
Purpose-Aware Reasoning about
Interoperability of Heterogeneous Training

Systems

Daniel Elenius, Reginald Ford, Grit Denker, David Martin, and Mark Johnson

SRI International, Menlo Park, California, USA
firstname.lastname@sri.com

Abstract. We describe a novel approach by which software can assess
the ability of a confederation of heterogeneous systems to interoperate
to achieve a given purpose. The approach uses ontologies and knowl-
edge bases (KBs) to capture the salient characteristics of systems, on
the one hand, and of tasks for which these systems will be employed,
on the other. Rules are used to represent the conditions under which
the capabilities provided by systems can fulfill the capabilities needed to
support the roles and interactions that make up each task. An Analyzer
component employs these KBs and rules to determine if a given con-
federation will be adequate, to generate suitable confederations from a
collection of available systems, to pre-diagnose potential interoperability
problems that might arise, and to suggest system configuration options
that will help to make interoperability possible. We have demonstrated
the feasibility of this approach using a prototype Analyzer and KBs.

1 INTRODUCTION

Much has been achieved in coaxing disparate resources to work together syn-
ergistically, but our ambitions often exceed the means at our disposal. Initia-
tives to lash together military training and testing systems are among the most
ambitious. Since the 1980s, the means have evolved from dedicated engineered
interfaces, to generalized interoperability middleware and protocols, and more
recently to service-oriented architectures (SOA) and improvisational all-comer
data access strategies such as the U.S. DoD Netcentric Data Strategy (NCDS)
and the NATO Network Enabled Capability (NNEC). However, universal impro-
visational “plug and play” is still beyond our grasp. Successful interoperabilty
is typically achieved only after lengthy planning, and it is not uncommon for
apparent successes to exhibit subtle unacceptable anomalies.

For a nontrivial set of resources that have been developed independently to
meet the unique needs of their sponsors/owners, it is impossible in general to
answer the unbounded question “are these resources interoperable with one an-
other”? However, when qualified as “are resources R1, . . . , Rn interoperable with
each other for purposes P1, . . . , Pn”, the question becomes manageable. This pa-
per describes the application of Semantic Web technologies to enable automated

“purpose-aware” reasoning about interoperability, as part of the Open Netcentric
Interoperability Standards for Training and Testing (ONISTT) program.1

ONISTT is developing (a) ontologies to express the capabilities needed to
perform mission-related tasks, (b) ontologies to express the capabilities avail-
able from prospective resources for executing those tasks, and (c) an automated
reasoner/analyzer that can determine if the collective capabilities of some sub-
set of candidate resources can satisfy the needs of a specific target mission. If
multiple subsets can satisfy the needs, the analyzer ranks the relative goodness
of each subset (with respect to relatively simple metrics). Because “goodness”
of fit among resources is not always a simple “yes” or “no”, the analyzer may
give a qualified answer, leaving it to human judgment to say whether the level
of interoperability is “good enough” or “the best obtainable.” The analyzer can
also suggest system configuration options.

In ONISTT proof of concept demonstrations, prototype KBs were popu-
lated with declarative information about the interoperability needs of partic-
ular training events, and the specific capabilities provided by operational and
training/testing resources. Several alternative compositions of resources were
presented to the prototype analyzer software. The analyzer correctly evaluated
potential compatibilities and conflicts among the resources.

2 BACKGROUND

The training community distinguishes between live, virtual, and constructive
training systems. In a live training system, real personnel and vehicles are aug-
mented with instrumentation such as GPS trackers and firing simulators, so that
combat situations can be trained as realistically as possible without the need to
fire real ammunition. Virtual systems – used to train crews of tanks, aircraft,
etc. – also involve real personnel, and the controls they use are often very close
to those on the real vehicle or article, but their view of their surroundings is
through computer-generated images. Constructive systems are done completely
on a computer, with a human controller who decides where troops go, and so
on.

