
TCP SYN Flooding Defense�Livio Ricciulli Patrick Lincoln Pankaj Kakkarflivio,lincolng@csl.sri.com pankaj@csl.sri.comComputer Science Laboratory Dept of Computer and Information ScienceSRI International University of Pennsylvania333 Ravenswood Avenue 200 S 33rd StMenlo Park, CA 94025 Philadelphia, PA 19104Keywords: SYN ooding, Random drop, Dis-tributed simulation, TCP signaling, TCP denial-of-serviceAbstractThe TCP SYN ooding denial-of-service attackpointed out a weakness of then-current Internet pro-tocols. There have since been many proposals to de-fend against SYN ooding, some requiring signi�cantchanges to TCP. Several solutions attempting to re-solve the TCP weakness are now generally available.We document these existing solutions and qualitativelycompare them. We re�ne the analysis of the randomdrop approach and derive a simple and general wayto improve its performance. Finally we show, throughboth analytical and packet-level simulations, the e�-cacy of the random drop approach in a variety of op-erating conditions.1 IntroductionThe TCP SYN ooding denial-of-service attackhinders the signaling mechanism that is used to es-tablish TCP connections. HTTP and FTP are ex-amples of two widely used TCP-based protocols thatare becoming more important for the exchange of in-formation over the Internet and that are a�ected bythis type of denial-of-service. SYN ooding attacksare performed by the attacker submitting a stream ofTCP SYN (connection request) packets to the targetsystem, �lling its connection request queue, and thusreducing (or eliminating) the target system's ability torespond to legitimate connection requests. The com-mon TCP timeout for unsuccessful connections is sev-eral tens of seconds; thus an attacker can leisurely�ll the TCP SYN queue before earlier SYNs timeout. The SYN ooding denial-of-service attack, if notdealt with properly, requires very little computationThis work was supported by the Defense Advanced Re-search Projects Agency, under contract number DABT63-97-C0040.

and bandwidth commitment from malicious users. Al-though SYN ooding requires an attacker to continu-ously ood a target (otherwise within a few minutesthe target will revert to normal operation), it is di�-cult to trace to the source of SYNs. Thus, SYN ood-ing remains a viable attack.Potential loss of revenue caused by preempting re-liable TCP communication is enormous, and there-fore adequate mechanisms for dealing with SYN ood-ing should be sought. Current SYN ooding defensemechanisms seem to have greatly mitigated the prob-lem by making it harder for an attacker to negativelya�ect service. The most popular approach [2] solvesthe problem by \brute" force. In this approach theTCP \connection pending" data structure is madeso large that an average attacker, to be successful,would need to ood connection requests at a rate ex-ceeding reasonable bandwidth capabilities. This solu-tion, although sometimes very practical, requires largeamounts of protected kernel memory and may slowdown the server response time for looking up con-nections in the vast \connection pending" data struc-ture. Other less popular techniques use one-way hashfunctions (cookies) to verify the authenticity of con-nection requests and therefore eliminate unnecessarymemory allocation [3]. Some of these latter tech-niques can introduce changes in the TCP signalingbehavior and are therefore less favored. Firewall ap-proaches actively monitor the TCP signaling tra�cto detect possible attacks and inject ad-hoc signal-ing messages in the network to mitigate the denial-of-service. These approaches are awkward because theyintroduce additional administrative complexity, mayintroduce signi�cant delays for legitimate connectionestablishment, or may expose the system to di�erent,though arguably less severe, kinds of vulnerabilities.No one mechanism seems to provide an optimal so-lution, and thus an approach should be constructedby using a combination of techniques. In particular,both the brute force approach and some of the �rewall



