
Ontological Analysis of Terrain Data

Susanne Riehemann
SRI International

Menlo Park, CA, USA
susanne.riehemann@sri.com

Daniel Elenius
SRI International

Menlo Park, CA, USA
daniel.elenius@sri.com

ABSTRACT
Geographic applications require increasingly accurate data,
for example to support high fidelity visual simulations. How-
ever, information about data accuracy is typically not di-
rectly available, and must instead be inferred from the man-
ner in which the data was acquired and processed. Some
inaccuracies arise as subtle side-effects of processing steps,
such as transformation errors due to implicit epochs or unin-
tentional downsampling due to pixel overlap of tiled imagery.
Many such problems are known to only a small number of
experts. To address this problem, we formalize the prop-
erties of each piece of data and its processing history in a
geographic ontology, and use declarative Semantic Web Rule
Language (SWRL) rules to calculate the errors relative to
the real world or to other data. Since the impact of these
errors depends on the purpose for which the data is to be
used, purpose-dependent requirements are described using
an additional task ontology and evaluated by our task an-
alyzer software. The geographic ontology combines knowl-
edge from different areas of expertise, and makes it available
for the community to use, critique, and augment.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and
Methods]: OWL and SWRL Ontologies; H.4 [Information
Systems Applications]: Terrain Data Analysis

General Terms
Theory, Measurement

Keywords
Terrain ontology, terrain accuracy, metadata

1. INTRODUCTION
Military training and testing events make use of many het-

erogeneous systems and resources, such as simulation pro-
grams, virtual trainers, and live training instrumentation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COM.Geo 2011 Washington, D.C.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

This domain is replete with interoperability problems. One
of the most problematic areas is that of terrain representa-
tion. For most training and testing purposes, it is crucial for
the simulation software to have a realistic representation of
the environment in which the events take place, including el-
evation data, imagery, and 3D models of trees and buildings.

These events are often done in a distributed fashion, where
many systems are connected to play different parts in the
simulation. The different systems are not usually designed
to be used in this fashion, and may use different terrain
data and formats. It is difficult to determine whether ter-
rain data is adequate for a particular purpose, because it
lacks sufficient metadata, and has often gone through many
processing steps, some of which affect accuracy in subtle
ways understood only by a handful of experts.

SRI International has been working with military orga-
nizations for many years to provide better methods and
products to support training and testing events. In the
Joint Training Experimentation Program (JTEP), we de-
veloped several innovative technologies for so-called Live-
Virtual-Constructive (LVC) training for the National Guard
[6]. More recently, in the Open Netcentric Interoperability
Standards for Training and Testing (ONISTT) and Analyzer
for Net-centric Systems Confederations (ANSC) programs,
we have developed an ontology-based method for analyzing
and planning these events. However, the terrain data prob-
lems discussed in this paper are not unique to the military
domain, and neither are the solutions we propose.

In Section 2 we describe some of the many problems that
can occur with terrain data. In Section 3 we explain why we
use ontologies to analyze these problems. Section 4 describes
our terrain ontology and rules. In Sections 5 and 6 we discuss
lessons learned and possible directions for future work.

2. COMMON TERRAIN DATA ISSUES
One question about terrain data concerns absolute accu-

racy, i.e. how closely the data matches the real world. This is
important for live events where the virtual and real terrains
need to match well. If there is no live aspect to the training,
one mainly needs to know the relative differences between
the virtual terrains for the various roles in the simulation.

The required level of fidelity depends on the use case: a
flight simulator does not need as much detail as a terrain
that is used for urban training, where even errors in the 1-2
meter range can be significant. Such errors can be caused
e.g. simply by ignoring continental drift [9], and can result in
line-of-sight (LOS) problems, with buildings being misplaced
relative to the live GPS-tracked entities as in Figure 1a.

This causes fair fights issues if another virtual terrain in the
simulation is correct, as in Figure 1b.

Figure 1a: No LOS
with incorrectly posi-
tioned building.

Figure 1b: LOS with
correctly positioned en-
tities and building.

Elevation data is often provided as rasters of various res-
olutions, with each ‘pixel’ representing one elevation data
point. It has frequently been downsampled, reducing accu-
racy. And not all elevation rasters of a given resolution are
created equal. If first return LIDAR data is used without
removing the canopy height to produce a bare earth model,
or if the raster is created from contour lines, it can contain
line-of-sight blocking hills that do not exist in reality. Con-
versely, significant elevation is sometimes absent due to the
large sample spacing. For example, an entire hill is missing
in Figure 2a and had to be manually surveyed to create the
more accurate model in Figure 2b because the hill was in
the middle of a training site. Even if two terrains otherwise
use the same source data, they can differ in whether or not
such supplementary data is collected, resulting in significant
LOS differences between the buildings.

Sometimes elevation data from multiple sources needs to
be merged, for example when adding a lower resolution
perimeter to a terrain with high resolution elevation data for
the training area. Differences in georeferencing can result in
artifacts such as the ravine in Figure 3, where the elevation
on the left of the ravine is high resolution and ends a little
beyond the river, while the elevation on the right is part of
the low resolution perimeter.