For larger training exercises, there is often a need to connect different train-
ing systems, and the systems can be of all three kinds (i.e. live, virtual, and
constructve). We refer to this as LVC training, and the set of systems used is
called a confederation.

The problem with LVC training is that different training systems are usually
not built to be used together. Although the “technical interoperabilty” of ex-
changing data among systems is often achieved, there are many ways in which
“substantive interoperability” can fail to occur. We have found it useful to dis-
tinguish between four levels of interoperability, which we derived from the Levels
of Conceptual Interoperability Model (LCIM) [1]:

1 ONISTT is supported by the office of the Deputy Under Secretary of De-
fense/Readiness/Readiness and Training Policy and Programs (DUSD/R/RTPP).
The views expressed in this paper are those of the authors and not necessarily those
of DUSD/R/RTPP.

– Network interoperability. Common networking stack and medium. Systems
can physically exchange digital messages.

– Syntactic interoperability. Common syntactic structure of messages.

– Semantic interoperability. Systems have a common understanding of the
meaning of concepts used in communication.

– Behavior interoperability. Systems are compatible with regard to the actions
they take on receiving messages, and the circumstances under which they
send messages.

Many interoperability solutions have been implemented or proposed for train-
ing and similar systems [2–4]. However, none of these solutions encompass the
whole range of interoperability problems. In particular, they usually only specify
standards for networking and syntax, but fall short of a comprehensive seman-
tics, and fail to address behavioral problems [1].

The end result is that one often does not know whether two systems will be
truly interoperable until it has been tried. Much of the knowledge about inter-
operability and its problems resides in the minds of the engineers responsible
for the systems. Currently, before any major LVC training exercise, a so-called
BOGSAT (Bunch of Guys Sitting Around a Table) is summoned to work out in-
teroperability issues. [5] This process is error-prone, costly, and time-consuming.
Furthermore, the outcome of the process may not be stored for reuse in the
future, leading to redundant efforts.

3 THE ONISTT APPROACH

In order to enable improvised training events on short notice, we need to auto-
mate a significant portion of the planning and setup of these events.

The solution we propose is based on Semantic Web technologies. Our ap-
proach is summarized in Figure 1. First (1), we develop what we call referents
for all the training environments, tasks, infrastructures, and systems that are
relevant to the problem. By “referent,” we mean the most accurate and com-
plete information available about the entity in question. Referents can include
semi-formal models such as UML diagrams. These referents are then formalized
into OWL ontologies (2). We discuss the ONISTT ontologies in more detail in
Section 4. On the basis of these ontologies, the human planner defines an event
and proposes a partial or full confederation for the event (3). We have developed
a plugin to Protégé [6] to facilitate the formalization of the event. Then a piece
of software called simply “the Analyzer” uses the data from the planner and the
ontologies to verify the given confederation or generate a verified confederation,
based on domain-specific rules and general reasoning technology (4). Verified
means simply that the confederation passes all the interoperability tests that
apply for the given purposes and circumstances. The Analyzer is described in
more detail in Section 5. The Analyzer either returns a verified confederation
(5a) and configuration artifacts (to be explained in following sections), or notifies
the planner of what went wrong (5b), the more common situation. The Analyzer
can report anything from minor warnings to major roadblocks to a successful
event. At this point the planner can take corrective action and submit a new

proposal to the Analyzer, starting the process over. Alternatively, the planner
may choose to live with the problems that the Analyzer found.

Our goal is that the output of this process should be at least as good as the
output of a traditional BOGSAT, while being cheaper, less time-consuming, and
more reusable.

4 ONTOLOGIES

4.1 Ontology Language and Structure

We use OWL to express our ontologies. The primary reasons for selecting OWL
are pragmatic rather than technical (e.g., we do not make use of an OWL DL
subsumption-based reasoner, see Section 5). For our approach to be successful,
other groups will need to adopt it, and mature ontology engineering tools will
be required. We have created some prototype ontologies, but in the long run, we
cannot ourselves encode all the knowledge pertaining to this domain. Therefore,
we need a language and tools that other groups can readily pick up and use.
The DoD and others are converging on OWL for ontology expression. Although
fully mature OWL engineering environments are not yet available, open-source
and commercial tools are growing in number and capability.