mechanisms could be greatly improved if they were tobe coupled with some kind of admission control mech-anism that can optimize, in a probabilistic sense, theirresource utilization.To this end, we revisit a well-known defense mech-anism (random drop) and show its e�ectiveness. Thismechanism, in its simplest form, always accommo-dates new SYNs and drops at random a connection-pending entry if the connection pending data structureis full. The rationale is that even though legitimateentries may be forced out by spoofed SYNs, one canprobabilistically guarantee success. The performanceof the random drop scheme has been incorrectly as-sessed through defective models, and its performancehas been underestimated. The main contribution ofthis paper is to provide a detailed analytical modelfor characterization of the random drop scheme andto provide the speci�cation of an \early drop" �lter toimprove its overall performance.Section 2 of this paper reviews some popular SYNooding defense mechanisms and introduces our re-vised version of random drop. Section 3 qualitativelycompares the defense mechanism outlined in Section 2with respect to key properties that characterize theire�ectiveness. Section 4 details an analytical study ofthe random drop scheme applied to TCP signalingadmission control. Section 5 reports on some high-�delity simulation of the random drop scheme. Wepresent our conclusions in Section 6.2 SYN Flooding DefensesA normal TCP connection is established by a three-step handshake protocol. The initiator (the client)sends a SYN message; the responder (the server) sendsa SYNACK message back to the client and waits forthe third and �nal message (ACK) from the client. Ina SYN ooding attack the client is spoofed, and theSYNACK message is simply lost in the network. Theserver, therefore, keeps waiting in vain for an ACKand keeps a queue entry allocated for several seconds.In a proactive approach, adequate monitoring ofthe network tra�c can detect patterns that indicate apossible attempt to deny service through TCP ood-ing. Upon detection of the anomaly, the attacker canthen be isolated from the network and prosecuted.In some situations, the inter-domain cooperationnecessary to trace an attacker may not be possible.Thus, it is necessary to adopt some local defense mech-anisms. In this more reactive approach, the maliciousrequests are allowed to reach the target server, whichcan react to anomalous conditions and turn on spe-ci�c mechanisms aimed at minimizing the impact ofthe denial-of-service attacks. Several such mechanisms

have been proposed, each of which has tradeo�s withrespect to e�ectiveness, robustness, and resource re-quirements.Berkeley Cookie Berkeley Software Design Inc.'ssolution [2] increased the capacity of storing outstand-ing connection pending entries, thus requiring that anattacker send a much greater number of SYNs. Thismechanism o�ers limited protection, essentially justincreasing the cost of an attack. The parameters cho-sen by the developers are well suited for today's net-work technology and, although requiring the server todevote more resources to prevent the SYN attacks,they seem to be adequate to discourage attacks car-ried out by individuals with limited bandwidth at theirdisposal. Coordinated attacks or attacks carried outfrom high-bandwidth links could still circumvent thisdefense mechanism. Although the Berkeley Cookiescheme does not semantically solve the SYN oodingproblem, we believe it is the best current approachfor defending large and heavyweight TCP servers (likeWWW servers) with large amounts of kernel memoryspace.Linux Cookies This idea was proposed initially byBernstein and Bona [5] and later re�ned through adiscussion in [1]. In this approach, the incomingSYN's sequence number, and the source and desti-nation addresses are combined with a secret number(which is changed at regular intervals) and are runthrough a one-way hash function. The resulting cookieis used as the sequence number of the reply. The re-play (SYNACK) is then sent to the source, using thecookie, but no record is kept locally of the connectionrequest. If and when the ACK arrives from the sourceas the third step of the handshake, the sequence num-ber of the received message is used to authenticatethe source. If the source is properly authenticated,the connection is established; otherwise, the ACK isdiscarded.The scheme exchanges memory for CPU time,which makes sense because CPU time is much cheaperthan memory. The biggest problem with this approachis that it breaks TCP semantics by not letting theserver retransmit SYNACKS in case of packet loss.Other minor problems include loss of the initial roundtrip time measurement and the incoming maximumsegment size, but those can be circumvented.Reset Cookie Shenk [11] has devised a mechanismthat, while not requiring changes to TCP, allows aserver under attack to establish security associations



