
DCCA 97

Systematic Formal Veri�cation for Fault-TolerantTime-Triggered Algorithms

John Rushby

Computer Science LaboratorySRI InternationalMenlo Park CA USA

Formal Veri�cation of Time-Triggered Algorithms 1 of 24

Overview� Many fault-tolerant algorithms are relatively easy to understandand to verify in an abstract, untimed formulation� But veri�cations of implementations, with all their timingparameters, are quite complex� So split the problem into two parts� Verify abstract algorithm for an untimed synchronoussystem model? Must be done for each algorithm? Relatively easy|and can itself be split into two parts� Verify time-triggered implementation of the untimed model? Can be done once-and-for-all? Is the main topic of this paper� Provides simple path from veri�ed design to implementationFormal Veri�cation of Time-Triggered Algorithms 2 of 24

Synchronous Systems� Known upper bounds on� Time required for nonfaulty processors to perform operations� Messages delays in the absence of faults� Assumptions are valid for embedded real-time control systems� The classical problems of fault-tolerant distributed systems canbe solved under these assumptions� Consensus (Byzantine Agreement)� Group Membership� Etc.Whereas they cannot be solved in asynchronous systems� Focus here is exclusively on synchronous systemsFormal Veri�cation of Time-Triggered Algorithms 3 of 24

Formal Synchronous System Model� Algorithms execute in a series of rounds, numbered 0;1; . . .� Each round has two phasesCommunication Phase: each processor sends messages to(some or all) other processors� Messages sent, and where to, depend on current state� msgp(s; q) is the message sent by p to q when p's state is sComputation Phase: each processor updates its state� New state depends on previous state and on messagesreceived during communication phase� transp(s; i) is p's new state, when its current state is s andthe set of messages received is i

Formal Veri�cation of Time-Triggered Algorithms 4 of 24

Synchronous System Model: Operation� Processors operate in lockstep� All perform the communication phase of the current round� Then the computation phase� Then move on to the next round, and so on� Computation and message transmission happen instantaneouslyand atomically� Processors are perfectly synchronized and perform their actionssimultaneously� No sense of real time (hence untimed system model)

Formal Veri�cation of Time-Triggered Algorithms 5 of 24

Example: Oral Messages Algorithm for Consensus, OM(1)Transmitter processor has a value to be communicated reliably tothree or more receivers in the presence of one arbitrary faultRound 0:Communication Phase: The transmitter sends its value tothe receivers; receivers send no messagesComputation Phase: Each receiver stores the value receivedfrom the transmitter in its stateRound 1:Communication Phase: Each receiver sends value stored inits state to all other receivers; transmitter sends nothingComputation Phase: Each receiver decides on the majorityvalue among those received from the other receivers andthat (stored in its state) received from the transmitterFormal Veri�cation of Time-Triggered Algorithms 6 of 24

Implementing Algorithms for Synchronous SystemsHave to deal with the reality that events are not instantaneous,atomic, and simultaneous� Communications and computations take time� Timeouts needed to detect failed communications� Processors are not perfectly synchronized� And run at di�erent ratesTwo approachesEvent triggered: processors react to incoming messages;set timeouts on outgoing messagesTime triggered: processors perform actions according to acommon schedule, driven by their own internal clocks� Preferred for critical app'ns: SAFEbus, TTP, ShinkansenFormal Veri�cation of Time-Triggered Algorithms 7 of 24

Time-Triggered System Model

computationcommunication communicationcomputation

sched(r) dur(r) sched(r+1)

P(r)

D(r)

Formal Veri�cation of Time-Triggered Algorithms 8 of 24

Issues in Verifying the Time-Triggered Implementation� Processor clocks are not perfectly synchronized� One processor may send message before or after anotherone expects it; may not even be on the same round� Therefore require a bound on synchronization skew� Can be ensured by clock synchronization algorithms� Processor clocks do not run at the same rate� Durations of the phases may di�er on di�erent processors� Therefore require that good processors' clocks run at rateswithin some bound of each other� Unpredictable delays in message transmission� Message may arrive after communications phase has ended� Therefore require upper bound on nonfaulty message delays� Need to arrange pacing and timeouts so that it all worksFormal Veri�cation of Time-Triggered Algorithms 9 of 24