Our ontology set is highly modularized, relying heavily on the OWL im-
port mechanism. The top-level ontology, onistt.owl, has a number of relatively
“naked” concepts and some properties between them. Each concept is elaborated
in one or more special ontologies. To describe the full richness of the training
domain, we also need ontologies of training systems, communication standards,
virtual terrain, military vehicles and weapons, and so on. We have made a start
at the ontologies we found necessary for the scenarios we have worked with. In
total, we have about 60 relatively small prototype ontologies. The intent is that
different organizations should be responsible for fleshing out their own ontolo-
gies.

4.2 Ontology Overview

The ONISTT ontology, as shown in Figure 2 has three complementary parts
that compose a Deployment :

– An Exercise has Task objectives (i.e., “purposes”), from which an assemblage
of needed capabilities is derived.

– A Confederation is a collection of Resources whose individual capabilities
may be composed to satisfy the sum of the capabilities needed.

– A set of Assignments match the capabilities provided by individual confed-
eration resources with specific capabilities needed to conduct the exercise.

Sections 4.3 to 4.5 explain how Exercise, Confederation, and Assignment
properties and concepts are tailored so that the Analyzer, as described in Sec-
tion 5, can satisfy the objectives identified in Section 3. Although the ontology
design reflects the intended use of our tool suite in exercise planning, we think
that similar purpose-resource matching ontologies could be developed for other
domains. Also, many of the imports are prototype generic ontologies we de-

Analyzer
Decision6a. Return

notification
of failed
verification.
Back to Step
1

5. Analyzer uses information in
Knowledge Bases to

a) Verify given
Confederation

 or
b) Generate verified

Confederation(s)

4. Training/Testing Planner
uses
Knowledge Bases to

• Define
Training/Testing
Event

• Propose Candidate
Confederation
(full or partial)

Configuration
Artifacts

Verified
Confederation(s)

6b. Return verified
Confederation(s)
and
Configuration
Artifacts

General
Concepts

DoD Domain
Concepts

2. Develop ontologies to
express
pertinent characteristics of
referents necessary for
machine reasoning about
interoperability

Ontologies

Role Interaction Confederation System

Task Entity Capability

Training/Test Exercise Training/Testing Resource

3. Populate Knowledge Bases
on the basis of ontologies and
information in referents

Training/Testing Exercise
Knowledge Bases

• Exercises
• Tasks
• Roles
• Interactions
• Entities (type)

Training/Testing Resource
Knowledge Bases

• Confederations
• Resources
• Capabilities

1a. Develop referents for
training/testing
events, tasks, and
environments

Training/Testing
Event Referents

Tasks

Training/Testing
Environments

LVC
Systems

1b. Develop referents for
LVC systems,
capabilities
and quality metrics

Training/Testing
Infrastructures

Training/Testing
Resource Referents

Fig. 1. The ONISTT approach and methodology.

Fig. 2. Top-level ONISTT ontology concepts

veloped for technical domains, for example the spatial ontologies discussed in
Section 4.4.

4.3 Purpose Ontologies

The ONISTT “purpose” ontologies are shown on the left in Figure 2. The pur-
pose of a training Exercise is to improve the proficiency of military forces in
the conduct of one or more Tasks. Joint training tasks (e.g., Joint Close Air
Support) are defined in the Universal Joint Task List (UJTL). Responsibility
for executing a task is distributed among several Roles (e.g., forward observer).
A Role is playedBy an Entity. The UJTL describes friendly force roles. However,
a training exercise must provide its own opposing force, and so surrogate hostile
force roles are included in ONISTT KBs.

