5. A composite process, its tree structure shown to the left, and its graph repre-
sentation to the right.

of one of its component processes, or one relates two parameters of two compo-
nent processes (atomic or complex) in the same parent process. If the user clicks
on one of the Perform boxes in the process graph, a popup window (shown in
the lower part of Figure 6) appears. This popup window shows the properties of
that Perform, including any incoming data flow. Here, the user selects an input
of the process (left part in the figure), and a source from which to take the value
(right part). For the source, the user needs to first select the process (“From
Perform”) and then a parameter in that process (“From Parameter”) to create
a data flow declaration.

3.5 Grounding and WSDL Import
We have already mentioned that OWL-S descriptions can relate to WSDL files
through groundings. OWL-S processes can relate to WSDL files in several ways
(see Figure 7), making it somewhat complicated to model this. In the simplest
case, there is a one-to-one correspondence between an OWL-S input parameter
and a message part of a WSDL input message as well as a one-to-one corre-
spondence between a WSDL operation output message part and an OWL-S out-
put parameter. These correspondences are defined in the grounding of a service
through so-called WsdlMessageMaps. In either of the two one-to-one correspon-
dences, the WSDL service accepts serialized OWL, or the ontology operates on
XSD[7] data types. Often, however, a transformation has to take place, in order
to map between concepts in the ontology and complex XSD types on the WSDL



Fig. 6. Example of data flow between processes, and the popup window for editing
data flow declarations.

side. We have added rudimentary support for this task in the OWL-S Editor ,
but complex mappings still have to be written manually. It is our goal to make
it straightforward and easy to declare these mappings in the OWL-S Editor.

In many cases, it will be desirable to create a “skeletal” OWL-S description
based on a preexisting WSDL file. Parts of the OWL-S description can be gen-
erated automatically based on the inputs and outputs defined in the WSDL file.
To this end, we have integrated the WSDL2OWLS code, part of the OWL-S API
from Mindswap8, to the OWL-S Editor. This allows users to perform this type
of OWL-S generation from a WSDL file by clicking one of the toolbar buttons
(see Figure 1).

3.6 Execution

An exciting feature of the OWL-S Editor is the ability to actually execute services
inside the editing environment. Selecting a Service instance and clicking the
’play’ button (see Figure 1) will execute that service, provided that it has a

8 http://www.mindswap.org/2004/owl-s/api/



Fig. 7. Grounding: WSDL Message Maps

WSDL grounding which is hooked up to a real web service. The user is presented
with a window (see Figure 8) where he/she gets to choose the values of the input
parameters (or create new instances for them) based on the parameter types
defined in the service’s process model. This functionality is work in progress,
but we aim to support composite as well as atomic processes, and users will be
able to take the results returned from services and add them into the Protégé
knowledge base.

4 RELATED WORK

The OWL-S IDE project9 is also concerned with the development of OWL-S
services. The OWL-S IDE is a plugin for Eclipse10, which attempts to integrate
the semantic markup with the programming environment. Developers can write
their Java code in Eclipse, and run a Java2OWLS tool to generate an OWL-S
“skeleton” directly from the Java sources.

9 http://projects.semwebcentral.org/projects/owl-s-ide/, formerly known as
CODE

10 http://www.eclipse.org



Fig. 8. Execution of a Semantic Web Service

The idea of integrating SWSs more closely with the programming environ-
ment used to develop the service implementations is a good one. However, Eclipse
does not support ontology editing, and there is no KB from which to choose the
domain concepts to which the OWL-S files should relate. Furthermore, it will
often be more useful to generate the semantic markup before the Java (or other)
code, as the semantic descriptions can be seen as a higher level of abstraction
of the programming modules. The OWL-S IDE does not provide any graphical
visualization of services or processes.

There are plans to integrate Protege with Eclipse in the future, so perhaps
we will have the best of both worlds—tight integration with the programming
environment, as well as ontology editing and KB integration, all in the same
IDE.