Clocks� Each processor has a clock, that reads clocktime� Clocktimes denoted by upper-case letters (T , � etc.),� There is an abstract, universal, time called realtime� Realtimes denoted by lower-case letters (t, � etc.)� Cp(t) is the clocktime on p's clock at realtime t

Formal Veri�cation of Time-Triggered Algorithms 10 of 24

Clock AssumptionsMonotonicity: Nonfaulty clocks are monotonic increasingfunctions: t1 < t2) Cp(t1) < Cp(t2)Clock Drift Rate: Nonfaulty clocks drift from realtime at a ratebounded by a small positive quantity � (typically � < 10�6):(1� �)(t1 � t2) � Cp(t1)� Cp(t2) � (1 + �)(t1 � t2)Clock Synchronization: The clocks of nonfaulty processors aresynchronized within some small clocktime bound �:jCp(t)� Cq(t)j � �Achieving these requires care in implementation, since some clocksynchronization algorithms violate monotonicity. However,monotonicity can always be achieved, with no loss of precisionFormal Veri�cation of Time-Triggered Algorithms 11 of 24

Time-Triggered System ModelEach processor� Starts round r at clocktime sched(r) by its local clock� Sends its messages D(r) clocktime units into the round� Starts computation phase P(r) clocktime units into the round� So duration of r'th communication phase is P(r)� Finishes the round after dur(r) clocktime units� dur(r) = sched(r+1)� sched(r)� So duration of r'th computation phase is dur(r)� P(r)Additional AssumptionMaximum Delay: messages are received within � realtime unitsFormal Veri�cation of Time-Triggered Algorithms 12 of 24

Constraints1. dur(r) > P(r) > D(r) > 0� The communication phase is of positive duration� The computation phase starts after the messages are sentand is of positive duration2. D(r) � �� The delay before messages are sent is greater than the clockskew (so messages do not arrive while the receivingprocessor is still in the previous round)3. P(r) > D(r) +�+ (1+ �)�� The communication phase must last long enough that allmessages have time to reach their destination processorwhile it is still in its communication phaseFormal Veri�cation of Time-Triggered Algorithms 13 of 24

Fault Model� Faults are modeled as changes in the msgp and transp functions� Will prove that untimed model and time-triggeredimplementation have same behavior, given same msgp andtransp functions, for any such functions� Thus, if an algorithm is proved fault tolerant in the untimedmodel with respect to a fault model that can be expressed asperturbations to the msgp and transp functions, thenimplementation inherits those fault-tolerance properties� However, implementation admits new faults� Loss of clock synchronization� Shared buses (babbling idiot fault mode)Must take care to minimize these and to ensure that those notmasked are transformed into simplest of the modeled faultsFormal Veri�cation of Time-Triggered Algorithms 14 of 24

Correspondence between Rounds� Want to ensure that untimed synchronous model and itstime-triggered implementation produce same behavior� i.e., prove that state of the system at the start of eachround is the same in both model and implementation� But when does a round start in the implementation?� De�ne the global start for round r to be the realtime gs(r)when the processor with the slowest clock begins round r� Then gs(r) satis�es the constraints:8q : Cq(gs(r)) � sched(r);and 9p : Cp(gs(r)) = sched(r)(intuitively, p is the processor with the slowest clock)Formal Veri�cation of Time-Triggered Algorithms 15 of 24

CorrectnessTheorem: Given the same initial states and same msgp and transpfunctions, the state of each processor in the untimedsynchronous system at the start of the r'th round is the sameas its state at time gs(r) in the time-triggered implementationProof: By induction|see paper for detailsFormal Veri�cation: Has been formally speci�ed andmechanically veri�ed using SRI's veri�cation system, PVS� Formal veri�cation took about a day� Allowed easy generalization from �xed o�sets D and P toround-speci�c D(r) and P(r)� See long version of paper|available on the Web athttp://www.csl.sri.com/dcca97.html� PVS speci�cation and proof �les available there alsoFormal Veri�cation of Time-Triggered Algorithms 16 of 24