Many terrain data problems are caused by inadequate
metadata. Sometimes there is no metadata at all, and the
spatial reference frame (SRF) has to be inferred by reference
to other data. The epoch (year) of WGS84 data is almost
never stated, making it impossible to correct for continen-
tal drift. When State Plane data is provided in feet, it is
sometimes unclear whether the units are international feet
or US survey feet. Even when the metadata is ‘complete’ it
usually does not maintain a processing history.1 In partic-
ular, the metadata hardly ever contains information about
the measurement accuracy of the data acquisition tool or the
properties of the data with respect to which georeferencing
was performed. An additional complication stems from the
fact that different pieces of software store the metadata in
different places, e.g. inside a geotiff (a tiff file that includes
geographic metadata tags) or in associated sidecar files with
various extensions like .aux, .prj, or .tfw. With a processing
tool chain involving multiple pieces of software, this can lead
to inconsistent information in the different places where the
metadata is stored, and can result in errors.

Virtual terrains also use a variety of SRFs. Individual

1Some software tools like ESRI ArcInfo can record a pro-
cessing history, but it is not sufficiently complete or human
readable, and the information will likely be lost when differ-
ent tools are used at a later stage in the tool chain.

Figure 2a: Hill missing from 10m elevation data.

Figure 2b: Hill added using survey data.

points can be translated between SRFs, so two terrains with
different SRFs can be vertex-level correlated. But SRFs dif-
fer in the types of distortions they introduce, i.e. distortion
of shapes, areas, directions, or distances. For example, aug-
mented UTM (Universal Transverse Mercator) terrains ig-
nore the curvature of the ellipsoid [11], which can lead to
LOS issues in large terrains. SRF differences can also inter-
act with dead reckoning algorithms to produce diagonal ori-
entations (crabbing) and zig-zag movement patterns when
entities snap to updated positions.

Most virtual terrains use a triangular mesh to represent
the elevation information, but differ in triangle density, reg-
ularity, and distribution of shapes, due to different polygo-
nization algorithms and settings. If there are not enough
triangles to model the ruggedness of the terrain, this can
lead to LOS issues as well, with entire hills or ravines miss-
ing. In one real exercise for which we analyzed the properties
of the virtual terrains after the fact, we found a 12 meter
worst-case elevation difference between two terrains. These
terrains used the same elevation source data – the difference
was due to polygon density settings. In one of these terrains,
the elevation of the terrain skin was more than 10m above
or below the elevation posts of the source data for 15% of
the posts, while in the other terrain this was the case for
only 0.3% of the elevation posts.

Figure 3: Artificial ravine caused by elevation merg-
ing.

3. ONTOLOGIES, OWL, AND SWRL
We use ontologies and the OWL (Web Ontology Lan-

guage) and SWRL (Semantic Web Rule Language) languages
to address the problems described in Section 2. There are
several reasons why ontologies, and OWL and SWRL in par-
ticular, offer good solutions to many terrain problems.

First, communities can benefit from open data represen-
tation, as opposed to closed, proprietary data. Open data is
reusable in different applications, extensible by third parties,
and does not waste investment in the data if one particu-
lar application ceases to be used. Closed, proprietary data
is usually intended for a specific application and not exten-
sible or reusable. There is a general trend in information
technology towards more open standards and data formats,
e.g., XML, Web Service APIs, and OWL.

A related distinction is that between procedural and declar-
ative information. Often, domain knowledge is hidden in
procedural code of the form “first do this, then do that”.
Procedural information is typically closed, as well as difficult
to understand and maintain. Declarative information con-
sists of statements of facts, and is typically easier to under-
stand, and more reusable and extensible. Again, the trend is
toward using more declarative formats, for example object-
oriented programming languages and ontologies.

Third, data needs to be structured in order to make it
independent of its applications. XML, database schemas,
and object-oriented (OO) class models represent the struc-
ture of their data. Different data representation methods
differ in the degree and type of structure they can capture.
For example, XML data is tree-shaped, database content
is in table form, and OO models capture class hierarchies.
The more sophisticated the application, the more structure
we need in the data. Ontologies are highly structured and
expressive knowledge representation (KR) schemes. An ad-
ditional advantage of a highly structured or formalized KR
scheme is that it forces domain experts to make hidden as-
sumptions explicit. This makes the knowledge available to
others, and can even be beneficial to the experts themselves;
we have noted that our own understanding of the terrain do-
main has been dramatically improved by the systematizing
effect of encoding our knowledge in a structured way.

OWL is also modular. Ontologies can import other ontolo-
gies, and refer to concepts defined elsewhere. Each concept
has a globally unique resource identifier (URI). This modu-
larity means that the authoring and ownership of ontologies
can be highly distributed, with each expert community con-
tributing their knowledge to a global web. Inferences can
then be drawn from a combination of knowledge from on-
tologies produced by different groups of experts, fostering
an understanding that transcends individual domains.

There are additional advantages to using formal logic for
KR. Formal logic has been used to capture knowledge since
Aristotle. Logics come with inference rules, allowing us
to draw potentially unanticipated conclusions from asserted
facts. The asserted facts could all be very simple, yet the
inferred facts can be complex and non-obvious. Because the
inference rules are strict if-then rules, their application can
be automated. Automated inference is also known as ma-
chine reasoning, and automated inference systems are usu-
ally called reasoning engines or inference engines.

There are many different logics, e.g., Horn logic, first-
order logic, modal logics, higher-order logic, which differ in
their expressiveness. More expressive logics come at a price:

the automated inference requires more time and computing
resources. Description Logics (DL) are a family of logics
that represent a good trade-off between expressiveness and
tractability for many types of applications.