Our ontology includes a prototype taxonomy of Role subclasses and their
associated properties and restrictions. For example, the playedBy property of
the AirborneOrdnanceDeliveryRole has allValuesFrom and someValuesFrom

restrictions that require individuals to belong to the AirPlatform class.

Each role in a task is responsible for performing certain actions. A complete
description of tasks would include actions that can be assigned to a single role.
However, the scope of ONISTT is interoperability, and therefore the only actions
defined in the ontology are interactions among roles. The initiator of an inter-
action is designated by the fromRole property, and the other end is the toRole.
Each interaction is associated with one or more needed Capabilities. Interac-
tions between opposing forces are often the most critical to planning a training
exercise because they require the support of special training capabilities, for ex-

ample communications and simulations needed to effect a weapons engagement.
However, training environments often differ from real operational environments
in ways that require some interactions even among friendly force roles to be
supported by auxiliary training system resources.

In defining an exercise, the planner may designate different TrainingLevel
objectives for different roles. The particular interactions that are required be-
tween roles, and the required qualities and characteristics of the interactions,
may depend on the training level. An exercise scenario defines other constraints
on roles, such as Location.

4.4 Resource Ontologies

The ONISTT “resource” ontologies, which specialize the Resource class shown
in the middle of Figure 2, are designed to support KBs that describe (1) the
capabilities of individual resources, and (2) the bundling of resources.

Since most systems and other assets used in training exercises are multipur-
pose and adaptive, ONISTT ontologies are designed to describe resources fully,
apart from any intended application. The Analyzer software selects facts from
the “resource” KBs to determine whether a particular combination of resources
is capable of performing a particular set of tasks in a particular context, as
described in Section 4.5.

Most resources in LVC training are not accessible atomically but are bundled
with other resources. The highest-level collection of resources in our ontologies
is the Confederation. A Confederation is typically a loose and temporary aggre-
gation of Resources – systems, infrastructure, and other assets – that have a
more stable, though not necessarily fixed, identity. Resources can have multiple
subresources, which in turn have subresources, to an arbitrary number of lev-
els. Dependencies among subresources constrain whether they can be used in a
mix-and-match fashion or are coupled together.

The main subclasses of Resource are Entity and System. An entity is an exer-
cise participant, for example an F/A-18 aircraft. Training systems are often very
complex, with multiple subsystems, which are recorded in KBs as subresources
whose range is also the System class. An example is live training instrumentation
that tracks the position of exercise entities, performs weapons effect simulation
when entities engage each other, records data for After Action Review (AAR),
and so on.

Each Resource has one or more Capabilities. One subclass of interest to the
ONISTT domain is Representation Capability, for example the ability of con-
structive modeling and simulation (M&S) to simulate an F/A-18 entity. Another
subclass is Communication Capability, for example the ability of a training sys-
tem to communicate with other systems using the Test and Training Enabling
Architecture (TENA). Another is Terrain Capability, for example the ability to
determine line of sight between two earth locations.

Quality and type characteristics are specific to Resource types. For exam-
ple a Representation Capability has a motionModel property. A Constructive
Representation Capability is restricted to motion models of the Simulated Mo-

tion Model. One of the quality characteristics of a simulated motion model is a
boolean property indicating the physical realism of a simulated entity’s motion
in turns (smooth or jerky). A few relatively simple quality metrics were used for
the initial feasibility demonstration. One of the major challenges for ONISTT is
expressing qualities and characteristics of capabilities in a standard way so that
the capabilities provided by resources can be compared with the capabilities
needed [7–9].

