
ICFEM98, Brisbane Australia, 11 December 1998, 9am



Ubiquitous Abstraction:A New ApproachTo Mechanized Formal Veri�cation

John Rushby

Computer Science LaboratorySRI InternationalMenlo Park, CA

John Rushby, SRI Ubiquitous Abstraction: 1



Formal Methods and Calculation� Formal methods contribute useful mental frameworks,notations, and systematic methods to the design,documentation, and analysis of computer systems� But the singular bene�t from speci�cally formal methods isthat they allow certain questions about a software orhardware design to be answered by symbolic calculation(e.g., formal deduction, model checking)� And those calculations can be automatedfor speed, reliability, repeatability� Calculations can be used for debugging (refutation) anddesign exploration as well as post-hoc veri�cation� Augments simulation, prototyping, testing� Comparable to the way mathematics is used in otherengineering disciplines

John Rushby, SRI Ubiquitous Abstraction: 2



Automating Formal Calculations� Tools are not the most important thing about formalmethods
� They are the only important thing

� Just like any other engineering calculations, it's tools thatmake formal calculations feasible and useful in practice

� And the important things about tools are� Speed, scaling, automation, power� Speed, scaling, automation, power� Speed, scaling, automation, power� Oh, and soundnessJohn Rushby, SRI Ubiquitous Abstraction: 3



Where To Apply Formal Methods Tools?� There is little point in applying formal methods to topicsthat are handled adequately by traditional methods� E.g., re�nement to code; veri�cation of code(Except in regulated industries; even there, cost is critical)� Focus on where the intractable di�culties are� Usually in the hardest elements of design� Concurrency, real time, fault toleranceSecondary advantage: these elements are usually small,have the best people� And where the greatest costs are incurred� Errors introduced in the early lifecycle� Notably, omissions in requirements

John Rushby, SRI Ubiquitous Abstraction: 4



So What Should Tools Do?� Determine whether speci�cations of complex, oftenincomplete, designs have certain desired properties� Properties often amount to less than full correctness� Can look at this from two sidesRefutation: try and �nd bugs� Need not be sound (�nds all errors)or complete (�nds only real errors)� As long as it �nds enough real bugs to be cost-e�ective� Should provide diagnostic information (counterexample)Veri�cation: try and show \correctness"� Generally more di�cult than refutation� And less helpful when bugs are present� Switch to veri�cation when refutation runs out of steam

John Rushby, SRI Ubiquitous Abstraction: 5



Mechanizing Refutation: Model Checking� If design has a �nite state space, can often check propertiesby model checking� Check whether design is a Kripke model of propertyexpressed as a temporal logic formulaName often used for all related methods� Complexity is linear in number of states� But that grows as product of size of data structures, andis exponential in number of interacting components� Hence, must construct abstracted or downscaled models� Downscaling is aggressive (unsound) abstraction� Experience is that you learn more by examining allpossibilities of downscaled model than by probing some ofthe possibilities of the full thing (as by simulation or testing)

John Rushby, SRI Ubiquitous Abstraction: 6



Mechanizing Formal Veri�cation� The tools are generally based on interactive theorem proving� With substantial automation? Decision procedures, rewriting, heuristics, libraries� Guiding the interaction requires skill, but� In domains with decision procedures or good libraries� And speci�cations are functional� It is often no harder than hand proof(of comparable detail)� But for concurrent and distributed systems� Where speci�cations are transition relations� It is very hard indeed? Not due to lack of theorem proving power? But to the di�culty of inventing strong invariants

John Rushby, SRI Ubiquitous Abstraction: 7



A Trivial ExampleShow that when control is at B, then x � 2x := x+1

x := x+1

x � 3 ! x := x-2

x := 2
A B

John Rushby, SRI Ubiquitous Abstraction: 8



Attempted Proof� We'll use the induction scheme:(8 s: init(s) � p(s))^ (8 pre, post: p(pre) ^ tr(pre, post) � p(post))� invariant(p)(init, tr)Whose own proof in PVS is(SKOSIMP) (EXPAND "invariant") (INDUCT-AND-SIMPLIFY "j")� The proof steps(USE "ind[state]") (GROUND) ("1" (GRIND)) ("2" (GRIND))Yield[-1] pc(pre!1) = A[-2] pc(post!1) = B[-3] x(pre!1) = 0|-------[1] x(pre!1) + 1 � 2� Need to strengthen invariant: x � 1 when control at A

John Rushby, SRI Ubiquitous Abstraction: 9



And In General?� Can extract terms that need to be added (conjoined) to theinvariant by examining these failed subgoals(Similar ideas for loop invariants go back 20 years)� Larger example: veri�cation of Bounded RetransmissionProtocol (BRP)� Required 57 strengthenings� E�ort required generally defeats all but the most determined� The case explosion problem� Everything is possible but nothing is easy� There is much work on methodologies for deriving suitableinvariants systematically (for given classes of problems)� But we're looking for general methods. . .