OWL is a standardized DL language that has gained wide
acceptance in different communities. There are many freely
available tools and reasoning engines for OWL. The basic
building blocks of OWL are classes, properties, individuals,
and axioms that describe how these relate to each other.
SWRL is an extension that makes it possible to write rules
expressing mathematical and other relationships that cannot
be described in plain OWL.

Ontologies have been used for other purposes in the geo
community: to facilitate the interoperability of different GIS
systems [12, 5], to help reason about spatial relationships
[14, 13], to directly contain geospatial data on the Seman-
tic Web, and to facilitate spatial web searching [7]. There
are papers about the properties that these ontologies should
have, and how to ensure their interoperability [10, 4]. In con-
trast, our ontology formalizes metadata, including the pro-
cessing histories of elevation, imagery and culture data and
of the virtual terrains produced from this data, and captures
mathematically how each type of processing step affects ac-
curacy, depending on the properties of the input and output
data. Our knowledge bases do not contain geographic data
directly but instead contain detailed metadata, which we
use to compute the absolute errors of the geographic data
compared with the real world and relative to other data.

4. A TERRAIN ONTOLOGY
We present our approach to some of the problems dis-

cussed in Section 2, using the technologies described in Sec-
tion 3. Our solution is based on the following ideas: 1) each
piece of terrain data, whether it is a fully functional virtual
terrain or some component data (such as the positions of
buildings in the terrain), is described in an ontology; 2) this
ontology includes information about the processing history
of the data; 3) this information allows us to calculate the
maximum or typical errors of the terrain data, relative to
the real-world terrain or to some other terrain data; and
4) if we know the amount of error in terrain data, we can
determine whether the data is suitable for a particular task.
In the following, we elaborate on these ideas and show how
we implement them. It should be noted that, while our
examples are from the military domain, the problems and
solutions are also applicable to other domains.

MagicDraw UML, 1-1 C:\Documents and Settings\rford\VOM\ontologies\2010\onistt\devel\ontology\domai

«ow lClass»
SpatialReferenceFrame

«ow lClass»
TerrainProcessingTool

«ow lClass»
GeographicExtents

«ow lClass»
ProcessingStep

«rdfsDatatype»
string

«ow lClass»
TerrainData

«ow lClass»
DataFormat

«ow lClass»
SpatialData

«ow lClass»
Location

+producedBy

+input

+output

+dataFormat

+spatialReferenceFrame

+fileName

+supportsProcessingStep

+tool
+location

+extents

«inverseOf»

Figure 4: Top level of the terrain ontology.

Most of our terrain ontology resides in one OWL file, vir-
tual_terrain.owl. The top-level classes and the relationships
between them are shown in Figure 4. The SpatialData class
represents virtual terrains and any kind of data that can
be used to create a virtual terrain, such as elevation data,
satellite and aerial imagery, and survey points. It includes

spatial data that is not yet georeferenced, such as 3D mod-
els. SpatialData has a DataFormat. TerrainData represents
spatial data that is geo-located. Thus, this class has among
its properties a spatial reference frame and geographic ex-
tents. The ProcessingStep class represents one discrete step
that takes SpatialData as input and produces different Spa-

tialData as output (e.g., downsampling imagery creates new
imagery with a lower resolution). Thus, the class has input

and output properties. SpatialData has a producedBy prop-
erty which is the inverse of the output property: SpatialData

that is producedBy a given ProcessingStep is the output of
that ProcessingStep. A ProcessingStep uses some Terrain-

ProcessingTool. Our terrain_tools.owl ontology contains
information about some common terrain tools, with classes
like ESRI_ArcInfo and Presagis_TerraVista.

Georeferencing
ESRI_Georeferencing_10m_Elevation

human error 7.1m +
point fitting RMS error 0.6m +

source data error +
reference data error

Merging
ERDAS_ImagineMergingElevation

error of first layer in which xy exists

OPUS_Correction
LeicaGeoOfficeOPUS_Correction

RMS error 1.5cm +
error of input

Surveying
LeicaGPS1200Surveying

measurement accuracy of tool
LeicaGPS1200: 0.5cm XY, 1cm Z +

human error: 1.5cm

RasterProcessingStep
ESRI_Rasterization

diagonal of output pixel size +
error of input

RemoteSensing
NOAALidarDataAcquisition
measurement accuracy of tool
LeicaHDS6000: 0.2cm XY/Z

RasterProcessingStep
Downsampling_3m_Elevation

diagonal of output pixel size +
error of input

TerrainConversion
TerrexOFLT2MDX_Step

error of input

TerrainBuilding
TerraVistaTerrainBuildingStep

Z error of input +
effect of XY error on Z given slope +

polygonization error

CA_FHL_VRSG_SRI_2010_06_07_VirtualTerrain

CA_FHL_OpenFlightVirtualTerrain

PostElevationDataMerged
maxSlope: 35 degrees

PostElevationData3mDownsampledTo10m

PostElevationData3m
pixelSize: 3m

PostElevationData10m

PostElevationData_10mUnreferenced
(sourceData)

pixelSize: 10m

NOAAMassPointsElevationData PointDataSurvey

PointDataSurveyOPUS_Corrected
(referenceData)

UnknownProcessingHistory
PostElevationData3m_UnknownProcessingHistory

asserted error XY: 2.6m
asserted error Z: 0.5m

Figure 5: Processing history for Ft. Hunter Liggett
elevation data.