An example of standard definition of capability characteristics and qualities
is shown in Figure 3. Many training systems exchange Time-Space Position In-
formation (TSPI). Because the shape of the earth is irregular, it is difficult to
express geographic coordinates precisely and unambiguously, and many mathe-
matical schemes have been developed. A recepient of TSPI must know the spatial
reference frame of the data to interpret it correctly. The ISO 18026 Spatial Ref-
erence Model standardizes geographic reference frames. We translated the ISO
18026 spatial reference frames most commonly used in training systems to an
ontology. If an interaction requires two systems to exchange TSPI data, the
Analyzer can examine if they use the same reference frame or, if not, whether
they have a capability to translate between the two frames. If translation is re-
quired, the Analyzer can determine if the translation will be perfect, or if certain
attributes, such as line-of-sight calculation, may be distorted.

Fig. 3. Slice of the TSPI report ontology.

We developed approximately 20 prototype KBs describing individual systems
and capabilities to support the feasiblity demonstration. A full ONISTT opera-
tional capability will require hundreds. Fortunately, a comprehensive description
of each resource and capability is not necessary. The level of detail needed in
KBs is limited to facts that are directly relevant to assessing interoperability
among resources.

4.5 Assignment Ontologies
The “Assignment” ontology, as shown on the right in Figure 2, connects the
“purpose” and “resource” ontologies. The objective of exercise planning is to
specify a valid Deployment that defines a Confederation of resources to meet
the needs of a particular Exercise. An individual Exercise is a set of individual
Tasks, Roles, Interactions, and Entities selected from KBs developed in accor-
dance with the ontologies explained in Section 4.3. An individual Confederation
is a pool of systems and other resources that are selected from KBs developed in
accordance with Section 4.4. Individual Assignments assign one or more Confed-
eration Resources to each Entity defined in the Exercise. The Analyzer software
determines whether the assigned resources have all the requisite capabilities and
capability qualities and characteristics needed to support all Interactions among
all Entities.

5 ANALYZER
We mentioned in Section 3 the use of Analyzer software to provide feedback on
the suitability of a given confederation. Here, we describe the implementation
of this software, which brought up some issues of more general concern in using
Semantic Web technologies in the real world.

While the ontologies provide the background knowledge of the problem do-
main, the Analyzer provides the computational side of the automation. Its job
is to look at the information provided and draw conclusions according to a set
of rules.

We wanted to frame the operation of the analyzer as a problem of logical
deduction, as this would give us a clear semantics of what the analyzer does. We
considered (and tried) several different possibilities.

The most natural approach would be formulate the operation of the Analyzer
as an OWL subsumption check. This would allow us to use any OWL DL reasoner
right out of the box. However, we found it impossible to formulate the problem in
this way, mainly because OWL DL is very restrictive with the use of quantifiers
and variables.

Another approach was to use OWL augmented with SWRL [10] rules. How-
ever, SWRL also proved insufficient to express the operation of the Analyzer.
This is explained in more detail below

A third approach was to translate the OWL KB to First-Order Logic (FOL)
and axiomatize the operation of the Analyzer in FOL. We tried this (with the
SNARK2 theorem prover), but we found this to be too slow and sensitive to

2 http://www.ai.sri.com/snark/

small changes in the problem formulation (as is often the case with applications
of FOL theorem proving).

In the end, we decided to write the Analyzer as procedural code. We needed
a tight integration of procedural code (the Analyzer) and declarative content
(the KB). Prolog is a natural choice in this kind of situation. A large fragment
of OWL, called Description Logic Programs (DLP) [11], can be readily trans-
lated to Logic Programs [12] (the logical underpinnings of Prolog). Prolog can
also be used as a programming language for writing procedural code. In partic-
ular, we chose to use XSB Prolog,3 in order to avoid the well-known problems
that ordinary Prolog has with recursive structures such as equivalent classes or
properties.

The Analyzer implementation consists of a pair of software components: A
Translator that translates from the OWL+SWRL KBs into XSB Prolog, and
the Analyzer Core that runs domain-specific tests on the information in the
knowledge base.

5.1 Translator

Fortunately, there is already a “standard” way [11] to translate a fragment of
OWL DL, called DLP, to Logic Programs. It is also straightforward to extend
this translation to handle SWRL rules, because these rules are just Horn clauses,
directly expressible in Logic Programs (and thus in Prolog). We will describe
some of the salient features of our translation approach in the following.