Another OWL-S Editor [8] has been developed at the University of Malta. It
is a stand-alone program, providing WSDL import as well as a graphical editor
and visualization for control flow and data flow. Not being integrated with an
ontology editor, it shares some of the drawbacks of the OWL-S IDE, without
gaining the advantage of programming-language integration.

ODE SWS is a tool for editing SWSs “at the knowledge level”[9], describ-
ing services following a Problem-Solving Methods (PSMs)[10] approach. OWL-S
plays a subordinate role in this environment, whereas the OWL-S descriptions
are the main focus of our work.

IRS-3 [11] also follows the PSM approach, but lacks the graphical tools of
ODE SWS or the OWL-S Editor, and does not support OWL-S, favoring WSMO
instead.

To the best of our knowledge, none of the projects above have released their
source code, whereas the source code for the OWL-S Editor has been available
from the beginning, at http://owlseditor.semwebcentral.org.



5 FUTURE WORK
This tool represents early work in SWS design and development. In the following,
we present some areas that we plan to work on in the future.

A limitation in Protégé is that it is not designed for concurrently working with
multiple ontologies. However, it is often useful to be able to do so when working
with SWSs. One often wants to edit service components spread across different
subontologies, and the domain ontologies are normally separated from the service
descriptions. Fortunately, the Protégé developers at working to implementing
this functionality.

One aspect of OWL-S services not covered in this paper is the editing of
preconditions and effects of processes, and conditions associated with control
constructs such as If-Then-Else. In OWL-S, these are normally described in the
SWRL language11. Currently, we simply provide a text box where users can
enter these SWRL expressions. However, we plan to provide more user-friendly
editing capabilities. Protégé has recently been enhanced with native support for
SWRL, including a SWRL expression-builder, which will serve as the basis of
this work.

A feature not yet implemented is online search for services. A central idea in
OWL-S is reusability. The separation of service descriptions into process models,
profiles, and groundings, means that these components can be re-used in other
services. An online search capability for service components inside the OWL-S
Editor would greatly facilitate such reuse. Such a search facility could also be
used to find entire services, to be included as parts of a composite process that
the user is working on in the OWL-S Editor. Ideally, the user should be able to
give detailed search criteria, and find a service that matches her current needs
(e.g. to find a service with inputs matching the outputs of previous processes
in a composite process model). Various approaches to online searching could
be implemented, ranging from brute-force Google12 search for .owl files, via
semantic search engines such as Swoogle13, to service-specific systems such as
semantically enhanced UDDI registries[12].

We are also working on improvements to the graph overview presented in
Section 3.1 to (1) show the entire “forest” of OWL-S instances simultaneously,
and (2) allow users to change the relationships between the service components,
i.e. add or remove instances of the properties presents, describedBy, etc.

We are also interested in the generation of OWL-S descriptions from BPEL4WS
files. We are closely following work in this area14 for possible inclusions in our
tool.

6 CONCLUDING REMARKS
We have argued in this paper that Semantic Web Services (SWSs) could enable
radically improved integration of businesses and networked communities, by au-

11 http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
12 www.google.com
13 www.swoogle.org
14 http://www.it.swin.edu.au/centres/cicec/bpel2owls.htm



tomating service discovery, composition, and execution. SWSs thus promise great
potential gains, but uptake has so far been slow. Lack of tool support has been
a limiting factor for adoption of SWS technology.

OWL-S represents an emerging standard for SWSs, providing the concepts
necessary to create detailed service descriptions. This paper has introduced the
OWL-S Editor, a development tool for OWL-S services. This tool allows engi-
neering of all aspects of SWSs, providing specialized views and design features
wherever deemed necessary. The tool is well integrated with the Protégé OWL
ontology editing framework. This integration means that developers can load,
edit, and create domain ontologies, and subsequently relate their services to
domain concepts in an easy and intuitive way.

Among the main features are graphical editing and visualization of control
flow and data flow; the ability to easily maintain a large number of services;
functionality to manage the relationships between service components and pa-
rameters; and generation of “skeletal” OWL-S descriptions from WSDL files.