The most detailed part of our ontology describes the pro-
cessing steps. The ProcessingStep class has a hierarchy of
sub-classes for different kinds of processing steps. For each
kind of processing step, there are several SWRL rules that
describe the effect of the processing step on the error of its
output. Typically, this depends on the quality of the input
data and of some properties of the processing step itself. We
will discuss these rules in Section 4.1. Figure 5 shows a dia-
grammatic representation of a typical processing history for
the elevation data of a virtual terrain. The specific informa-
tion about this terrain is stored separately from the general
virtual terrain ontology, in an OWL file that imports vir-

tual_terrain.owl. The boxes show individuals of processing
step classes, including the class name (e.g., RasterProcess-

ingStep), the individual name (e.g., ESRI_Rasterization), and
the formula for calculating the error of the output (e.g., di-

agonal of output pixel size + error of input). Each box
is connected to its input and output terrain data individ-
uals (e.g., NOAAMassPointsElevationData and PostElevation-

Data_10mUnreferenced). Some of the terrain data individuals
have additional properties (e.g., pixelSize 10m).

4.1 Terrain Processing Rules
The SWRL rules for calculating the error of terrain data

form a complex web of dependencies (see Figure 6). Each
rule is a Horn clause, i.e., a logical formula of the form
∀ϕ̄h, ϕ̄1 . . . ϕ̄n : B1(ϕ̄1) ∧ . . . ∧ Bn(ϕ̄n) =⇒ H(ϕ̄h). This
should be read as an if-then rule in which B1(ϕ̄1) ∧ . . . ∧
Bn(ϕ̄n) is the body or antecedent and H(ϕ̄h) is the head
or consequent of the rule. If the body is true, then the
head has to be true. Note that the body has several sub-
formulas (and several predicates Bi) combined using con-
junction (logical “and”), whereas the head has only one for-
mula (and one predicate H). The ϕ̄i are sequences of vari-
ables. The variables are universally quantified on the outside
of the whole rule, but in the SWRL syntax this is assumed
by default and therefore omitted. Usually we read the rules
backwards, as “in order to prove H(ϕ̄h), we have to prove
B1(ϕ̄1)∧. . .∧Bn(ϕ̄n)”. The rules essentially define the pred-
icates in the rule heads. Note that many rules can have the
same predicate in their rule heads. Figure 6 shows which
rules define which predicate in our terrain ontology. For
example, we can see that the maxErrorMeters predicate (bot-
tom middle) is defined by a large number of rules, such as
MaxErrorGeoreferencingZ and MaxErrorRasterXY. The differ-
ent rules for the same rule head predicate can be thought of
as different cases. The MaxErrorGeoreferencingZ rule defines
how maxErrorMeters is calculated for the case of a Georefer-

encing processing step and for the Z error. The MaxError-

RasterXY rule defines how the error is calculated for the case
of a Rasterization processing step and for the X/Y error.
Figure 6 also shows dependencies between rules, i.e. when
a rule has a predicate in its body which occurs in the head
of another rule. Sometimes a rule depends on its own head
predicate, i.e. the rule is recursive.

In Figure 5, we have English descriptions of what some
of the rules do. We mentioned the rasterization step, which
calculates the error of the output terrain data as “diagonal
of output pixel size + error of input”. This calculation is
defined in the MaxErrorRasterXY SWRL rule in the following
way (slightly simplified from our actual rule):

producedBy(?td, ?ps)∧
RasterProcessingStep(?ps)∧
pixelSize(?td, ?pi)∧
swrlm:sqrt(?sr, 2)∧
swrlb:multiply(?ep, ?pi, ?sr)∧
input(?ps, ?in)∧
maxErrorMeters(?ei, Horizontal, ?in, ?x, ?y, ?time)∧
swrlb:add(?e, ?ep, ?ei)
⇒
maxErrorMeters(?e, Horizontal, ?td, ?x, ?y, ?time)

We read this backwards, starting with the rule head (the
last line after the implication arrow). The maxErrorMeters

predicate has six arguments (see Section 5 for a discussion
of predicate arity): ?e, Horizontal, ?td, ?x, ?y, and ?time.
Note that SWRL requires all variables to be prefixed with
a question mark. ?e is the result variable, the error of the
terrain data under the circumstances given by the other pa-
rameters. Horizontal is an individual (a constant) indicat-
ing that this is the rule for the horizontal error. A similar