with clients before connection requests are processed.In this approach, when the server is under attack andit receives a SYN packet, it will �rst see if the clienthad previously established a security association. Ifthe client has a security association, the SYN is pro-cessed normally; if not, the server triggers a mecha-nism to create a security association with the clientand discards the received SYN. The creation of thesecurity association is triggered by the server. Theserver sends to the client an illegal SYNACK messagewith its sequence number replaced by a cookie.In this scenario, according to the standard TCPspeci�cations, the client responds to the anomalousSYNACK with a TCP reset (RST) bearing the server'scookie. When the server receives the reset, it veri-�es the cookie and records a security association withthat particular client. This mechanism is backwardcompatible, it does not permit the unwarranted allo-cation of resources on the server 2 but has the obviousdrawback of signi�cantly increasing the �rst connec-tion setup time. Servers with a small turn-around timewith millions of clients like popular WWW servicesmay signi�cantly reduce their response time.Random Drop Random drop can be seen as ageneric, simple, and e�ective admission control mecha-nism for systems that support preemption and cannotsupport the storing of large amounts of state uponwhich to base admission decisions. We revisit ran-dom drop as a fourth SYN ooding defense solution.Although this idea has been already proposed and im-plemented [4, 7], it has not been correctly analyzedand assessed. Random drop maintains the TCP con-nection establishment protocol unchanged and allowsthe exible tradeo� of defense e�ectiveness with re-source requirements. In addition, this mechanism canbe used in isolation or in conjunction with the Berke-ley cookie scheme to dramatically reduce memory re-quirements.In the random drop approach, when a SYN messagereaches a server with a full connection pending queue,it replaces one of the pending requests chosen at ran-dom. The client whose connection entry is droppedis noti�ed with a RST. If the replaced entry was pre-viously generated by the attacker, the RST is simplylost in the network. If the replaced entry was from alegitimate client, the RST will cause the client's �rstattempt to communicate with the server to fail (re-turning end of �le). The rationale for this approachis that by making the queue large enough, a server2the number of security associations is proportional to thenumber of good clients only

Table 1: SYN Flooding Defense Mechanisms Compar-ison BSDI Linux Reset RandomCookies Cookies Cookies DropGuarantee NO YES YES Prob.Memory NO YES YES YESImmunityComputing NO NO NO YESImmunityRobustness YES NO YES YESGood YES YES NO YESPerformanceunder attack can still o�er an arbitrarily high prob-ability of successful connection establishment. Theobvious drawback is that the attacker can still occa-sionally deny connection establishment to a legitimateclient. As we will see in the following Sections, bothnew analytical models and experimental evidence con-�rm that this scheme is extremely resilient to very highbandwidth attacks (or coordinated attacks) or attackscarried out against clients with relatively small con-nection pending queues.3 Qualitative ComparisonThe four approaches we described all have pros andcons and therefore should be carefully compared for anunderstanding of the tradeo�s. To this end, we sum-marize the key characteristic di�erences in the fourapproaches with respect to some main attributes. The�rst attribute, Guarantee, is the ability of the mech-anism to provide availability to the clients in worst-case scenarios. This is perhaps the most importantattribute because it directly impacts the usefulness ofthe mechanism. The Memory and Computing Immu-nity attributes signals when the server employing themechanism cannot be forced to spend more memoryor computing resources in proportion to the volume ofSYNs sent by an attacker (for example, by comput-ing cookies or allocating table entries as a result ofmalicious SYNs). The fourth attribute, Robustness,signals when a mechanism causes the TCP signalingsemantics to be partially compromised. Finally, GoodPerformance, estimates whether a mechanism doesnot signi�cantly a�ect TCP performance. Althoughthese attributes are open to di�erent interpretationsthat could result in completely di�erent characteriza-tions, in table 1 we report our intuitive analysis.As shown in the table no mechanism is optimal.The BSDI approach fails to guarantee service and canbe forced to compute cookies by an adversary. Al-though we listed this approach as providing robust-ness, we should point out that to reduce the size of the