A number of desirable extensions to the OWL-S Editor, such as online search-
ing capabilities, and an integrated execution environment for services, have been
discussed. In addition, we also plan to investigate the SWS software development
process as a whole. This could involve such things as best practices for developing
SWSs, “design patterns”[13] for SWSs, and the relationships between OWL-S
and other representations and methodologies such as UML[14], Model-Driven
Architectures[15], and PSL[16].

In providing this tool to the community, our aim is to make it easier to
understand the concepts of SWSs, and to create semantic descriptions of services.
We believe that this can bring a fruitful cross-pollination between practice and
theory. As more people start developing SWSs, important feedback on using the
service ontologies in various projects, and on design and implementation aspects
of SWSs, could benefit the knowledge in this field.

The OWL-S Editor is available for download in both binary and source for-
mats on http://owlseditor.semwebcentral.org. We welcome all feedback on
our mailings list.

REFERENCES
1. Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and

Web Services. Prentice Hall, Upper Saddle River, NJ, USA (2004)
2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American

(2001)
3. McIlraith, S., Song, T., Zeng, H.: Semantic Web services. IEEE Intelligent Systems,

Special Issue on the Semantic Web 16 (2001) 46–53
4. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness,

D., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.:
Bringing semantics to Web Services: The OWL-S approach. In: Proc. First Intern.
Workshop on Semantic Web Services and Web Process Composition (SWSWPC
2004), July 6-9, 2004, San Diego, California, USA. (2004) http://www.daml.org/
services/owl-s.

5. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The Protégé OWL plugin: An
open developoment environment for semantic web applications. In McIlraith, S.,



Plexousakis, D., van Harmelen, F., eds.: Proc. 3rd Intern. Semantic Web Confer-
ence (ISWC 2004), Hiroshima, Japan, November 2004, Springer (2004) 229–243
LNCS 3298.

6. Schlenoff, C., Barbera, T., Washington, R.: Experiences in developing an intelli-
gent ground vehicle (IGV) ontology in protégé. In: Proceedings of the 7th Inter-
national Protégé Conference. (2004) http://protege.stanford.edu/conference/
2004/abstracts/Schlenoff.pdf.

7. Fallside, D.C., (eds.), P.W.: XML Schema part 0: Primer second edition (2004)
http://www.w3.org/TR/xmlschema-0/.

8. Scicluna, J., Abela, C., Montebello, M.: Visual modelling of OWL-S ser-
vices. In: Proceedings of the IADIS International Conference WWW/Internet,
Madrid, Spain, October 2004. (2004) http://www.daml.org/services/owl-s/

pub-archive/Visual-Modeling-of-OWL-S%-Services.pdf.
9. Goméz-Pérez, A., González-Cabero, R., Lama, M.: Development of semantic

web services at the knowledge level. In: European Cnference on Web Services
(ECOWS), Erfurt, Germany. (2004)

10. Fensel, D.: Problem Solving Methods. Springer-Verlag Telos (2000)
11. Domingue, J., Cabral, L., Hakimpour, F., Sell, D., Motta, E.: IRS-III: A platform

and infrastructure for creating wsmo-based semantic web services. In: Proceedings
of the Workshop on WSMO Implementations (WIW 2004) Frankfurt, Germany,
September 29-30, 2004. (2004) CEUR Workshop Proceedings, ISSN 1613-0073.

12. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web
services capabilities. In: Proceedings of the 1st International Semantic Web Con-
ference (ISWC2002). (2002)

13. Gamma, E.: Design Patterns. Addison-Wesley, Boston, MA, USA (1995)
14. Brooch, G.: Object-Oriented Analysis with Design and Applications (2nd ed).

Addison-Wesley, Boston, MA, USA (1993)
15. Raistrick, C., Francis, P., Wright, J.: Model Driven Architecture with Executable

UML. Cambridge University Press. Cambridge, UK (2004)
16. Schlenoff, C., Gruninger, M., Tissot, F., Valois, J., Lubell, J., Lee, J.: The Process

Specification Language (PSL): Overview and version 1.0 specification. NISTIR
6459, National Institute of Standards and Technology, Gaithersburg, MD. (2000)