relativeElevationError

commonHistory

elevationDataOfPoint

polygonizationError

maxErrorMetersOrZero

pointInTerrainData

pointInExtents
maxPostDiff

polysPerPost

localizationFactor

maxErrorMeters

listMaxError

imageryResolutionOfPoint

resamplingError

maxElevationError

maxImageryError

hasProcessingStepType

hasInputType

processingStepsinputHistorySecondary

inputData

maxCultureError maxBuildingErrorvertexLevelCorrelated

notVertexLevelCorrelated

inputCorrelated

sameSRF

predicates used in tasks
auxiliary predicates

vtElevationInput

inputHistory

continentalDrift
effectOfXYonZ

tileOfPoint

SameSRF

InputCorrelated VertexLevelCorrelated

NotVertexLevelCorrelated

HasInputDataType

InputDataBase
InputDataRec

HasProcessingStep

ProcessingStepsBase

ProcessingStepsRec

RelativeElevationError
RelativeElevationErrorSame

CommonHistory

InputHistorySecondaryRec
InputHistorySecondaryBase Polygonization

MaxPostDiff

PolysPerPost

LocalizationFactor

ResamplingErrorSame
ResamplingErrorDifferent

ImageryResolutionOfPointLOD
ImageryResolutionOfPointNonLOD

ElevationDataOfPointLOD
ElevationDataOfPointNonLOD

PointInTerrainData

PointInExtents_Circle
PointInExtents_Rect
PointInExtents_Tiled

VtElevationinput-TB
VtElevationinput-Conv

InputHistoryBase
InputHistoryRec

ContinentalDrift
EffectOfXYonZ

TileOfPoint

ListMaxErrorBase
ListMaxErrorRec

MaxErrorMetersOrZeroCommon
MaxErrorMetersOrZeroNotCommon

MaxBuildingError_Conversion
MaxBuildingError_Building

MaxCultureError_Conversion
MaxCultureError_Building

MaxImageryError_Conversion
MaxImageryError_Building

MaxElevationError_Conversion
MaxElevationError_Building

Rules
rule predicate dependency

MaxErrorParametricModelGeneration
MaxErrorAssertedXY
MaxErrorAssertedZ
MaxErrorRemoteSensingXY
MaxErrorRemoteSensingZ
MaxErrorSurveyingXY
MaxErrorSurveyingZ

MaxErrorCultureCreationXY
MaxErrorManual3DModeling
MaxErrorManualPlacement
MaxErrorOPUS_Correction
MaxErrorGeoreferencingXY
MaxErrorGeoreferencingZ
MaxErrorRasterXY
MaxErrorRasterZ

MaxErrorCultureCreationBuildingsZ

MaxErrorMerge

MaxErrorManualImageProcessingXY

MaxErrorESRI_NAD83ToWGS84XY
MaxErrorHTDP_XY

 grouping of rules with the same dependency

Figure 6: SWRL rules and their interdependencies.

rule covers the vertical error case. ?td is the terrain data
that we wish to know the error of. ?x and ?y represent the
coordinate of the specific point in the terrain at which we
want to know the error. This matters because terrains can
have insets with different resolutions. For example, Figure
7 shows a non-rectangular gaming area in which the middle
blocks have three levels of detail (LODs) with 1 m resolution
imagery and more triangles than the dark 2 m resolution two
LOD blocks or the outside 4 m resolution blocks with only
one LOD. ?time is the time of the event during which the
terrain will be used. This matters when we consider errors
caused by continental drift over the years.

Next we look at how the rule body calculates the error.
The first line, producedBy(?td, ?ps), retrieves the processing
step ?ps that produced the terrain data ?td. The next line,
RasterProcessingStep(?ps), checks that ?ps is the type of pro-
cessing step that this rule handles, RasterProcessingStep.
Next we get the pixelSize ?pi of the terrain data. Then we
calculate the square root of 2 and assign the result to the
variable ?sr. Next we multiply the pixel size by the square
root of two and store the result in the variable ?ep (think
of this as ep, the “pixel error”). Next we get the input ?in
of the processing step. Then we get the error of that input
data, using the same ?x, ?y, and ?time values as in the head
of the rule, and store the result in the ?ei “input error” vari-
able. Finally, we add the pixel error to the input error and
assign the result to ?e, the total error.

Note the recursive use of maxErrorMeters. This rule will
invoke another rule to calculate the error of the input, and
that rule will in turn depend on other rules, until we reach
a final piece of data that does not depend on any previous
steps. This will be reflected by a non-recursive rule for that
processing step. Note also that swrlm:sqrt, swrlb:multiply,
and swrlb:add are so-called SWRL built-ins (see Section 5).

Not all processing steps introduce additional error. For
example, the HTDP (Horizontal Time Dependent Position-
ing) processing step reduces the error by the amount of con-
tinental drift it corrects for. It is also a good example of a
processing step (from the geodetic community) that is not
generally known in the GIS (Geographic Information Sys-
tems) or military training communities.

TA

8J

IED1 Gate

FOB

AV

Milpitas

Figure 7: Gaming area with inset LODs.

In some cases a processing step is widely known, but some
of its properties are not. For example, few users of ESRI’s
Arc software know that the output of the transformation
NAD 1983 To WGS 1984 5 has an epoch of 1996, and even
fewer Terra Vista users know that four pixels on each side
of an imagery texture tile are ‘overlap’ and should not be
included when calculating the output resolution. This is
also an example of natural language being so ambiguous
that it is important to state the fact formally. Someone else
might well describe it as an ‘eight pixel overlap on each side’,
because for each edge, eight pixels are present in both of the
adjacent textures. It is much clearer to formally state how
many pixels per texture (eight) to subtract from the total
pixel dimensions to get the number of actually used pixels.

For individual terrains our rules currently compute the
vertical accuracy of the elevation, the horizontal accuracy
of the imagery, and both horizontal and vertical accuracy
of the culture data. Thanks to modern survey tools and
OPUS (Online Positioning User Service) corrections for at-
mospheric distortions, the corners of buildings, doors, and
windows can theoretically have 2 cm accuracy. Wrong cul-
ture survey points can affect LOS out of windows and be-
tween buildings, so the computation of these errors is partic-
ularly important, and relatively small errors like a few years’
worth of continental drift can be significant.

Our rules also detect potentially problematic elevation
merging or manual processing steps, and data with unknown
processing history or missing WGS84 epoch information.
The exact amount of error introduced by these steps can-
not be quantified automatically, but our system can output
a warning and explain what needs to be verified manually.