connection pending data structure this technique of-ten also reduces the timeout that triggers the garbagecollection of non-acknowledge SYN-ACKs. We do be-lieve that the current TCP standard timeout of 75seconds is a bit extreme but, for fairness, we shouldpoint out that lowering the garbage collection timeoutcould be interpreted as compromising the robustnessof the approach.The Linux cookie scheme guarantees service, butit is vulnerable to computing immunity compromisesand, most importantly can compromise the TCP sig-naling semantics. Because no record is kept of re-ceived SYN messages, the server cannot retransmitSYN-ACKs to the client. If the last ACK messagesent to the server is lost because of congestion, theclient enters a state that is not directly addressed bythe TCP standard and that can therefore compromiseproper operation. The reset cookies scheme is the onlyone that provides both guarantee and robustness butfails in performance-related attributes. Finally, in ourinterpretation, the random drop scheme has the onlydrawback of guaranteeing service in a probabilistic,but not absolute, manner34 Random Drop RevisitedRandomly dropping connection pending entrieswhen the queue is �lled by SYN requests was one ofthe �rst proposed defense mechanisms. In the origi-nal formulation, the server simply replaces at randomone of the entries in the queue and lets the client timeout and later retry the connection with another SYN.To maximize the overall response time of a server un-der attack, this mechanism was modi�ed by having theserver send a RST message to the client. With this ad-dition, if a client's SYN entry happens to be droppedby the server, the client is noti�ed immediately withan EOF signal at the application level. Subsequently,the client can retry the connection establishment untilthe connection goes through (we will show, both ana-lytically and experimentally, that with a �nely tuneddropping scheme, a client is guaranteed connection es-tablishment under most conditions).4.1 Revised Analytical ModelIt has been proposed that the rate of successful con-nection establishment Cgood in a random drop schemeis Cgood = Rgood(1� 1=q)(Rgood+Rbad)T (1)where Rgood and T are the average rate of arrival andthe average round-trip time of all clients attempting a3Most communication services today only o�er probabilis-tic guarantees and therefore this drawback could be cast as anormal expected characteristic of the network.

connection to the server, q is the size of the connectionpending queue, and Rbad is the constant rate at whichspoofed SYNs arrive to the server. The expression(1� 1=q) is the probability that a new arrival will notcause an existing entry to be dropped. Because eacharrival is statistically independent, by elevating (1 �1=q) to the power of the number of expected arrivalsduring the servicing of the requests ((Rgood+Rbad)T ),one can �nd the probability that a legitimate requestwill succeed.An initial objection to equation 1 is that for a queueof size 1 it would wrongly predict a 100% success ratefor the legitimate users. For this reason q should bereally de�ned as the size of the connection pendingqueue plus 1. Another minor inaccuracy of equation1 is that it does not take into account the fact thatspoofed TCP SYNs expire after 70 seconds thus free-ing some queue space. In practice both of these factshave a very small impact on the estimate of Cgood and,therefore, for the remainder of the paper we will ignorethem.It is important to note, though, that the above es-timate is grossly pessimistic because it does not takeinto account the fact that when successful connectionsare completed, entries are removed from the queueto mitigate the replacement probability. This phe-nomenon, which we accurately reproduced by analyt-ical simulation, can be modeled with the expressionCgood = Rgood(1� 1=q)(Rgood+Rbad�Cgood)T (2)which reduces the frequency at which connections arerandomly knocked out by the rate of success (Cgood).All current TCP SYN admission control schemesdrop all incoming SYNs when the receive queue is full.Equation 2 models a scheme in which incoming SYNsthat �nd a full queue always cause some other entry inthe queue to be dropped. Intuitively, one could guessthat the best solution is somewhere in between thesetwo extremes.Preempting existing entries is not always best, be-cause in some situations the queue may contain a largenumber of legitimate clients. In fact, Rbad is 0 whenthere are no SYN ooding attacks or other networkproblems leading to similar behavior. Obviously, well-intentioned connection requests should not be evicted,even if the queue gets full. In other words, we shouldmaximize the chance that legitimate users be giventhe possibility of completing a connection if possible.To model the above idea, we introduce a factorK thatdetermines the probability that any incoming SYN isaccepted in the queue. This modi�es equation 2 to



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

100      200       300    400      500      600      700      800     900

Connection Probability for T=1 second and q=128

Rg/Rb=8, 4, 2, 1, 1/2, 1/4, 1/8

K=-1/ln(Q)(Rg+Rb)T

K=1

Rb (SYNs/sec.)

