DCCA 97



Systematic Formal Verification for Fault-Tolerant
Time-Triggered Algorithms

John Rushby

Computer Science Laboratory
SRI International
Menlo Park CA USA

Formal Verification of Time-Triggered Algorithms 1 of 24



Overview

e Many fault-tolerant algorithms are relatively easy to understand
and to verify in an abstract, untimed formulation

e But verifications of implementations, with all their timing
parameters, are quite complex

e SO split the problem into two parts

o Verify abstract algorithm for an untimed synchronous
system model
* Must be done for each algorithm
*x Relatively easy—and can itself be split into two parts

o Verify time-triggered implementation of the untimed model
* Can be done once-and-for-all

*x Is the main topic of this paper
e Provides simple path from verified design to implementation

Formal Verification of Time-Triggered Algorithms 2 of 24



Svynchronous Systems

e Known upper bounds on

o Time required for nonfaulty processors to perform operations

o Messages delays in the absence of faults
e Assumptions are valid for embedded real-time control systems

e [ he classical problems of fault-tolerant distributed systems can
be solved under these assumptions

o Consensus (Byzantine Agreement)
o Group Membership
o Etc.

Whereas they cannot be solved in asynchronous systems

e Focus here is exclusively on synchronous systems

Formal Verification of Time-Triggered Algorithms 3 of 24



Formal Synchronous System Model
e Algorithms execute in a series of rounds, numbered O, 1, ...

e Each round has two phases
Communication Phase: each processor sends messages to
(some or all) other processors
o Messages sent, and where to, depend on current state
o msg,(s,q) is the message sent by p to ¢ when p's state is s
Computation Phase: each processor updates its state

o New state depends on previous state and on messages
received during communication phase

o transp(s,i) is p's new state, when its current state is s and
the set of messages received is 1

Formal Verification of Time-Triggered Algorithms 4 of 24



Svynchronous System Model: Operation

e Processors operate in lockstep

o All perform the communication phase of the current round
o T hen the computation phase

o T hen move on to the next round, and so on

e Computation and message transmission happen instantaneously
and atomically

e Processors are perfectly synchronized and perform their actions
simultaneously

e No sense of real time (hence untimed system model)

Formal Verification of Time-Triggered Algorithms 5 of 24



Example: Oral Messages Algorithm for Consensus, OM(1)

Transmitter processor has a value to be communicated reliably to
three or more receivers in the presence of one arbitrary fault

Round O:
Communication Phase: The transmitter sends its value to
the receivers; receivers send no messages
Computation Phase: Each receiver stores the value received
from the transmitter in its state
Round 1:
Communication Phase: Each receiver sends value stored in
its state to all other receivers; transmitter sends nothing

Computation Phase: Each receiver decides on the majority
value among those received from the other receivers and
that (stored in its state) received from the transmitter

Formal Verification of Time-Triggered Algorithms 6 of 24



Implementing Algorithms for Synchronous Systems

Have to deal with the reality that events are not instantaneous,
atomic, and simultaneous

e Communications and computations take time
o Timeouts needed to detect failed communications
e Processors are not perfectly synchronized

e And run at different rates
Two approaches

Event triggered:. processors react to incoming messages;
set timeouts on outgoing messages

Time triggered: processors perform actions according to a
common schedule, driven by their own internal clocks

e Preferred for critical app’'ns: SAFEbus, TTP, Shinkansen

Formal Verification of Time-Triggered Algorithms 7 of 24



Time-Triggered System Model

computation 1 communication | computation
I I

lo— P(r) 1

| .

sched(r) <>— dur(r) ——— sched(r+1)

communication

Formal Verification of Time-Triggered Algorithms 8 of 24



Issues Iin Verifying the Time-Triggered Implementation

e Processor clocks are not perfectly synchronized

o One processor may send message before or after another
one expects it; may not even be on the same round

o Therefore require a bound on synchronization skew

o Can be ensured by clock synchronization algorithms
e Processor clocks do not run at the same rate

o Durations of the phases may differ on different processors

o T herefore require that good processors’ clocks run at rates
within some bound of each other

e Unpredictable delays in message transmission

o Message may arrive after communications phase has ended

o T herefore require upper bound on nonfaulty message delays

e Need to arrange pacing and timeouts so that it all works
Formal Verification of Time-Triggered Algorithms 9 of 24



