Feasibility of Periodic Scan Schedules

Ants PI Meeting, Seattle, May 2000

Bruno Dutertre System Design Laboratory SRI International e-mail: bruno@sdl.sri.com

Scan Scheduling

Scan scheduling:

- \circ Given n hypothetical emitter types we can compute a priori a scan schedule
- \circ There may be only a subset of these n emitters actually encountered during a mission
- The subset of relevant emitters may change as the mission progresses

Objective:

 Dynamically construct schedules, in real-time, on-line, using information about the emitters that are actually present

Central Issue:

• Given *n* emitters and their parameters, is there a schedule that satisfies the requirements? Is so find one.

Scan-Schedule Feasibility

Schedule Parameters:

• Whether in the static or dynamic case, we've assumed that a schedule is characterized by n dwell times (τ_i) and n revisit times (T_i), with

$$\sum_{i=1}^{n} \frac{\tau_i}{T_i} \leqslant 1.$$

Feasibility Issue:

• Given the parameters τ_i and T_i , can we construct a schedule such that the dwell intervals for different bands must not overlap?

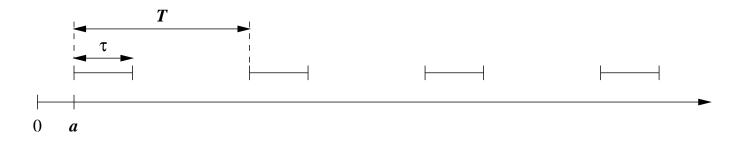
Problem:

 The condition above is necessary but not sufficient to ensure feasibility.

For example, take n = 3, $\tau_1 = \tau_2 = \tau_3 = 1$ and $T_1 = 2$, $T_2 = 3$, $T_3 = 7$

Scan Schedule Parameters

- \bullet *n* disjoint frequency bands
- for each band: a triple (a_i, τ_i, T_i) such that $0 < \tau_i < T_i$ and $0 \leq a_i \leq T_i \tau_i$



Schedule Construction

• Find a_1, \ldots, a_n to ensure that dwell intervals for different frequency bands do not intersect.

Results on Scan-Schedule Feasibility

Theoretical complexity: the problem is NP-complete Necessary condition: all the fractions T_i/T_j must be rational. Case n = 2:

 \circ The problem is equivalent to solving the system of inequalities

$$(a_2 - a_1) \mod d \ge \tau_1$$
$$(a_1 - a_2) \mod d \ge \tau_2$$

where $d = gcd(T_1, T_2)$.

• There is a solution and the schedule is feasible if and only if $\tau_1 + \tau_2 \leqslant d$.

Results on Scan-Schedule Feasibility (continued)

General case: $n \ge 3$

• We need to find a_1, \ldots, a_n that satisfy two sets of constraints:

$$S_{0}: \begin{cases} (a_{1}-a_{2}) \mod \gcd(T_{1},T_{2}) \geqslant \tau_{2} \\ \vdots \\ (a_{n}-a_{n-1}) \mod \gcd(T_{n},T_{n-1}) \geqslant \tau_{n-1} \\ \\ S_{1}: \begin{cases} 0 \leqslant a_{1} \leqslant T_{1}-\tau_{1} \\ \vdots \\ 0 \leqslant a_{n} \leqslant T_{n}-\tau_{n}, \end{cases}$$

Results on Scan-Schedule Feasibility (continued)

Necessary conditions for feasibility:

$$\tau_i + \tau_j \leqslant d_{i,j}.$$

for $i = 1, \ldots, n$, $j = 1, \ldots, n$, and $i \neq j$.

Simplification:

 \circ It is sufficient to look for solutions (a_1, \ldots, a_n) such that

$$\begin{array}{rcl}
0 &\leqslant a_{1} < 1 \\
0 &\leqslant a_{2} < d_{1,2} \\
0 &\leqslant a_{3} < \operatorname{lcm}(d_{1,3}, d_{2,3}) \\
\vdots \\
0 &\leqslant a_{n} < \operatorname{lcm}(d_{1,n}, \dots, d_{n-1,n}).
\end{array}$$

7

where $d_{i,j} = \gcd(T_i, T_j)$

Resource Utilization

Sensor utilization:

$$U = \sum_{i=1}^{n} \frac{\tau_i}{T_i}$$

- \circ This is the fraction of the time where the sensor does something useful, so we want U close to 1.
- Because of the constraints $\tau_i + \tau_j \leqslant d_{i,j}$, we have $\tau_i < d_{i,j}$ and $\tau_j < d_{i,j}$.
- U can then be very low since $d_{i,j}$ can be much smaller than T_i and T_j .
- This is confirmed by our first experiments.

Experiments

Algorithm Implemented:

• Depth-first search with backtracking.

Initial Experiments

- Randomly generated instances are rarely feasible (necessary conditions fail)
- For random instances constructed to satisfy the necessary conditions, the search algorithm is not practical
- Example:
 - n=60, all T_i are multiple of 100, $2000 \leq T_i \leq 3000$, and $0 \leq \tau_i \leq 20$.
 - Out of 100 random instances, 35 are feasible, 4 infeasible instances, 61 timeouts (6min CPU)
 - Average search time: 230s, average utilization: 0.25

Some Open Issues

Better Algorithms?

• Maybe by translation to integer programming

Special Instances

- High utilization can be achieved if the revisit times are harmonic (i.e., all are multiple of each other)
- \circ but this is not a necessary condition, high U is possible under weaker conditions.

Bound on Achievable Utilization

 For a fixed set of revisit times, what is the maximal utilization one can get by varying the dwell times?

Conclusion

Using strictly periodic scan schedules is too restrictive:

- Feasibility and schedule construction are NP-complete
- Sensor utilization can be very low

More flexible schedules are needed:

- non-periodic schedules where the delay between successive dwells is not a constant $(T_i - \tau_i)$ but can vary (also the length of dwell intervals can vary)
- for such schedules, we can solve all the feasibility issues by having a "feasible-by-construction" approach
- all we need is to extend the performance metrics (e.g. probability of detection or identification) to these non-periodic schedule. That's a lot easier than solving feasibility problems.