A naive translation to Prolog (as done by for example the dlpconvert tool,
which is part of the KAON2 toolset4) encodes OWL classes as unary Prolog
predicates, OWL properties as binary predicates, and OWL axioms to Prolog
rules.

However, we have chosen a different encoding, with several advantages that
will be explained shortly. Our target Prolog statements include only two predi-
cates, inst/2 and value/3, with the intuitive meaning that inst(x,y) means that
x is an instance of y, and value(x,y,z) means that x has value z on property y.5

In this encoding, all class, property, and instance names appear as Prolog terms.
We may say that these entities are reified, as they appear as objects in the target
language.

This encoding allows more types of queries to be answered. For example,
we may ask for all classes that John is an instance of, ?- inst(John,X), with
answers like X = person; X = animal; X = thing. Note that the answers are not
just asserted instance relationships, but also all relationships that can be in-
ferred according to the semantics of the DLP+SWRL fragment. Another type
of query is to ask for all known or inferred property values of an instance, ?-

3 http://xsb.sourceforge.net/
4 http://owltools.ontoware.org/
5 We could have encoded everything using the value predicate by making “type” a

property. However, we opted for a more intuitive encoding that avoids special prop-
erties like rdf:type.

value(john,Prop,Val), and get answers like Prop = sibling Val = Dave; Prop =

sibling Val = Alice; Prop = age Val = 23.
This approach gives us more expressive power in formulating queries. Not

just instances, but also classes and properties, become objects that we can refer
to in queries. For example, we can use a class as the first or third argument to the
value predicate. This is usually called classes-as-instances, or just reification, and
is a feature of OWL Full. The jury is out on whether this is actually a desirable
feature in a language. One view is that a perceived need for this feature indicates
that something is wrong with the ontology. This may be true in a “pure” OWL
DL ontology that is designed with OWL DL reasoning in mind. However, for the
kinds of queries we do, we have found that classes-as-instances is quite a useful
feature in a few select places in our ontologies.

5.2 Analyzer Core
Once the OWL+SWRL knowledge base has been translated, it can be loaded
into our Prolog engine, and used by the Analyzer Core.

The Analyzer Core is a piece of code, currently a few hundred lines, that is
also written in XSB Prolog. While the translated knowledge base uses XSB in
a declarative way by just stating the facts, the Analyzer Core is a procedural
program that queries the knowledge base in various places. This is a very flexible
approach to integration of programming and reasoning.

More specifically, the operation of this component is as follows. It looks at
each pair of Roles that have an Interaction between them. It then compares the
Capabilities needed for that type of Interaction with the Capabilities provided
by the Resources that are used to represent the Role. The resources may be
sufficient, insufficient, or somewhere in between. In the real world, the latter is
usually the case. Therefore, the Analyzer generates warnings for conditions that
may be problematic but not fatal. Each condition is encoded as a rule in the
Analyzer.

Let us look at one of these conditions, unrealistic motion. This condition
occurs when we have an interaction requiring line of sight (LOS), for example,
a DirectFire interaction, and the fromRole is represented by a virtual system
(such as a tank simulator). Under these conditions, we require that the toRole
has smooth motion modeling. An example of where this is not true is when
the toRole is represented by a constructive system where units move betweeen
waypoints without smoothing out the curves (i.e., they have infinite angular
acceleration). This causes the users of the virtual system to see units “jumping
around” in an unrealistic way on their 3D displays. This leads to a loss of realism,
and is also a “fair fight” issue, since it is hard to target units that are moving
in a way that is physically impossible. The Prolog encoding of this rule is as
follows:

% I - Interaction

% FRes - set of resources that represent fromRole

% TRes - set of resources that represent toRole

realisticMotion(I,FRes,TRes) :-

realisticMotion_cond(I,FRes), !, realisticMotion_constraint(TRes).