Clocks

e Each processor has a clock, that reads clocktime

o Clocktimes denoted by upper-case letters (T, 3 etc.),

e [ here is an abstract, universal, time called realtime

o Realtimes denoted by lower-case letters (¢, p etc.)

e (C)(t) is the clocktime on p's clock at realtime ¢t

Formal Verification of Time-Triggered Algorithms 10 of 24



Clock Assumptions

Monotonicity: Nonfaulty clocks are monotonic increasing
functions:

t1 < tp = Cp(ty) < Cp(tn)

Clock Drift Rate: Nonfaulty clocks drift from realtime at a rate
bounded by a small positive quantity p (typically p < 107°):

(L —p)(t1 —t2) < Cp(t1) — Cp(ta) < (1 + p)(t1 —t2)

Clock Synchronization: The clocks of nonfaulty processors are
synchronized within some small clocktime bound >-:

|Cp(t) — Cq(D)| < &

Achieving these requires care in implementation, since some clock
synchronization algorithms violate monotonicity. However,
monotonicity can always be achieved, with no loss of precision

Formal Verification of Time-Triggered Algorithms 11 of 24



Time-Triggered System Model

Each processor
e Starts round r at clocktime sched(r) by its local clock
e Sends its messages D(r) clocktime units into the round

e Starts computation phase P(r) clocktime units into the round

o So duration of r'th communication phase is P(r)

e Finishes the round after dur(r) clocktime units

o dur(r) = sched(r 4+ 1) — sched(r)
o So duration of r'th computation phase is dur(r) — P(r)
Additional Assumption

Maximum Delay: messages are received within § realtime units

Formal Verification of Time-Triggered Algorithms 12 of 24



Constraints

1. dur(r) > P(r) > D(r) >0

e [ he communication phase is of positive duration

e [ he computation phase starts after the messages are sent
and is of positive duration

2. D(r) > X

e [ he delay before messages are sent is greater than the clock
skew (so messages do not arrive while the receiving
processor is still in the previous round)

3. P(r) >D(r) + =+ (1+p)s

e [ he communication phase must last long enough that all
messages have time to reach their destination processor
while it is still in its communication phase

Formal Verification of Time-Triggered Algorithms 13 of 24



Fault Model

e Faults are modeled as changes in the msg, and trans, functions

e Will prove that untimed model and time-triggered
implementation have same behavior, given same msg, and
trans, functions, for any such functions

e [ hus, if an algorithm is proved fault tolerant in the untimed
model with respect to a fault model that can be expressed as
perturbations to the msg, and trans, functions, then
implementation inherits those fault-tolerance properties

e However, implementation admits new faults

o Loss of clock synchronization
o Shared buses (babbling idiot fault mode)

Must take care to minimize these and to ensure that those not
masked are transformed into simplest of the modeled faults

Formal Verification of Time-Triggered Algorithms 14 of 24



Correspondence between Rounds

e \Want to ensure that untimed synchronous model and its
time-triggered implementation produce same behavior

o i.e., prove that state of the system at the start of each
round is the same in both model and implementation

o But when does a round start in the implementation?

e Define the global start for round r to be the realtime gs(r)
when the processor with the slowest clock begins round r

e Then gs(r) satisfies the constraints:
Vq : Cq(gs(r)) > sched(r),
and
dp : Cp(gs(r)) = sched(r)
(intuitively, p is the processor with the slowest clock)

Formal Verification of Time-Triggered Algorithms 15 of 24



Correctness

Theorem: Given the same initial states and same msg, and transp
functions, the state of each processor in the untimed
synchronous system at the start of the »'th round is the same
as its state at time gs(r) in the time-triggered implementation

Proof: By induction—see paper for details

Formal Verification: Has been formally specified and
mechanically verified using SRI's verification system, PVS

e Formal verification took about a day

e Allowed easy generalization from fixed offsets D and P to
round-specific D(r) and P(r)

e See long version of paper—available on the Web at
http://www.csl.sri.com/dcca97.html

e PVS specification and proof files available there also

Formal Verification of Time-Triggered Algorithms 16 of 24



Synchronous Algorithms as Functional Programs

e [ heorem establishes correctness of time-triggered
implementations for synchronous algorithms

e But formal verification of a synchronous algorithm can still be
quite difficult

o Rounds and phases have an operational character that is
awkward to represent in formal logic

o Functional programs are much easier

e SO establish a systematic transformation between synchronous
systems and functional programs.