John Rushby, SRI Ubiquitous Abstraction: 10



Another Direction� Model checking avoids all this hassle(by calculating a �xpoint)� Substitutes calculation for proof� But only works for �nite-state systems� So let's create a �nite-state abstraction (i.e., approximation)� And model-check that� Will also need to prove that the abstraction isproperty-preserving

John Rushby, SRI Ubiquitous Abstraction: 11



Veri�cation Via Property-Preserving Abstraction� In general, we need a (�nite) abstract state space withtransition relation tra� And an abstraction function abs from the concrete statespace to the abstract one� And a predicate pa on the abstract states� Such that1. initc(cs) � inita(abs(cs))2. trc(prec; postc) � tra(abs(prec); abs(postc))3. pa(abs(cs)) � pc(cs)� Then� invariant(pa)(inita; tra) � invariant(pc)(initc; trc)� And the antecedent can be proved by model checking

John Rushby, SRI Ubiquitous Abstraction: 12



The Example: Boolean Abstraction

� Often convenient to choose an abstract state spaceconsisting of� The control locations of the concrete system, plus� Some boolean state variables that correspond topredicates in the concrete system� This is Boolean abstraction� For the example, we'll have one abstract Boolean statevariable corresponding to the concrete state predicate x � 2

John Rushby, SRI Ubiquitous Abstraction: 13



An Abstract Transition Relation For The Example

A Bx � 2 x � 2

Ax 6� 2Clearly, the abstract invariant is satis�ed

John Rushby, SRI Ubiquitous Abstraction: 14



Veri�cation Conditions for the Example Abstraction� All trivial except number 2: default proof strategy yields[-1] pc(postc!1) = B[-2] x(prec!1) = 0|-------[1] x(prec!1) + 1 � 2� Essentially the same as in the basic invariance proof� Requires an invariant!� Larger example: veri�cation of Bounded RetransmissionProtocol (BRP) by abstraction� Required 45 invariants

John Rushby, SRI Ubiquitous Abstraction: 15



So What's To Be Done?

Calculate the abstract system (given the abstraction function)rather than \invent and verify"� Saves manual e�ort of construction� Abstract system is an abstraction (by construction)� But may be too coarse to satisfy desired abstract invariant

John Rushby, SRI Ubiquitous Abstraction: 16



Calculated Abstract Transition Relation For The Example

A Bx � 2 x � 2

Ax 6� 2

Bx 6� 2

Abstract invariant is not satis�ed

John Rushby, SRI Ubiquitous Abstraction: 17



Diagnosing The Problem� Model checking produces this counterexample trace� fA, x � 2g ! fB, x � 2g ! fA, x 6� 2g ! fB, x 6� 2g� If we \concretize" this we see that the last transition isimpossible in the concrete system� fA, x � 2g ! fB, x � 2g ! fA, x 6� 2g ! fB, x 6� 2g2 3 1 2� We see that it is important to know x � 1 at A� So add another abstract state variable corresponding to x � 1and repeat� This does it!

John Rushby, SRI Ubiquitous Abstraction: 18



Making It Practical� (At least) two ways of calculating the abstracted system� Start with universal transition relation; then for each arc? Generate the veri�cation condition (VC) that allows itto be removed? Leave it in if cannot prove the VCThis approach preserves structure� Develop the relation by a forward reachability analysis? At each point generate the VCs that lead to successorstates with given predicate true resp. falseThis approach usually has fewer states� There are clever techniques for assuming the invariant youwant to prove while constructing the abstraction� And for re�ning an abstraction using counterexamples

John Rushby, SRI Ubiquitous Abstraction: 19



Making It Practical (ctd.)� Generate as many invariants as possible by static analysis andthrow those into the proofs/calculations� Can easily deduce x � 1 in the example� Use heuristics to generate plausible initial abstractions� Boolean abstraction on (atomic) guard predicates� Build tools for concretizing counterexample traces andchecking them against the concrete system� To help distinguish between? An excessively coarse abstraction? A bug in the concrete system� Can verify Bounded Retransmission Protocol (BRP)automatically using these techniques� Takes a couple of hours to calculate the abstracted system

John Rushby, SRI Ubiquitous Abstraction: 20



Doing It Ubiquitously� Model checkers usually calculate the reachable stateset(and then throw it away)� Which is the strongest invariant� The concretization of the reachable states of an abstractionis an invariant of the concrete system� And often a strong one� Modify a model checker to return the reachable states as aformula that the theorem prover can manipulate� Use simple abstractions to develop invariants that enableconstruction of �ner ones� E.g., Boolean abstraction on x � 1 in the exampleprovides the invariant that enables construction of the�ne abstraction on x � 2