realisticMotion(_I,_FRes,_TRes).

realisticMotion_cond(I,FRes) :-

inst(I,’interaction:LOS_Interaction’),

member(FS,FRes),

value(FS,’onistt:subresource’,FSs),

value(FSs,’system:representationCapability’,FRC),

inst(FRC,’system:VirtualRepresentationCapability’).

realisticMotion_constraint(TRes) :-

member(TS,TRes),

value(TS,’onistt:subresource’,TSs),

value(TSs,’system:representationCapability’,TRC),

value(TRC,’system:motionModel’,MMT),

value(MMT,’motion:smoothMotion’,true).

If the realisticMotion procedure fails, then the condition occurs (i.e., if we
do not have realisticMotion, then we have unrealistic motion). The top-level
rule is an implication that must be satisfied; if realisticMotion cond holds, then
realisticMotion constraint must also hold.

Several things are worth pointing out in this example.
– The rule is stated in a positive way – unless we can prove the absence of a

warning condition, we assume that the condition holds. This means that a
warning condition cannot be avoided simply because of lack of information.

– We see that the Analyzer queries the knowledge base in many places, that
is, it invokes the value and inst predicates. Each of these calls can involve
arbitrary DLP reasoning. For example, the onistt:subresource property is
transitive, so the value calls using this property will return a transitive clo-
sure. This is what we meant by a flexible integration of programming and
reasoning, above.

– Different rules have different sets of arguments. In this case, we need the
Interaction, the from-resources, and the to-resources. Other rules are slightly
different. Also, some rules have return values. For example, the rules to check
whether two roles can communicate also return the communication path (we
call this a configuration artifact).
Other examples of conditions are lack of training system or tactical commu-

nications (where needed) or uncorrelated terrain data, which can cause problems
like tanks hovering in the air, or airplanes flying through mountains.

The set of rules to check for problematic conditions is meant to be extensible.
Ideally, one should be able to specify these rules in a declarative way – for
example in SWRL – so that they can easily be inspected, edited, and so on.
This was also our original approach. However, we found that the expressiveness
of SWRL was not sufficient to encode the rules. To see why this is so, first
consider the requirements for the Analyzer. The Analyzer is basically a function
that takes one argument, the Deployment to check, and returns the results of
the analysis, that is, warnings for some of the interactions in the Deployment,
and configuration artifacts. These results could be encoded as ontological objects

(e.g., a Warning class, with subclasses for different types of warnings), and we
would then like the Analyzer to create and return the appropriate instances.
However, SWRL rules cannot create new instances, or indeed return any type
of structured data, unless the data is part of the “input” arguments to the rule.
We can do this in Prolog, by using compound terms, but SWRL is Datalog (i.e.
function-free), and thus it does not have compound terms. One option that we
plan to explore for the purpose of making the Analyzer rules more transparent
is Functional RuleML.6

6 EVALUATION

Our work on the ontologies as well as the analyzer has been driven by a number
of use cases [13]. Each use case consisted of an exercise and several different con-
federations (and assignments) for that exercise. Working up the use cases forced
us to develop the ontologies of the systems and tasks involved to a considerable
level of detail. The cases were inspired by real-world exercises and systems with
which we had previous experience, and were designed to provide a realistic level
of complexity. Some of our use cases were such that we knew what the results
should be, and we could verify that the analyzer came up with those results.
We also developed new and more complex scenarios, where we did not know the
answers beforehand. The analyzer returned useful warnings and configuration
artifacts, such as mediated communication paths. We have not yet tried the an-
alyzer on a real-world exercise ahead of time. Finding an appropriate exercise to
work with is high on our agenda.

There is much to gain by applying Semantic Web technology to our domain,
in terms of automation, reduction of costly labor, and new functionality. At the
same time, the approach requires a large one-time investment in ontology devel-
opment before it can be widely adopted. It is our contention that the benefits
are large enough to motivate the costs, especially since the ontologies can be
reused in many different contexts.