C
on

ne
ct

io
n 

Pr
ob

ab
ili

ty

Figure 1: Connection probabilities for high ratios ofspoofed SYNsyieldCgood = K �Rgood � (1� 1=q)(K(Rgood+Rbad)�Cgood)T(3)This expression uses the parameter K (truncated to bein the range [0 1], to modulate the rate at which bothlegitimate users and spoofed packets are accepted. To�nd the optimal value for K, we di�erentiate equation3 and set dCgooddK to zero. Solving then for K we getK = �1ln(1� 1=q)(Rgood +Rbad)T (4)Equation 4 suggests that a simple �ltering tech-nique could be used to maximize (or minimize if ex-pressing a minimum) the connection rate of legitimateusers. Through both further analytical derivation andempirical evidence (See Figure 1) it can be shown thatthis indeed an expression to maximize (not minimize)the success rate.It is interesting that the �lter only requires knowl-edge of the total incoming SYN rate and can thereforeeasily be implemented by recording the inter-arrivalperiods and combining them with simple integer arith-metic.To demonstrate the e�ectiveness of the randomdrop scheme augmented by early drop �ltering, weconducted some analytical simulations that plot theprobability of success of legitimate users as a functionof Rgood and Rbad for a �xed time T.Figure 1 shows the client success rates for the twodi�erent random drop systems: (1) K = 1 (i.e., no�ltering), (2) K = �1ln(1�1=q)(Rgood+Rbad)T (with �lter-ing). The simulated system has a queue size of 128

and a round trip delay time T of 1 second. These ex-periments were designed to highlight the e�ectivenessof the �ltering, and therefore the parameters were cho-sen to explore a region of operation where the spoofedSYNs can greatly reduce the connection probability.Although these worst-case conditions would seldombe encountered in practice, these results show that,in these cases, random drop with �ltering is strictlybetter than random drop with no �ltering. In addi-tion Figure 1 shows that even for extremely adverseconditions (very high T and Rbad frequencies up to300 SYNs/sec.) random drop augmented with �lteringwould still guarantee some limited amount of serviceto legitimate connection requests.4.2 High-�delity SimulationWe measure the performance of the random dropscheme with a high-�delity distributed simulation tooldeveloped in the ANCORS project [6]. ANCORS'ssimulation and prototyping environment was obtainedby modifying a Linux operating system to allow itsexecution in user mode. The modi�cations of the op-erating system substituted the lower-level hardware-dependent procedures and interfaces with user-levelcounterparts. We deleted the �le system support andincorporated all necessary con�guration procedures(like ifcon�g and route) into the service itself. Mem-ory management was completely deleted and replacedby user-level memory allocation functions (malloc andfree). The scheduling was also completely replacedby nonpreemptive threading o�ered by the simulationpackage CSIM [10].The resulting service executes on a virtualtimescale, and o�ers networking behavior identical tothat of a real Linux kernel, providing a vehicle to in-stantiate high-�delity distributed simulations of vir-tual networks [8]. One of the model's con�gurationfunctions accepts several di�erent timing con�gura-tions to approximate the protocol stack timing behav-ior of four di�erent kernels (SunOS 4.13, SunOS 5.5,Linux 2.02, and FreeBSD 2.2).The virtual kernel o�ers the network applicationprogramming interface (API) of the real Linux coun-terpart and therefore can be used to reproduce a widerange of loading conditions. ANCORS's ability to addand delete threads can be used in this application todynamically change loading conditions (by adding ordeleting user-de�ned loading threads) or by injectinguser-de�ned monitoring probes into the kernel so thatspeci�c parameters can be observed.4.3 Simulated NetworkTwelve workstations were con�gured, each with anANCORS virtual host and were arranged in the topol-