e Describe by example: OM(1)

Formal Verification of Time-Triggered Algorithms 17 of 24



Specification of OM(1) as a Functional Program

First step is to model sending of messages

e Function send(r,v,p,q) represents sending of a message with
value v from processor p to processor g in round r

e Value of the function is the message received by ¢

e If p and ¢ are nonfaulty, this value is v:

nonfaulty (p) A nonfaulty(q) = send(r,v,p,q) = v,

e Otherwise it depends on the fault modes considered

o Here it is left entirely unconstrained (Byzantine fault model)

Formal Verification of Time-Triggered Algorithms 18 of 24



Specification of OM(1) as a Functional Program (ctd. 1)

T is the transmitter, v its value, and g an arbitrary receiver

Round 0, communication phase:
T sends v to each q:

send(0,v,T,q)

Round 0, computation phase: do nothing

(instead of storing value received, ¢ sends it to itself in next
phase)

Round 1, communication phase:

Each g sends the value received in the first round to each
receiver p (including itself):

send(1,send(0,v,T,q),q,p)

Formal Verification of Time-Triggered Algorithms 19 of 24



Specification of OM(1) as a Functional Program (Ctd. 2)

Round 1, computation phase:
p gathers all the messages just received and votes them

e ""Gathers” represented by A-abstraction:

Aq : send(1,send(0,v,T,q),q,p)
(i.e., a function that, when applied to ¢, returns the value

that p received from gq)

e maj(caucus, votes) takes a function votes from processors
to values, and returns the majority value if one exists,
among the processors in caucus; otherwise some functionally
determined value

e T hen p's decision is given by
maj(rcvrs, \q : send(1,send(0,v,T,q),q,p))
where rcvrs is the set of all receiver processors.

Formal Verification of Time-Triggered Algorithms 20 of 24



Specification of OM(1) as a Functional Program (Ctd. 3)

Represented as the (higher-order) function OM1:

OMI1(T,v)(p) = maj(rcvrs, \q : send(1,send(0,v,T,q),q,p))

OM1(T,v)(p) is the decision reached by each receiver p when the
(possibly faulty) transmitter T° sends the value v

Properties required
Agreement: nonfaulty receivers agree, even if faulty transmitter
sends different values
nonfaulty (p) A nonfaulty(q) = OM1(T,v)(p) = OM1(T,v)(q)
Validity: when the transmitter is nonfaulty, all nonfaulty receivers
get the correct value

nonfaulty (1) A nonfaulty(p) = OM1(T,v)(p) = v

Formal Verification of Time-Triggered Algorithms 21 of 24



Verification of OM(1) as a Functional Program

e [ he great advantage of this representation is that it is
expressed in regular (higher-order) logic and highly automated
theorem proving can be used to verify algorithm properties

e For example: OM(1)

Agreement: PVS can prove the n = 4 instance automatically,
requires just eight commands to prove the general case

Validity: PVS can prove the general case automatically

e It would be much harder to do mechanized formal verification
for original representation of OM(1) as a synchronous algorithm

e And verification of an event-driven formulation of OM(1) by
Lamport and Merz required significant effort

Formal Verification of Time-Triggered Algorithms 22 of 24



Summary

Required Propertfies
formal
verification
Functional Program
systematic

fransformation

Synchronous System
one-tfime
verification

Time-Triggered Implementation

Formal Verification of Time-Triggered Algorithms 23 of 24



Conclusions and Future Work

e [ his approach reduces and systematizes the effort required to
verify (some) time-triggered algorithms

e Simplicity of the formulation and proof of the theorem suggests
that time-triggered systems are the natural realization of the
synchronous system model

e Future work:

o Formalize and verify the transformation between
synchronous systems and functional programs
o Apply to more difficult algorithms

*x Currently working on a group membership algorithm
similar to that in TTP

Formal Verification of Time-Triggered Algorithms 24 of 24