When comparing the relative errors between two terrains,
we also keep track of the history of all the data used to
create the terrains, and discount the errors in any piece of
data that is common between the terrains, i.e. we ignore the
errors introduced by the data or processing steps that are
the same. The rules can also detect whether two terrains
both use orthometric/geoid or ellipsoidal heights (known as
the ‘big H/little h problem’), and whether they are input-
correlated (created from the same input data) and/or vertex-
level-correlated (created by the same terrain building step).
Note that even vertex-level-correlated terrains can differ in
points between the vertices due to mismatches in SRFs.

These computed properties of the terrains are compared
with the requirements of the particular tasks for which the
terrains are intended, using our task analyzer for purpose-
aware reasoning [2]. For example, the terrain accuracy re-
quirements of a flight simulator training task might be lower
than those for an urban ground training task, and a task
that needs two terrains may have specific correlation re-
quirements depending on the planned types of interactions
between the simulations. Each specific requirement, e.g. hor-
izontal building corner accuracy, tree height accuracy, or
correlation level, is formalized as a constraint on the task,
including a severity for violating the constraint, so that a
combined quality score relative to the task can be computed.
This is important when more than one resource is available
to potentially play a role in a task: our analyzer software
ranks the possible assignments of resources to roles by their
overall scores. The terrains are not the only relevant re-
sources for these tasks: there might also be constraints on
hardware, communication infrastructure, etc.

5. DISCUSSION

5.1 The Knowledge Acquisition Bottleneck
One well-known problem in the Knowledge Representa-

tion field is the so-called knowledge acquisition bottleneck.
To be effective, our approach requires a large amount of do-
main knowledge to be formalized into ontologies. The prob-
lem has several components: a) domain experts may provide
incomplete, inconsistent, or incorrect knowledge; b) domain
experts may not be able to articulate their knowledge; and
c) domain experts may not understand the ontology lan-
guage, and/or ontology experts may not understand what
the domain expert is trying to explain.

We can distinguish two types of knowledge acquisition:
building ontologies and populating knowledge bases (KBs).
The building of ontologies consists of creating a structure
of classes and properties, axioms (restrictions) that relate
these to one another, and rules. Population of KBs consists
of creating individuals that instantiate the classes in the on-
tology, and specifying how the individuals are connected to
each other. Building an ontology requires both a deep under-
standing of the domain and the ability to abstract from spe-
cific details to situate specialized knowledge from a sub-field
in a larger framework. Even though we were lucky to have
significant domain expertise in-house, our terrain ontology
building effort required our domain expert to learn about on-
tologies, and our ontology expert to learn about the domain,
which took a significant amount of time. This will not always
be practical as we branch out our ontology to other areas.

Populating the KBs is more straightforward than building
the ontology. Here, the bottleneck is the volume of informa-
tion that needs to be entered into the KBs. The distinction
between ontology building and KB population is somewhat
blurry – often one discovers flaws in the ontology while pop-
ulating the initial KB, creating a back-and-forth workflow
between the two tasks. Subsequent KBs of a similar type
should require fewer or no revisions to the ontology.

Strategies for alleviating the knowledge acquisition bot-
tleneck naturally depend on good tools and methodologies.
Unfortunately, we have found existing tools lacking in stabil-
ity, user-friendliness, and features. We posit that ontology
building will always require an ontology expert who under-
stands the details of the formal language being used. It is
not unreasonable to expect ontology experts to be familiar
with tools that are less than ideal. Therefore, we feel that
the ontology building task suffers more from lack of good
methodologies than lack of tools. Populating the KBs, on
the other hand, should be possible for domain experts on
their own, given an appropriate user interface. Here, we feel
that the lack of good tools is the main problem. Protégé [8]
for both knowledge acquisition tasks. Recently, however,
we have developed and started to experiment with our own
simplified tool that non-ontologists can use to create KBs.
In many cases, it is also possible to populate KBs auto-
matically, using domain-specific tools that import data from
other sources. We have recently created such“importers” for
several types of non-terrain data. This type of automation
is only possible if useful metadata is present in the source
format. In the case of terrain data, the metadata needs to
include the relevant information about the processing his-
tory. We will continue our work to produce improved tools,
as our efforts move from in-house proof-of-concept towards
a transition to real use in the field.

5.2 Limitations on Language Expressiveness
For the main ontology, OWL is sufficiently expressive. In

fact, we make relatively light use of most of its constructs.
We do, however, make heavy use of SWRL rules, especially
in our terrain ontology. SWRL allows us to do mathemat-
ical computations, and define other complex relationships
that are not part of OWL itself. However, we have run into
several limitations of SWRL, which we discuss briefly in the
following. They are explored in more detail in [3].

SWRL requires user-defined predicates to have only one
or two arguments because regular OWL classes (unary) and
properties (binary) are used as predicates. This effectively
limits the language to functions of one variable, because one
argument position has to be used for the result of executing
the function. There are two ways around this problem, nei-
ther of them fully satisfactory. The first is to use an RDF
(Resource Description Framework) list to contain several ar-
guments. This makes the rules very verbose and mired down
in representation details that make them hard to understand
and change. It also means that one cannot “pattern match”
on the rule head, which could otherwise make rules more el-
egant. The second solution is based on the fact that SWRL
has so-called built-in predicates which can take an arbitrary
number of arguments. In Protégé, we can create our own
pseudo-built-ins simply by creating new individuals of the
swrl:Builtin class. These can be used as n-ary predicates in
rules, and fully defined in SWRL itself with no need for an
external “built-in” definition. This is the solution that we
have adopted, but it is less than ideal because it is unlikely
to work in tools and inference engines other than our own.