Synchronous Algorithms as Functional Programs� Theorem establishes correctness of time-triggeredimplementations for synchronous algorithms� But formal veri�cation of a synchronous algorithm can still bequite di�cult� Rounds and phases have an operational character that isawkward to represent in formal logic� Functional programs are much easier� So establish a systematic transformation between synchronoussystems and functional programs.� Describe by example: OM(1)

Formal Veri�cation of Time-Triggered Algorithms 17 of 24

Speci�cation of OM(1) as a Functional ProgramFirst step is to model sending of messages� Function send(r; v; p; q) represents sending of a message withvalue v from processor p to processor q in round r� Value of the function is the message received by q� If p and q are nonfaulty, this value is v:nonfaulty(p) ^ nonfaulty(q)) send(r; v; p; q) = v;� Otherwise it depends on the fault modes considered� Here it is left entirely unconstrained (Byzantine fault model)

Formal Veri�cation of Time-Triggered Algorithms 18 of 24

Speci�cation of OM(1) as a Functional Program (ctd. 1)T is the transmitter, v its value, and q an arbitrary receiverRound 0, communication phase:T sends v to each q: send(0; v; T; q)Round 0, computation phase: do nothing(instead of storing value received, q sends it to itself in nextphase)Round 1, communication phase:Each q sends the value received in the �rst round to eachreceiver p (including itself):send(1; send(0; v; T; q); q; p)Formal Veri�cation of Time-Triggered Algorithms 19 of 24

Speci�cation of OM(1) as a Functional Program (Ctd. 2)Round 1, computation phase:p gathers all the messages just received and votes them� \Gathers" represented by �-abstraction:�q : send(1; send(0; v; T; q); q; p)(i.e., a function that, when applied to q, returns the valuethat p received from q)� maj(caucus ; votes) takes a function votes from processorsto values, and returns the majority value if one exists,among the processors in caucus; otherwise some functionallydetermined value� Then p's decision is given bymaj(rcvrs ; �q : send(1; send(0; v; T; q); q; p))where rcvrs is the set of all receiver processors.Formal Veri�cation of Time-Triggered Algorithms 20 of 24

Speci�cation of OM(1) as a Functional Program (Ctd. 3)Represented as the (higher-order) function OM1:OM1(T; v)(p) =maj(rcvrs ; �q : send(1; send(0; v; T; q); q; p))OM1(T; v)(p) is the decision reached by each receiver p when the(possibly faulty) transmitter T sends the value vProperties requiredAgreement: nonfaulty receivers agree, even if faulty transmittersends di�erent valuesnonfaulty(p) ^ nonfaulty(q)) OM1(T; v)(p) = OM1(T; v)(q)Validity: when the transmitter is nonfaulty, all nonfaulty receiversget the correct valuenonfaulty(T) ^ nonfaulty(p)) OM1(T; v)(p) = vFormal Veri�cation of Time-Triggered Algorithms 21 of 24

Veri�cation of OM(1) as a Functional Program� The great advantage of this representation is that it isexpressed in regular (higher-order) logic and highly automatedtheorem proving can be used to verify algorithm properties� For example: OM(1)Agreement: PVS can prove the n = 4 instance automatically,requires just eight commands to prove the general caseValidity: PVS can prove the general case automatically� It would be much harder to do mechanized formal veri�cationfor original representation of OM(1) as a synchronous algorithm� And veri�cation of an event-driven formulation of OM(1) byLamport and Merz required signi�cant e�ortFormal Veri�cation of Time-Triggered Algorithms 22 of 24

Summary
transformation

Synchronous System

Functional Program

Required Properties

Time-Triggered Implementation

formal

verification

systematic

one-time

verification

Formal Veri�cation of Time-Triggered Algorithms 23 of 24

Conclusions and Future Work� This approach reduces and systematizes the e�ort required toverify (some) time-triggered algorithms� Simplicity of the formulation and proof of the theorem suggeststhat time-triggered systems are the natural realization of thesynchronous system model� Future work:� Formalize and verify the transformation betweensynchronous systems and functional programs� Apply to more di�cult algorithms? Currently working on a group membership algorithmsimilar to that in TTPFormal Veri�cation of Time-Triggered Algorithms 24 of 24