R1 R2

L1 L2 L3 L4

S1

S2

C1 C2 C3 C4

Figure 2: Simulated networkogy depicted in Figure 2. Four clients C1; C2; C3 andC4 generate TCP connection requests to the serverS1, send data requests to the server, receive data fromthe server, and then close the connection. This be-havior reproduces a typical scenario where an HTTPserver replies to HTTP GET requests from a num-ber of clients. The client and server replies are routedthrough nodes R1 and R2, which simply forward thedata back and forth. Four additional hosts L1; L2; L3and L4 and another server S2 communicate throughrouter R2, thus causing congestion and routing delay.By varying the amount of data exchanged betweenL1; L2; L3 and L4 and server S2, one can adjust thelevel of congestion in the experiments. L1 also servesas the host from which the SYN attack is launchedagainst S1.4.4 Simulation ParametersAn important parameter for the experiments is thedetermination of a reasonable rate at which an at-tacker can send SYN packets to the server. We varythis rate from 500 to 25 SYNs per second to cap-ture typical rates that could be achieved on the In-ternet. Note that although these rates only translateto quite small e�ective bandwidths (a 60-byte SYNpacket would consume 30,000 and 600 Kbyte/s, re-spectively) they capture the overheads that the pack-ets may encounter in a realistic routing environment.The routing delay encountered by the clients in allSYN ooding defense mechanisms, except the BSDcookie scheme, plays an important role in the e�ec-tiveness of defense. All approaches su�er in di�er-ent ways from high routing delays. In the randomdrop mechanism this delay determines the likelihoodthat a malicious SYN may preempt a legal connectionrequest while it is being acknowledged by the client(large T values). As the delay increases the probabil-ity of a preemption also increases. In the Linux cookiescheme, high routing delay and therefore high conges-tion can cause the loss of the last ACK packet of theTCP signaling handshake. If the last ACK packet islost, the client enters in a half-open state and may paya high penalty by having to time out on a reply from

Table 2: Random Drop Packet-level SimulationLoad Rbad Model Actual T Total Loss dueDrop Rate (ms) Loss to drophigh 25 3% 1.25% 109 11.16% 0.48%high 50 5% 2.25% 105 6% 0.88%high 100 10% 5.5% 130 22.29% 2.21%high 200 25% 13.75% 179 40.86% 5.77%high 250 31% 14% 185 44.11% 5.73%high 333 43% 15.25% 201 49.29% 6.18%high 500 78% 16.25% 336 63.37% 7.93%low 25 0.2 0% 8 -1.02% 0%low 50 0.5 0% 11.6 1.5% 0%low 100 1% 0.5% 12.4 7.3% 0.24%low 200 3 2.75 14 21.4% 1.3%low 250 3% 3.25% 16.25 28.3% 1.57%low 333 5% 5.25% 18 36.6% 1.91%low 500 10% 8.25% 24 52.7% 3.91%the server. In the reset cookie scheme, routing delayproportionally deteriorates performance by a factor of66% because two more messages are necessary for eachnew client's connection.In assessing the performance of the random dropscheme we chose to load our virtual network in sucha way that clients experience average delays of 50 to200 ms. Although these delays may seem optimisticand do not represent worst-case conditions, the queuesize could be increased in proportion to the expectedhigher routing delays and thus outweigh higher valuesof T .4.5 ResultsIn these experiments the virtual clients C1; C2; C3and C4 each connect to server S1 100 times. For eachconnection the clients send a small packet to the serverand receive a reply. This behavior tries to model thedownloading of a large HTML page containing nu-merous HTTP objects. As the page is loaded, theclient opens a number of connections with the serverto download all the di�erent parts of the page. The ex-periments performed through our virtual network arevery revealing and further strengthen our belief thatrandom drop is an adequate defense mechanism.Table 2 shows the predicted and actual rates ofconnection drop for di�erent loading conditions andspoofed SYN rates. In the low congested network themodel agrees fairly accurately with the behavior. Forhigh SYN rates and high congestion the actual be-havior is much better than analytically predicted. Infact, in this case, as the SYN rates increase the ac-tual behavior diverges more and more from the ana-lytical model. This behavior is due, in large part, tothe fact that as the SYN rate increases in a highlycongested network, many spoofed messages are lost,thus allowing higher-than-expected numbers of legiti-