A second serious limitation of SWRL is the lack of closed-
world reasoning. OWL and SWRL adopt an open world
assumption, which means that it is always possible that a
fact may be true, even if it is not currently known to be true.
The assumption is that we do not know everything there is
to know, which is quite reasonable for Semantic Web appli-
cations with distributed sources of knowledge. However, it
causes difficulties for writing rules, because it is too hard
to prove a negation under the open-world assumption – we
cannot prove that a fact is not true as long as it is at all pos-
sible that the fact is true. This is called “classical negation”.
Some languages, like Prolog, have a “closed-world assump-
tion,” and along with it a different form of negation called
“negation as failure” (NAF), where a fact is considered to be
false if it cannot be proven to be true. In other words, one
only reasons with locally known information, which makes
negations easy to prove. While we cannot entirely drop the
open-world assumption, having some form of local closed-
world assumption is crucial, in our experience. For now we
have adopted the following solution: we have added a new
built-in predicate allKnown which returns a list of all the
known values for a given individual and property. A list
is inherently a closed-off collection on which we can conve-
niently perform various kinds of computations. Again, this
is not an ideal solution – reasoning engines have to imple-
ment this new built-in for our rules to work (of course, our
own engine is currently the only one that does implement
it), and a more general form of local closed-world reasoning
would be preferable.

A third limitation of SWRL is its inability to create new
individuals as a result of evaluating rules. SWRL can create
new relationships between individuals, or calculate numbers,
but cannot create new individuals. For example, we use in-

dividuals to represent quantities – entities that have a value
and a unit (e.g., “5 meters” or “2 lbs”). We can use SWRL
to determine if one quantity is greater than another, but we
cannot add two quantities together – this would require cre-
ating a new individual. This limitation is perhaps the most
fundamental of the issues discussed here. For the moment
we use quantities as inputs to our rules, but produce plain
numbers with assumed default units as outputs.

In spite of these limitations, using OWL and SWRL is
currently the best option. We argued in Section 3 that it is
important to use open standards for this type of problem.

6. FUTURE WORK
Some aspects of the terrain ontology itself would bene-

fit from further work and input from other subject mat-
ter experts (SMEs), e.g. in polygonization, georeferencing,
orthorectification, projections and transformations, coordi-
nate representation and translation. We do not claim to
have a definitive formalization of each of these processing
steps – instead we provide a framework in which they can
all be included. It would be particularly valuable if peo-
ple who are familiar with the algorithms that are used by
common tools could formalize the effects of those algorithms
at the necessary level of detail. Ideally each geo-processing
tool would come with specifications of how it affects the
horizontal and vertical accuracy of the output depending on
relevant settings and properties of the input data. An inde-
pendent ontology based system like ours could then import
these specifications, evaluate the tools’ claims, add rules for
steps that do not include them, combine this information,
and compare it against the requirements of a given task.

For each candidate formalization it will also be necessary
to verify its accuracy empirically. In some cases, such as
terrain simplification, there is previous work on the subject
[1], and experimental results can be obtained relatively eas-
ily because they only concern the relative accuracy between
electronic data. In other cases, where accuracy with respect
to the real world is concerned, high precision survey data,
high resolution LIDAR scans or imagery data may need to
be collected for comparison.

While our knowledge bases do not directly contain geo-
graphic data, but rather geographic metadata, we do need
to use geographic coordinates to describe and reason about
the extents of the data and the locations for training events.
This introduces some difficulties due to the fact that extents
and locations may be described in different SRFs. For the
moment we represent coordinates as a pair of numbers as-
sumed to be meters in the relevant UTM zone. It would be
more general and accurate to use latitude/longitude repre-
sentations, but those are hard to compute with, converting
to/from the UTM coordinates of the actual data is complex,
and SWRL is not well suited to the task. A celestiocentric
representation is a good compromise in that it can represent
points anywhere, but is still in metric space. The exist-
ing conversion tools do not currently handle epoch-specific
WGS84 data, and it would also be harder to distinguish be-
tween horizontal and vertical errors, but it is probably the
best choice for our ontology.

One could automatically detect suspicious sequences of
processing steps like first downsampling and then upsam-
pling the same piece of raster data, which can sometimes
happen unintentionally, hidden in the texture and block size
settings of the terrain building step and the quirks of the ter-

rain building software. For example, Terra Vista does not
use the full area of a texture but generates some undocu-
mented overlap, as described in Section 4.1. Similarly, bugs
in specific versions of specific pieces of software could be for-
mally documented by one SME, to automatically alert oth-
ers to potential problems. For example, we currently have a
problem with OpenFlight terrains being assigned a different
origin than the (correct) origin of their (0,0) tile, which took
a while to diagnose and might have gone undetected.

In addition to computing the (mostly additive) worst case
error, one could compute the more typical RMS (root mean
square) error for cases where the individual errors are inde-
pendent of each other, and keep track of the covariances for
correlated data. If a terrain does not meet the requirements
of a given task, the system could suggest possible alterna-
tive processing steps that would reduce the error. One could
also formalize the properties, settings, and algorithms of the
software that uses these terrains for display or calculations.
Entities may be ground-clamped, their movements may in-
clude dead reckoning, LOD switching distances may be af-
fected by LOD range scale settings, clipping planes may be
changed, satellite imagery textures may be downsampled or
compressed, etc.