John Rushby, SRI Ubiquitous Abstraction: 21



Iterated Abstractions� Can also use di�erent abstraction techniquesSemantic: what we've seen so farSyntactic: slicing, abstract interpretation� Slicing extracts salient part of a complex system� Abstract Interpretation provides basis for strong staticanalyses (cf. dimensional analysis)� And can iterate them� E.g., slice, abstract interpretation, then semanticabstraction

John Rushby, SRI Ubiquitous Abstraction: 22



Iterated Abstraction, Concretization, Invariant Generation

John Rushby, SRI Ubiquitous Abstraction: 23



Integrating Abstraction With Theorem Proving� So far, we've used abstraction only on the top-level goal� Can also apply it in the context of the subgoals generated bya theorem prover (e.g., in an inductive proof)� Are then working on simpler problems� And predicates in subgoal provide good clues to suitableBoolean abstractions

John Rushby, SRI Ubiquitous Abstraction: 24



Integrating Abstraction With Theorem Proving (ctd.)� In the example, the subgoal[-1] pc(pre!1) = A[-2] pc(post!1) = B[-3] x(pre!1) = 0|-------[1] x(pre!1) + 1 � 2� Suggests abstracting on x = 0(which is equivalent to x 6� 1 since x is a natural number)� And model checking then shows this state to be unreachable� Method is provably stronger than guard abstraction andprecondition strengthening

John Rushby, SRI Ubiquitous Abstraction: 25



Integrating AbstractionWith Theorem Proving (ctd. 2)

No

No

Yes

invariants

newly proved conjecture

new invariant:
wishes granted

abstract
system

abstract

new conjecture

abstract

program

Abstraction
generator

Theorem 
prover

Invariant 
generator

trace?
violating

concrete
matches

trace?

new abstract
variables

new
wishes

wishes

pending
subgoals

property

Proof!

Yes

invariants

analyzer
Trace

trace

Trace 
simulator

Counterexample!

variables

John Rushby, SRI Ubiquitous Abstraction: 26



The \New" Approach� Instead of trying to build ever more powerful tools� Try to make the problems easier� Cut them down to a size the existing tools can handle� By making ubiquitous use of automated abstraction� That is, construction of simpler descriptions thatignore/approximate aspects of the original� Within a framework that allows multiple tools to cooperate� Generate models appropriate to di�erent analyses anddi�erent tools from a single description� Cooperation requires tools to exchange symbolic values, notjust true/false veri�cation outcomes� The idea behind SAL: a (Symbolic Analysis Laboratory)

John Rushby, SRI Ubiquitous Abstraction: 27



The SAL Idea
Abs.

ResultModel2 2
Abs.

Result nModelnAnalyzer

Abs.
Result 1Model

System Description Analysis Results

Abstractor

Concretizer Concretizer

Analyzer

1 2

1

Analyzer 2
1

1 n

Intermediate Language Model

Existing Verification Tools and Analyzers

Abstractor Abstractor2 n

Concretizern

John Rushby, SRI Ubiquitous Abstraction: 28



The General ViewTheorem Proving

Abstraction Composition

MethodsAlgorithmic

Abstraction and composition are the bridges between deductiveand algorithmic methods of veri�cation

John Rushby, SRI Ubiquitous Abstraction: 29



Related Work� Research in model checking has long focused on abstraction� More recently on iterated combinations justi�ed bytheorem proving� E.g., \Minimalist Proof Assistants" by Ken McMillan? FMCAD talk (on his web page athttp://www-cad.eecs.berkeley.edu/~kenmcmil/)? Implemented in SMV? Used for Tomasulo, SGI cache coherence� Much recent focus on logics with very powerful automation� Propositional calculus (St�almarck's method)� With uninterpreted functions (Herbrand automata)� WS1S (Mona)And methods for reducing general problems to those e�cientcases
John Rushby, SRI Ubiquitous Abstraction: 30



CreditsNone of this work is mine; it is due to my colleagues� Klaus Havelund: BRP example� Hassen Sa��di: The Invariant Checker� Saddek Bensalem, Yassine Lakhnech, Sam Owre: InVeSt� Vlad Rusu and Eli Singerman: Mini-SAL experiments� Shankar: SALBeing developed with David Dill (Stanford)And Tom Henzinger (Berkeley)

John Rushby, SRI Ubiquitous Abstraction: 31



To Learn More� Browse general papers and technical reports athttp://www.csl.sri.com/fm.html� ~owre/cav98.html and ~owre/cav98-tool.html for InVeSt� ~rusu/tacas99.html for mini-SAL experiments� ~saidi/Invariant-Checker/index.html forthe Invariant Checker� Information about our veri�cation system, PVS, and thesystem itself are available from http://pvs.csl.sri.com� Freely available under license to SRI� Allegro Lisp for Solaris, or Linux� Need 64M memory, 100M swap space, 200 MHz or better

John Rushby, SRI Ubiquitous Abstraction: 32