7 CONCLUSIONS

We have described a novel approach by which software can assess the ability
of a confederation of heterogeneous systems to interoperate to achieve a given
purpose. This approach uses ontologies and KBs to capture the salient charac-
teristics of systems, on the one hand, and of tasks for which these systems will
be employed, on the other. Rules are used to represent the conditions under
which the capabilities provided by systems can fulfill the capabilities needed to
support the roles and interactions that make up each task. An Analyzer com-
ponent employs these KBs and rules to determine if a given confederation will
be adequate, to generate suitable confederations from a collection of available
systems, to pre-diagnose potential interoperability problems that might arise,
and to suggest system configuration options that will help make interoperability
possible.

6 http://www.ruleml.org/fun/

Representing the capabilities of systems and reasoning about interoperability
are notoriously difficult problems, in their general forms. Solutions to these prob-
lems have potential value in a number of domains and applications. In military
settings, such as complex training exercises, it is often a top priority to minimize
the engineering effort, and maximize the flexibility, associated with the deploy-
ment of “improvised” systems of systems. The work described here demonstrates
a promising way forward. A key enabler of this approach is the explicit repre-
sentation of purpose (i.e., tasks, roles, interactions, and the capabilities required
for their fulfillment). We have found that assessing interoperability for a given
purpose is considerably more manageable than general, unconstrained forms of
the interoperability problem.

REFERENCES
1. Tolk, A., Turnitsa, C.D., Diallo, S.Y.: Implied ontological representation within

the levels of conceptual interoperability model. International Journal for Intelligent
Decision Technologies (IDT) 2 (2008) To appear.

2. Distributed Interactive Simulation Committee of the IEEE Computer Society:
IEEE standard for distributed interactive simulation – application protocols (1998)
IEEE Std 1278.1a-1998.

3. Simulation Interoperability Standards Committee of the IEEE Computer Society:
IEEE standard for modeling and simulation (M&S) high level architecture (HLA)-
framework and rules (2000) IEEE Std 1516-2000.

4. Hudgins, G.: DoD ranges interoperability reuse achievable through the Test and
Training Enabling Architecture, TENA. In: International Telemetering Conference.
(2006) 23–27

5. Johnson, M., Ford, R., Shockley, J., Giuli, R., Oberg, S., Beebe, M.: Integration of
CCTT and JCATS in an LVC exercise. In: Simulation Interoperability Workshop.
(2004) 04E-SIW-066.

6. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The Protégé OWL plugin: An
open developoment environment for semantic web applications. In McIlraith, S.,
Plexousakis, D., van Harmelen, F., eds.: Proc. 3rd Intern. Semantic Web Confer-
ence (ISWC 2004), Hiroshima, Japan, November 2004, Springer (2004) 229–243
LNCS 3298.

7. RPG Special Topic: Fidelity. Technical report, Defense Modeling Simulation Office
(DMSO) (2000)

8. Davis, P.K., Anderson, R.H.: Improving the composability of DoD models and
simulations. Technical report, RAND National Defense Research Institute (2003)

9. Kasputis, S., Oswalt, I., McKay, R., Barber, S.: Semantic descriptors of models
and simulations. In: Simulation Interoperability Workshop. (2004) 04F-SIW-070.

10. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML (2004)

11. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proceedings of the 2nd Interna-
tional Semantic Web Conference (ISWC2003). (2003)

12. Loyd, J.W.: Foundations of Logic Programming (2nd extended ed.). Springer
Verlag, New York (1987)

13. Ford, R., Hanz, D., Elenius, D., Johnson, M.: Purpose-Aware Interoperability:
The ONISTT Ontologies and Analyzer. In: Simulation Interoperability Workshop,
07F-SIW-088, Simulation Interoperability Standards Organization (2007)

