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Formal Methods and Calculation� Formal methods contribute useful mental frameworks,notations, and systematic methods to the design,documentation, and analysis of computer systems� But the singular bene�t from speci�cally formal methods isthat they allow certain questions about a software orhardware design to be answered by symbolic calculation(e.g., formal deduction, model checking)� And those calculations can be automatedfor speed, reliability, repeatability� Calculations can be used for debugging (refutation) anddesign exploration as well as post-hoc veri�cation� Augments simulation, prototyping, testing� Comparable to the way mathematics is used in otherengineering disciplines
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Automating Formal Calculations� Tools are not the most important thing about formalmethods
� They are the only important thing

� Just like any other engineering calculations, it's tools thatmake formal calculations feasible and useful in practice

� And the important things about tools are� Speed, scaling, automation, power� Speed, scaling, automation, power� Speed, scaling, automation, power� Oh, and soundnessJohn Rushby, SRI Ubiquitous Abstraction: 3



Where To Apply Formal Methods Tools?� There is little point in applying formal methods to topicsthat are handled adequately by traditional methods� E.g., re�nement to code; veri�cation of code(Except in regulated industries; even there, cost is critical)� Focus on where the intractable di�culties are� Usually in the hardest elements of design� Concurrency, real time, fault toleranceSecondary advantage: these elements are usually small,have the best people� And where the greatest costs are incurred� Errors introduced in the early lifecycle� Notably, omissions in requirements
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So What Should Tools Do?� Determine whether speci�cations of complex, oftenincomplete, designs have certain desired properties� Properties often amount to less than full correctness� Can look at this from two sidesRefutation: try and �nd bugs� Need not be sound (�nds all errors)or complete (�nds only real errors)� As long as it �nds enough real bugs to be cost-e�ective� Should provide diagnostic information (counterexample)Veri�cation: try and show \correctness"� Generally more di�cult than refutation� And less helpful when bugs are present� Switch to veri�cation when refutation runs out of steam
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Mechanizing Refutation: Model Checking� If design has a �nite state space, can often check propertiesby model checking� Check whether design is a Kripke model of propertyexpressed as a temporal logic formulaName often used for all related methods� Complexity is linear in number of states� But that grows as product of size of data structures, andis exponential in number of interacting components� Hence, must construct abstracted or downscaled models� Downscaling is aggressive (unsound) abstraction� Experience is that you learn more by examining allpossibilities of downscaled model than by probing some ofthe possibilities of the full thing (as by simulation or testing)
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Mechanizing Formal Veri�cation� The tools are generally based on interactive theorem proving� With substantial automation? Decision procedures, rewriting, heuristics, libraries� Guiding the interaction requires skill, but� In domains with decision procedures or good libraries� And speci�cations are functional� It is often no harder than hand proof(of comparable detail)� But for concurrent and distributed systems� Where speci�cations are transition relations� It is very hard indeed? Not due to lack of theorem proving power? But to the di�culty of inventing strong invariants
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A Trivial ExampleShow that when control is at B, then x � 2x := x+1

x := x+1

x � 3 ! x := x-2

x := 2
A B
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Attempted Proof� We'll use the induction scheme:(8 s: init(s) � p(s))^ (8 pre, post: p(pre) ^ tr(pre, post) � p(post))� invariant(p)(init, tr)Whose own proof in PVS is(SKOSIMP) (EXPAND "invariant") (INDUCT-AND-SIMPLIFY "j")� The proof steps(USE "ind[state]") (GROUND) ("1" (GRIND)) ("2" (GRIND))Yield[-1] pc(pre!1) = A[-2] pc(post!1) = B[-3] x(pre!1) = 0|-------[1] x(pre!1) + 1 � 2� Need to strengthen invariant: x � 1 when control at A
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And In General?� Can extract terms that need to be added (conjoined) to theinvariant by examining these failed subgoals(Similar ideas for loop invariants go back 20 years)� Larger example: veri�cation of Bounded RetransmissionProtocol (BRP)� Required 57 strengthenings� E�ort required generally defeats all but the most determined� The case explosion problem� Everything is possible but nothing is easy� There is much work on methodologies for deriving suitableinvariants systematically (for given classes of problems)� But we're looking for general methods. . .
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Another Direction� Model checking avoids all this hassle(by calculating a �xpoint)� Substitutes calculation for proof� But only works for �nite-state systems� So let's create a �nite-state abstraction (i.e., approximation)� And model-check that� Will also need to prove that the abstraction isproperty-preserving
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Veri�cation Via Property-Preserving Abstraction� In general, we need a (�nite) abstract state space withtransition relation tra� And an abstraction function abs from the concrete statespace to the abstract one� And a predicate pa on the abstract states� Such that1. initc(cs) � inita(abs(cs))2. trc(prec; postc) � tra(abs(prec); abs(postc))3. pa(abs(cs)) � pc(cs)� Then� invariant(pa)(inita; tra) � invariant(pc)(initc; trc)� And the antecedent can be proved by model checking
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The Example: Boolean Abstraction

� Often convenient to choose an abstract state spaceconsisting of� The control locations of the concrete system, plus� Some boolean state variables that correspond topredicates in the concrete system� This is Boolean abstraction� For the example, we'll have one abstract Boolean statevariable corresponding to the concrete state predicate x � 2
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An Abstract Transition Relation For The Example

A Bx � 2 x � 2

Ax 6� 2Clearly, the abstract invariant is satis�ed
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Veri�cation Conditions for the Example Abstraction� All trivial except number 2: default proof strategy yields[-1] pc(postc!1) = B[-2] x(prec!1) = 0|-------[1] x(prec!1) + 1 � 2� Essentially the same as in the basic invariance proof� Requires an invariant!� Larger example: veri�cation of Bounded RetransmissionProtocol (BRP) by abstraction� Required 45 invariants
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So What's To Be Done?