mate connections to go through. We have to performmore detailed experiments to further investigate thisimportant phenomenon because, if con�rmed under awide range of loading conditions, may de�nitively ar-gue that brute force defense approaches like the BSDIcookie scheme or probabilistic approaches like the ran-dom drop may be the best solutions.Table 2 also shows the average performance degra-dation of the four clients when the server is underattack. We report the total loss in performance (dueto both failed connection retries and the congestioncaused by the SYN stream) and the performance lossdue to connection retries only. As shown in the ta-ble, because we send RST messages upon a drop, thedrop rates translate to relatively low losses in perfor-mance due to connection retries. Most of the perfor-mance loss is due to the higher congestion introducedby high SYN rates. Notice, though, that as the con-gestion increases, both because of more legitimate usertra�c and more spoofed SYN tra�c, the relatively lowdrop rates translate into relatively high performancelosses. This occurs because in highly congested net-works each connection retry takes longer and thereforeincreasingly impacts overall performance.Two important conclusions may be drawn fromthese experiments. One result indicates that a bruteforce defense approach or a more e�cient probabilisticapproach like the random drop may be the best solu-tion because very high SYN rates are not possible in arealistic environment. Another result is that randomdrop works well in both low congestion as well as highcongestion by keeping the clients performance lossesbelow 10% even for very high spoofed SYN rates.5 ConclusionWe have qualitatively compared several mecha-nisms to defend against the SYN ooding denial-of-service attack and have shown that no solution is op-timal. We revisited the adoption of the random dropapproach by producing a better analytical model ofits behavior in the context of defending against theTCP SYN ooding attack. With the new model, wederived a simple �lter that can improve random dropperformance in worst-case scenarios. High-�delity dis-tributed packet-level simulations partially agree withour analytical model and illustrate that in a real en-vironment with high congestion the random drop ap-proach would behave much better than expected. Wehave also shown that performance loss due to connec-tion retries stays well below 10% under a wide rangeof loading conditions.

References[1] Syncookies mailing list.ftp: // koobera. math. uic. edu/ pub/ docs/syncookies-archive , 1996.[2] Inc. Berkeley Software Design. Bsdi releases defense forinternet denial-of-service attacks. http: // www. bsdi. com/press/ 19961002.html , October 1996.[3] D.J. Bernstein. Syn oods { a solution. http: // www. op.net/ ~jaw/ syn-fix.html , 1996.[4] Alan Cox. Linux tcp changes for protection against thesyn attack. http:// www. wcug. wwu. edu/ lists/netdev/199609/ msg00091.html , September 1996.[5] Rex di Bona. Tcp syn attacks- a simple solution. http: // www. cctec. com/ maillists/nanog/ historical/9610/ msg00155.html , Oct 1996.[6] P. Porras L. Ricciulli, N. Shacham. Ancors: Adaptablenetwork control and reporting system. SRI technical reportSRI-CSL-9801, 1998.[7] Sun Microsystems. Sun's tcp syn ooding solu-tions. http: // ciac. llnl. gov/ ciac/ bulletins/h-02.shtml , October 1996.[8] L. Ricciulli. High-�delity distributed simulation of localarea networks. Proceedings of the 31st Annual SimulationSymposium, Boston, April 1998.[9] C. L. Schuba, I. V. Krsul, M. G. Khun, E.H. Spa�ord,A. Sundram, and D. Zamboni. Analysis of a denial ofservice attack on tcp. 1997 IEEE Symposium on Securityand Privacy, 1997.[10] H. Schwetman. CSIM: a C-based, process-oriented simula-tion language. Technical report, MCC, 1989.[11] E. Shenk. Another new thought on dealing with syn ood-ing. http: // www. wcug. wwu. edu/ lists/ netdev/199609/msg00171.html , Sept 1996.