More generally, a detailed and precise ontology is an ideal
place to formally specify the geospatial terminology of dif-
ferent communities. For example, one group’s ‘coordinate
system’ is another’s ‘spatial reference frame’, of which the
‘coordinate system’ is just one component. One commu-
nity’s ‘geodetic’ is another’s ‘geographic’. ‘WGS84’ usually
refers to a datum but sometimes also a geographic coordi-
nate system, a geocentric coordinate system, an ellipsoid, or
the system including all of the above and more. The SEDRIS
project already formalized most of these concepts, and we
have created a SEDRIS ontology, but have not yet specified
the correspondences between SEDRIS concepts like ‘object
reference model’ and e.g. ESRI terminology.

7. CONCLUSIONS
We constructed a formal ontology of the properties and

processing histories of terrain data, including rules quanti-
fying the errors introduced by each type of data processing
step. The ontology and rules bring together detailed domain
knowledge from several different areas of expertise and make
this expert knowledge available for the computation of rel-
ative and absolute errors. Our task analyzer software com-
pares the errors to the requirements for a given task, in order
to adjudicate the suitability of the geographic data.

One important aspect of having a formal ontology (for
any domain) is that the knowledge is made explicit and can
be used, critiqued, and improved by the community. As
the complexity and accuracy demands of geographic appli-
cations increase, this type of in-depth analysis of terrain
data becomes essential. We must make sure that adequate
metadata is available for this purpose.

Acknowledgments
The work described in this paper was carried out at the
SRI facilities in Menlo Park, CA and was funded in part by
the U.S. Department of Defense, TRMC (Test and Evalu-
ation/Science and Technology) T&E/S&T (Test and Eval-
uation/Science and Technology) Program under NST Test
Technology Area prime contract N68936-07-C-0013. The au-

thors are grateful for this support and would like to thank
Gil Torres, NAVAIR, for his leadership of the Netcentric Sys-
tem Test (NST) technology area, to which the ANSC project
belongs. We would also like to acknowledge ODUSD/R/
RTPP (Training Transformation) for its sponsorship of the
associated ONISTT project, and thank the three anonymous
COM.Geo reviewers for their detailed and helpful comments.

8. REFERENCES
[1] D. Andrews. Simplifying terrain models and

measuring terrain model accuracy. Technical Report
TR-96-05, University of British Columbia, 1996.

[2] D. Elenius, R. Ford, G. Denker, D. Martin, and
M. Johnson. Purpose-Aware Reasoning about
Interoperability of Heterogeneous Training Systems. In
The Semantic Web, ISWC 2007 + ASWC 2007,
volume 4825 of Lecture Notes in Computer Science,
pages 750–763. Springer, 2007.

[3] D. Elenius, D. Martin, R. Ford, and G. Denker.
Reasoning about Resources and Hierarchical Tasks
Using OWL and SWRL. In International Semantic
Web Conference, volume 5823 of Lecture Notes in
Computer Science, pages 795–810. Springer, 2009.

[4] F. Fonseca, G. Câmara, and A. M. Monteiro. A
Framework for Measuring the Interoperability of
Geo-Ontologies. Spatial Cognition & Computation,
6(4):309–331, 2006.

[5] F. T. Fonseca, M. J. Egenhofer, P. Agouris, and
G. Câmara. Using Ontologies for Integrated
Geographic Information Systems. Transactions in
GIS, 6(3):231–257, 2002.

[6] R. Ford, V. Lamar, R. Giuli, and S. Oberg. The Joint
Training Experimentation Program Approach to
Distributed After Action Review. In EURO Simulation
Interoperability Workshop, 04E-SIW-063, 2004.

[7] C. B. Jones, R. Purves, A. Ruas, M. Sanderson,
M. Sester, M. van Kreveld, and R. Weibel. Spatial
information retrieval and geographical ontologies. In
SIGIR ’02, pages 387–388. ACM, 2002.

[8] H. Knublauch, M. A. Musen, and A. L. Rector.
Editing Description Logic Ontologies with the Protégé
OWL Plugin. In V. Haarslev and R. Möller, editors,
Description Logics, volume 104 of CEUR Workshop
Proceedings. CEUR-WS.org, 2004.

[9] S. Z. Riehemann. Coordinate Systems and Terrain
Reusability. In Simulation Interoperability Workshop,
09F-SIW-089, 2009.

[10] P. D. Smart, A. I. Abdelmoty, B. A. El-Geresy, and
C. B. Jones. A Framework for combining Rules and
Geo-ontologies. In 1st International Conference on
Web Reasoning and Rule Systems, 2007.

[11] R. M. Toms and P. A. Birkel. Choosing a Coordinate
Framework for Simulations. In Simulation
Interoperability Workshop, 99F-SIW-183, 1999.

[12] U. Visser, H. Stuckenschmidt, G. Schuster, and
T. Vögele. Ontologies for geographic information
processing. Computers & Geosciences, 2002.

[13] M. Wessel. Some Practical Issues in Building a Hybrid
Deductive Geographic Information System with a DL
Component. In KRDB, volume 79, 2003.

[14] R. Winkels, R. Hoekstra, and E. Hupkes. Normative
reasoning with geo information. In COM.Geo, 2010.