Calculate the abstract system (given the abstraction function)rather than \invent and verify"� Saves manual e�ort of construction� Abstract system is an abstraction (by construction)� But may be too coarse to satisfy desired abstract invariant
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Calculated Abstract Transition Relation For The Example

A Bx � 2 x � 2

Ax 6� 2

Bx 6� 2

Abstract invariant is not satis�ed
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Diagnosing The Problem� Model checking produces this counterexample trace� fA, x � 2g ! fB, x � 2g ! fA, x 6� 2g ! fB, x 6� 2g� If we \concretize" this we see that the last transition isimpossible in the concrete system� fA, x � 2g ! fB, x � 2g ! fA, x 6� 2g ! fB, x 6� 2g2 3 1 2� We see that it is important to know x � 1 at A� So add another abstract state variable corresponding to x � 1and repeat� This does it!
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Making It Practical� (At least) two ways of calculating the abstracted system� Start with universal transition relation; then for each arc? Generate the veri�cation condition (VC) that allows itto be removed? Leave it in if cannot prove the VCThis approach preserves structure� Develop the relation by a forward reachability analysis? At each point generate the VCs that lead to successorstates with given predicate true resp. falseThis approach usually has fewer states� There are clever techniques for assuming the invariant youwant to prove while constructing the abstraction� And for re�ning an abstraction using counterexamples
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Making It Practical (ctd.)� Generate as many invariants as possible by static analysis andthrow those into the proofs/calculations� Can easily deduce x � 1 in the example� Use heuristics to generate plausible initial abstractions� Boolean abstraction on (atomic) guard predicates� Build tools for concretizing counterexample traces andchecking them against the concrete system� To help distinguish between? An excessively coarse abstraction? A bug in the concrete system� Can verify Bounded Retransmission Protocol (BRP)automatically using these techniques� Takes a couple of hours to calculate the abstracted system
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Doing It Ubiquitously� Model checkers usually calculate the reachable stateset(and then throw it away)� Which is the strongest invariant� The concretization of the reachable states of an abstractionis an invariant of the concrete system� And often a strong one� Modify a model checker to return the reachable states as aformula that the theorem prover can manipulate� Use simple abstractions to develop invariants that enableconstruction of �ner ones� E.g., Boolean abstraction on x � 1 in the exampleprovides the invariant that enables construction of the�ne abstraction on x � 2
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Iterated Abstractions� Can also use di�erent abstraction techniquesSemantic: what we've seen so farSyntactic: slicing, abstract interpretation� Slicing extracts salient part of a complex system� Abstract Interpretation provides basis for strong staticanalyses (cf. dimensional analysis)� And can iterate them� E.g., slice, abstract interpretation, then semanticabstraction
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Iterated Abstraction, Concretization, Invariant Generation
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Integrating Abstraction With Theorem Proving� So far, we've used abstraction only on the top-level goal� Can also apply it in the context of the subgoals generated bya theorem prover (e.g., in an inductive proof)� Are then working on simpler problems� And predicates in subgoal provide good clues to suitableBoolean abstractions

John Rushby, SRI Ubiquitous Abstraction: 24



Integrating Abstraction With Theorem Proving (ctd.)� In the example, the subgoal[-1] pc(pre!1) = A[-2] pc(post!1) = B[-3] x(pre!1) = 0|-------[1] x(pre!1) + 1 � 2� Suggests abstracting on x = 0(which is equivalent to x 6� 1 since x is a natural number)� And model checking then shows this state to be unreachable� Method is provably stronger than guard abstraction andprecondition strengthening
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Integrating AbstractionWith Theorem Proving (ctd. 2)
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The \New" Approach� Instead of trying to build ever more powerful tools� Try to make the problems easier� Cut them down to a size the existing tools can handle� By making ubiquitous use of automated abstraction� That is, construction of simpler descriptions thatignore/approximate aspects of the original� Within a framework that allows multiple tools to cooperate� Generate models appropriate to di�erent analyses anddi�erent tools from a single description� Cooperation requires tools to exchange symbolic values, notjust true/false veri�cation outcomes� The idea behind SAL: a (Symbolic Analysis Laboratory)
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The SAL Idea
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The General ViewTheorem Proving

Abstraction Composition

MethodsAlgorithmic

Abstraction and composition are the bridges between deductiveand algorithmic methods of veri�cation
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Related Work� Research in model checking has long focused on abstraction� More recently on iterated combinations justi�ed bytheorem proving� E.g., \Minimalist Proof Assistants" by Ken McMillan? FMCAD talk (on his web page athttp://www-cad.eecs.berkeley.edu/~kenmcmil/)? Implemented in SMV? Used for Tomasulo, SGI cache coherence� Much recent focus on logics with very powerful automation� Propositional calculus (St�almarck's method)� With uninterpreted functions (Herbrand automata)� WS1S (Mona)And methods for reducing general problems to those e�cientcases
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To Learn More� Browse general papers and technical reports athttp://www.csl.sri.com/fm.html� ~owre/cav98.html and ~owre/cav98-tool.html for InVeSt� ~rusu/tacas99.html for mini-SAL experiments� ~saidi/Invariant-Checker/index.html forthe Invariant Checker� Information about our veri�cation system, PVS, and thesystem itself are available from http://pvs.csl.sri.com� Freely available under license to SRI� Allegro Lisp for Solaris, or Linux� Need 64M memory, 100M swap space, 200 MHz or better
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